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ABSTRACT. This paper is concerned with an adjustment on an asymptotic expansion
of the distribution function, whose limiting distribution is a chi-squared distribution,

up to the order n~!. The distribution function is a monotone function and has the

upper and lower bounds with 0 and 1, but an asymptotic expansion does not satisfy
these properties. We consider to add a term of n~2 order to the asymptotic ex-
pansion so that the resulting one satisfies such properties. Note that our adjustment
does not give an influence on the order of the remainder term in the asymptotic
expansion. Our method of preserving monotoneity is based on the idea in Kakizawa
(1996).

1. Introduction

The limiting distribution is often used as an approximate distribution,
when it is difficult to obtain the exact distribution function for its compexity.
However, its accuracy tends to be bad as the sample size n tends to be
small. It is well known that an asymptotic expansion will improve accuracy of
approximation compared with the limiting distribution in the small sample case.
Suppose that a nonnegative random variate 7" has an asymptotic expansion
such that

= P,(x)+o(n "), (1.1)

where G,(x) is the distribution function of a central y? distribution with r
degrees of freedom, coefficients b;’s satisfy the relation Z}": obj=0 and k is
a certain positive integer. The approximation P, (x) with the supplementary
term Z}‘: 0 biGr27(x)/n will give a better approximation than the limiting dis-
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Figure 1.1. Example of an undesirable result on P (x)

tribution G,(x). However, it doesn’t always satisfy the basic properties of the
distribution function: its monotoneity and upper & lower bound with 0 & 1.
This fact leads to some problems when we use the approximation P, (x) to get
a p-value of certain statistic.

Figure 1.1 illustrates one of such problems. This example is a graph
of P,(x) in the case of the null distribution of the likelihood ratio statistic
for testing equality of variances under nonnormality (see, Tonda and Wakaki
(2001)) and its true distribution function which is obtained by Monte Carlo
simulation. Note that P,(x) exceeds 1, the upper bound of the distribution
function. Such an undesirable phenomenon occurs under nonnormality more
often than under normality. Our purpose is to avoid such a problem, con-
sidering to add an adjusting term of n~2 order to the asymptotic expansion such
as (1.1) so that resulting one preserves the monotoneity and has the appro-
preate bounds. We call an expansion with such adjusting term an adjusted
asymptotic expansion. Note that our adjustment does not give an influence
on the order of the remainder term in the asymptotic expansion. In order to
guarantee the monotoneity, we use an idea in Kakizawa (1996).

The present paper is organized in the following way. In §2 we derive the
main result, i.e., an adjusted asymptotic expansion on y?-approximation. In
§3 we introduce some applications for our results in the cases of the null dis-
tributions of test statistics for testing the equality of variances and the sphericity
of covariance. In §4 some simulation study on a former example in §3 is
carried out.
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2. Main result

In this section, we obtain an adjusted asymptotic expansion on y> approx-
imation. Suppose that a nonnegative random variate 7 has an asymptotic
expansion as in (1.1). The adjusted asymptotic expansion AP, (x) is defined
by adding a supplementary term of order O(n~2) as follows. Let

APue(x) = d! {Pae(x) + %a(x)}a

where d is defined by

X—00 n< x—ow

d = lim {Pae(x) —&—%a(x)} =1 +i2 lim a(x).

Here, a(x) can be obtained by applying the idea in Kakizawa (1996) to

our case:
1 2
a(x) = 4], {gr )b 1{ <Zb Grio(x ) } dx
1> | k k
:Z {gr } Zzbl jgl+21 gt+2]( )dx
i=0 j=0
- 4 0 p X)ax,

where g,(x) is the density function of a central y* distribution with r degrees of
freedom, which is defined by

1 7x/2xr/271 )

STTEN

Then, AP,.(x) is to satisfy dAP,.(x)/dx > 0 and lim,_,,, AP,.(x) = 1. Further,
our adjustment does not give any influence on the order of the remainder term
in the asymptotic expansion. Namely,

APye(x) = Pue(x) + O(n?)
=P(T <x)+o(n").
Next we obtain explicit forms of a(x) and d. Note that
xi
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Therefore, we can obtain the following relation:

1 (i=0),
gr+2z’<x> _ ¥
gr(x) , (otherwise).

[l {r+2(2 = 1)}

Using these results, we can derive

k k k 1
bi b xlgr+2]( )
x)=bo > bigriz(x) +
Z / ZZ [l {r+2(x— 1)}

i

k k
= bobigria(x)+ > > bib al_[{H— T 1)}g,~+z,»+z;(x)-

j=0 i=1 j=0

Therefore, the adjusted asymptotic expansion 4P, (x) can be obtained as in the
following theorem.

THEOREM 2.1. Suppose that the distribution function of a nonnegative
variate T can be expanded as in (1.1), then an adjusted asymptotic expansion
AP, (x) can be given by

k

APy (x) = dl{Gr(x) + %Z biG’+2i(x)

Jj=0

| Kk
_222“”!/ Griaita(x )} (2.1)

i=0 j=0
where
| ok
= —zzzbibz‘cm
i=0 j=0
and
1 (i=0),

Ci.,j e i 2] .
H (1 + m) (otherwise).

o=1

There is a different method of adjusting an asymptotic expansion, which is
based on an inverse monotone function, i.e., an inverse improving trans-
formation. Such improving transformations on y? approximation were studied
by Kakizawa (1996), Fujikoshi (1997), Fujisawa (1997) and Cordeiro et al.
(1998), etc. The error in the y> approximation is o(n~!) by such a trans-
formation, i.e.,
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P(f(T) <x) = G,(x) +o(n ),

where f(x) is a monotone increasing function. This gives an alternative
adjustment defined by

Pu(x) = G,/ ().

However, our method has some advantage in the comparison with the other
methods. For example, our adjustment has a simple expression and always
can be expressed as a closed form, and the distribution function of 7 can be
given easily. On the other hand, f~'(x) cannot be expressed in a simple form
because f(x) in Fujikoshi (1997) and Fujisawa (1997) is based on the k-th
polynomial, the one in Kakizawa (1996) is the (2k — 1)-th polynomial, and the
one in Cordeiro et al. (1998) is based on the distribution function of a normal
distribution. From the monotoneity of such transformations p-values of T
can be obtained as those of f(T), but it is difficult to describe a distribution
function of 7 because f~'(x) cannot be expressed in a simple form.

3. Some applications

In this section, we obtain the adjusted asymptotic expansions by applying
THEOREM 2.1 to some test statistics. Particularly, we make sure that our
method is valuable in both normal and nonnormal cases.

ExamPLE 3.1.  The likelihood ratio statistic for testing equality of variances.

First, we consider a nonnormal case. Under nonnormality, since the
coefficients b;’s in P, (x) tend to be large, an undesirable phenomenon as in
Figure 1.1 will occur more often by using P, (x) as the distribution function.
Therefore, it is necessary to adjust it as in our method in the nonnormal case.

Let y; be the j-th sample observation (j=1,...,n;) from the i-th

population 77; (i=1,...,q) with mean g and variance ¢?. Under normality,
the likelihood ratio statistic for testing the hypothesis g7 = --- = an is defined
by
Se 1 5
T, = (n—q)log —2:(11,-—1)10gsi7

n—q 3

where n=3 1, m, 3 =n; ;';1yij: 57 = (ni — ™ (i —y)? and S, =
Z?Zl(ni - l)siz. Let mo = x4 + 2, where x4 is kurtosis of y;. From Tonda
and Wakaki (2001), under some conditions on y;, the asymptotic expansion
of the null distribution of T =2T)/my under nonnormality can be given
by
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1 3
P(T < x) = Gy (x) +ﬁZb/Gq—1+2j(x) +o(n™h),
=0

where
by = —ay + ay — as, by = 3a; — 2ar — a4 + as,
by = —3a; +ay — a3 + ag, b3 = a; + as,
and
ar = {4m} — 6qmi — 3¢*(=2mg +m) + 5mi ||}/ 24mg,

7 1I%)/8mg,

a=m(l—-2q+
ay = —(my — my)(—4 + 6g — 5|l ||%) /6mo,
ay = —{(5+ 6q)m3 — 6my + (mZ — 6my)||r~"||*}/12my,
as = {—2mg + q(=2 + mo + 3m} — 2my)

+my = (=2 + mo)|[r™" |1}/ 2mo,

and [|r!|* = >4 n/n;. Then the coefficients ¢; ; in AP, (x) can be given by

N/ 0 1 2 3
0 /1 1 1 1
+1 +3 +5
O e s}
Cij=9 |1 483 (g+3)(¢+5) (g+5)(g+7)
=1 (¢-1)(p+1) (g=1)(q+1)
3 1 3 (g+5)(q+7)  (g+5)(9+7)(g+9)

<
|

(g=1)(g+1)  (g—D(g+1)(¢+3)

Figure 3.1 shows the graph of AP,(x), Ps(x), G,—1(x) and the true dis-
tribution function which is obtained by Monte Carlo simulation. From the
figure, we can see that AP,(x) solves some problems of P, (x), that is to
exceed 1 and not monotone, and gives a good approximation than the limiting
distribution G,_;(x).

ExampLE 3.2. Test criterion for the sphericity of a covariance matrix.

Next, we consider a normal case. An undesirable phenomenon will
happen even under normality.

Let y be a p x 1 random vector from a normal distribution with mean
vector # and covariance matrix 2, and y,...,y, be n independent observation
vectors of y. We consider the test statistic (Nagao (1973)) for Hy : X = d°I,
defined by
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Figure 3.1. Illustration of Py (x), AP.(x), G4—1(x) and P(T < x)
2(n—1 1 1Y
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2 tr(S) D
where o is an unspecified constatnt, S=3" (y;—F)(y;—¥) and y=
n! ;1:1 y;. From Nagao (1973), an asymptotic expansion of the null dis-

tribution of 7 can be expanded as

P(T < x) = Gi(x) +%jiobjG,~+zj(x) +o(n ),
where
by = %(4,;3 —3p*+p+436p7"),
b= (0 + 27 —p 2216,
by = é(-zﬁ —5p* +7p+ 124+ 420p7 1),

1
by =15 (P +3p” = 8p = 12-200p7),

and r=p(p+1)/2—1. Then the coefficients c;; in AP, (x) can be given by
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Table 3.1. P-values based on several functions

P-values x 102

Quantiles | P(T>x) 1-G,(x) 1=RB.(x) 1—A4B.(x)

13.43 10.0 14.4 10.4 10.8
15.26 5.00 8.40 5.12 5.51
19.56 1.00 2.08 0.63 0.90
25.67 0.10 0.23 —0.03 0.04
Ao o1 2 3
0 /1 1 1 1
111 =2 r+4 r+6
r r r
Cij =19 1 r+4  (+4)(r+6) (r+6)(r+8)
’ r r(r+2) r(r+2)
3 1 r+6 (r+6)(r+8)  (r+6)(r+8)(r+10)
r r(r+2) r(r+2)(r+4)

Table 3.1 shows p-values which were obtained by using P(7 > x),
1 — G,(x), | — Pge(x) and 1 — AP, (x) based on some quantiles. We note that
Pu(x) is to exceed 1 in the tail of distribution even if y is distributed as a
normal distribution. AP, (x) corrects such a fault in P, (x).

4. Simulation study

In this section, we give a simulation study for the ExampLE 3.1 in §3.
Our interest is to compare with several methods to obtain p-value. We con-
sidered the following five nonnormal models and one normal model with g = 3
and 5, and each sample size n; =10 (1 <j <¢q);

(i) X+ YZ, where X, Y and Z are independently distributed as

N, 1),

(ii) symmetric uniform distribution U(-5,5),
(i) double exponential distribution DE(O0, 1),
(iv) x? distribution with 3 degrees of freedom,
(v) x? distribution with 8 degrees of freedom,

(vi) normal distribution.

As for cumulants in each model, see Tonda and Wakaki (2001).

Tables 4.1 and 4.2 display p-values which were obtained by using
P(T = x), 1 — G, 1(x), 1 — Py(x), | — AP, (x) and 1 — Py(x) based on same
quantiles. In this study, we use a monotone function f(x) in Kakizawa (1996),
which is defined by
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Table 4.1. P-values in the case g = 3.

P-value x 102

Models Quantiles | P(T>x) 1-G,1(x) 1 — Pe(x) 1 — AP,(x) 1 — Pi(x)
3.805 10.0 15.0 3.50 5.70 6.43
Model (i) 4.929 5.00 8.54 1.04 2.74 3.25
(X+7Y2) 7.480 1.00 2.40 0.28 0.88 0.91
10.93 0.10 0.45 0.33 0.44 0.30
6.254 10.0 4.22 8.33 9.48 10.3
Model (ii) 8.501 5.00 1.34 342 4.30 5.43
(U(=5,5)) 14.39 1.00 0.07 0.34 0.59 1.66
23.50 0.10 0.00 0.01 0.02 0.79
3.701 10.0 16.2 4.74 6.86 7.45
Model (iii) 4.738 5.00 9.72 1.18 3.11 3.72
(DE(0, 1)) 7.038 1.00 3.25 ~0.60 0.55 0.89
10.07 0.10 0.57 —0.24 0.05 0.12
3.281 10.0 18.9 —1.59 4.34 5.31
Model (iv) 4.205 5.00 12.0 —-2.78 2.20 2.87
(732) 6.248 1.00 4.09 —1.16 1.05 0.93
8.772 0.10 1.04 0.35 0.88 0.40
3.852 10.0 14.5 5.96 7.20 7.68
Model (v) 4.972 5.00 8.11 2.20 3.26 3.71
(}(é) 7.453 1.00 2.26 0.12 0.62 0.82
10.97 0.10 0.41 0.01 0.11 0.14
4.831 10.0 8.58 9.51 9.54 9.56
Model (vi) 6.260 5.00 4.15 4.74 4.76 4.78
(N(0, 1)) 9.606 1.00 0.75 0.91 0.92 0.93
14.54 0.10 0.06 0.08 0.09 0.09

2x
f(X) =X — (dl + dzx + d3)C2)

n(g—1)

+— {df T+ 2didox + 2 (22 + 3dyds )X + 3ddx® + 2d§x4},
n(g—1) 3 3

where

(by + b3) bs

di = —b dy = e
e 72 I (/S D] (7))

From the tables, we can see that AP, (x) improves a fault of P,(x), that
is to exceed 1. Moreover, p-values based on 1 — AP, (x) shows the similar
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Table 4.2. P-values in the case ¢ = 5.

P-value x 102

Models Quantiles | P(T > x) 1 -Gy (x) 1 = Re(x) 1 — AP, (x) 1 - P(x)
6.555 10.0 16.5 2.38 5.61 6.19
Model (i) 8.024 5.00 9.24 1.10 3.31 3.40
(X+7Y2) 11.25 1.00 2.45 1.19 1.79 1.27
16.17 0.10 0.35 0.76 1.06 0.67
10.75 10.0 2.98 7.27 8.84 10.7
Model (ii) 13.56 5.00 0.89 2.82 3.88 5.94
(U(=5,5)) 20.32 1.00 0.04 0.23 0.45 2,01
30.44 0.10 0.00 0.00 0.01 1.10
6.295 10.0 17.8 2.93 5.92 6.93
Model (iii) 7.613 5.00 10.6 0.26 2.73 3.56
(DE(0, 1)) 10.40 1.00 3.24 ~0.37 0.68 0.95
14.23 0.10 0.62 0.10 0.26 0.24
5.683 10.0 22.5 —4.82 4.80 4.95
Model (iv) 6.919 5.00 14.2 —4.12 3.38 2.93
()(32) 9.560 1.00 4.70 0.08 2.76 1.30
13.27 0.10 0.89 1.62 2.45 0.89
6.611 10.0 16.1 5.18 6.90 7.63
Model (v) 8.036 5.00 9.24 2.08 3.41 3.96
(){é) 11.33 1.00 2.49 0.48 0.93 1.04
15.26 0.10 0.41 0.27 0.32 0.26
8.109 10.0 8.87 10.0 10.0 10.1
Model (vi) 9.906 5.00 4.42 5.14 5.17 5.19
(N(0, 1)) 13.85 1.00 0.82 1.01 1.03 1.04
19.08 0.10 0.08 0.10 0.11 0.11

performances as 1 — P,(x). We remark that, in the case of this test statistic,
AP, (x) tends to be conservative, that is, P(T > x) > 1 — AP,.(x).
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