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STEENROD OPERATIONS ON THE NEGATIVE CYCLIC
HOMOLOGY OF THE SHC-COCHAIN ALGEBRAS

CALVIN TCHEKA
(communicated by Charles Weibel)

Abstract

In this paper we prove that the Steenrod operations act nat-
urally on the negative cyclic homology of a differential graded
algebra A over the prime field F,, satisfying some extra condi-
tions. When A denotes the singular cochains with coefficients
in IF,, of a 1-connected space X, these extra conditions are sat-
isfied. The Jones isomorphism identifies these Steenrod opera-
tions with the usual ones on the S!'-equivariant cohomology of
the free loop space on X with coefficients in IF,. We conclude by
performing some calculations on the negative cyclic homology.

1. Introduction

Since their construction by N. Steenrod [22], Steenrod operations have played
a central role in homotopy theory and in representation theory. In the topological
setting, Steenrod operations {P"};cy are stable natural transformations

*+17 . ] —
Pl H(F,) - {H Cip | e=2
H**+P=Di(—F,) if pis an odd prime
where H*(—;F,) denotes the singular cohomology functor with coefficients in the
prime field F,. When p = 2, P? is called an i-Steenrod square and usually denoted by
Sqt, while when p is an odd prime, P? is called an i-Steenrod power. These transfor-
mations satisfy the following properties:

1. PY=id.
, >k i=k)p=2
2 Bl =0 Gespgir T R b= |
HE (= Fp) 1> 2k (resp. i = 2k) p is an odd prime.

3. P*(-U—-)=3,,,_, P —=UP/—, (the Cartan formula).
4. The Adem relations (see [16], pages 129 and 367).

Here id (respectively 0) denotes the identity transformation (respectively the constant
transformation whose value is 0) while £ denotes the Frobenius transformation x +—
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aP. A. Dold [4] defined them in a more general context replacing the singular chains
on a topological space by an arbitrary simplicial coalgebra. Later P. May [15] gave
a purely algebraic construction of Steenrod operations which leads to the notion
of FE.-algebra, as recently developed by Mandell [14] in homotopy theory, and to
the construction of Steenrod operations in other settings. For example, there exist
Steenrod operations on

o the cohomology of a commutative F,-Hopf algebra due to A. Liulevicius [12],
after the paper of Dold quoted above;

e the cohomology of a restricted p-Lie algebra due to P. May [15];
e the cohomology of non commutative p-differential forms due to M. Karoubi [11];

e the cyclic cohomology of a commutative [F-Hopf algebra due to M. Elhamdadi
and Y. Gouda [5].

Let us recall here that if {V?};cy is a graded Fp-vector space and if T¢(sV') denotes
the free coalgebra generated by the suspension of V', denoted sV, then:

o V is an A-algebra if there exists a degree 1 coderivation D on T°(sV) such
that Do D =0 and D|T0(Sv) =0.

e Visa By-algebra if it is an A.-algebra and if there exists a product on T¢(sV)
such that T¢(sV) is a differential graded Hopf algebra.

e V is a Cy-algebra if it is an A.c-algebra such that 7¢(sV) is a differential
graded Hopf algebra for the shuffle product.

While it is possible to define the Hochschild homology (and the negative cyclic homol-
ogy) of an A.-algebra [9, 8], the lack of associativity of these operadic algebras
complicates explicit computations. Hopefully, strongly homotopy commutative alge-
bras (shc for short), as introduced by H.J. Munkholm [17], will considerably simplify
the above mentioned calculations. They are associative By,-algebras. Moreover, it is
known that:

e The normalized singular cochain complex with coefficients in I, of a connected
space X, C*(X;F,), is a shc-algebra [17].

e The Hochschild homology of a she-algebra A with coefficients in A, HH,(A; A),
is a graded algebra [20].

e The negative cyclic homology of a shc-algebra A, HC (A), is a graded algebra
[18].

e Let X be a 1-connected space and LX be the free loop space. That is, LX =
Map(S?t, X) is the space of continuous maps from S! to X endowed with the
compact open topology. The Jones isomorphism HH, (C*(X,F,); C*(X,F,)) —
H*(LX;F,) is a homomorphism of graded algebras [20].

e Let X be a l-connected space and LX the free loop space. The Jones isomor-
phism HC (C*(X,F,)) — Hg (LX;[F,) is a homomorphism of graded algebras
[18].
Here HY, (LX;F,) denotes the S L_equivariant cohomology of LX with coefficients
in F,.
B. Ndombol and Jean-Claude Thomas [21] have introduced the notion of m-shc-
algebra and have proved that
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e The normalized singular cochain complex with coefficients in F, of a connected
space X, C*(X;F,), is a m-shc-algebra [21].

e There exist Steenrod operations on the Hochschild homology of a m-shc-algebra
A with coefficients in A.

e Let X be a 1-connected space and LX be the free loop space.
The Jones isomorphism HH,(C*(X,F,);C*(X,F,)) — H*(LX;F,) respects
the Steenrod operations.

In this paper we complete the above result in proving:

Theorem 1.1. Let ((A,da), pa,ka) be a w-she cochain algebra as in [21].

1. The negative cyclic homology of a differential graded w-shc algebra A with coef-
ficients in A, HC_ (A), has algebraic Steenrod operations.

2. Let X be a 1-connected space and LX be the free loop space.
The Jones isomorphism HC (C*(X,F,)) — H%, (LX;F,) respects the Steenrod
operations. (See [18, 10].)

The Steenrod operations, considered in our theorem, are defined at the chain level
and satisfy the properties:

1. P%(1) =1 if 1 denotes the unit of the graded algebra HC_ (A).
i>k (resp.i=k)p=2

2. P =0, L 6) if
(vesp. §) i {z > 2k (resp. i = 2k) p is an odd prime.

|HC;(—,]FP)
3. PF(—uU-)= Dtk PPU PJ, the Cartan formula.

Except if A = C*(X;F,), the Steenrod operations constructed by Ndombol-Thomas
or those considered in part 1 of our theorem do not in general satisfy the Adem
relations. An operadic construction as in [2] or [1] allows us to define an action of the
large Steenrod algebra on the Hochschild homology of a E-algebra. Such an action
on the negative cyclic homology remains an open question. In these notes, quasi-
isomorphism means a homomorphism which is an isomorphism in (co)homology.

The paper is organized as follows. Section 2 is a recollection of definitions. Part 1
(respectively Part 2) of Theorem 1.1 is proved in Section 3 (respectively Section 4).
Recalling the m-shc-minimal model and explicit computations are the subjects of
Section 5 and Section 6 respectively. This paper is a part of my thesis supervised by
professors B. Ndombol and J. C. Thomas of Yaounde I University, Cameroon, and
Angers University, France respectively.

Convention
Throughout this paper, we use the Kronecker convention: an object with lower
negative graduation has upper non-negative graduation.

2. Preliminaries

Let m be any finite group and p a fixed prime. Throughout this paper, we work
over the field F,, equipped with the trivial action of 7. The ring group Fp[r] is an
augmented algebra.
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2.1. Algebraic Steenrod operations

The material involved here is contained in [17]. Let 7 = {1,7,...,7P"'} be the
cyclic group of order p. Let W =% F, be a projective resolution of F,, over F,[r]; that
is W= W;)iso; W; o W;_1; Wy ~ F,[r], where each W; is a right projective F[n]-
module and d; is m-linear. We choose IF,, I, W such that ew o nw = idy,. Necessarily
nw o ew = idyy .

Let A = {A}icz be a differential graded algebra (not necessarily associative). We
denote by mff) (resp. (Hm4)®)) the iterated product a1 ® as ® -+ ® a, — aj -
(az(---ap)) (resp. the iterated product induced on HA by mff)).

Identify T € 7 with the p-cycle (p,1,...,p — 1) and assume that 7 acts trivially on
A, thus 7 acts diagonally on A®? and on W ® A*P.

o moa)(P)
If the natural map H(W ® A®P) — H(A)®P Hma)™ 1 A lifts to a n-linear chain
map 6: W ® A®P — A, then for any i € Z and v € H" A, there exists a well defined
class

. H i (A) ifp=2
P’ S i
(z) {Hn+2z(p1)(A) if p>2,
such that:
1.
P'(1ga) =0ifi#0.
2.
If p =2, Pi(z)=0 ifi>n
Pl(x):(]jQ le:n
3.

Moreover these classes do not depend on the choice of the resolution W nor n and
are compatible with algebra homomorphisms commuting with structural map 6.

These operations do not in general satisfy P?(x) = 0ifi < 0, P°(z) = =, the Cartan
formulas and the Adem relations.

2.1.1. Cartan formula
Let us consider the differential graded algebra A = {A*};cz such that A* = 0 for i < 0.

A homogeneous map W L, Ahasa degree k if f € Hom" (W, A) = [1iso Hom(W;,
Ab=) = EB?:O Hom(W;, A*—).
The differential of f is D(f) = do f — (=1)//If 0 §; 7 acts on each Hom" (W, A) by
(o f)(w) = f(wo); the evaluation map
Hom (W, A) <% A
fr—ew(f) = fleo)

is a homomorphism of chain complexes.
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Let W 2% W ® W be any diagonal approximation and denote by m 4 the product
on the algebra A. We have the cup-product

k 1 Uk
Hom(W, A) ® Hom(W, A) — Hom(W, A)
f@gr— fUg=mao(f@g)otw

that defines a nonassociative differential graded algebra structure on Hom (W, A).

Proposition 2.1 ([21]). If A = {A%},cz is differential graded algebra such that A* =
0 if i <0 and 0 the structural map as in 2.1, then:

1. The structural map W @ A®P °. A induces a m-chain map
A®r 2, Hom (W, A)

{W é(—u)>A
T aww) = (1w @ v)

such that evy o 0 = mff) and H(evg) o H(é) = H(my)®.

2. If we assume that H(0) respects the products, the algebraic Steenrod operations
defined by 0 satisfy the Cartan formula Pi(xy) = D jtii Pi(z)P*(y),z,y €
H*A.

2.1.2. Review of the construction of Steenrod operations

We consider the standard small free resolution of 7 = {1,7,..., 7771}

W= W)izo; W;=eF,[n]; Wox~Fynl,

=

W, 5 W, 6(e2it1) = (1 +7)ezs, Oez) = (1 + 7+ -+ 7T)egi—1, [21]

w2 K

0 if7>0
e; — ewl(e;) = e

g if7=0.

Note that this standard free resolution equipped with its diagonal approximation
1w has a coalgebra structure.

Let 0,: W @, A®P — A be the map induced by the structural map § and denote
by 6* the homomorphism H (6, ). Observe that any section p of a natural projection
AN kerd — H(A) lifts to a m-linear chain map p: W @ (HA)®? — W ®@ A®P and
thus to a chain map pr: W ®, (HA)®*? — W ®, A®P. Since W is a semifree F,-
module in the sense of [7], p* = H(p,) is an isomorphism. The algebraic Steenrod
operations are defined as follows [15]; for z € H"(A), each e ® z®P is a cocycle in
W @, (HA)®P.
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If p=2,
Sq'(x) = 0% o p*(cl(en—; ®x z®P))
= cl(bx 0 pr(en—i @x 2°P))
(O (en—i ®x pr(2®7)))
(0 (
(6

= cl(0,

=cl €n— 1®7r107r( ) ))

0(p(x)*?)) (en—:)

=c
and if p is odd,
) * o p*(clem—2i)p-1)-1 @ 2®P))
= (=1)w()el(0(p(x)*"))(e(n—2i)(p-1))
BP(z) = (=1)'v(n)l(0(p(x)*))(e(n—2i)(p-1)-1)
f

where v(n) = (—1)7((52)))€ if n = 2j 4+ €, € = 0,1 and § the m-chain map defined in
Proposition 2.1.

2.1.3. Hochschild homology and negative cyclic homology
Here, Hochschild homology and negative cyclic homology are recalled.

Let DA and DC denote respectively the category of connected cochain algebras
and the category of connected cochain coalgebras. The reduced bar and cobar con-
struction are a pair of adjoint functors B: DA «» DC': Q (see [6]). The generators
of BA (resp. QC) are denoted [ai|ag]|---|ak] € BrA (resp. {(ci|ca|---|a) € C) and
[[=1€ BgA ~K (resp. () =1 € QC ~K).

The adjunction mentioned above yields for a cochain algebra (A,d4), a natu-
ral quasi-isomorphism of cochain algebras as: QBA — A [17]. The linear map
ta: A — QBA such that t4(1) =1, ta(a) = ([a]), a € A is a chain complex quasi-
isomorphism. In any case, it satisfies aq 014 = ida, idopa —taoas =dggaoh+
h o dqopa for some chain homotopy h: QBA — QBA such that cpoh=0,hota =0,
h? =0.

Let (A, d4) be a cochain algebra. Recall also that the normalized Hochschild chain
complex of (A4,da) is a graded vector space {€xA}i>0, €A = A® BiA where the
generators of €, A are of the form aglai|az|...|ax] if £ > 0 and a[] if kK =0. We set
€ = |ao| + |sai| + |saz| + -+ + |sa;—1], i > 1 and define the Hochschild differential
d=d' + d? by

d'(aolar| -+~ lar]) = da(ao)larlaz| - far] = Y = 1*(=1)jaolarfaz| - |da(ai)| -~ |ax]

d*(aplar - -~ |ax]) = (—1)‘%‘@0&1[02\ o |ag]
+ Y aolarlas| -+ ai—1as| - |ay]

— (—1)‘3“’“|6’°aka0[a2| s |ak]

The Hochschild differential decreases the degree by one (see [13] or [20] for more
details).
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By definition,
HH,A:= H,CA

is the Hochschild homology of the cochain algebra (A, dy4). It is clear that €A is
concentrated in non-negative total degrees. Hence so is HH, A.

If (A,da) = (N*(X;K),dn-(x;x)) is the algebra of normalized singular cochains
on the topological space X, then €,N*(X;K) is the normalized Hochschild chain
complex of X and HH,. X := HH,.N*(X;K) is the Hochschild homology of X.

For the cochain algebra (A, d4), the Connes operator is the linear map

B:C,A— € 1A

defined by Baglai|---|an]) = Y1 o(=1)1[a;|- - - lanlao] - - - |ai—1], where € = |ao| +
(lao] + |ar| + -+ - + |ai—1] +4)(Ja;| + - - + |an| + n — i + 1). Consider the polynomial
algebra K[u] on the single generator u of upper degree +2 and form the complex
C;A=Ku ®¢,A with differential ® defined by D(u' ® aplai]|--|a,]) = u! ®
d(aglaz| - -+ |an]) + vt @ B(ag[a1| - - - |an]). The chain complex C; A is the negative
cyclic chain complex of the cochain algebra (A,d4) (see [10]). Let L and M be
two graded F,-modules; L&M will denote the tensor product defined by (L&M),, =
I1L; ® M,,_;. Generally for a differential graded algebra A, C; A =T, [u}@FPA. So,
for example, an element of degree d is given by an infinite sum of the form Y u’ ® e;
where e; € Agqyo; [3]. If A is positively graded, C; A = Fpu]®p, A = Fpu]®p, A, and
its homology HC~ A is the negative cyclic homology of (A, d4).

Again, it is clear that C A is concentrated in non-negative total degrees and so is
HC_ A.

If (A,da) = N*(X;K) is the algebra of normalized singular cochains on the topo-
logical space X, then C; N*(X;K) is the negative cyclic chain complex of X, and
HC~X := HC; N*(X;K) the associated negative cyclic homology.

If (A;d4) is commutative (in the graded sense), then the multiplication m4: A ®
A — A is a homomorphism of DG-algebras. Thus the composite €my o sh: €A ®
CA — €A defines a multiplication on €A which makes it into a commutative algebra
[13, 4.2.2], where sh: €A ® €A — €(A ® A) denotes the shuffle map.

2.1.4. Homotopy

1. Recall that f,g € DA(A, A’) are homotopic in DA if there exists a linear
map h: A— A’ such that f —g=da oh+hods and h(zy) = h(z)g(y) +
(=)l f(z)h(y) with z, y € A. If f,g € DA(A, A’) are homotopic, we write
f~pag.

2. Let (A,da) (resp. (C,dc¢)) be a differential graded algebra (resp. coalgebra).
Let T(C, A) = {t € Hom'(C, A): Dt =t Ut,tonc = 0 = £4 ot} be the twisting
cochain space as in [17, 1.8], where D denotes the differential in Hom(C, A) and
U the usual cup-product on Hom(C, A).

The universal twisting cochains t,t’ € T(C, A) are homotopic in TC(C, A) if
there exists a linear map h € Hom?! (C, A) such that Dh=tUh —hUt, honc =
na and €A o h = ec and we write ¢ ~¢ ¢/ [17, 1.11].

3. Denote by m-DM the category whose objects are differential graded modules
over [F, equipped with an action of the cyclic group m and whose morphisms are
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F,[n]-linear. If the F,[r]-linear maps f and g are homotopic with a F,,[r]-linear
homotopy, we write f ~._pa g.

Denote by m-DA the subcategory whose objects are differential graded algebras
over [F), equipped with an action of the cyclic group m and whose morphisms are
linear morphisms of F,[n]-differential graded algebras. If the maps f,g € m-DA
are homotopic with a F,[r]-linear homotopy, we write f ~._pa g.

Lemma 2.2. Let (TV,dy) be a differential graded algebra and assume that a
finite group m acts freely on V. Let (A,da) be a F,[r]-differential graded algebra
and f, g € m-DA(TV,A). if f ~n_pa g then C~ f ~._py Cg.

Proof. We consider as in [21, Lemma A.6], the cylinder object I(TV,d) :=
(T(Vo® Vi @sV)) on (TV,d):

(TV,d)

I(TV, d) (TV,d)

(TV,d)

with §o(V) = Vo, 61(V) = V1, p(vo) = p(vo) = v, p(svg) =0, D =d on Vy and
V1, Dsv = dSv where S is the unique (dg, d1 )-derivation S: TV — T(Vo & V1 @
sV) extending the graded isomorphism s: V' — sV. The free m-action on TV
naturally extends to a free m-action on I(T'V,d) so that I(TV,d) is a w-free
algebra and the maps p, dp, 61 are m-equivariant quasi-isomorphisms of differ-
ential graded algebras. Moreover from the free m-action on the cylinder object
I(TV,d), we have a free m-action on the negative cyclic complex C; I(T'V) of
the cylinder object I(T'V') by the following rule:

For any u! ® xo[zy | x|+ | 2p_1 | 2n] € CSI(TV) and o € T,
l _ 0
o-u Qxolry |x2 | | Tyt | 0] =’ @0
xolo -z |o x| |0 Ty | 0y

Thus C;I(TV) is an object of the category m-DM.

By definition, f ~pa g (resp. f ~z_pa g) if and only if there exists H €
DA(I(TV), A) (resp. H e m— DA(I(TV),A)) such that Hody = f and Ho
(51 =d.

If H € =-DA( I(TV)) is a homotopy between f and g, then C[ H is a w-linear
homotopy between C[ f and Cg. Hence C[ f ~._py Co g. O
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2.1.5. A strongly homotopy commutative algebra (see [17, 4])
A strongly homotopy commutative algebra (shc-algebra for short) is a triple (A, d4,
pa) with (A,da) € ObjDA and pa € DA(QB(A® A), QBA) satisfying
1. apo0opg0taga =my, where my is the product on A;
2. apopusoQB(ida ®@na)ota=asousoQB(na®ida)oitg =ids, where K
J2, A is the unit in A; i.e. 14 is the unit up to homotopy for pa;
3. paoQB(aa ®ida) o QB(pa ®ida) © X(aga)wa =DAa fra 0 QB(ida ® as) o
QB(ida ® pa) o XA®(AmA); 1-€. pa is associative up to homotopy;
4. pao QBT ~pa pa; where T denotes the interchange map T(x ®y) =
(=1)l#l¥ly @ z; ie. g is commutative up to homotopy.
The following natural homomorphisms of DG-algebras are defined in [17, 2.2];

X(AQA)®A

QBOB(A® A)® A) "2 OB(A® A® A) IV OB(A® QB(A® A)),
and satisfy

QARA)RA O X(ARA)RA = YARARA = CAR(A®A) © XAR(ARA)-

Consider A and A’ in ObjDA. The map f € DA(A, A) is a she-map from (A, d4,
MA) to (A/a iAuU/A') if
1. aq0QBfourg=f;
2, O[A/ ) QBf O?’]QBA = 77A/;
3. QBfopa ~pa piy o QB(f @ f).
As proved by [17], an example of shc-cochain algebra is the algebra N*(X;K) of
normalized singular cochains of a topological space X.
On the other hand it is proved in [20] that if (A, d4, p4) is a she-cochain algebra,
then
1. BA is a differential graded Hopf algebra and H*BA is a commutative graded
Hopf algebra;
2. €A is a (non associative) graded algebra such that HH,A is a commutative
graded algebra;
3. if f: (A,da,pa) — (A, dy, as) is a morphism of she-cochain algebras, we have
A % ea X BA
the commutative diagram f | 1 ¢f | Bf ,wherei, i, p,

A L e £ Ba
p' and €f are homomorphisms of cochain algebras and B f is a homomorphism
of differential graded Hopf algebras.

Remark 2.3. We recall the following facts given in [21, A.2]:

1- If ((A,da),pa) is a she differential graded algebra, so is QB(A), with the shc
structural map pop(a) given by the composite popa) = 0apa) o pa o OB(aa
® aa), where Ogpay € DA(QB(A), QBQB(A)) is the unique section of agp(a)
€ DA(QBQB(A),QB(A)) such that a4 o QQB(A) © QQB(A) = Q4.
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2- If ((A,da), pa) is a she differential graded algebra and ((W, dw ), ¥w ) a standard
small free resolution of 7w equipped with its differential graded coalgebra struc-
ture, then Hom(W; A) is a shc differential graded algebra with the she structural
map fhom(w;a) € DA(QB([Hom(W; A)]®?), QB([Hom(W; A)])) defined by

HHom(W;A) = QB(HOIH(W @A © MA)) © 0Hom(W;A®2) © QB(wA)a

where [Hom(W; A)]®2 Ya, [Hom(W; A®?)] the map defined by a(f ® g) =
(f ® g) otby is the homomorphism of differential graded algebras satisfying
Hom(W,ma)opa =U and Ogomw,ae2) € DA(QB Hom(W, A® A), QB(Hom
(W,Q2B(A® A)))) the unique homomorphism of differential graded algebras
such that

Hom(W, aige2) © OHom(w,0B(492)) © OHom(W,482) = OHom(W,A®A)-

2.1.6. Shc-equivalence and she-formality [20, 5]
The she cochain algebras (A, da, pa) and (A’ das, pas) are said to be she-equivalent
(A ~gp. A') if there exists a sequence of shc morphisms A « A; — --- — A’ which are
quasi-isomorphisms. One particular case of shc-equivalence is the she-formality. Recall
that the cohomology algebra of a shc cochain algebra is commutative. Every commu-
tative cochain algebra is a shc algebra with she structural map pa = QB(ma): QB(A
® A) — QBA, where m 4 is the product on A.

A shc cochain algebra A is she-formal if it is she-equivalent to its cohomology
algebra H* A.

2.1.7. A mw-strongly homotopy commutative algebra; see [21, 1.6]
Let (A,da,pa) and (A, dar, par) be two she differential graded algebras. There exists
a natural homomorphism piagar € DA(QB((A® A')®%);QB(A ® A’)) such that (A
® A’ dagar; pagar) is a she differential graded algebra.

In particular, if (A, da, pa) is a she differential graded algebra, then for any n > 2,
there exists a homomorphism of differential graded algebras called the shc iterated

(n)
structural map QB(A®") fa, QB(A) such that u® = pgand a4 o u(™ oisen ~ mff)
(see [21, Lemma A.3].
A shc-algebra (A,da, pa) is a w-strongly homotopy commutative algebra (a m-she-
algebra for short) if there exists a map QB(A®P) %4 Hom (W, A) that is a 7-linear
homomorphism of differential graded algebras such that

€vp 0 kg pa QA © u(f)7
where p is the prime number characteristic of F,,.

The action of S, on B(A®P) (resp. QB(A®P)) is defined by the rule: For any o € S,
olailaz] - lap—1lap] = [ae)|ao@)| - top—1)|ao@m)], ai € A®P (resp. o < xi|wo|---
|Tp—1|zy >=< ox1i|ows| - |oTYp_1|OT, >, T; € B(A®P)).

Recall that a strict 7-she homomorphism ((A4,da), pa,ka) <, ((A'ydar), par,ar)

is a strict shc homomorphism such that the following homomorphisms of differential
graded algebras &4 0 QB(f®P) and Hom(W, f) o &4 are w-linear homotopic.
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3. Proof of the first part of Theorem 1.1

As explained in [13, 4.3], a (p, ¢)-cyclic shuffle is a permutation {o(1),...,0(p),o(p
+1),...,0(p+¢)} in Spi, obtained as follows: Perform a cyclic permutation of
any order on the set {1,...,p} and perform a cyclic permutation of any order on
the set {p+1,...,p+ q}. We shuffle the two results to obtain {o(1),...0(p),o(p+
1),...,0(p+q)} in Sp+q. The permutation obtained in that way is a cyclic shuffle if
1 appears before p + 1; we denote by Ziq the set of (p, q)-cyclic shuffles.

A map L: €,(A4,4)® € (A A) — €,y y(A®?, A%?) is defined by

aolalazg| - - -ap—1lap] Lbo[b1[b2| - - - [bg—1bg]
= Y (D) Pag@bolesleor]|leapra-nleomra)l:
Uez(c;uq)
where (o) is the signature of o and
Co(i) = . .
@ 1®bgiy—p ifp+1<i<p+aq.

The cyclic shuffle (see [13, 4.3.2]) is a linear map

oA, A) © € (A, A) 15 €upryn (A2, A%2)
defined by

sh'(aola1laz] - lap—1]ap] & bo[by|ba| - - - [bg—1lbg))
= 1aolas|as| - - lap—1lap] L1[bo|b1 [b2] - - - [bg—1[bg].
It is clear from the definition that if ag = 1 or by = 1 then
sh'(aola1as| - -+ lap—1]ap] @ bo[b1[ba| - - - [bg—1]bg]) = 0.

Proposition 3.1. (see [13, 4.3.7]) The following identities are satisfied:

e dosh=shod;

e sh/oB = Bosh/;

e Bosh—shoB+dosh'—sh’od=0,

where d and B are the Hochschild differential and the Connes operator respectively.
When Klu] ® €(A) @ €(A) and Klu] ® €(A® A) are equipped with the obvious differ-
entials denoted respectively by D and D, the linear map Sh: K[u] @ ¢(A) @ €(A) —
Klu] ® €(A® A) defined by Sh = idgp,) ® sh + u(idy[u] @ sh’) satisfies Do Sh =
ShoD.

Let (A,da,pa) be a shc-algebra. The chain map me- 4 given by the composite

M) id
—

Klu] @ €(A4) @ K[u] ® €(A4) “““L5" Ku] @ K[u] @ €(4) @ €(A)

Klu] @ €(4) ® ¢(A) 2 K[u] @ (A @ A) “a2s

Klu] ® €(QB(A ® A)) ‘=) ¢ (B(4)) “% o (4)

*
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defined a product on C (A) associative up to homotopy; where Saga is a lin-

C. (x
ear section induced by the surjective quasi-isomorphism C; (QB(A® A)) ~ (2apa)

C; (A® A), T the interchange isomorphism and mgj,) the product on Kfu].

Precomposing H*(mc*f( A)) by the Kiinneth isomorphism yields an associative
product on HC~(A). Together with this product, HC~(A) is an associative graded
algebra (see [18]).

Proposition 3.2. Let ((A;da)) be a cochain algebra and (W;ow); ¥w) a standard
free resolution of m equipped with its coassociative coalgebra structure. There exists
a natural homomorphism of chain complexes ¢ o such that the following diagram
commutes.

Pa

C- (Hom(W, A)) Hom(W; C7 (A))

Proof. Let us prove the existence of the map ¢ 4.
We define ¢4 by
da: Klu] @ €(Hom(W; A)) — Hom(W;K[u] ® €A)
ut @ folfUlfel - |faalfs)  —  dalu' @ folf1fal - |farlfr-1])
such that

a(u' ® folf1lfol - |fer|fraa])
= (Id®1d®s®) o (g(u') ® fof1® fo® - ® fro1® fi) o \Ilgf,ﬂ),

v gy gD
where W "= " W W; W Y- W®k+2 denotes the iterated diagonal, and g the
map defined by

K[u] — Hom(W; K[u])
ul — g(ul)
such that
g(u'): W — Klu]
ei — g(u')(e;) (u')(r7e:)
ut=k if i =2k 0< k<
0 if not.

I
<
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Here we check in detail that ¢4 commutes with the differentials.

Consider for this purpose D, the differential in C (Hom(W; A)) defined by

D' ® folfilfo] - | fre1lfr]) = vl ® de, (Hom(w:a)) (folfilfal -+ | Frm1| Frm1])
+u'tt @ B(folfilfal -+ | fr-1lfr-1])

and D the differential in Hom(W;C, A) defined by D(f)=Do f—(-1)/Ifos
where D denotes the differential in C A4; f € Hom(W;C A).

We have to prove that D o ¢s = ¢4 o D.

¢a 0 D' @ folf1]fol -+ |fr—1lf1]) = da(u’' ® de. omw;a) (folFLUf2l -+ - | fu—1lfi])
+u!™t @ B(folf1lfa| - | fr—1lfx]))-

From the definition of the Hochschild differential, one has

paut @ d" (folfrl -+ | £x]))

E

= alul @ dfolfr] -+ |f] = D (=D u @ folfal -+ |d(f)] -+ - | ]

i=1

k
=oau' ®d(fo)lfil -~ fi]) - Z(—l)a"m(ul ® folful---1d(fo)l -~ [f])

:(Id®fd®s®k) o (g(ul) RAfo® L Q- ® fr) O\I,E/[k/—s-Q)_
k

S (1) Ideldes®) (gu) @ foo o @df; ®

i=1

f}c) ° qjg/‘k}+2)

=(Id®Id® 5®k)(g(uz) ® (dafo — (_1)\fo\f0(5w) @fH @ @ fi)o \Ilgf,”)—
k

D (FDTId@ Id® s¥)(g(u') ® fo® f1 @ (dafi — (-1 fiobw) ©

1=1

® fi) o iy

=(ld®Id® s®")(Id®@ds @ Id —1d @ Id @ dex) o (g(u') @ fo @ f1 ®

@ fi) o W — (—1) 0 DRI @ Id @ 5%%) o (g(u!) © fo @ f1 @+ @ fi)
o (Id ® dyyensr) o Whtt

=(Id®di)o(Id® I1d® s ) (gu) @ fo® fL @ fo® - @ fro1 @ fi) o Wi 2 —
(—1)*(Id@Id® s®*)(g(u') @ fo® fr @+ ® fi) o (Id @ bw) o Pl *
=(Id®d")opa(u' ® folfil---|fi]) = (=1)*da(u' @ folfr] -~ fx]) 0
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This result follows from the fact that (W, dw ), ¥w) is a differential graded coalgebra:
oa(u' @ (folfal fol -+ | fur|fi]))
=pa((—D)lut @ (fo U f1)[falfal - | Faorl i)+

k

STEDTU @ folfilfel - 1 fimt U fil - el frl—

=2

(—1) eVl @ (F U fo)[fulfol - - [ frmzl fro1])
=pa((=)ll @ ma o (fo® f1) o Ty [falfsl - [ ol frl+

k
Z D' @ folfilfel - Imao (fioy ® fi) o W] -+ | froa| fil -

1=

(—1><‘fk‘+”5ku @mao (fr @ fo) o vw [filfal - | froalfe-1])
=(-nol(Id® I1d® s®* D)o [g(u') @ ma o (fo® f1)

OQ/JW®f2®f3®"'®fk—1®fk]°‘1’g:/)+
k
S (=) (Id® Id @ s®F D)o
=2
gY@ fo® L@ - @mao (fic1 @ fi)oUw @+ @ fu] 0y —

(_1)(\fk\+1)6k (Id® Id® S®(k—1))
olgu ) @mao(fx®@fo)o¥Pw R fi®@fo @+ ® fro® fr_1]

=(Id®Id® s®* D)o [(Id®ma ® Id)+
k
Y (-1)IdeId@ma @ Id)+ (Id® (ma @ Id) o oy;)]o
2

(Id®Id® s®* "N "o g (ul @ fo [filfal - | fro1lfe])
=(Id @ dg(4y) 0 pa(u! @ fo [frlfa| - | Fr-1lfx))-

We have the result from the definition of the cup-product on Hom(W, A) and the fact
that (W, 0w ), vw) is a differential graded coalgebra.

Let us verify that ¢a(u'™ ® B(folfl|fo---|fr-1lfi])) = (Id® B) o pa(u!' @
Solf U fal - [ fu—1lfil)-

Since

k
B(folf11fal -+ [ frmal fi]) = D (=D)L fil fial -+ [l ful -+ | fimalfica]
i=0
with
i—1 k—it1
ei=OQ_IHI+DCY] 1fil+k—i+1),

i=0 j=i
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then
Y (T ®B(f0[f1|f2|"'|fk 11 fx)))
z+1®z TSl fial - el fil - [ fimal fiea])

k

= 6a0) (VU T @ 1[fil fixal - |l fol - | fimal fioa))

=0

(=) pa(u T @ 1fi] -+ | ful fol -+ | fiz1])

1
o
> | M:r
=)

(=1)%(Id ® Id ® s+

Ik
o

[9( "M el fi® fir1 @ ®fk®f0®~~®fi—ﬂ0‘1’§f/+2)

k
Z Wt @ (Id® s®*H)o

<.

[i®fz®fz+1® ® [ ® for- ® fia] o WY

l+1 ®Z )ei Id®8®(k+1)>
[1®fi®fi+1®fi+2®"'®fk®f0"'®fi72®fl‘*1])o\yg/{k/+2)
= g @ B(Id® s o [fo@ 1 ® fo® - @ fi]) o pE+?
— (Id® B) o (g @ (Id® s*) @ [fo® f1 ©--- @ fi]) o W
= (Id® B)odps(ur @ fo[fi] - |fu1lfr]).

From the above calculations, we conclude that ¢4 is a chain complex homomor-
phism such that the diagram above commutes. O

Lemma 3.3. If (A,da, pa,Ra) is a m-shec-algebra, then

(i) Ra is a strict homomorphism of shc-algebras; and

(i) H.(¢pa): HC; Hom(W, A) — H.(Hom(W,C~A)) preserves the natural prod-
ucts.

Proof. (i) was proved in [21, A.5].
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In order to establish (ii), consider the following commutative diagrams A and B:

2
*

(€5 Hom(W, 4))2 — % [Hom(W; C; 4))%% ——— Hom(W, (= A)°?)
crA
Sh (A) Hom (W,Sh)
CL (ba é

C (Hom (W, 4))%2) L+ €= Hom (W, 452) — %+ Hom (W; C; (4%2))

C*_(aHom(W,A)®2) c (aHom(W,A®2))

C. (2Ba)
_—

C: (QB(Hom(W, 4))°2) C (QB(Hom(W, A%?))

and
_ ®2 P02 L a®2
C; (Hom(W, 4%%)) Hom(1W, C (452))
C. (Hom(W,a 4,02)) (B) Hom(W,C; a ,02)
¢QB(A®2)

C; (Hom(W, QB(A%2))) Hom(W, C7 (QB(A%2))).

From Fj5, Fg and [21, Lemma A.4(b)], we deduce that there exist homomorphisms of
differential graded algebras

1. QB(Hom(W, A)) 22 Hom(W, QBA)
9/
2. Hom(W, A®?)) 22 Hom(W, QBA®?)
0//
3. QB(Hom(W, A%2)) 22 QB Hom(W, QBA%2)

such that

Hom(W, ay) 0 0y = OHom(W,A),

2
Hom (W, aqe2) © Aom(w,0B(422)) © O4e: = QHom(w,42)

and

/!
Hom(W, ag92) 0 0402 = Qom(w,492),

since HHom(W,A) = QOB HOHI(VV, (e} NA) o 9Hom(W,A®2) o QBLZ)A, where aHom(W’A@)’z)
denotes the unique homomorphism of differential graded algebras such that

Hom (W, aqe2) © Qom(w,0B(422)) © OHom(W,492) = QHom(W,AA)-
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Then we obtain the following commutative diagrams C and D:

— !

CoQB(va) Ci0s02
O (QB((Hom (W, 4))22)) ~—— % €7 QB(Hom (W, A9%)) ——% 07 QB (Hom (W, QB(A%2)))

CL (BHOom(W, 4)) () CL aHom(W,0B(4))°C, (2B Hom(W,pu 4))

Cy (B Hom(W, A)) — C; (Hom(W, QB(A)))

and

Co (0 92) 0B (A®2)
O (QB(Hom(W, A92))) — % o (Hom(W, QB(A92))) —2 22 Hom(w, 07 (0B(A%2)))

Cf(ex@)z) -
C (“Hom(W,QB(AQ@?)))

Cy QB(I‘IOI’I’I(VV7 QB(A®2))) (D) Hom(W,C " pa)

Cy aHom(W,0B(A))°Cy 2B Hom (W, 4)

Cy (Hom(W,QBA)) Hom(W, Cy QB(A))

$aBA
By choosing linear sections of C™o(tom(w,a®2)) (resp. Hom(W,C aag,)), one can
define the product mq - j1omw, 4y) o0 C5 (Hom(W, A)) as in 2.3 (resp. Mo w.or a)
on Hom(W, C A)). Thus by gluing together diagrams A, B, C and D, we have the
following commutative diagram:

e
[C (Hom(W, A))]®? [Hom(W, C A)]®?
Mo (Hom (W, A)) M Hom(W,CT A)
C; Hom(W, A) 5 Hom(W,C_ A)
A

which commutes up to linear homotopy. This proves that H,¢4 preserves the natural
products. O

3.1. End of the proof of the first part of Theorem 1.1
Let ((A,da),u,Ra) be a m-shc algebra. Since for any p > 2, QB(A®P) is a shc

algebra with a4 o uff) Ol ep = mff) (see 2.1.7), hence we deduce from the definition
of the m-shc algebra that the following diagram commutes up to homotopy in the
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category m-DM:

QB(A®P) = Hom(W; A)
QAU®p (1) evo
m®)
A®p 4 A.
Let S, be the symmetric group on {1, 2, ..., p} and consider the action of S, on

C7 (A®P) (resp. on C; (QB(A®P))) defined by the following rule: o (u! ® bo[by|bs] - - -
|bs—1]bs]) = ul @ obo[oby|obs| - - - |obs_1|obs], bi € A®P (resp. b; € QB(A®P)) so that
C; A®P C-QB(A®P) are m-chain complexes and QB(A®P) “agr gop, C; (QB(A®P))
C (a, 0p .. . .

* (—‘9 ss) C; (A®P) are quasi-isomorphisms of 7-chain complexes.

77, (P)
Consider on the other hand the 7-chain complex homomorphism [C A]®?P Sk

C; (A®P), called a p-iterated cyclic shuffle map and defined by induction as fol-
lows: Sh = Sh o (mypy ® Id) o (id ® T @ id), Sh'” = Sho (Sh® id) and for all p >
2, Sh'" = Sh'P (Sh'" ™" @ id) (where Sh = (id ® sh) + u(id ® sh') denotes the cyclic
shuffle map). Indeed we have for any

T=Tp, @Tpy, @+ @ Ty, , @y, €[C, A®P,

(wn, = u' ® ag*[a}*|a?| -+ |afi_y |al] € OF A)P,

ShP (z) = ulmtHow @ (@ @ -+ @ al)
@Y (D) @1e--@1-|a @le--@11ea? @1 ®1]---

1®a2ele 011901901’ 101 - ®1Qa]
+ule1+"'+lnp+p®1®1®_,_®1
DY (D) [af 1@ @1]-+lag? ®1®-- @1[1d" @18 @ 1]

1®a!®1®---®1191®ae¢*?®1® --®1]---
|1®a:}22®1®...®1|...|1®1®...®1®a?5]

with ¢ a (n1,ne,...,ny)-shuffle and o’ a (nq1,ne,...,n,)-cyclic shuffle. Since for
every 0 € Sp, x € (C7(A)®P, 02 = To(n,) ® To(ny) @ -+ @ T(,p), the sets of (n1,na,

., np)-shuffles and (nq, ng, - - - ny)-cyclic shuffles coincide respectively with the set of
(0(n1),0(n2),...,0(np))-shuffles and the set of (o(n1),0(n2),...,o(,p))-cyclic shuf-
fles, then the p-iterated cyclic shuffle map Sh P/ is 7 linear and we obtain the following
sequence of m-quasi-isomorphisms:

“(« 77 (p)
O (QB(A®P)) - Cas) o qory P o g,
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Let ¢4 be the map defined in the proof of Proposition 3.2. By applying the functor

C; (-) to the diagram (1) above and using Lemma 2.2 and the definition of the
(P)

product m o a on C- A, we obtain the following the diagram commutative up to

homotopy;

paoC, (Ra)

CL(QB(A®P)) Hom(W; C (A))

cr A

[CL(A)®P o (A)

*

which induces the following commutative diagram in homology:

HC (QB(A®P)) H, (Hom(W; C (A)))

H*(¢a0C Ra)
HC[ (S 0p)0 | HCT @(ShP) H.(evo)

[HC=(A))®P (. HOZ (A).

*

Thus C; (A) together with the structural map 6 = ¢4 0 C; (K4) is a Dold quasi-
algebra. From the lines of the proof of May[15, Proposition 2.3], this diagram defined
algebraic Steenrod operations on HC'~ (A).

Following the same lines, Proposition 2.1 can still be used to prove the Cartan
formulas [21].

4. Proof of the second part of Theorem 1.1

Let us begin this section by giving the proof of the following result due to Bitjong
Ndombol and Jean-Claude Thomas [21, Theorem B].

Proposition 4.1. Let X be a topological space. The algebra N*(X) is a natural 7-
shc-algebra.

Proof. Here we replace the ground field F,, by F,[n].

Munkholm established in [17, 4-7] that there exists a natural transformation
px: QB(N*(X) ® N*(X)) — QB(N*(X) such that an-(x) o px 0 in+(x)@N+*(X) =
mp-(x), where my-(x) denotes the usual product on N*(X). Furthermore (N*(X),
ix) is a shc-algebra.
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Let A denote the topological diagonal. From [21, A.2], F3, and the fact that the
Eilenberg-Zilber map EZ is a trivialized extension, we obtain the following commu-
tative diagram:

N QB(N(A
QB((N*X)22) — 0 apnv+(x>2)) 22N opvtx)
X(N*x)®2 QON*x X2 ON*X
(A
(N*X)®2 2 N (xx2) &) N*X,

from which we define the following homomorphism of differential graded algebras
Moreover there exists a homomorphism of differential graded algebras
QB(N*X) X Hom(W, N*X)

deduced from [21, Lemma A.4(a)] and F3, which rise to the commutative diagram

QB((N*X)®2) - Hom(W, N*X)

9N*X

QN*(A)

QB(N*X) N*X.

Thus we obtain a F,[r]-homomorphism of differential graded algebras xx defined by
kx = On+x o fix such that evgoky = an=(a) o fix. To end this proof it is enough
to establish that ix ~pa pux. We remark that fix ~pa px if and only if tx ~p tx
where tx,tx € T(B(N*(X))®2,QB(N*(X))) denote the universal twisting cochains
associated respectively to px and fix [17]. Finally, it is necessary to find H €
Hom!(QB((N*X)®?), QBN*X) such that H: tx ~p tx. ie, DH=1tx UH — HU
tx and H onpn=xer = NBN*Xx;EQBN*x © H = egn~x. We define H by the following
induction formula:

H=h(tx UH — HUtx) +nNaBN*X O EBN+X®p

Hoiy=Hongn-xor =NQBN*X,

D

where h: IQBN*X ~ iN*X O ON*X and ig = nB(N*X)@p. Since

EX UH = mQB(N*X) o (EX ®H) o AB(N*X)@;?
and

HUtX :mQB(N*X) O(H@tx)OAB(N*X)@)p,
then

H =homgpn-x)© (tx®H—-H®tx)o Ap(n+x)or + NQB(N*X) © EQB(N*X)®r-



STEENROD OPERATIONS ON CYCLIC HOMOLOGY OF SHC-COCHAIN ALGEBRAS 335

Notice that

EBN+x®r O NB(N+x)er = Ldx;
Ap(n+x)®r O NB(N*X)®r = NB(N*X)®r & NB(N*X)®»
and
tx o np(n+x)or = tx o Np(N-x)er =0,
=)
Hoig=Hongn-x)yer = homapn-x)© (tx o np(n-x)90 @ Hnp(n+x)o0
— Hnpn+x)er @ tx oNp(n+x)or) + N0B(N*X) = NQB(N*X)-
More generally, suppose that H oi; can be written as (I) for j < k and let us prove
that H o441 can be written by formula (I) and H o4 (j < k < k).
Hoip = hOmQB(N*X)(gX ®H—-H®tx) o Ap(n+x)®p O ik
+ NaB(N*X) © EQB(N*X)®p O i)
=homapn-x)° [tx ® H—H @ tx|npnv-x)or @ ixs
Y

+ Z iy ® ik —y + ik @ Np(N-x)er] T MQB(N*X) © EQB(N*X)EP O ik

v=1
where
(s(TA)®” 2 BA
(s(a1) ® s(ag) © - @ s(ay)) ——iv(s(ar) © s(az) @ - @ s(ay)) = las] - - |ay]
(A = (N*X)®P). In particular i, (s(a)) = [a] and

0 ifk>0

en-x([aa]---lar]) = {1 if k=0

and
0 ifk>0

EN*X @poik(salé@sag@-“@sak):{1 FE— 0
1 =

. . k' . . .
AB(N*X) Ol = NB(N*X)®r & 1k + Zy:l 1y @ Ur—p + 1 X NB(N*X)®»-
Thus we deduce that

k' —1
H oy = hOTTLQB(N*X)(gx QR H — H®tx)(’io ® 1 + Z Ty @ lpr—py + U ®i0)
v=1
kr k1
=ho mQB(N*X)[Z(tX 0i4y) @ (H oipr_y) — ZH 0y, @tx 0lp—y)
v=0 v=0
k' k' —1
=ho mQB(N*X)[Z(tX 0iy) @ (H oigr—y) — Z(H 01dy) @ (tx 0dp—y)].
v=1 v=0

Let us verify that DH = tx UH— HUtx.
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Since DH = D[h(gx UH-HU tx)] + D(T]QB(N*X) o EQB(N*X)®p with

D(UQB(N*X) © 5QB(N*X)®P) = dQB(N*X)UQB(N*X) EQB(N*X)®p

0

— NQB(N*X) EQB(N*X)ordQB(N+*X)®r,

0
=0

we also have Dh = lop(n+x) — in+x o an-x and D f = df — (-l fa.
Thus

DH = (Dh)[tx UH — HUtx]+h(Dltx UH — HUtx]) =
(IQB(N*X) —IN*X OO‘N*X)[EX UH— HUty] —|—h(D[t~X UH — HUtx]).

Since ay«x oh =0and D[ty UH — H Utx] =0, we deduce that DH = tx U H —
H Utx, hence tx ~rp tx. O

4.1. End of the proof of the second part of the theorem

Consider the simplicial model K of the unit cycle S' and the cosimplicial
model space X defined by X = Map(K(n), X) whose geometric resolution || X || is
homeomorphic to LX, [20, Part II-3]. In [10, Lemma 5.5, Proof of Theorem A and
Theorem B|, J.D.S. Jones has constructed the F,[u]-modules quasi-isomorphism
C-N*X L, Fplu) ® N*(]| X ||) which induces a graded algebra isomorphism
HC;X = Hg"(LX,F,), [18]. Following the lines of [21], consider a m-shc differ-
ential graded algebra (N*X,ux,Rkx) endowed with the structural map
Ox = ¢pn~x o C~ Ry defining the algebraic Steenrod operations on HC_(N*X) and
W e (N*(| X [))®? 2% N*(|| X ||) the structural map defining Steenrod operations
on N*(|| X |)), [15, 7.5]. Define the map vx as the composite

2 i id)®
W ® (Fplu] @ N*(|| X )% d®(id®T@id) "

idom(?  ®id
W @ (Fp[u))®” o (N*(| X ) =

W & (Fplu]) @ (N* (|| X [1)® =25 (F,[u)) @ W @ (N*(|| X [|))® "=
Fplu] ® N*(| X [));

vx is the structural map defining Steenrod operations on (F,[u] ® N*(]| X ||)) and
inducing the chain map 4x (see Proposition 2.1). Consider the following diagram:

OF (o e xy@0) .
O (QB(N*X)®?) O O (N"X)®P) < (O (N X))®P
bn*x0(Cy Rx) (1) Tx (2) w&r

Hom(W; C (N* X)) %) Hom(W; Klu] @ N*(||X]) <2 (K[u] © N* (|| X))



STEENROD OPERATIONS ON CYCLIC HOMOLOGY OF SHC-COCHAIN ALGEBRAS 337

where the functors X — C; ((N*X)®?P) and X — Hom(W;K[u] ® N*(|| X ||)) de-
fined on the category Top with models M = {Q", Q™ = \/p>0(\/p+1(A” X AP));n €
N} preserve the units and are respectively acyclic and corepresentable. We obtain
from the equivariant cyclic model theorem (see [21, Appendix B] and [18]) that
there exists a 7-linear natural transformation C, ((N*X)®P) Ix, Hom(W; K[u] ®
N*(|| X ||)) such that T o C (an+x)er) ~x Hom(W;¥x) o ¢n-x o (C7kx). Con-
sequently the Jones isomorphism respects Steenrod operations.

5. m-shc models, [21, 3]

5.1. Minimal algebra

Let V ={V'};>1 be a graded vector space and let (T'V,dy) denotes the free
differential graded algebra generated by V: T"V =V @V ®---®@V (r times) and
v vy € (TV)™ if Zle | v; |[=n. The differential dy on TV is the unique
degree 1 derivation on TV defined by a given linear map V — TV and such that
dy ody = 0. The differential dy : TV — TV decomposes as dy = dg + dy + - - - with
dpV C TFH1V. If we assume that V1 =0 and dy = 0 then (TV,dy) is called a 1-
connected minimal algebra. For any differential graded algebra (T'U,dy) such that
H°(TU,dy) =F, and H(TU,dy) = 0, there exists a sequence of homomorphisms
of differential graded algebras, (TU, dy) v, (TV,dv) 2% (TU,dy) where (TV,dy)
denotes a 1-connected minimal algebra, v o Py ~pa id and Py o ¢y = id such that
V = H(U,dy) (see [20, 3.1] or [21, 6.4]). Moreover (TV,dy) is unique up to isomor-
phism.

5.2. Minimal model of a product

Assume that (A,d4) is a differential graded algebra such that H°(A) =TF,
and H'(A) = 0 and let (TU|[n}, dypn)) = Q((BA)®"), n > 1. Following the discussion
above, we obtain a sequence

(TUR), dypy) = Q(BAE™) 3 (TV[n], dypey) 225 (TUR], dysg)

Vin] = s ' (H((BA)®")) = s~ ((H(BA))®") = s~ ((F, ® sV)&")
= ([PBF)*F Ve F) e as T (sVasVe--asV).
k=1

Forn=1,V[l]=V = s 'H(BA) and the composite
Yv =agopy: (TV.dy) — A

is a quasi-isomorphism. The algebra (T'V,dy ) is called a 1-connected minimal model
of A.

For n > 2, consider the homomorphism g : (T'V[n], dy(,)) — (TV, dy )™ defined
by qp(y) = 191 @y @197k if y eV} = F?k_l RV ®F§’"‘k, ke{1;2;...n}
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and qp(y) = 0 if y € V[n] — @], V;. The composite

—~ Qn
(TV ), dy ) 25 (TV, dy)®m L7 490

is a quasi-isomorphism ([20]). Therefore (T'V[n], dy,)) is a minimal model of A®"™.

5.3. m-shc minimal models

For any n > 1, the cyclic group S,, acts on V = V[n] C s~!(H(BA))®". This action
extends diagonally on T'V[n] so that dy, and the homomorphism (¢y)®" o gy
are Sj-linear. Since a en» is a S,-equivariant quasi-isomorphism, we deduce from
[21, Lemma 3.3] that the composite (1y)®™ o gy, lifts to a homomorphism of dif-
ferential graded algebra L: (TV [n]dy(,)) — QB(A®") which is S,-equivariant and
agen o L= (Yv)®" o gy

Let ((A,da), a) be an augmented she-algebra and assume that H°(A) = F,, and
H°(A) = 0. Define the composite ,ui,”) =Pyo ME:) oL: (TV[n],dy,) — (TV,dv)
such that p{? = py: (TV[2],dypy) — (TV,dy). The triple (TV,dy), py) is called
a she-minimal model for ((A,da), 1a) [20, Section 6].

Let ((A,da), jta, Fa) be an augmented 7-shc-algebra and assume that H°(A) = F,
and H°(A) = 0. Following [21, Lemma 3.3], the composite &4 o L lifts to S,-equi-
variant homomorphism of algebras #4: (T'V[p], dyp)) — Hom(W,QBA). Hence the
composite Ay = Hom(W, Py) o ha: (TV[p], dyp) — Hom(W,TV) is a Sp-equivari-
ant homomorphism of algebras and the triple ((TV,dy ), uv,kv) is called the m-she-
minimal model for the ((A,da), pa,ka) [21, 3.4].

6. Examples

In this section, the characteristic of the field I, is p = 2.

6.1. Projective space CP*°
Let X = CP*, H*(X;K) = A(x) = Fo[z] with || = 2. Thus the graded algebras
HC,; (N*CP>;F3) and HC, (A(z)) are isomorphic. It also follows that the algebraic
Steenrod operations on HC (N*CP*;Fy) are computed by those on HC (A(z)).
Since ((A(x),0), A(z)» Ra(z)) is @ 1-connected 7-she differential graded algebra to-

gether with finite generated cohomology groups such that the shc structural map
RA(x)

pia(z) = QB((ma(z))) and the 7-she structural map QB(A(x)®?) =" Hom(W; A(x))
defined on the generic elements as follows:
For any y = < ci|ea| -+ |er—1]cr >,
Ci = [bl1|b12| T fi71 b};],

bj=(@Az A AND)@(@ANTANTA AT),

m; P;

we have [bs| = 2(m; + p;).
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I ll T ~
Thus |y| =2a+gq, a= Z¢:1 Z]‘ (mj +pj); qg=r— Zizl l; and |"$A($) (y)‘ =
2a.+ ¢, and finally:

@B if2p=k—q
0 if not.

R (Y)(exT) = {

In particular, for any y € {<[z ® 1]>, <[1 ® z]>}, we obtain:

- z iftk=0
Fa)(y)(exT) = {O i k>0,
and for y = <[z ® z|>
22 ifk=0
Fa@ (W)(ert) = Q2 ifk=2
0 ifk¢{0,2}.

Then ((A(x),0), A (z), Ra(z)) has a 1-connected 7-she minimal model ((T'V,dv ), pv,

%v) where V = zFy, "y : TV — Hom(W,TV) is the map such that V = V[2] :=
2'Fo @ 2"'Fy @ 2'Fa#2"Fy and

x ifi=0

0 ifi>0

rz ifi=1
0 if not.

Let TV 2% (T(x))®? be the surjective quasi-isomorphism of differential graded

algebras defined on the generic elements as follows: ¢ (2') =2 ® 1; ¢y (2") = 1@ a3

N C g

and gy (z'f2”) = 0, and inducing the chain complex quasi-isomorphism C~T'V ~ 1y
C~(T(x))®2. We have the following diagram

Hom(W, A) < W @0 AB2 o> Hom(W, A)
Hom(W,p2) 1w @u®? Hom(W,p2)
Hom(W,C~T(z)) W @, [O~T(x)]®? Hom(W,C~T(x)

7 1w ®Sh 0

N S B 1lw®C™ qp o~
W@ C—TV < W®,C ((T(l‘))®2) =~ WeCc1TV
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where

Fplu] ® [F, @} Fp<zr>] © Ay)
<uQzpr#Ep—1>

= H:i (LCP(0), Fp)

= HC, (N*(CP(c0),Fp))

= HC, (A(x))

~ HC T(w),

A:

with | u |[=2, |y |[=2p, z» = 2r + 1 and F,<z,> the graded vector space generated
by z,(see [19, Theorem 2]). Sh is the homomorphism of chain complexes defined

in Section 1, S a linear section of 1y ® C~qy; the structural map 6 is defined by
0 = ¢p@) © C7 Ry and g is defined as follows: The linear differential map

Klu] ® [K @ (07 K<z->)] ® Alzr) 2 Klu] ® A(z) © A(sz)
factors through
A — Klu] @ A(z) @ A(sz)
and
Klu] ® A(x) @ A(sz) A
where ¢ is a differential graded algebras quasi-isomorphism defined in [19, 4.1] or
[18, 4.6].
Consider the differential graded algebras quasi-isomorphisms

Klu] ® A(z) ® T(sz) ‘;j Klu] ® ¢(A(x)) = C~A(xz)

(see [18, 4] or [19, 3.2]).
From this we define the chain complex homomorphisms

AL Co (M)
<P2
such that ¢ = @ o7 and 3 =1 o 6.
More precisely we have:

(i)

pr(u) =Topu) =T(uel) =u 1]
pr(y) =Top(ley) =7(1®2") =10 "]
Vre{0,....,p—1}, ¢1(z) =70¢(2) =7(2" @ sx) = 1@ 2" [x].

pa(u! @ 2" [2%]) = ¢ 0 O(u' @ 2" [2")) = k(' @ 2T @ sa)
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for ¢ >0
@2(“} ® xn[mkl |5Ck2‘ - |xkq71 |xkq]) =0.

u@yF ifn==kp

@2(uz®xn[])—qpo§(ul®x”[])_{0 if n # kp.

[z

1

€; ® 1[z* ®1\1®3§ =¢; @ul @ 1z"F|z"""]

e; ®ul @1[35 @) = e; @ ul @ 1% 2% ] (k > 1)

eul@lzellez]) =¢u @ 12"+ e @u @ 1a'iz"] (k=1)

e @ul @1[zF @ 1|2k @ 11 @ 2% (1 @ 2%)) = ¢; @ u! @ 1[a/Fr |[a/F2 |2/"Fs |27k
Merrerlrel]) =e@u @ 12" |a'2"|2']
rRzlrzellor]) =ceu @1z - 2"z |2"] +

e; @ul @ 12" - 2|2 fz"]

Se;uellzerlrelll®z]) =¢eu @ 12|22 - 2"+

e ® ut ® 1[x’|jx”|x’ . (E”]

Se;uelzerlrelll®z]) = eu @ (@22")[z"] +

e ® u ® (lell)(mlﬁxll)[]

Seiou @lzrerlre1l®z]) =e @u @ (2'2"?)[2'] +

e ® ut ® (ﬂc’ﬁaz”)(az’ . CL‘H)H.

Finally, observe that S, the linear section of 1y ® C'” gy, is only defined in
low degrees as follows:
Seiou @1[]) =€ @u @1]]
Se;@ul @ (@F@1)[]) =6 @ul @ 2'%[]
S(e; ®u ®(1®x )[]) =e; @ul ®2"*]
S(e;@ul ® (aF @ 2)[]) = &; @ u' @ (@F2"V)]
S(ei @ u' @ («* )[ 1)) =eou @2
Sle;@ul @ (1 zF)1@a")) =6 @ul @ %[z
S(e; @ul @ 1[z* @ 1]) = ¢; ® ul @ 1[z'¥]
S(e; ®u ®1[ ® 2k)) = ¢; @ u' ® 1[z"']
Se; @ u' ® (2" e ) = e; @ u' @ 22|
Se;@ul @ (1@2%)[zF ®@1]) = ¢; @ ul @ 2k [2/F]
S(e; @ ul ®1[ ®xk\1®x ) =¢e@u ®1[x”k\ac”k/]
Se; @ul @ 1[zF @ 1\x ®1]) = e; ® u! ®1[a:’k|a:’k,}
S(e ®u ®1 ®xk\x ®1]) = e; @ ul @ 1[z"*|2'*]
( ) [
(
(
(
(
(

Now we define algebraic Steenrod operations on HY(A) by the formula
Sq*(z) = cl(6(S o (idw @ Sh)(en—i @z @ x))), x € H*(A)

For x = u,

(8) Sq°(u) = cllpa(u® 1[])] = u = .
() S02(u) = cllea(a(u)er) & g ()] + 900 eo) & g (el )] =
(©) Sg*(u) = clipa(a(u)(en) © e (V(e) ] + ellpa(u? 11 ])] = 22
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(d) for i > 2, Sq'(u) = 0.

For z =y,

(a) Sq°(y) = cllp2(9(1)(e0) ® iy (x"22"%)(ea)[])] = cllp2(1 @ 2?[])] =
1®1®y.

(b) Sq'(y) = cllp2(Id @ Id)(9(1) ® iy (x"2"%)) 0 Yhyy (e3)] = 0.

(c) Sq*(y) = cllpa(Id @ Id)(g(1) ® Ry (x"2"%)) 0 hw (e2)] = cl[ip2(1® 2°(])]

=0.
(d) Sq*(y) = cllpa(Id @ Id)(g(1) ® iy, (2"22"2)) 0 vy (e1)] = 0.
(¢) Sa'(y) = cllpa(1d ® Id)(9(1) @ oy (a"2")) o b (e0)] = ell 21 © '[)]

(f) fori>4=2p, Sq¢'(y) = 0.
For z = 2, € H*t1(A) with 0 < r < p— 1, since p = 2 then r € {0, 1}.
(a) ==z
L 8q%z0) = cllpa((Id ® Id ® s%%)(g(1) ® g (1) ® g (2)) ® g (1) @
Ry (@) © Ry (a)wy (er) +
1d® 1d® s22)(g(1) ® i (1) @ Fog (282") D (e1)]
= 5¢°(20)cl[pa (1 @ 1[z])]
= 2p.
. Sq'(z0) = cllp2((Id @ Id @ s%%)(g(1) ® fop (1) ® fopr () @ R (2) +
9(1) @ Fy (1) @ Ry (2"
(Id® Id® s9%)(g(1) ® fp (1
= dlp2(2(1 @ 1[zlz]))] = 25 = 0.
iii. fori > 1, Sq'(z) = 0.
(b) = 2.
i S¢%(z1) = 21,
ii. Sq'(21) = clfpa((Id ® Id ® s2)(g(1) ® Ry (2'2") @ Ry (2') @ g (2”)
+9(1) @ Ry (¢'2") @ g (2) @ g ()0 (e2) +
(Id @ 1d® 52)(9(1) ® iy (¢'2") @ g, (' 8a")) 7 (e2)]
= clp2(2(1 ® z[z|z]))] = 0.
iil. S¢%(21) = clp2((Id ® Id ® s¥?)(g(1) ® Ry (2'2") @ Fg (2') @ g (2)
+9(1) ® Ry (¢'2") @ Ry (2) @ Ry (@) (e1) +
(Id @ Id ® s2%)(g(1) ® fp (z'2") @ R (2'42")) 05 (€1)]
= clp2(1 ® 22[z|2])]
=YX 2.
iv. S¢®(z1) = cl[‘@2(2(1 ® x?[z|x]))] = 0.
v. for i >3, Sq¢*(z1) = 0.

&
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6.2. 0Odd sphere S2%3t1

As in the previous example, let X = S%¢H1 H*(X;K) = A(z) = Fo[z] with |z| =
2q + 1. Thus the graded algebras HC, (N*S?¢+1:F,) and HC, (A(z)) are isomor-
phic. Tt also follows that the algebraic Steenrod operations on HC, (N*S29+LFy)
are computed by those on HC, (A(z)).

Since ((A(z),0), A (), Fa(z)) is @ 1-connected 7-shc differential graded algebra to-

gether with finite generated cohomology groups such that the shc structural map
RA(x)

pa(z) = 2B((ma(z))) and the 7-she structural map QB(A(x)®?) =" Hom(W; A(x))
are defined by the following diagram

QB (A% (z)) — 2 0B Hom(W, A(x))

_ AHom (W,A(x))
RA(2)

Hom (W, A(x))
which induces the diagram

QB(ma(a)) QB(f)

QBA(x)

QB(A®?(x)) QB Hom (W, A(z))

RA(x)

QA (z) QHom (W,A(x))

Hom (W, A(z))

eV()

where f is defined by

f: A®?(x) — Hom(W, A(z))
rQr— f(2 Q)= fowa
1@z — f(1®1) = fige
t@1— fz®1) = faen
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such that
r ifi=2¢+1

fewa(ei) = foma(Tei) = {0 ifi42+1

z ifi=0

f1®x(€i)—f1®x(761)—{0 020

ifi=0

frgi(ei) = fagi(Tei) = {;g ch 40
1 if7:=0
fl(ei):fl(mi):{o if i £ 0,

where f7 is the unit of the differential graded algebra Hom(W, A(z)).

Then ((A(z),0), 4A(z), Fa(z)) has a 1-connected m-shc minimal model ((T'V,dy ),
wy,ky) where V = zFs, Ky : TV — Hom(W,TV) a map such that V= V[2] :=
Ve V" V'#V" with V' :=s1(sV®K)=s1(H"BA(z) ®K); V" =s"1K®
sV)=sYK® H"BA(z)); V'#V" = s71(sV ® sV) = s (H*BA(x) ® HY BA(x)),
where aj, aj , a; #aj are the respective generators of V', V"', V'3V’

ay, = '(sa, ®1); ay, =s (1@ sa,); a,#ay, = s '(sar, ® sak,);
with ay, := [z| - |a]; ax, = [x] - [z]; [0} | = 2qk +1; [, | = 2qka + 1; [0, #ay, | =
—— ——

kitimes kotimes

fi ifk =0
E"}(a;ﬁ) = fl@m if kl =1
0 if not.

i | fico
ﬁmﬂ%|2qmmw%mﬂw{xll i>0,

0 ifi#£0;
f1 if ko =0
Folah) = { fiae ifky=1
0 if not;
. _ ) z ifi=0
since ’CLZQ‘ =2q+1, “V(a/ll)(Tjei) - {0 if i # 0,

%17(@;@1#“%2>(Tjei) - {0 if not.

Let TV 2% (T(2))®2 be the surjective quasi-isomorphism of differential graded alge-
bras defined on the generic elements as follows:

qp(ay,) =s" 2] |2]®1; qp(ay,) =1®s7" [z] - |a]; qp(ai#ay) = 0.
—— ———

kitimes kotimes
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C ™ gy
and inducing the chain complex quasi-isomorphism C-TV =~V C- (T(x))®2. We
have the following diagram

Hom(W, A) < W @ A®2 o> Hom(W, A)
Hom(W,¢2) 1W®\I/(1®2 Hom(W,¢2)
Hom(W,C~T(x)) W @, [C~T(x)]®? Hom(W,C~T'(z)

6 1w ®Sh 0
~ S -~ ©2 1lw®C™ qp ~
W e O TP W e, C((T())) W e TV,
where

Ku] ® Aly) @ T'(sz)
(u®@vm(sz), y"(s2) ®y),n # kp

1%

H 7 (K[u] ® Alz) @ T'(sz))

>~ H' (LX,K)

with |u| = 2; ||z|| = 2¢+ 1; |y| = 2gp + 1 [19], see [19, Theorem 2]. S is the section
of lyy @ C7qp; 0 = da(r) © C~ Ky and g is the map defined as follows: Consider the
differential algebra homomorphisms

Klu] ® A(z) @ T(sz) —— Klu] ® C(A(z)) = C~A(x).
0
respectively defined by:

) rlezel)=1ez(]; 7(Wolel)=ua1]
Tl®ley*(sx) =1 [z| - |2]; 7' @@ (s2)) =u' @zlz] - |2]
N—_——

———
(k)times ktimes

(i) ' @1]])=u®@10l; 1®1[z] |2]) =1®1®~*(s2)

——

(k)times
Ilez]) =1z, U x|z - |2]) =u @y (sz).
——
(k)times

7 and 6 are homotopic equivalence algebras inverse to each other and H () = H (7)™ !.
From this differential graded algebra quasi-isomorphism we deduce the following chain

complex homomorphisms:
_ P2
p1 =To¢ et ps =W od. More precisely, we have:
1.
p1(u) =Top(u) =u®1[];
pry) =Top(y) =T @ (sz)) = 1@ [2] - |a];
———
(p—1)times

pi(sz) = 70 p(v' (s2)) = (7' (s2)) = T(s2) = 1® 1[a]
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W @1 =Voluelel)=uolxl
wo(l@z[)=Vol(1®z[])=¥Y(1®z®1)=0

p2(1@1]a| - |a]) =Pof(l®1]a] - |z])
—— ——

ntimes ntimes
Y(1®1ey"(sz))
1®1®9"(sz)

pa(u' @ fa] - |a])
——

ntimes
(2 )l @y @y (sa) it 1= kp
=V(u' @z ®~"(Sz)) =

(see [19]).

6.2.1. Finally, we observe that S, the linear section of 1y ® C~qy, is only defined
in low degrees as follows:
S, ul@1[])=e; @ul @1[]
Sle;@u' @1z 1l®a]) =e @ u @ 1a)|a]] + e; ® u! @ 1[a) #a!]
e @ul @1] ) =e @u ®1[a}]
[
[

n

]

T®

T®1
Se;@uelllez]) =e¢u @ 1[a)]

e;®u' @1z ®a]) = e; @ u' @ 1[a) #af] +e; ® u' @ 1[d] - af]

n

U @rllez]) = @u ®adla]]
eul@1lerrel]) =e ®u ®adld]

e ul @11@rlr®1]) =¢ @u @ 1[a]|a}]
eRul@rerrer])=eu ®ad-adld-a]

(
(
(
(
(
(
(
(
(
(e;u@r?’@rl®r]) = u @d? - a[a]]
(
(
(
(
(
(
(
(
(

H
© Y XN O WD
N \nn \»n O»n »

—_
=
)

U @rr?zrel]) =6 eu ®d - df?ad]

—
i
n

eRul@lrellezr)z®1l® ) = e @ u @ 1]d)|d]|a)|a)]

—_
w

.S
.S

[
eul@llerlrell®zjlz®1]) =¢ @u ® 1[af|d)|a]|a))]
eul@lrerzell®r]) =e @u @1 - af|d)|a)]
[
[

—_ =
ov =
U

e ul @1l rlr®zjlr®1]) =e @u @1[a!|d) - af|a)]
CSeioul @1zl ®rlr®]) =6 @ul @ 1[a)|a|d] - af]
Se;uererrel|ll®z]) =e¢eu @d -dld|af]

CSEelelezrelllerlrel]) =6 ®1® ad[ad)]adf]d]]
S (elerellezlzelll®r]) =e ®1® d|d|d]|a]].

O
© o N o
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6.2.2. Now we define algebraic Steenrod operations on H?(A) by the formula
Sq'(z) = c(0(S o (idw ® Sh)(en—s @ z @ 1)), x € H*(A).
If a € H1(A), a € {u,sz,y}

(a) Fori=0, S¢"(u) =cl[p2(u®1[])] =u

(b) Fori=1, Sq*(u) =0

(c) Fori=2,S¢?(u®1®1)=cd [pa(u®>@1[])] =u?
(d) Fori>2, S¢t(u®1®1)=0.

(a) Fori=0, Sq’(sz) = cl [p2(1 @ 1[z])] = cl[¥ 0 §(1 ® 1[z])] = sz
(b) Forie{1,...,2¢—1}, Sq¢*(a) =0.
(¢) For ¢ =2gq,

Sq*(sx) = cl [p2 (2(1 ® 1[z]2]))]
cl [2 (1 RI® 72530)}
=cl (021 (1ol 72335))
(1I®1vsz)(1®1® ysz)
-0
= (1®1®sz).

d) For i > 2q, Sq'(a) = 0.
3. a=ye€ H?PTL(A)
) Fori =0, Sq°(y) = cllpa(1@ 2@ [2])] = y.
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