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ABSTRACT. It is shown that the Lack-of-Fit test can be considered as the likelihood
ratio test on the mean structure for some linear model. The asymptotic expansion of
the null distribution of the test statistic is derived up to order n~! under nonnormality.
A certain robustness against nonnormality is also investigated.

1. Introduction

Lack-of-Fit test is the test to see whether the expectation of response
variables is shown as some linear function of explanatory variables when the
repeated tests are playable under the appointed explanatory variables. (For
example, see [3], pp. 25-27.) It is well-known that the null distribution of the
test statistic is F-distribution under the normality of errors. In section 2, we
show that the test can be considered as the likelihood ratio test on the mean
structure for some linear model. In [4], we obtain an asymptotic expansion of
the null-distribution up to order n~!. Also in this section, we introduce Lack-
of-Fit test. In section 3, we derive the asymptotic expansion of null distri-
bution of this test statistic. In section 4, we consider a robustness against
nonnormality. In section 5, we give some results of numerical experiments.

2. Lack-of-Fit test

Consider the following sets of explanatory variables and response vari-
ables.

response Y | YU Vimg oo Vit oo Ving oo Vil -« Vi

Explanatory x | X1 oo X1 o Xj X)Xk Xk

Let x be the non-random variable to take the value in (xi,...,x;), Y be
the response variable, and ¢ be the random variable due to the error with
E(¢) =0 and Var(e) = ¢>. Assume that
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Y = pu(x) +e (2.1)

Our intension is to test for (2.1) whether the mean wu(x) has some linear
structure. For example, we consider a problem of testing the hypothesis

Hy:ux)=01+bx+---+ 0,x"1, H, : not Hy. (2.2)

Let 3, = (1/n;) Z;’;l v;j be the mean of the response variables correspond to the
x =x;, and let y; be the predictive value corresponding to x = x; under Hj.

Then, the Lack-of-Fit test rejects Hy for large values of T:
k N
T— 2im My — i)/ (k — )
k n; —\2
>icl Zj:l(yij = 5)"/(n—k)

where p; is the predicted value corresponding to x; given by the usual least
squares method under the hypothesis Hj.

, (2.3)

Define 1,, = (1,...,1)" (m x 1 vector) for arbitrary positive integer m, and
1,, 0] xp oo xil
L= ; X=|1 : ;
O ll’l/( X cee x;;fl
Ju 0,
X
o 0, u(x1)
y= ) 0= . ) "= :
X X
Yien, Hr IU( k)

Then, E(y) = Lu and Hp in (2.2) can be represented as
Hy : E(y) = LX0. (2.4)
Since L is full rank, the testing problem is the same problem of testing
Ho: (L = X(X'X)'X)u=0 (2.5)
under the linear model,
y=Lu+¢& where & = (€11, -+, €lnys > Ekls- -+ s Ekmy) - (2.6)

Noting that [T+ = I, — X(X'X)™'X is a projection matrix of rank k —r, let
H' be k x (k—r) orthonormal matrix whose columns are the eigenvectors
corresponding to the eigenvalue 0 of I7y. Then ITy = H'H, and (2.4) is
equivalent to Hu = 0.

Let
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i=(L'L)'Ly,  S=gH{HL'L) 'H'} Hg,
(2.7)
Se=y'(I,— M)y  where IT; = L(L'L)""L’.

Then, the likelihood ratio test under normality rejects the null hypothesis of
(2.5) for large values of

Sh/(k - }")
Seltn—%)’ 28)
Let
My =LX(X'L'LX)' X'L’,
(2.9)

Mg = L(L'L) " H{HH(L'L) " H'Y T H(L'L) 'L

Then II; = Il x + I}y and S, = y'II; yy, which shows that (2.8) is the same
as the test statistic (2.3).

3. Asymptotic expansion

In this section, we give the asymptotic expansion of null distribution of 7
under nonnormality when k is fixed and n — oo.
Set

Z='L)y"’L's,  U=2zm's,) V. (3.1)
Then, under the null hypothesis, 7" can be expanded as
(k—r)T = U’QU—%U’QU—&—Op(n‘m), (3.2)
where
Q=(L'Ly"PH'{H(L'Ly"H} "H(L'L)""?
This is the same form as T in [4] (page 19) with p =1, r; =r, =0. Hence

we can apply the results of them to our problem. The coefficients of the
asymptotic expansion depend on

1
a1:g{nter,,—(k—r)((k—r)—i—Z)}, Z—EI,;'J’ 1,,
1 1,
8 lnan WD(]/I,“ ag = E lanpqlln, as = %1’1 '1”1,,,

where
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W:(lpab):HLHian,
Dy = diag(yy, ..., ¥,,), ¥ : (a,b)th element is 2.

Since WY =10,y =1 —1I;y and both L and LH include 1, as the first
column, it follows that a4 =as=0. Therefore the coefficients of the
asymptotic expansion of the distribution of 7' can be simplified as follows.

THEOREM 3.1. Assume that
Al. For any j, 3: o(1),

j
Bl. E(le]®) < o0, and
B2.  Cramér condition for the joint distribution of ¢ and &> is hold, that is, for

any b >0, sup |E[exp(itic+ ine?)]| < 1.
[t1|+02|>b
Then the null distribution of T is expanded as

1 3
Pl(k — )T < x] = Ge_r(x) + ZZ b;Gr_ria2j(x) +o(n71), (3.3)
J=0
where
1
by = —153(ar + a3) + Kaay +Z(k —r)k—r—2),

1
b = 3K32(a2 + az) — 2Kk4ay — 3 (k— r)z,

1
by = —3K3(ay + a3) + Kaa +Z(k —r)((k=r)+2),

by = K32(Cl2 + a3).
The equation (3.3) is also represented as

PIT < 3] = Guo (o) + s

2
o {b1+b2+b3+(b2+b3)x bix }

k—r+2 (k—r+2)(k—r+4)
+o(n™"), (3.4)

which can be used to derive the Cornish Fisher expansion of the percent points.

The proof of the validity of the asymptotic expansion by use of the
Cramér condition is given in [2], and for general methods for deriving
asymptotic expansions and the Cornish Fisher expansions, the reader is refered
to [1].
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4. Robustness against nonnormality

Using (3.4), we can expand the expectation of 7 as

EUU<1+2>+OMIL (4.1)
where

2

k—r“
J

3
. 2
= jbi = .
—1 - r

k
Therefore, the expectation of T under nonnormality is equal to the one under
normality, up to o(n!).

While the variance of T can be expanded as

= :%O +%2) +ol™), (42)
where
= (k — r)(lj_ r+2) {(k —r+2)(by + 2by + 3b3) + 2(by + 3b3)}

ZWk—ﬂﬁ—r+m{MM+iw—ow—r+a}

If a; = 0, the variance of T under nonnormality is also equal to the one under
normality, and we can say that the Lack-of-Fit test is robust against the
nonnormality. Suppose that ny =---=n, =m. Then

a :%{ntrDzl,,—(k—r)(k—rJrZ)}

1 Z,k:](xj -x)° )
=— |k - 3-2k|.
8<<zﬁma—xfﬁ+

Therefore, when a; =0,

S (g — %)
(S (x = %))

;=2-3/k.

However, when k > 3, the maximum value of the left-hand side is smaller
than the right-hand side. Hence a; =0 cannot be hold. We have to be
careful about the kurtosis when we use the Lack-of-Fit test for nonnormal
data.
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5. Simulation

We make a simulation in case of simple linear regression analysis based on
the previous results.

5.1. Methods

The simulation method is as follows. First, we estimate the percent point
of test statistic 7' using Monte-Carlo method. Then, we compare it with
percent point calculated by the asymptotic expansion (3.3).

In order to calculate the approximation of percent point, we use the
Cornish-Fisher expansion. Let #(v) and v be the right percent point and the
percent point of limit distribution of T, respectively. Then,

P[T- (k1) > 1(v)] = P(x}_, = v),

where lefr is the random variable of y2-distribution with k —r degrees of
freedom. From (3.4), #(v) has the expression

t(u) = B i r-i-n(kzil e {191 +by+b;
n (b2+b3)u bguz
(k—r+2)(k=1)  (k—r+2)(k—r+4)(k —r)?

+o(n™h). (5.1)

In (5.1), there exists unknown parameters 3 and k4. So, we replace them with
their estimators

n n
. n 3 . n(n+1) 4
. (n—1)(n—2);'gf’ R )R = A
where
1 1
§=06"(5 %), e=-2 % 52—n_1 (-9’
j=1 j=1

The distributions considered are the followings:

The standard normal distribution;

Uniform distribution on (—+/3,/3);

Exponential distribution with the mean 1; and

t-distribution with 5 degrees of freedom.
In the case of simple linear regression analysis, parameter r is r=2. We
assume that k =4. Then, H defined before (2.7) can be calculated numer-
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ically. The data of explanatory variables x and sample sizes n = (ny,...

of each response variables are shown, respectively, as
(1) (1,2,3,4),  (2) (1,3,57), (3) (1,2,7,8),
4) (1,6,7,8), (5) (1,2,3,8), 6) (=2,-1,1,2)',
n (8,8,8,8), (56,8,8,56)".

5.2. Results and comments

35

7”4)/

Table 1 and Table 2 give the actual test sizes for the nominal 10%, 5% and
1% test in several cases of m and x. For each row in Tables, top and second

Table 1. The results of simulation when n= (8,8,8,8)’

Normal Uniform Exponent t-distribution
Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes

x 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) | 1034 526 0.96 9.58 470 0.84 9.17 487 0.78 9.65 4.11 0.68
10.28 525 0.96 9.53 470 0.84 9.05 4.87 0.78 9.57 411 0.68
10.71 543 1.01 931 461 084 | 11.39 6.08 1.07 | 11.68 5.13 0.92
10.69 542 1.01 923 455 084 | 1143 6.10 1.07 | 11.73 517 0.92

(2) | 1034 526 0.96 991 530 1.04 929 444 0098 8.88 476 0.64
10.28 525 0.96 9.87 529 1.04 929 444 0098 888 476 0.64
10.71 543 1.01 9.83 520 1.04 | 1236 575 1.11 | 10.77 5.66 0.89
10.69 542 1.01 | 11.26 6.16 0.84 | 12.51 578 1.11 | 10.78 5.66 0.89
(3) | 10.37 527 1.11 9.37 433 1.02 990 498 0.80 9.35 438 0.72
10.31 525 1.11 9.34 433 1.02 9.89 498 0.80 9.35 438 0.72
10.87 546 1.15 927 426 1.02 | 1191 593 1.09 | 11.99 582 1.04
10.87 546 1.15 924 426 1.02 | 12.05 593 1.09 | 11.99 582 1.04
(4) | 1047 538 1.03 9.82 470 0.84 9.89 485 0098 9.85 456 1.01
1046 537 1.03 9.79 470 0.82 9.75 4.85 0098 9.85 456 1.01
10.68 5.56 1.04 9.75 470 0.82 | 12.19 6.27 121 | 11.45 497 1.18
10.67 556 1.04 9.69 470 0.82 | 1223 639 121 | 11.46 497 1.18
(5) | 1027 517 1.03 9.51 450 0.78 9.81 500 0.72 | 10.25 556 1.24
10.20 5.16 1.03 9.51 444 0.78 9.78 5.00 0.72 | 10.22 556 1.24
10.56 526 1.07 947 441 0.78 | 1239 638 124 | 11.79 6.30 1.59
10.56 526 1.07 947 441 0.78 | 1243 648 124 | 11.79 6.30 1.59

(6) | 10.30 5.17 098 | 10.54 532 1.14 9.68 4.69 0.87 9.95 503 0.73
1024 516 098 | 10.53 532 1.14 9.60 4.69 0.87 9.87 499 0.73
10.60 542 1.03 | 1046 524 1.12 | 11.67 6.19 1.21 | 11.70 591 0098
10.59 542 1.03 | 1046 521 1.12 | 11.71 620 1.21 | 11.82 591 0098
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Table 2. The results of simulation when n = (56,8,8,56)’

Normal Uniform Exponent t-distribution
Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
x 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(1) | 10.37 518 0.99 9.72 522 095 9.82 476 1.03 | 11.33 596 1.07
10.37  5.17  0.99 972 522 095 9.82 476 1.03 | 11.33 594 1.07
982 485 095 | 10.15 535 097 | 19.08 9.88 2.04 727 3.83 0.62
9.79 484 095 | 10.15 536 097 | 19.71 10.10 2.04 7.12 381 0.62

(2) | 1037 518 099 | 1020 521 1.08 920 436 1.04 | 10.81 553 1.01
1036 5.17 099 | 10.20 521 1.08 9.18 436 1.04 | 10.81 553 1.01
982 485 095 | 1034 527 1.10 | 18.02 924 1091 7.03 339 0.51
979 484 095 | 1034 527 1.10 | 18.68 9.28 191 7.02 336 0.50

(3) | 10.37 527 0.87 977 526 1.15 9.44 453 090 | 11.06 538 0.87
1036 5.27 0.87 9.76 526 1.15 942 453 090 | 11.00 5.38 0.87
9.83 494 0382 994 542 1.17 | 17.32 8.83 1.68 7.52 336 0.58
9.82 494 0382 994 542 1.17 | 17.69 895 1.68 745 329 0.5

(4) | 1041 527 1.00 9.52 447 0.3 973 470 1.06 | 10.03 4.64 0.83
10.39 527 1.00 9.52 447 0.73 972 470 1.06 | 10.03 4.64 0.83
9.84 491 098 980 4.62 0.73 | 18.53 9.83 201 599 266 0.51
9.83 491 098 980 4.63 0.73 | 1896 997 2.02 579 2.60 0.51

(5) | 1025 505 091 938 4.89 0.73 9.79 500 095 | 1094 547 1.07
10.24  5.05 091 935 4.89 0.73 9.79 500 095 | 1094 546 1.07
9.73 471 0.86 9.62 5.03 0.74 | 19.22 993 212 6.74 336 0.71
9.71 471 0.86 9.62 503 0.74 | 19.67 10.09 2.12 6.61 335 0.71

(6) | 10.37 513 1.00 9.76 472 1.00 9.96 4.57 0.82 | 10.69 538 1.07
10.36 5.13  1.00 9.76  4.72 1.00 9.96 4.57 0.82 | 10.66 5.38 1.07
9.78 4.86 0.96 999 478 1.01 | 18.71 995 2.04 6.93 3.09 0.70
9.76  4.85 0.96 999 478 1.01 | 1924 10.12 2.05 6.72  3.10 0.70

stairs express the actual test sizes based on F-distribution and limit distribution
of (3.4), the third and bottom stairs show the actual sizes by using 7(v) and #(v),
respectively.

In the Tables, it is shown that there are good approximation by use of
(3.4) when sample sizes are balanced. However, when sample sizes are un-
balanced, approximations are not very good.

In addition, using the previous results, we calculate the approximate
expectations and show the results in Table 3. For each row in Table 3, the
top stairs express the actual expectation, second stairs express the approximate
expectation, and bottom stairs show the approximate expectation by estimated
parameters. Note that the expectation of F-distribution with k —r and n — k
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Table 3. The results of simulation of expectation.

n=(8,8,8,8) n = (56,8,8,56)
Normal  Uniform  Exponent  #-dist. | Normal Uniform  Exponent  -dist.

1) 1.0237 1.0013 1.0910 1.0789 1.0712 0.9598 1.0792 1.0327
0.9375 0.9375 0.8433 0.9375 0.9375 0.9375 0.9058 0.9375
0.9375 0.9375 0.9374 0.9375 0.9375 0.9375 0.9375 0.9375

2 1.0107 1.1457 1.0731 1.0184 1.0579 1.0087 1.0149 1.0115
0.9375 0.9375 0.8433 0.9375 0.9375 0.9375 0.9058 0.9375
0.9375 0.9375 0.9374 0.9375 0.9375 0.9375 0.9375 0.9375

(3) 0.9696 0.9030 1.0210 1.1358 0.9721 1.0282 1.0341 1.0125
0.9375 0.9375 0.8643 0.9375 0.9375 0.9375 0.9087 0.9375
0.9375 0.9375 0.9374 0.9375 0.9375 0.9375 0.9376 0.9375

4) 0.8780 1.0979 1.2321 1.0693 1.0478 0.9986 0.9975 1.0296
0.9375 0.9375 0.8278 0.9375 0.9375 0.9375 0.9029 0.9375
0.9375 0.9375 0.9373 0.9375 0.9375 0.9375 0.9375 0.9375

(5 1.0032 1.0042 1.0610 1.0274 | 0.9970 1.0095 1.0033 1.0346
0.9375 0.9375 0.8446 0.9375 0.9375 0.9375 0.9047 0.9375
0.9375 0.9375 0.9374 0.9375 0.9375 0.9375 0.9375 0.9375

(6) 1.0595 0.9506 1.3707 1.1213 1.0431 0.9922 1.0806 0.9840
0.9375 0.9375 0.8492 0.9375 0.9375 0.9375 0.9063 0.9375
0.9375 0.9375 0.9374 0.9375 0.9375 0.9375 0.9375 0.9375

degrees of freedom is (n — k)/(n — k —2). It is seen that each expectation has
similar value in each distribution except for the case of exponential dis-
tribution. In the case of exponential distribution, there were some differences
between the true values and approximated values of the expectations, which
suggests that the skewness may affect to the expectation in higher order
expansions.

6. Problems in the future

In this paper, we consider an asymptotic approximation of null-distribution
for Lack-of-Fit statistics when the number of explanatory variables k is fixed.
We derive the form of asymptotic expansion in the case of 1-dimension re-
sponse variables. In addition, we consider robustness of the test against
nonnormality. In the future, we want to consider the methods of obtaining
good approximation when sample sizes are unbalanced, and the application of
these results.
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