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Abstract. This paper is concerned with an adjustment on an asymptotic expansion

of the distribution function, whose limiting distribution is a chi-squared distribution,

up to the order n�1. The distribution function is a monotone function and has the

upper and lower bounds with 0 and 1, but an asymptotic expansion does not satisfy

these properties. We consider to add a term of n�2 order to the asymptotic ex-

pansion so that the resulting one satisfies such properties. Note that our adjustment

does not give an influence on the order of the remainder term in the asymptotic

expansion. Our method of preserving monotoneity is based on the idea in Kakizawa

(1996).

1. Introduction

The limiting distribution is often used as an approximate distribution,

when it is di‰cult to obtain the exact distribution function for its compexity.

However, its accuracy tends to be bad as the sample size n tends to be

small. It is well known that an asymptotic expansion will improve accuracy of

approximation compared with the limiting distribution in the small sample case.

Suppose that a nonnegative random variate T has an asymptotic expansion

such that

PðT a xÞ ¼ GrðxÞ þ
1

n

Xk
j¼0

bjGrþ2jðxÞ þ oðn�1Þ

¼ PaeðxÞ þ oðn�1Þ; ð1:1Þ

where GrðxÞ is the distribution function of a central w2 distribution with r

degrees of freedom, coe‰cients bj’s satisfy the relation
Pk

j¼0 bj ¼ 0 and k is

a certain positive integer. The approximation PaeðxÞ with the supplementary

term
Pk

j¼0 bjGrþ2jðxÞ=n will give a better approximation than the limiting dis-
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tribution GrðxÞ. However, it doesn’t always satisfy the basic properties of the

distribution function: its monotoneity and upper & lower bound with 0 & 1.

This fact leads to some problems when we use the approximation PaeðxÞ to get

a p-value of certain statistic.

Figure 1.1 illustrates one of such problems. This example is a graph

of PaeðxÞ in the case of the null distribution of the likelihood ratio statistic

for testing equality of variances under nonnormality (see, Tonda and Wakaki

(2001)) and its true distribution function which is obtained by Monte Carlo

simulation. Note that PaeðxÞ exceeds 1, the upper bound of the distribution

function. Such an undesirable phenomenon occurs under nonnormality more

often than under normality. Our purpose is to avoid such a problem, con-

sidering to add an adjusting term of n�2 order to the asymptotic expansion such

as (1.1) so that resulting one preserves the monotoneity and has the appro-

preate bounds. We call an expansion with such adjusting term an adjusted

asymptotic expansion. Note that our adjustment does not give an influence

on the order of the remainder term in the asymptotic expansion. In order to

guarantee the monotoneity, we use an idea in Kakizawa (1996).

The present paper is organized in the following way. In § 2 we derive the

main result, i.e., an adjusted asymptotic expansion on w2-approximation. In

§ 3 we introduce some applications for our results in the cases of the null dis-

tributions of test statistics for testing the equality of variances and the sphericity

of covariance. In § 4 some simulation study on a former example in § 3 is

carried out.

Figure 1.1. Example of an undesirable result on PaeðxÞ

Hirokazu Yanagihara and Tetsuji Tonda16



2. Main result

In this section, we obtain an adjusted asymptotic expansion on w2 approx-

imation. Suppose that a nonnegative random variate T has an asymptotic

expansion as in (1.1). The adjusted asymptotic expansion APaeðxÞ is defined

by adding a supplementary term of order Oðn�2Þ as follows. Let

APaeðxÞ ¼ d�1 PaeðxÞ þ
1

n2
aðxÞ

� �
;

where d is defined by

d ¼ lim
x!y

PaeðxÞ þ
1

n2
aðxÞ

� �
¼ 1þ 1

n2
lim
x!y

aðxÞ:

Here, aðxÞ can be obtained by applying the idea in Kakizawa (1996) to

our case:

aðxÞ ¼ 1

4

ð x
0

fgrðxÞg�1 d

dx

Xk
j¼0

bjGfþ2jðxÞ
 !( )2

dx

¼ 1

4

ð x
0

fgrðxÞg�1
Xk
i¼0

Xk
j¼0

bibjgrþ2iðxÞgrþ2jðxÞdx

¼ 1

4

ð x
0

pðxÞdx;

where grðxÞ is the density function of a central w2 distribution with r degrees of

freedom, which is defined by

grðxÞ ¼
1

2 r=2Gðr=2Þ e
�x=2xr=2�1:

Then, APaeðxÞ is to satisfy dAPaeðxÞ=dxb 0 and limx!y APaeðxÞ ¼ 1. Further,

our adjustment does not give any influence on the order of the remainder term

in the asymptotic expansion. Namely,

APaeðxÞ ¼ PaeðxÞ þOðn�2Þ

¼ PðT a xÞ þ oðn�1Þ:

Next we obtain explicit forms of aðxÞ and d. Note that

grþ2iðxÞ ¼
xiQ i

a¼1frþ 2ða� 1Þg
grðxÞ ðib 1Þ:
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Therefore, we can obtain the following relation:

grþ2iðxÞ
grðxÞ

¼
1 ði ¼ 0Þ;

xiQ i
a¼1frþ 2ða� 1Þg

(otherwise).

8><
>:

Using these results, we can derive

pðxÞ ¼ b0
Xk
j¼0

bjgrþ2jðxÞ þ
Xk
i¼1

Xk
j¼0

bibjx
igrþ2jðxÞQ i

a¼1frþ 2ða� 1Þg

¼
Xk
j¼0

b0bjgrþ2jðxÞ þ
Xk
i¼1

Xk
j¼0

bibj
Yi
a¼1

1þ 2j

rþ 2ða� 1Þ

� �
grþ2iþ2jðxÞ:

Therefore, the adjusted asymptotic expansion APaeðxÞ can be obtained as in the

following theorem.

Theorem 2.1. Suppose that the distribution function of a nonnegative

variate T can be expanded as in (1.1), then an adjusted asymptotic expansion

APaeðxÞ can be given by

APaeðxÞ ¼ d�1

(
GrðxÞ þ

1

n

Xk
j¼0

bjGrþ2jðxÞ

þ 1

4n2

Xk
i¼0

Xk
j¼0

bibjci; jGrþ2iþ2jðxÞ
)
; ð2:1Þ

where

d ¼ 1þ 1

4n2

Xk
i¼0

Xk
j¼0

bibjci; j;

and

ci; j ¼
1 ði ¼ 0Þ;
Yi
a¼1

1þ 2j

rþ 2a� 2

� �
ðotherwiseÞ:

8>><
>>:

There is a di¤erent method of adjusting an asymptotic expansion, which is

based on an inverse monotone function, i.e., an inverse improving trans-

formation. Such improving transformations on w2 approximation were studied

by Kakizawa (1996), Fujikoshi (1997), Fujisawa (1997) and Cordeiro et al.

(1998), etc. The error in the w2 approximation is oðn�1Þ by such a trans-

formation, i.e.,
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Pð f ðTÞa xÞ ¼ GrðxÞ þ oðn�1Þ;

where f ðxÞ is a monotone increasing function. This gives an alternative

adjustment defined by

PitðxÞ ¼ Grð f �1ðxÞÞ:

However, our method has some advantage in the comparison with the other

methods. For example, our adjustment has a simple expression and always

can be expressed as a closed form, and the distribution function of T can be

given easily. On the other hand, f �1ðxÞ cannot be expressed in a simple form

because f ðxÞ in Fujikoshi (1997) and Fujisawa (1997) is based on the k-th

polynomial, the one in Kakizawa (1996) is the ð2k � 1Þ-th polynomial, and the

one in Cordeiro et al. (1998) is based on the distribution function of a normal

distribution. From the monotoneity of such transformations p-values of T

can be obtained as those of f ðTÞ, but it is di‰cult to describe a distribution

function of T because f �1ðxÞ cannot be expressed in a simple form.

3. Some applications

In this section, we obtain the adjusted asymptotic expansions by applying

Theorem 2.1 to some test statistics. Particularly, we make sure that our

method is valuable in both normal and nonnormal cases.

Example 3.1. The likelihood ratio statistic for testing equality of variances.

First, we consider a nonnormal case. Under nonnormality, since the

coe‰cients bj ’s in PaeðxÞ tend to be large, an undesirable phenomenon as in

Figure 1.1 will occur more often by using PaeðxÞ as the distribution function.

Therefore, it is necessary to adjust it as in our method in the nonnormal case.

Let yij be the j-th sample observation ð j ¼ 1; . . . ; niÞ from the i-th

population Pi ði ¼ 1; . . . ; qÞ with mean mi and variance s2
i . Under normality,

the likelihood ratio statistic for testing the hypothesis s2
1 ¼ � � � ¼ s2

q is defined

by

T1 ¼ ðn� qÞ log Se

n� q
�
Xq
i¼1

ðni � 1Þ log s2i ;

where n ¼
Pq

i¼1 ni, yi ¼ n2i
Pni

j¼1 yij , s2i ¼ ðni � 1Þ�1Pq
i¼1ðyij � yiÞ

2 and Se ¼Pq
i¼1ðni � 1Þs2i . Let m0 ¼ k4 þ 2, where k4 is kurtosis of yij. From Tonda

and Wakaki (2001), under some conditions on yij , the asymptotic expansion

of the null distribution of T ¼ 2T1=m0 under nonnormality can be given

by
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PðT a xÞ ¼ Gq�1ðxÞ þ
1

n

X3
j¼0

bjGq�1þ2jðxÞ þ oðn�1Þ;

where

b0 ¼ �a1 þ a2 � a5; b1 ¼ 3a1 � 2a2 � a4 þ a5;

b2 ¼ �3a1 þ a2 � a3 þ a4; b3 ¼ a1 þ a3;

and

a1 ¼ f4m2
1 � 6qm2

1 � 3q2ð�2m2
0 þm1Þ2 þ 5m2

1kr�1k2g=24m3
0 ;

a2 ¼ m2ð1� 2qþ kr�1k2Þ=8m2
0 ;

a3 ¼ �ðm2
0 �m1Þð�4þ 6q� 5kr�1k2Þ=6m0;

a4 ¼ �fð5þ 6qÞm2
0 � 6m1 þ ðm2

0 � 6m1Þkr�1k2g=12m0;

a5 ¼ f�2m2
0 þ qð�2þm0 þ 3m2

0 � 2m1Þ

þm1 � ð�2þm0Þkr�1k2g=2m0;

and kr�1k2 ¼
Pq

i¼1 n=ni. Then the coe‰cients ci; j in APaeðxÞ can be given by

ci; j ¼

0
BBBBB@

in j 0 1 2 3

0 1 1 1 1

1 1 qþ1
q�1

qþ3
q�1

qþ5
q�1

2 1 qþ3
q�1

ðqþ3Þðqþ5Þ
ðq�1Þðpþ1Þ

ðqþ5Þðqþ7Þ
ðq�1Þðqþ1Þ

3 1 qþ5
q�1

ðqþ5Þðqþ7Þ
ðq�1Þðqþ1Þ

ðqþ5Þðqþ7Þðqþ9Þ
ðq�1Þðqþ1Þðqþ3Þ

1
CCCCCA:

Figure 3.1 shows the graph of APaeðxÞ, PaeðxÞ, Gq�1ðxÞ and the true dis-

tribution function which is obtained by Monte Carlo simulation. From the

figure, we can see that APaeðxÞ solves some problems of PaeðxÞ, that is to

exceed 1 and not monotone, and gives a good approximation than the limiting

distribution Gq�1ðxÞ.

Example 3.2. Test criterion for the sphericity of a covariance matrix.

Next, we consider a normal case. An undesirable phenomenon will

happen even under normality.

Let y be a p� 1 random vector from a normal distribution with mean

vector m and covariance matrix S, and y1; . . . ; yn be n independent observation

vectors of y. We consider the test statistic (Nagao (1973)) for H0 : S ¼ s2Ip
defined by
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T ¼ p2ðn� 1Þ
2

tr
1

trðSÞS � 1

p
Ip

� �2
;

where s2 is an unspecified constatnt, S ¼
Pn

j¼1ðyj � yÞðyj � yÞ0 and y ¼
n�1

Pn
j¼1 yj. From Nagao (1973), an asymptotic expansion of the null dis-

tribution of T can be expanded as

PðT a xÞ ¼ GrðxÞ þ
1

n

X3
j¼0

bjGrþ2jðxÞ þ oðn�1Þ;

where

b0 ¼
1

24
ð�2p3 � 3p2 þ pþ 436p�1Þ;

b1 ¼
1

4
ðp3 þ 2p2 � p� 2� 216p�1Þ;

b2 ¼
1

8
ð�2p3 � 5p2 þ 7pþ 12þ 420p�1Þ;

b3 ¼
1

12
ðp3 þ 3p2 � 8p� 12� 200p�1Þ;

and r ¼ pðpþ 1Þ=2� 1. Then the coe‰cients ci; j in APaeðxÞ can be given by

Figure 3.1. Illustration of PaeðxÞ, APaeðxÞ, Gq�1ðxÞ and PðT axÞ
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ci; j ¼

0
BBBBB@

in j 0 1 2 3

0 1 1 1 1

1 1 rþ2
r

rþ4
r

rþ6
r

2 1 rþ4
r

ðrþ4Þðrþ6Þ
rðrþ2Þ

ðrþ6Þðrþ8Þ
rðrþ2Þ

3 1 rþ6
r

ðrþ6Þðrþ8Þ
rðrþ2Þ

ðrþ6Þðrþ8Þðrþ10Þ
rðrþ2Þðrþ4Þ

1
CCCCCA:

Table 3.1 shows p-values which were obtained by using PðT b xÞ,
1� GrðxÞ, 1� PaeðxÞ and 1� APaeðxÞ based on some quantiles. We note that

PaeðxÞ is to exceed 1 in the tail of distribution even if y is distributed as a

normal distribution. APaeðxÞ corrects such a fault in PaeðxÞ.

4. Simulation study

In this section, we give a simulation study for the Example 3.1 in § 3.

Our interest is to compare with several methods to obtain p-value. We con-

sidered the following five nonnormal models and one normal model with q ¼ 3

and 5, and each sample size nj ¼ 10 ð1a ja qÞ;
( i ) X þ YZ, where X, Y and Z are independently distributed as

Nð0; 1Þ,
( ii ) symmetric uniform distribution Uð�5; 5Þ,
(iii) double exponential distribution DEð0; 1Þ,
(iv) w2 distribution with 3 degrees of freedom,

( v ) w2 distribution with 8 degrees of freedom,

(vi) normal distribution.

As for cumulants in each model, see Tonda and Wakaki (2001).

Tables 4.1 and 4.2 display p-values which were obtained by using

PðT b xÞ, 1� Gq�1ðxÞ, 1� PaeðxÞ, 1� APaeðxÞ and 1� PitðxÞ based on same

quantiles. In this study, we use a monotone function f ðxÞ in Kakizawa (1996),

which is defined by

Table 3.1. P-values based on several functions

P-values� 102

Quantiles PðT b xÞ 1� GrðxÞ 1� PaeðxÞ 1� APaeðxÞ

13.43 10.0 14.4 10.4 10.8

15.26 5.00 8.40 5.12 5.51

19.56 1.00 2.08 0.63 0.90

25.67 0.10 0.23 �0.03 0.04
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f ðxÞ ¼ x� 2x

nðq� 1Þ ðd1 þ d2xþ d3x
2Þ

þ x

n2ðq� 1Þ2
�
d 2
1 þ 2d1d2xþ 2

3
ð2d 2

2 þ 3d1d3Þx2 þ 3d2d3x
3 þ 9

5
d 2
3 x

4

�
;

where

d1 ¼ �b0; d2 ¼
ðb2 þ b3Þ
ðqþ 1Þ ; d2 ¼

b3

ðqþ 1Þðqþ 3Þ :

From the tables, we can see that APaeðxÞ improves a fault of PaeðxÞ, that
is to exceed 1. Moreover, p-values based on 1� APaeðxÞ shows the similar

Table 4.1. P-values in the case q ¼ 3.

P-value� 102

Models Quantiles PðT b xÞ 1� Gq�1ðxÞ 1� PaeðxÞ 1� APaeðxÞ 1� PitðxÞ

3.805 10.0 15.0 3.50 5.70 6.43

Model (i) 4.929 5.00 8.54 1.04 2.74 3.25

(X þ YZ) 7.480 1.00 2.40 0.28 0.88 0.91

10.93 0.10 0.45 0.33 0.44 0.30

6.254 10.0 4.22 8.33 9.48 10.3

Model (ii) 8.501 5.00 1.34 3.42 4.30 5.43

(Uð�5; 5Þ) 14.39 1.00 0.07 0.34 0.59 1.66

23.50 0.10 0.00 0.01 0.02 0.79

3.701 10.0 16.2 4.74 6.86 7.45

Model (iii) 4.738 5.00 9.72 1.18 3.11 3.72

(DEð0; 1Þ) 7.038 1.00 3.25 �0.60 0.55 0.89

10.07 0.10 0.57 �0.24 0.05 0.12

3.281 10.0 18.9 �1.59 4.34 5.31

Model (iv) 4.205 5.00 12.0 �2.78 2.20 2.87

(w2
3 ) 6.248 1.00 4.09 �1.16 1.05 0.93

8.772 0.10 1.04 0.35 0.88 0.40

3.852 10.0 14.5 5.96 7.20 7.68

Model (v) 4.972 5.00 8.11 2.20 3.26 3.71

(w28 ) 7.453 1.00 2.26 0.12 0.62 0.82

10.97 0.10 0.41 0.01 0.11 0.14

4.831 10.0 8.58 9.51 9.54 9.56

Model (vi) 6.260 5.00 4.15 4.74 4.76 4.78

(Nð0; 1Þ) 9.606 1.00 0.75 0.91 0.92 0.93

14.54 0.10 0.06 0.08 0.09 0.09
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performances as 1� PitðxÞ. We remark that, in the case of this test statistic,

APaeðxÞ tends to be conservative, that is, PðT b xÞb 1� APaeðxÞ.

Acknowledgement

The authors would like to thank Prof. Y. Fujikoshi and Dr. H. Wakaki,

Hiroshima University, for several useful comments and suggestions.

References

[ 1 ] G. M. Cordeiro, S. L. P. Ferrari, A. H. M. A. Cysneiros, A formula to improve score test

statistic, J. Statist. Comput. Simulation 62 (1998), 123–136.

Table 4.2. P-values in the case q ¼ 5.

P-value� 102

Models Quantiles PðT b xÞ 1� Gq�1ðxÞ 1� PaeðxÞ 1� APaeðxÞ 1� PitðxÞ

6.555 10.0 16.5 2.38 5.61 6.19

Model (i) 8.024 5.00 9.24 1.10 3.31 3.40

(X þ YZ) 11.25 1.00 2.45 1.19 1.79 1.27

16.17 0.10 0.35 0.76 1.06 0.67

10.75 10.0 2.98 7.27 8.84 10.7

Model (ii) 13.56 5.00 0.89 2.82 3.88 5.94

(Uð�5; 5Þ) 20.32 1.00 0.04 0.23 0.45 2.01

30.44 0.10 0.00 0.00 0.01 1.10

6.295 10.0 17.8 2.93 5.92 6.93

Model (iii) 7.613 5.00 10.6 0.26 2.73 3.56

(DEð0; 1Þ) 10.40 1.00 3.24 �0.37 0.68 0.95

14.23 0.10 0.62 0.10 0.26 0.24

5.683 10.0 22.5 �4.82 4.80 4.95

Model (iv) 6.919 5.00 14.2 �4.12 3.38 2.93

(w2
3 ) 9.560 1.00 4.70 0.08 2.76 1.30

13.27 0.10 0.89 1.62 2.45 0.89

6.611 10.0 16.1 5.18 6.90 7.63

Model (v) 8.036 5.00 9.24 2.08 3.41 3.96

(w28 ) 11.33 1.00 2.49 0.48 0.93 1.04

15.26 0.10 0.41 0.27 0.32 0.26

8.109 10.0 8.87 10.0 10.0 10.1

Model (vi) 9.906 5.00 4.42 5.14 5.17 5.19

(Nð0; 1Þ) 13.85 1.00 0.82 1.01 1.03 1.04

19.08 0.10 0.08 0.10 0.11 0.11

Hirokazu Yanagihara and Tetsuji Tonda24



[ 2 ] Y. Fujikoshi, A method for improving the large-sample chi-squared approxima-

tions to some multivariate analysis, Amer. J. Math. Management Sci. 17 (1997),

15–29.

[ 3 ] H. Fujisawa, Improvement on chi-squared approximation by monotone transformation,

J. Multivariate Anal. 60 (1997), 84–89.

[ 4 ] Y. Kakizawa, Higher order monotone Bartlett type adjustment for some multivariate test

statistics, Biometrika 83 (1996), 923–927.

[ 5 ] H. Nagao, On some test criteria for covariance matrix, Ann. Statist. 1 (1973),

700–709.

[ 6 ] T. Tonda and H. Wakaki, Asymptotic expansion of the null distribution of the likelihood

ratio statistic for testing the equality of variances in a nonnormal one-way ANOVA model,

TR No. 01–05, Statistical Research Group, Hiroshima University, 2001.

Hirokazu Yanagihara

Department of Statistical Methodology

The Institute of Statistical Mathematics

Tokyo 106-8569, Japan

e-mail: hyanagi@ism.ac.jp

Tetsuji Tonda

Department of Mathematics

Graduate school of Science

Hiroshima University

Higashi-Hiroshima 739-8526, Japan

e-mail: ttetsuji@math.sci.hiroshima-u.ac.jp

Adjustment on asymptotic expansion 25


