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ABSTRACT. We investigate the Green function, the Poisson kernel and the Martin
kernel of circular cones in the symmetric stable case. We derive their sharp esti-
mates. We also investigate properties of the characteristic exponent of these estimates.
We prove that this exponent is a continuous function of the aperture of the cone.

1. Introduction

In recent years many results in potential theory of a-stable processes have
been obtained ([2], [9], [10], [12]-[17], [19], [20], [22]-[24], [27]). In particular,
the behaviour of a-harmonic functions, the Green function and the Poisson
kernel in smooth domains ([19], [23]) and Lipschitz domains ([9], [10], [22]) has
been investigated. In case of smooth domains the main tool is the Green
function and the Poisson kernel of a ball. The estimates of the Green function
and the explicit formula of the Poisson kernel are known ([8], [19], [23], [25]).
In case of Lipschitz domains the situation is more complicated and it is cones
that seem to be a proper tool. On the other hand, cones are Lipschitz do-
mains themselves and they are regular enough to obtain more detailed results
than those in [10]. In fact, properties of the Green function, the Poisson kernel
and the exit time in bounded and unbounded cones has been studied both in
the classical case ([1], [3], [18]) and wa-stable case ([14], [21], [23], [26]). The
latest results for o« < 2 are [2] about the so-called generalized cones and [14]
about the Poisson kernel in ‘smoothed’ bounded cones.

The estimates presented in [23] are proved only for cones of acute
aperture. Besides, they are not sharp at the vertex of the cone. The aim of
this paper is to improve these estimates and to extend them to all circular
cones. The basic tool is the so-called Martin kernel with pole at infinity
(introduced in [2]) and its degree of homogeneity. We also use the estimates of
the Green function in smooth domains ([19], [24]) and of the Poisson kernel in
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Lipschitz domains ([22]). Another important tool is a version of the Boundary
Harnack Principle ([27]).

In section 2 we present basic notation and terminology. Section 3
contains the most important results. First we prove some properties of the
Martin kernel with pole at infinity and its degree of homogeneity. They seem
to be useful in other applications. Next we obtain estimates of the function
¢ (truncated Green function) used in [22]. With the use of this function we
prove sharp estimates of the Green function and the Poisson kernels of
bounded cones (Theorems 3.6 and 3.7). With some extra arguments we extend
our estimates to unbounded cones (Theorem 3.11). As a consequence of
Theorem 3.6 we obtain estimates of the Martin kernel in cones (Theorems 3.12
and 3.13). We also prove the existence of Martin representation in unbounded
cones (cf. [9]) and we show the consistence between the Martin kernel with pole
at infinity and the classical Martin kernel with the boundary point at infinity.

2. Preliminaries

We will denote by | - | the Euclidean norm of vectors. For B < R? d >2
we denote its complement by B¢ and its characteristic function by 1z. For
x € R?, B(x,r) will denote the open ball centered at x of radius . For a Borel
set B and r > 0 we define rB={rx:xe B} and B+x={x+ y: ye B}. For
xeR? let 6,(B) = dist(x, dB).

Let D denote a bounded open set in R?. We say D is a Lipschitz domain
if there exist constants Ry, 4 > 0 such that for every z € dD there is a function
F :R! — R and an orthonormal coordinate system y = (yi,..., yg) such that

DN B(z,Ro) ={y:ya>F(y1,---,a-1)} N B(z, Ro).

Moreover, F is Lipschitz with the Lipschitz constant not greater than A.
Furthermore, if F is differentiable and VF is Lipschitz with the Lipschitz
constant not greater than A then D is called a C''! domain.

Let (X, P*) be the rotation invariant(‘symmetric’) o-stable Levy motion
(i.e. homogeneous with independent increments) on R? with its index « e (0,2)
([7]). For a Borel subset B of R? let T and 7 be the first entry time and the
first exit time respectively i.e. Tp =inf{r > 0: X, € B} and 13 = Tg..

In this paper constants are always positive numbers. In equations and
inequalities they may change under arithmetic transformations but they will be
denoted by the same symbols. The notation of the form ¢ = ¢(a,b,...) means
that the constant ¢ depends only on a,b,....

A nonnegative Borel function / on R? is said to be a-harmonic on D if for
each bounded open set B with B < D and for x e B we have

h(x) = E¥h(X,,) < . (1)
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If 4 =0 on D¢ then it is called singular o-harmonic on D. If B can be replaced
by D in (1) then /& is called regular o-harmonic on D.

The following theorem ([27, Theorem 3.1]) will be one of the basic tools in
our paper.

THEOREM 2.1 (Boundary Harnack Principle). Let D be an open set,
zedD, r>0, ke (0,1) and B(A,kr) is a ball in DN B(z,r). Then there exists
some constant C = C(d,a) > 1 such that for any two functions u, v, which
are positive regular o-harmonic in DN B(z,2r) and vanish in DN B(z,r), we
have

C’IK[H“LX) < ulx) < CK’d’“Lx), xe DN B(z,r/2).
vo(4) ~ u(A) v(4)

For x e RY we define the a-harmonic measure of D as w}(B) = P*(X,, € B).
As a function of x it is regular o-harmonic on D if B is fixed. If D is
Lipschitz, its harmonic measure is concentrated on (D)“ and has the density
with respect to the Lebesgue measure, which is called the Poisson kernel (see
[10])). This kernel will be denoted by Pp(x, y), xe D, y e (D)‘. It satisfies the
following scaling property

Pp(x,y) = (1/r")Pajp(x/r,y/r),  r>0. (2)

When D = B(0,r), r > 0, the Poisson kernel is given by the following explicit
formula

r? = |x?

o/2 1
Pr(xvy):Cd-Dt( ) d’ \x\<r,\y|>r,
x =yl

|y = r?
where Cy, = I'(d/2)n~ %>~ sin(na/2) (see [8], [25)).

For all nonnegative Borel measurable functions f we define the Riesz
potential of f by

0

Uf (x) = EJ

Ofu»mzjmmu—ﬂ*7WM%

where Ay, =272 ((d — )/2)/T(2/2) (see [7]).
For a Borel set B we define the Green potential of f by

Gpf(x) = ExJ

OﬂLW:J%mﬁﬂwW

where Gp(x, y) is the Green function of B defined by
Ga(x,») = Aao(|x =y = EYx = Xo, |, x,yeB,x#y, (3)



4 Krzysztof MICHALIK

Gp(x,x) = oo and Gp(x,y) =0 otherwise. This function is symmetric (i.e.
Gp(x, y) = Gp(y,x)), positive in int B and if By = B, then Gp, < Gg,. Fur-
thermore, Gp satisfies the following scaling property

GB(X7 y) = (l/rdiu)G(l/r)B(x/rv y/r), r>0. (4)

For other properties of the Green function see [24] and [19].

Every nonnegative function which is singular «-harmonic on a bounded
Lipschitz domain D has a unique representation (called the Martin repre-
sentation)

£ = | Mplxutas) 5)
oD

where 4 is a finite Borel measure on ¢D. The kernel function Mp(x,z), called
the Martin kernel, may be defined by

Mp(x,z) = lim Golx,p)

, xeD,zedD. 6
D>y—z GD()C()7 y) ( )

The existence of this limit follows from the Boundary Harnack Principle (see
91, [20).

We will also use the following estimates for the Green function of C!
domains ([19], [24]).

TueoreMm 2.2, If D is a CY! domain, then there exist constants ¢ = c¢(D, o)
and C = C(D, o) such that for x,y e D,

. Agy  OYHD)S*(D)
¢ min — 7
|x — ¥ |x — ¥l

> < GD(x’ y)

<AM gﬂmﬁw) )

v — y| 7 lx— |

From now on we will assume that r >0, xe D, ye (dD)", z,Q e dD.
xo € D will be a fixed reference point. From now on we take R( so small that
0x,(D) = Ro/2. For r < Ryp/32 and Q e€dD we denote by Ay, a point for
which B(Ag ., xr) = B(Q,r)ND for a certain absolute constant x = x(D) =
1/(2V/144%). The set of such points is nonempty and Ap,, is not unique.
For r > Ry/32 we set Ap , = x1, where x| € D is another fixed point such that
|xo — x1| = Ro/4. In particular, d,,(D) = Ro/4. Furthermore, let p = p(x, )
=max(6,(D),0,(D),|x — y|). For p < Ry/32 we denote by 4 = A(x, y) a point
for which B(A4,kp) = DN B(x,3p)NB(y,3p). The set of such points is also
nonempty and if S € 0D is such that J, = |y — §|, we may take 4 = Ag,;,. If
p > Ro/32, we set A(x,y) =x;. See [22] and [11] for details.
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Let ¢p(x) = min(Gp(x,Xo), C.»(Ro/4)*?). We will use the following
estimates for the Poisson kernel and the Green function of Lipschitz domains

(22])

THEOREM 2.3. There are constants ¢ = ¢(d,a, 1, Ry, diam(D)), C = C(d, a,

A, Ry, diam(D)) such that for xe D, y e (D) we have
$p(x)dp(¥)
x = g (A(x, )
$p(x)¢p(y) .
= P (Ax, )
THEOREM 2.4. There are constants ¢ = c¢(d,a, A, Ry, diam(D)), C = C(d,«,

2y Ry, diam(D)) such that for x e D, y e (D) we have
¢ ¢p(X)$p(¥")
v = BB (A, 3))3} (D) (1 +0,(D))
¢p(x)¢p (')
| = 2|75 (A(x, y)S(D)(1+6,(D))"
where y' = As, and S € 0D satisfies 6, = |y — S|.

GD(xv y)

®)

P SPD(-X,J/)

©)

We will also use the following version of ([10, Lemma 17]), which can be
proved in an analogous way.

LemMmA 2.5. Let B, and B be open sets such that B, /' B. Assume
that for xeB we have P*(X.,,€0B)=0 and P*(tg< 0)=1. Then
lim, ., P*({Xs,, = Xy,}) = 1. In particular, this implies that lim, .., G, (x, y)
= Gg(x,y) for x,y € B and lim,_,,, Pg (x,y) = Pg(x,y) for x€ B, y € int B.

3. Main results

First we define an wunbounded cone with vertex at 0= (0,0,...,0) and
symmetric with respect to the d-th axis. This is a set ) defined by

V=A_x:n-|(x1,%X2...,%-1)| < xa},

where 7 € (—o0,00). The aperture of V is the angle y = arccos(y/+/1 + 7n2).
For y =7 we define ¥ by ¥ =R%\{(0,0,...,0,x4) : x; <0}. Generally, an
unbounded cone with vertex at 0 is a set V' isomorphic to the cone V' defined
above and satisfies vV’ = V’. Finally, an unbounded cone with vertex at
QOeR? is a set V' + Q.

For an unbounded cone V' with vertex at Q we denote by 1 a point on
the axis of ¥ such that |1 — Q| =1. Since the process X; is homogeneous
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and translationally invariant, we will often assume that Q=0 and 1=
(0,0,...,0,1).

Let V be a circular cone with vertex at 0 and aperture y € (0,7]. Assume
that 1 = (0,0,...,0,1). By [2, Theorem 3.2], there exists the so-called Martin
kernel with pole at infinity. This is a unique nonnegative function M, on RY
such that My (1) =1, My =0 on V° and My is regular a-harmonic on every
open bounded subset of . Moreover, M is locally bounded on RY and
homogeneous of degree f € [0,x), that is,

My(x) = |x|"My(x/|x]), xeV. (10)

Furthermore, = p(V,a) is a strictly decreasing function of y ([2, Lemma
3.3]). We will call § the characteristics of V.

We know the explicit formulas of My in several cases. If y =7r/2, then V'
is the half-space {(x1,x2,...,%4) : x4 > 0}. In this case My(x)=x2> xeV
and this gives f=a/2. If y==n and (d >2 or a<1), then V¢ is polar
([25])). This implies that M (x) =1y(x) and f=0 in this case. If y=n,
d=2 and o > 1, then V¢ is not polar and due to [2, Theorem 3.4] we have
f > 0. Actually, it is proved in [14] that f = (« — 1)/2. We do not know the
formula of My in this case.

Later on, we will prove that M is nothing but a constant multiple of a
classical Martin kernel My (x,00) defined by (6) (see Theorem 3.13).

We now present further properties of M. This function plays an im-
portant role in further analysis.

LeMMmA 3.1. For ne N let V, and V be circular cones with vertices at 0,
apertures y, and y respectively, characteristics 5, and [ respectively and Martin
kernels with pole at infinity M,, and M respectively. Assume that y,, y € (0, 7]
and 1 =(0,0,...,0,1) is on the axis of symmetry of V and every V,. Then
M, (x) — M(x) for all xe V if lim,_, y, =7y Furthermore, M is continuous
on R iff y<mord=2y=m o>l

Proor. Since y, — y, we may assume that y, > y/2 for all n, without loss
of generality. Since y > 0, there is a constant ¢ > 0 such that for every n,
B(1,¢) = V,NB(0,3/2). We will prove that there exists C > 0 such that for
every |x| <1, M(x) < C, where C does not depend on V.

Since M is regular o-harmonic on B(0,r)NV for re[3/2,2], we get

M(x) = ExM(XTVﬂB((].r)) = EX{M(XTVHB(()J)) : XTVﬂB(o,r) € V}
= EX{M(XTB(O.r)) : vamg(o.r) € V} < EXM(XTB(OJ))

- me, »)M(y)dy, (11)
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12\%/2
—MZ) 1 Let P,(y) be the Poisson

22 [T
kernel for the ball B(1,¢) for ltyl‘le proces‘s sft‘arting from 1. We introduce a
regularized version of the Poisson kernel P.(x,y) in a similar way as in
[12]. Fix a nonnegative ¢ € C*((3/2,2)) such that J«32/2 @(r)dr =1 and define
P(x,y) = f32/2 @(r)P,(x, y)dr. Then by [12, Lemma 3.11] we have

P(x,y) < C/(1+ |y,

where  P,(x, y) = Caolyjy>r - (

where C depends on d and o. Moreover, for |y| > 3/2,
e* C
2 2\/2 d = d+o
(ly =17 =)y 11" |yl

for some constant C = C(d,a,¢). Hence for |x| <1 and |y| > 3/2 we obtain
P(x,y) < CP,(y). Therefore, since [P(x,y)dy =1, by (11) we get

P(y) =

M@sj memescj P.(y)M(y)dy
[y[>3/2 [y[>3/2

C.

scj P.(y)M(y)dy = CM(1)
B<(1,¢)

Therefore, for every n and |x| <1 we have
M,(x) < C. (12)
This implies that for |x| > 1, by homogeneity of M, we get
My (x) = |x|" M, (x/|x]) < Clx|". (13)

We know that 8, < « for every n and /5, increases as y, decreases. Therefore,
if >0, we may assume by (12) and (13) that there is ' < o such that for
every n,

M,(x) < C max(|x|”, 1). (14)

It implies that M, are uniformly bounded on every bounded subset B < V.
Also, M, are equicontinuous on compact subsets F < I because of the
gradient estimates (see [15]). Therefore, by the Arzeli Theorem and diagonal
procedure we find a subsequence M, almost uniformly convergent to some
nonnegative function M on V.

We prove now that M is a-harmonic on V. Let xe ¥ and r > 0 such

that B = B(x,r) < B(x,r) < V,,. Then we have

Mn(x) = J Mn(y)Pr(xa y)dy (15)

¢
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If R >0 is sufficiently large, then for |y| > R we have

r C
<
o - d+o’
(1 = x> =) — p|* 7~ |91

]ﬂ(xvy)::

where C = C(d,a,r,R). Moreover, by (14), for every n we have M,(y) <
Cly?, |y =1, and M,(y) < C, |y| <R. Therefore, we get

' —d—o
Clyl" ", |yl > R,

MnBle ) = { CP(x,y), [y <R

The right hand side of the above inequality is integrable over B¢ since f’ < «
and [ P.(x,y)dy =1. Hence, by dominated convergence, we get

M) = Jim My () = | tim My ()P, )dy = | W) 2)d,

k— o0 ¢ k—oo

which proves that M is o«-harmonic on V. Obviously, M =0 on V¢ and
M) =1.

Now we need to prove that M is regular a-harmonic on bounded subsets
of V. Assume first that y <z or d >2 or « < 1. Let B= B(0, R) for some
R > 0. We show that the set I" = V' N B satisfies the assumptions of Lemma
2.5. This is immediate if 0 < y <z, since /" are bounded Lipschitz domains
in this case. If y ==, then ¥ =R%\{(0,0,...,0,x4):xs <0}. Since d >3
or o <1, the set V¢ is polar ([25]) and M =1y is not continuous on RY.
Let xe I'. Since the process does not hit B when leaving B, we see that
P*(tp e 0l')=0. Obviously, P*(ty < o) =1 as I' is bounded. Now take
open sets B, = B, = I" such that B, /' I". Since M is a-harmonic and locally
bounded on ¥V, we get M(x)= E*M(X,, ) — E*M(X.;) by Lemma 2.5.
Hence M is regular a-harmonic on ¥ N B.

Now let y =7, d =2 and « > 1. This case requires different arguments
since V¢ is not polar. Let xe V. Fix ze dV and take R > 2 such that z e
B(0,R/4). First we prove that there exists a constant C = C(d, «, R) such that
for xe VN B(0,R/4),

M(x) < CM(x). (16)

To show it we define f,(x) = P¥(X;, € B) and f(x) = P*(X;, € B) where
I,=V,NB, I'=VNB. As I, /' I') we may assume that xe I, for all n
for a given x. Furthermore, B(1,1/2) = I,. Next we observe that f, and M,
are regular o-harmonic on [/, and vanish on VN B. Similarly, f and M are
regular a-harmonic on I” and vanish on VN B. Therefore, by the Boundary

Harnack Principle we obtain
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L) fx) Su(1)
M) = M) = M)

SO _ S _ oS 1)

MO M) ST MmMay

where ¢, C depend on d, o, R. Since f,(x) < f(x) and 1 > f(1) > f,(1) >
PY(Xey, ) € BY)=C >0, (17) gives M,(x) < C'M(x) and letting n — oo we
obtain (16).
Next we show that M is continuous on R?.  We only need to show that
lim M(x) = 0. (18)
First assume that z=0. M is locally bounded and M(x) = |x|"M(x/|x]|)
with > 0 so (18) is immediate. Now let z #0. From (17) we get f(x) <
CM(x) —0 as x — 0. Let y=x—z Observe that I'—z < VNB(—z,R).
Hence

F(3) = PX(X,y € B) = P'(X,, _ € B2, R))
< P)/(XTVQB(—:.R) € BC(_Z7 R)) = g(y)

Take r >0 such that B(0,r) = B(—z,R). Then g is regular «-harmonic on
VN B(0,r) and vanishes on V°NB(0,r). Hence for y sufficiently close to 0
we obtain ¢g(y) < CM(y) by similar arguments as for (17). Therefore,
lim,_ g(y) = 0, which implies lim,_.. f(x) =0. Now (18) follows from (17).
Combining this with (16) we see that M is continuous on RY. But we know
that if a function is a-harmonic on a bounded set D and is continuous on D,
then is regular a-harmonic on D ([27]). Hence, as in the previous cases, M
is regular a-harmonic on every open bounded subset of V. Therefore, by the
uniqueness of M ([2, Theorem 3.2]), M=M and lim, ., M,=M on V.
Finally, continuity of M for y < = will follow from Lemma 3.3 stated below.
This completes the proof. O

The next theorem provides some information about f.

THEOREM 3.2. Let V, and V be as in Lemma 3.1. Let ye (0,7]. Then
(1) If lim, .y 3, =y, then lim, ., B, = p.

(it) If limy—o y, =0, then lim,_, f, = o

(iii) If y=mn then f= (00— 1)/2 in case d =2 and o > 1, otherwise f =0.
(iv) If y=n/2, then f = a/2.

ProOF. From (10) we have M,((1/2) 1) = (1/2)" and M((1/2)-1) =
(1/2)”. To prove (i) we use Lemma 3.1. We have M,((1/2)-1) — M((1/2)-
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1) and it gives lim,_, B, =f. It remains to prove (ii) as (iii) and (iv) were
discussed before. By [23, Theorem 4.6], for x € V,,N B(0,2) we have

2 (V) |x|"* < Gy (x,8-1) < CSY2(V,) x>, (19)

where ¢, C depend on d, o, n and 0 < ¢’ < e satisfy ¢,¢' — 0 if y, — 0 [23,
Lemma 3.7]. Since M, and Gy, (-,8 - 1) are regular a-harmonic on ¥, N B(0, 6)
and vanish on VN B(0,6), we obtain by the Boundary Harnack Principle for
all wand x=r-1, r<1

M,(r-1) B Gy, (r-1,8-1)

M,(1) — Gr(1,8-1)
Combining this with (19) we see that ¢r*¢ < M,(r-1) < Cr**. From (10)
we have M,(r-1) = r’M,(1) = r#» and this implies that « —e¢ < f, <o —&'.
Since ¢,¢’ — 0 in case n — oo, we get f, — a. This completes the proof.
O

The rest of the section is devoted to study the behaviour of the Green
function, Poisson kernels and Martin kernels for cones of apertures less than
7. For any cone V with its vertex at 0 and aperture y < = we define its inner
smooth set By. This will be a fixed C''! domain such that

(B(0,3/2)\B(0,1/16))NV = By < (B(0,2)\B(0,1/32))N V.

We notice that By can be chosen to be dependent only on d and y. Next we
define a bounded (‘smooth’) cone of length 2 and vertex at 0 by

Va = By U(V N B(0,1/16)).

Similarly we define a bounded (‘smooth’) cone of length R > 0 and vertex at 0
by Vg = (R/2)V>. Finally, a bounded (‘smooth’) cone of length R and vertex
at Q is a set of the form Q + Vk.

From now on V and Vx will denote, respectively, unbounded and bounded
cones with vertices at a fixed Q. We also set Ry = (1/8)siny < 1/8. This
implies that VN B(z,4Ry) < By if ze dVNIB(Q,3/4). Furthermore, let x’ =
(1/16) -1 = (0,0,...,0,1/16).

The next lemma provides sharp estimates for M.

LemMMA 3.3. There exist constants ¢ = c(d,a,y), C= C(d,a,y) such that
for every x eV we have

clx — QP2 (V) < My(x) < Clx — Q202 (1). (20)

PrROOF. We may assume that Q =0 and 1 lies on the axis of V. Let
ze dVNadB(0,1). Since M) is homogeneous, we obtain

My (x) = My (x/|x])|x|", (21)
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By definition of By and Ry we have x' € By and |z —x'| >4Ry. So the
functions My (-) and Gp,(-,x’) are regular o-harmonic on VN B(z,4Ry)
and vanish on VN B(z,4Ry). Therefore, if x/|x| € B(z,Ry), then by the
Boundary Harnack Principle we obtain

GG (5/1x], XY My(x/Ix]) Gy (x/|x], x7)

< < , 2
Gg,(A-r,,x'") — My(A-,) Gg, (A r,,X") (22)

where ¢, C depend only on d, «, y, and the definition of the points 4. g, refers
to the set By. Since d4. ,, (V) = Ja.,, (By) = xRy, all the points 4. g, are in a
compact subset of V. Since My () is continuous, positive on 7 and Gg, (-, x")
is continuous, positive on By \{x'}, we get

¢ < Gg,(Az r,,x') < C,
c<My(A.g,) <C, (23)
and, again, ¢, C depend only on d, «, y. By the definition of By we have

Oy/x|(By) = 0y(V) if x/|x| € B(z, Ry). Therefore, from Theorem 2.2 we
have

/2 /2
572 () < S BN ()

< G, (x/|x], x")

/1 e/ |x| = x|
52 (B8
< PP o v o)
[/ |x] — x| :

for x such that x/|x| € B(z,Ry) and for any zedVNoB(0,1). Now (24)
extends easily to all x/|x| € VN JB(0,1) since 5,(V) and Gg, (x,x') are positive
and continuous functions of x on V'N3dB(0,1). Since o/ (V) = 0x(V)/|x|, we
obtain (20) by combining (21), (22), (23) and (24). The proof is completed.

O

A bounded cone is a Lipschitz domain with a localization radius Ry, and
a Lipschitz constant 4 >7#. Recall that ¢, (x) = min(Gy,(x,xo), Cs.RE™).
We know that if D is a Lipschitz domain with its localization radius ry, then rD
is a Lipschitz domain with its localization radius rro. This implies that ¢, has
the same scaling property as Gy,.

With this remark we are ready to present estimates for ¢, .

LEMMA 3.4. There exist constants ¢ = c(d,a,y), C = C(d,o,y) such that
for every x,y e Vg we have

RS2 (V)|x — 0 < ¢y (x) < CRTPS (V) |x — Q2.
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Proor. The steps taken are analogous to those in the proof of Lemma

3.3. We may assume that Q=0. Let R=2. We know that ¢, (x) =
Gy, (x,x0) for x sufficiently close to 0V,. Let zedV, and xe€ B(z,Ry). If
|z| <1, then applying the Boundary Harnack Principle to the functions
Gy, (-, x9), My and using Lemma 3.3, we obtain 5x“/2(V)|x|/’L“/2 < Gy (x,x0) <
o2 (V) x|P2. Since (1/2)0,(V) < 8,(Va) < 8,(V), this leads to the desired
result. If |z| > 1, then we have ¢ < |x|”"*? < C. In this case we apply the
Boundary Harnack Principle to the functions Gy, (-,xp) and Gg,(-,xp). We
obtain ¢Gg, (x,x0) < Gy,(x,x9) < CGp,(x,x09). Now Theorem 2.2 completes
the proof for ¢,,. The scaling property of ¢, gives the estimates for all Vz.
O

We also need the following technical lemma.

LemMmA 3.5. Let Q=0. Assume that x,y € V,. Then there exist con-
stants ¢ = c(d,a,y), C= C(d,a,y) such that for A = A(x,y) we have

¢ max(|xl, [y[) < 4] < € max(|x], [y]). (25)

Proor. We note that for V5, Ry can be chosen to be dependent only on d
and y. Recall that p = max(6.(V2),0,(V2),|x — y|). This gives

p < max(|x], |yl [x| +[y]) <2 max(|x], |y])- (26)

Assume first that p < R;/32. Then, by definition, A € B(x,3p) N B(y,3p)
and kp <34(V2) <p. This, combined with (26), leads to |4]| < |x|+3p <
7 max(|x|,|y]). Furthermore, |4| > |x| — 3p, |4| = |y| — 3p. This implies that

|| = max(|x],[y]) — 3p (27)
and
|[A| = 64(V2) = Kp. (28)

If p <max(|x|,|y|)/(x+3), then from (27), |A4| = max(|x|,|y|)x/(x+3). If
p = max(|x|,|y|)/(x+ 3), then |A| > max(|x|,|y|)x/(x+3) from (28). Hence
we proved that 7 max(|x|,|y|) > |4| = max(|x|,|y|)x/(x + 3).

If p> Ryp/32, then we have 4 =x; and by (26), 2 > max(|x|,|y|) =
R(/64. Hence (25) holds immediately. The proof is completed. O

Now, with the use of Theorem 2.3 and the estimates for ¢, we obtain
sharp estimates for the Green functions of bounded cones. This theorem
improves [23, Theorem 4.7].

THEOREM 3.6. Let R >0. There exist constants ¢=c(d,o,y), C=
C(d,o,y) such that for every x,y e Vg we have
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¢ min( gy SR (V) (mqu -0y Q>>“/2>

e A P max(|x — 0, |y - QJ)
< GVR(x> y)
< min(_Aas_ ATVRET (V) (min(x —0l.ly - Q|>)’“‘/2
h v — y[T Ix— y|¢ max(|x — Q, |y — Q)

ProoF. Let R=2and Q =0. We note that in this case the choice of R
depends only on d and y. Assume that x,y eV, and 4 = A(x,y) is as in
Theorem 2.3. From Lemma 3.4 we have

oM (1) |xP 2 < ¢y, (x) < CO2(Va)|x]P 2,
02N <y (9) < COFE(V) P, (29)
PP < gy (4) < CP (M) AP

Recall that p = max(d«(V2),0,(V2),|x — y|). We consider two cases.

Case 1. Let |x— y| > (1/10) max(d(V2),0,(V2)). We have |x— y|<
p<10|x—yl. If p<Ry/32, then by definition, xp <d4(V2) <p. If p>
Ro/32, then 64(V2) =6y, (V2) and 4 > |x — y| = Ro/320. This implies that

clx =y <da(V2) < Clx — yl. (30)

Now, combining (25), (29), (30) and (8) we obtain

(V)9 (V2) (min<|x|, |y|>>“/2

Gy, (x,y) = ¢
(%) max (], 7]

d
|x — ¥l

- min(Ada SO (mini |y|>)“/2
N Ix — y| Ix — y|“ max(|x|, [»]) 7

and

SH2(1)5X2(Va) / mi Bz
Gy,(x,y) < C (V) ) () (m1n(|x,|y|)) '

x— ¥/ max(|x], [y])

Since Gy, (x,y) < Agq|x — y|“7d by definition, this completes the proof in
Case 1.

Case 2. Let |x— y| < (1/10) max(d.(¥>),6,(V>2)). We may assume that
0x(V2) = 0,(V3). This means that |x — y| < (1/10)0,(V2). Let Se€dV, be a
point for which d,(72) = |y — S|. Then we obtain d,(7>) < [x — S| < |x — y|+
|y — S| < (1/10)0x(V>2) +0,(V>). This implies that

5,(Va) < 6x(Va) < (10/9)5,(V2), (31)
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which leads to |x — y| < (1/9) min(d.(V>),0,(V>)). Hence, by [22, Lemma 11],
clx = ¥ < Gy (x, y) < Agulx — y"7,
where ¢ depends on d, a. Hence, immediately,

Ag, 01N (1) <min(|x|, |y|>>f“‘/2
max(|x|, |y]) '

GVz(xa y) Zcmin d—o d
lx — | lx—y

Furthermore, using (31) we have |x|<|x— y[+|y| < (1/10)0.(V>) + |y| <
(1/9)0,(V2) + |yl < (10/9)|y| and, similarly, |y| < |x — y[+ [x] < (1/10)d:(V2)
+ |x| < (11/10)|x|. This implies that

(9/10)]x] < [3] < (11/10) ],

This means that

. p—o/2
o (mn Y

max(|x[, |y[) B
As we have |x — y|* < ((1/9) min(d,(V2),6,(V2)))" < (1/9)“5;/2(V2)5f/2(V2)=

Aan Cé,f/z(Vz)(Sf/z(Vz) (min(|x|7 |y|)>ﬂa/2
max(|x|, [ y[) '

Gry(x,p) < i = d
|x — ¥l lx — ¥l

This completes the proof for Gy,. The scaling property (4) extends the
estimates to all Gy,. O

In an analogous way we can obtain estimates for Py, as it is stated in the
next theorem. We present the proof for the convenience of the reader. The
estimates for Py,(x, y) when 6,(¥Vz) < Ro/32 are the same as in [14, Theorem
3.2] and they have been proved independently and simultaneously.

THEOREM 3.7. Let R > 0. Then there exist constants ¢ = c(d,o,y), C =
C(d,o,y) such that for x € Vg, y €int Vi§ we have

02 (Vg) (minux ~0l,ly - Q|>>/“‘/2
Wk — ) \max(— ol ly—o)) =)

O (Vr) (minux ~ 0]y - Q|>>“/2
072 (Vg)|x — | \max(|]x — 0, |y — Q)

if 6,(Vr) < Ro/32, and

52 (V)lx — O|F 42 Ro—5 572 (Va)lx — OF2Ro—$
e ( R)' |y|dga SPVR(X,)/) < Cx ( R)| |ydg1

lféy(VR) > R0/32
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Proor. Let R=2and Q =0. We note that in this case the choice of R
depends only on ¢ and y. Assume first that x € V5, y €int Vi and 0,(V>) <
Ry/32. Let y’ and 4 = A(x, y’) be as in Theorem 2.4. From Lemma 3.4 we
have

P ()T < ¢y, (x) < OV x|,
V)Y < gy, (0) < COP ()Y, (32)
02 (Va)|A"7 < gy, (4) < Co (1) |41,

First we prove that
(V)" < 4y, (6 < COEROA) T, (33)

where ¢, C depend only on d, a, . We observe that, by definition we
have 16,(V2) <0,/ (V2) <6,(V2). Next, we see that if ,(V2) = |y — S|, then
v =y <|y=S|+|y =8 <20,(V2). This implies that |y[ <[y —y'|+ )|
<20,(V2) + V'] < (2/K)3,(V2) + 3| < (3/x)y'| and similarly || < | — /| +
|y] <20,(V2) +|y| <3|y|. This gives

(=/3)yI < [¥'] <3yl (34)

Hence, (33) follows from (32).
Recall that p = max(d(V2),0,/(V2),|x — »'|). We show that

(1c/ (1 + 2))x — 3] < p < 3lx - . (35)

First, notice that max(d.(72),6,(V2)) <|x — y| for all xe V>, y ¢ V>. Hence
=y < |x =yl + [y =y <lx—y[+20,(V2) < 3|x — y[ and 9,/ (V2) < 0,(V2)
<|x—y|. This gives the upper bound in (35). Next, |x— y| <|x— )|+
ly =y <|x=y|+25,(V2) <p+ (2/k)d,(V2) < (1 +2/K)p. Hence, (35) is
proved.

From (35) by the same arguments as for (30) we obtain

clx —y| <04(V2) < Clx — y|. (36)

Finally, 1 <146,(V2) <14 Ry/32. Now using (9) and combining this
with (25) and (32)—(36), we obtain the desired estimates for R = 2.

Now let 0,(V2) > Ro/32. Then y'=x; and p >0, (V2) = Ro/4 so
A=x;, too. Next, Rg/32<0,(V2) <[y <|y—S|+IS|<2+5,(V>) <
(1+64/R0)3,(V2) and 8,(V2) < [x— 3] < x| + |y < 2+ 3] < (1 + 64/Ro)| .
Combining this with (32) and (9), we complete the proof for R=2. The
scaling property (2) for the Poisson kernels completes the proof for every
R>0. O
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As a simple application we estimate the probability that the process
starting ‘near’ the vertex of a cone Vi exits the cone ‘far’ from the vertex. We
will use this result in further analysis.

LemMa 3.8. Let R> 1 and x € VRN B(Q, R/2). Then there are constants
c=cld,a,y), C=C(d,ay) such that

e8! (Vr)|x — 0| /R < P¥(X.,, € B°(Q,3R/4))
<G82 (Vr)lx — Q" /RV.
Proor. Take Q =0. From the scaling property (2) we see that
P¥(X,, € B(0,3R/4)) = P/*(X,, e B(0,3/4))

= J Py, (x/R,y)dy. (37)
[y|=3/4

For |x/R| <1/2 and |y|=3/4 we have (1/3)|y| <|x/R—y|<(5/3)|yl.
Since R > 1, (1/2)0x(Vr)/R <0 r(V1) <26.(Vr)/R. Let x"e V. Com-
bining this with Theorem 3.7, we obtain

Py (x/R,y) 22 a2
— 7 < Co V R <
PV[ (xl7y) N ¢ \/R( l)(|X|/ ) B

Hence, by (37),

C2*2872 (Vi) x| "2
R# ’

, a/2 B—u/2
PY(X, € B°(0,3R/4)) < CP¥'(X,, € B(0,3 /4))5«*(%.

The proof is completed. ]

Now we consider the case of unbounded cones. We have the following

LemMa 3.9. For all xeV we have P*(ty < w) =1 and P*(X;, € V)
=0.

Proor. Since f > 0, from [2, Theorem 4.1] we have E*t}, < oo in case
te (0,f/a). This implies that P¥(ty < o0) = 1.

Now take x € VN B(Q,R/2). Let R> 1. Since the Lebesgue measure of
dV is 0 and P*(X;, € dVg) =0, we obtain P*(X;, €dl)=0. Hence we have

PY(Xy, €dV) =P (X;, €V, Xy, € V) + P (X, €0V, Xy, € V\VR)

VR

= P'(Xy,, € V) + P (X, €0V, Xy, € V\VR)

Tvg

< PX(X,

‘L'VR

€ B(Q,3R/4))

and, by Lemma 3.8, the last term tends to 0 as R — oo. This completes the
proof. O
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With this lemma we are able to describe the behaviour of the Green
function and the Poisson kernel of Vz when R — oco. As an immediate
consequence of Lemma 2.5 we obtain

LemMAa 3.10. For x,yeR? we have limg_., Gy, (x,y) = Gy(x,y) and
limg_ PVR(X7 y) = PV(xa y)
By this result and Theorem 3.7 we easily obtain the following estimates for Gy
and Py.

THEOREM 3.11. There exist constants ¢ = c(d,a,y), C=C(d,a,y) such
that
(1) for x,y eV we have

c min( Ag. 5,3/2(1/)5;/2([/) <min(|x -0,y - Q|)>/f—o</2>

=y x =y \max(Ix—Qf|y - Q)
< GV(Xa y)
50(/2 178 (5?5/2 174 . _ _ B—u/2
< min Ad,acdia 7 C X ( ) y d( ) (mln(|x Q|, |y Q|)> ,
Ix =" Ix — ¥l max(|x — 0, |y — Q)

(i) for xeV, yeint V° we have

. 52V <min(|x— Ol ly—20l)
5}?/2(V)|x7 y|4 \max(|x — 0|, |y — Ql)

(V) <min<x— ol,ly - Q|>)ﬁ‘“/2
0} (V)|x — y| \max(|x — 0|, ]y — Q) '

p—o/2
) < PV(xa y)

Remark 1. If V' ={(0,0,...,0,x4) : x4 > 0}, we know the explicit for-
mula of Py. This is equal to Pp(x,y)= Cd’“x;/2|y|7“/2|x— y[™ (see |9,
Example 2]). This confirms the estimates from Theorem 3.11 as = /2 in
this case. Note that this formula can be found by choosing a sequence of balls
B, /' V, using the explicit formulas of the Poisson kernels for B, and applying

Lemma 2.5.

Now let us focus on Martin kernels of cones. Since a bounded cone is a
bounded Lipschitz domain, its Martin kernel may be defined as in (6). Hence,
as an immediate consequence of Theorem 3.6 we obtain the following esti-
mates.

THEOREM 3.12. Let R > 0. FEvery singular o-harmonic function on Vg
admits the Martin representation in the sense of (5) with the Martin kernel My,
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defined as in (6). There are constants ¢ = c¢(d,a,y), C = C(d,a,y) such that for
x € Vg, z€ dVg we have

(o = 20 (Vi) <min<|x — 0l,|z — 0]) - max(|xo — O, |z - QI))’H/Z
e — 2| 022 (V) \max(fx = 0, |z = 0I) - min(|xo — O],z — Q)

< MVR(X, Z)

R S LY (min<|x — 0l,]z = 0)) - max(lxo — O, = - QI))’”‘/Z
x — 2| 012 (Vr) \max(|x — O}, |z — Q) - min(|xo — O, |z — Q)

if z# Q and
o= Q" 522 (V)
|x — Q2 U2 (V)

The case of unbounded cones is more complicated. However, the results are
similar, with a natural extension {oo} € 0V.

lxo — QI 622(V)
|X7 Q|d+/ffo(/2 50{/2(VR)

X0

< MVR()C, Q) <C

THEOREM 3.13.  Every singular a-harmonic function on V admits Martin the
representation in the sense of (5) with the Martin kernel My defined as in (6).
There are constants ¢ = c(d,n,y), C = C(d,o,y) such that for x €V we have

(Lo ==l o) (minux ~ 0|, |z— 0)) - max(jxo ~ 0], |z - Q|>>f”/2
e =217 02 (v) \max(x = @1,z = Q) - min([xo — O], |z~ Q)

< My(x,z)
xo — 21! 8721 (min(lx = 0l,]z — 9|) - max(|xo — 0], |z — Q|)>’B°‘/2
x — 2|7 62/%(v) \max(jx — 0], |z — Q) - min(|xo — Ql, |z - )

if ze dV\{QU 0} and
‘Xo . Q‘d+ﬂ79€/2 5):{/2

Yo — Q|d+ﬂf‘1/2 5:/2(1/)
|X _ Q|d+/f—oc/2 6;0/2(1/)’

B2 su)2
< My(x,0)<C =0l o 5’2/2(1/).
V) [xo — Q1" 0 (V)

<MV(X,Q) < C|

V)
|X_Q|d+ﬂ—oc/2 630/2 V)
V)

(
(
B=a/2 su/2
N
Furthermore, we have 0
My(x,00) = My(x)  My(1,0).

Proor. The existence of the Martin representation is not immediate since

V' is unbounded. To prove it, we introduce the Kelvin transform T (with pole
at 0) as

Tx=x/|x|*, x#0. (38)
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We have T~! =T and |Tx| = 1/|x|. Next we introduce the Kelvin transform
of a function as

Tu(x) = |x|"u(Tx). (39)

See [17] for further details.

We may assume that Q = (0,0,...,0,1) and 1 =(0,0,...,0,2). V is a
circular domain and its profile consists of two half-lines starting from Q. By
symmetry, the image of V under 7, TV is also circular and its profile is the
image of the profile of V. It is easy to check that the image of a line under T
is a circle provided the line does not pass through 0. Hence the profile of TV
consists of two arcs of the same radius and these arcs have two common points
Q and 0. It implies that 7V is a bounded Lipchitz domain so, according to
[9], there exists the Martin representation on 7'V with classical Martin kernels
My (x',2"), x' € TV, z € 0TV. Then, by [9, Lemma 8], the classes of singular
o-harmonic functions on ¥ and TV are isomorphic and there exists Martin
representation on ¥V with its kernel function TMry(-,z'). Since 0 ¢ TV and
T-' =T, we have from [17, Proposition 2.6]

X G (T, Ty) = Gr(x,p),  xpeV. (40)

Let T,, be the reference point for the kernel Mry(-,-). From (40) we
obtain
Gy(x,») _ X" Gry(Tx, Ty)
Gy(x0,»)  |xo|** Grv(Txo, Ty)

(41)

If y — z, then Ty — Tz with a natural extension 70 = oo, Too = 0. Hence,
letting y — z in (41) and using (6), we obtain

X My (Tx, T7)

MV(X7Z) |X0|“7d

By (39) this implies that My (x,z) = |xo|“ *TMzy(x,Tz). It means that
classical Martin kernels My (-,-) exist and the kernels TMyy(-,z") are their
constant multiples. Hence there exists the classical Martin representation on V
with the kernel functions My (-,-). The estimates of My (-,-) are an imme-
diate consequence of (6) and Theorem 3.6.

It remains to prove the last part of the theorem. We see that the function
f(x) = My(x,0)/My(1,00) is nonnegative singular o-harmonic in ¥ and
f(1)=1. Moreover, the estimates of My (-,00) imply that f is locally
bounded. Hence, by [10, Lemma 17], f is regular a-harmonic on every open
bounded subset of V. From the uniqueness of My (-) ([2, Theorem 3.2]) we
obtain f = My (-), which completes the proof. O
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