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A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3

JELENA GRBIĆ and STEPHEN THERIAULT

(communicated by Donald M. Davis)

Abstract
We study a universal property of Sp(2) in the category of 3-

local homotopy associative, homotopy commutative H-spaces.
We show that while Sp(2) fails to be universal in the full cat-
egory, there is a subcategory in which it is universal for its
7-skeleton.

1. Introduction

If V is a graded vector space then the tensor algebra T (V ) is universal for V in
the category of associative algebras. That is, if M is an associative algebra then
there is a one-to-one correspondence between linear maps V −→ M and algebra
maps T (V ) −→ M . On the level of spaces, if X is a path-connected space then the
Bott-Samelson theorem implies that H∗(ΩΣX) ∼= T (H̃∗(X)). This suggests that ΩΣX
ought to be universal for X in the category of homotopy associative H-spaces; that
is, if Y is a homotopy associative H-space, then there ought to be a one-to-one cor-
respondence between continuous maps X −→ Y and H-maps ΩΣX −→ Y . James [J]
proved that this is the case.

The next step is to consider universality in the category of associative, commuta-
tive spaces. The algebra is easy. If V is a graded vector space then the symmetric
algebra S(V ) is universal for V in the category of associative, commutative alge-
bras. However, realizing this on the level of spaces is problematic. If X is a path-
connected space, then a universal space S(X) is characterized by the property that
there is a one-to-one correspondence between continuous maps X −→ Z and H-maps
S(X) −→ Z whenever Z is a homotopy associative, homotopy commutative H-space.
In particular, S(X) ought to have the property that H∗(S(X)) ∼= S(H̃∗(X)). How-
ever, the most basic example is a sphere S2n+1, whose homology suggests that it
ought to be universal for itself, implying that the sphere ought to be a homo-
topy associative, homotopy commutative H-space, which is false. After localizing
at a prime p > 5, though, S2n+1 is a homotopy associative, homotopy commutative
H-space and so it is more appropriate to consider this universal property in a p-local
setting. Recently, there has been considerable interest in p-local universal spaces.
There is no known functorial construction, but several useful examples have been
established [G1, G2, GT, Gr, T1, T2]. In all of these, a key ingredient in proving
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the universal property has been the existence of a retraction of S(X) from ΩΣX,
which for technical reasons requires p > 5.

The repeated restrictions to p > 5 begs the question of what happens at the
prime 3. The purpose of this paper is to investigate a 3-primary example in detail
to try to better understand to what extent a universal property can succeed or fail.
From here on, we assume that all spaces and maps have been localized at 3 and
take homology with mod-3 coefficients. An appropriate example S(X) must be an
H-space which is homotopy associative, homotopy commutative, and whose homol-
ogy is a symmetric algebra generated by H∗(X). Most 3-local H-spaces fail at least
one of these three requirements. An odd dimensional sphere, for example, satisfies the
last two but not the first, while a double loop space satisfies the first two but not the
last. One choice stands out: the Lie group Sp(2). It is a loop space and so is homo-
topy associative, and McGibbon [Mc] showed that the standard loop multiplication
is homotopy commutative at 3. The 7-skeleton A of Sp(2) is a two-cell complex with
cells in dimensions 3 and 7. Homologically, H∗(Sp(2)) ∼= Λ(H̃∗(A)) (∼= S(H̃∗(A))). In
Theorem 1.1 we show that, modulo conditions on the homotopy groups π13 and π17,
Sp(2) is universal for A. In Section 5, we go on to show that Sp(2) cannot be univer-
sal for A without qualification, and give examples to show that the partial universal
property does require some condition on both π13 and π17.

If X and Z are spaces, let [X, Z] be the set of homotopy classes of maps from X
to Z, and if X and Z are H-spaces, let H[X, Z] be the set of homotopy classes of
H-maps from X to Z. Notice that [X, Z] is a group if Z is homotopy associative and
has a homotopy inverse, but H[X,Z] need not be since the multiplication on Z need
not be an H-map. If Z is also homotopy commutative, then the multiplication on Z
is an H-map and so H[X, Z] is an abelian group.

Theorem 1.1. Let Z be a homotopy associative, homotopy commutative H-space
with the property that π13(Z) = π17(Z) = 0. Then any map A −→ Z extends to an
H-map Sp(2) −→ Z, which is unique up to homotopy. Moreover, the one-to-one cor-
respondence

[A,Z] ∼= H[Sp(2), Z]

is an isomorphism of abelian groups.

A useful example is when Z = Sp(2). By [MT], π13(Sp(2)) = π17(Sp(2)) = 0, so
Theorem 1.1 can be applied to obtain the following:

Corollary 1.2. There is a group isomorphism [A, Sp(2)] ∼= H[Sp(2), Sp(2)].

Corollary 1.2 lets us determine all the homotopy classes of multiplicative self-
maps of Sp(2) by calculating [A,Sp(2)]. This is fairly simple to do. Observe that
the inclusion Sp(2) −→ Sp(∞) is 9-connected, so as A is 7-dimensional there is an
isomorphism [A,Sp(2)] ∼= [A,Sp(∞)]. Adjointing, we have

[A,Sp(∞)] ∼= [ΣA,BSp(∞)] ∼= K̃Sp(ΣA),

where K̃Sp( ) is (3-local) reduced quaternionic K-theory. It is straightforward to
show that K̃Sp(ΣA) is a free group on two generators, and under this isomorphism
an explicit generating set of [A, Sp(2)] is given by the maps i : A −→ Sp(2) and
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g : A
q−→ S7 c−→ Sp(2), where i is the inclusion, q is the pinch map to the top cell,

and c is the characteristic map, which has the property that its composition with the
quotient map Sp(2) −→ Sp(2)/Sp(1) ' S7 is of degree 3. Theorem 1.1 implies that i
and g extend to H-maps ι : Sp(2) −→ Sp(2) and γ : Sp(2) −→ Sp(2) respectively.
Since the identity map on Sp(2) is also an H-map which extends i, the uniqueness
condition in Theorem 1.1 implies that ι is homotopic to the identity map. Thus we
obtain a group isomorphism H[Sp(2), Sp(2)] ∼= Z(3)〈ι, γ〉, where the right side is the
free group on the indicated generators.

The authors would like to thank the referee whose constructive comments led to
the addition of Section 5, making this a more complete paper.

2. A construction of finite H-spaces

Cohen and Neisendorfer [CN] gave a construction of finite H-spaces, for which
the statement is as follows: Fix an odd prime p. Let X be a CW -complex consisting
of l odd dimensional cells, where l < p− 1. Now localize at p and take homology
with mod-p coefficients. Then there is an H-space Y with the property that H∗(Y ) ∼=
Λ(H̃∗(X)).

At first glance this does not seem relevant to our case. We are considering Sp(2)
at 3 which is already known to be an H-space. Moreover, while A has only odd
dimensional cells and H∗(Sp(2)) ∼= Λ(H̃∗(A)), we have fallen outside the allowable
parameters as A has 2 cells and we are localizing at the prime 3.

However, there are aspects of the construction which are useful in our case. To
discuss these, we review the work in [CN], beginning with some algebra. For a graded
vector space V , let L = L〈V 〉 be the free Lie algebra generated by V . Let UL be
the universal enveloping algebra. Let Lab = Lab〈V 〉 be the free abelian Lie algebra
generated by V , that is, the bracket in Lab is identically zero. Let [L, L] be the kernel
of the quotient map L −→ Lab. The short exact sequence of Lie algebras

0 −→ [L,L] −→ L −→ Lab −→ 0

induces a split short exact sequence of Hopf algebras

0 −→ U [L,L] −→ UL −→ ULab −→ 0

for which there is an isomorphism UL ∼= U [L,L]⊗ ULab of left U [L,L]-modules and
right ULab-comodules.

When the elements in V are all of odd degree, an explicit Lie basis for [L,L] is
given by the following:

Lemma 2.1. Suppose V = {u1, . . . , ul} where each ui is of odd degree and l is a
positive integer. Let L = L〈V 〉. Then a Lie basis for [L,L] is given by the elements

[ui, uj ], [uk1 , [ui, uj ]], [uk2 , [uk1 , [ui, uj ]]], . . . ,

where 1 6 j 6 i 6 l and 1 6 kt < kt−1 < · · · < k2 < k1 < i.

Let Vk consist of those Lie basis elements of bracket length k. Lemma 2.1 implies
that Vm = 0 for all m > l + 2, so a basis for [L,L] is given by ⊕l+1

k=2Vk.
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We now bring in the topology. Let X be a CW -complex consisting of l odd dimen-
sional cells and localize at p. Note that we do not impose a restriction on l at this
point. Let V = H̃∗(X). We wish to geometrically realize the Lie basis elements of
[L,L] in Lemma 2.1 as certain Whitehead products on ΣX. Let X(k) be the k-fold
smash of X with itself and let

wk : ΣX(k) −→ ΣX

be the k-fold Whitehead product of the identity map on ΣX with itself. For k > 2,
define the map

βk : ΣX(k) −→ ΣX(k)

inductively by letting β2 = 1− (1, 2) and βk = (1− (k, k − 1, . . . , 2, 1)) ◦ (1 ∧ βk−1),
where (1, 2) and (k, k − 1, . . . , 2, 1) are permutations of the smash factors. In homol-
ogy, (βk)∗(σ(x1 ⊗ · · · ⊗ xk)) = σ[x1, [x2, . . . , [xk−1, xk] · · · ]], and we have

(βk)∗ ◦ (βk)∗ = k · (βk)∗.

If k is not a multiple of p, then βk = 1
k · βk is an idempotent in homology.

One consequence of this is that, after looping and restricting to k < p, the composi-

ite ΩΣX(k) Ωβk−→ ΩΣX(k) Ωwk−→ ΩΣX has the property that its image in homology is
UL〈Vk〉. In such cases, let Rk and Sk be the mapping telescopes of βk and (1− βk)
respectively. Define λk as the composite

λk : Rk −→ ΣX(k) wk−→ ΣX.

The idempotent property of (βk)∗ is used to prove the following lemma:

Lemma 2.2. For k < p, there is a homotopy decomposition ΣX(k) ' Rk ∨ Sk, where
the cells of Rk are in one-to-one correspondence with the elements in the module ΣVk.
Further, (Ωλk)∗ maps H∗(ΩRk) isomorphically onto the submodule UL〈Vk〉 of UL.

Now a restriction is imposed on the number of odd dimensional cells l. If l < p− 1,
then Lemma 2.1 implies that a Lie basis for L consists of brackets of length k for
2 6 k < p. Collecting the 2 6 k < p cases, let R =

∨p−1
k=2 Rk and define λ : R −→ ΣX

as the wedge sum of the maps λk. Then the image of (Ωλ)∗ is U [L,L]. Define Y as the
homotopy fiber of λ, so we get an induced homotopy fibration ΩR

Ωλ−→ ΩΣX
r−→ Y

which defines the map r. A homological model for this fibration is the short exact
sequence of Hopf algebras 0 −→ U [L,L] −→ UL −→ ULab −→ 0. In particular,

H∗(Y ) ∼= ULab
∼= Λ(H̃∗(X)).

Lemma 2.3 will imply that r has a right homotopy inverse. Thus ΩΣX ' Y × ΩR,
and so Y is an H-space. It is important to note that Lemma 2.3 holds in slightly
more generality, when the number l of odd dimensional cells satisfies l < p rather
than l < p− 1 as before.

Lemma 2.3. Fix a prime p. Suppose X is a CW -complex consisting of l odd dimen-
sional cells, l < p. Localize at p. Suppose there is a map ΩΣX

r−→ Y which in homol-
ogy is the abelianization T (H̃∗(X)) −→ Λ(H̃∗(X)). Then r has a right homotopy
inverse.
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The example of interest is the following:

Example 2.4. Let p = 3 and consider the 7-skeleton A of Sp(2). Let V = H̃∗(A) =
{u, v}, where |u| = 3 and |v| = 7. By Lemma 2.1, a Lie basis for L = L〈u, v〉 is
given by the length 2 brackets V2 = {[u, u], [u, v], [v, v]} and the length 3 brackets
V3 = {[u, [u, v]], [v, [u, v]]}. These can be geometrically realized by Lemma 2.2 only
when k = 2. In this case there is a homotopy decomposition ΣA(2) ' R2 ∨ S2, where
H∗(R2) ∼= ΣV2. Since H̃∗(ΣA(2)) is a 4-dimensional vector space while H̃∗(R2) is
a 3-dimensional vector space, comparing the degrees of the generators shows that
H̃∗(S2) ∼= H̃∗(S11) and so S2 ' S11. The failure of Lemma 2.2 when k = 3 implies
that there is no analogous decomposition of ΣA(3) which gives a space R3 that can
be used to geometrically realize the brackets in V3. However, in Section 3 we will
show that a space R3 realizing V3 can be defined in a different manner.

3. A fibration for Sp(2)

We begin by recalling some basic properties of Sp(2) and its 7-skeleton A. We have
H∗(Sp(2)) ∼= Λ(H̃∗(A)) ∼= Λ(u, v) where |u| = 3, |v| = 7, and there is a dual Steenrod
operation given by P1

∗ (v) = u. Since P1
∗ detects the homotopy class α1 that generates

the stable 3-stem, there is a homotopy cofibration

S6 α1−→ S3 −→ A.

As Sp(2) ' ΩBSp(2), there is an evaluation map ev : ΣSp(2) −→ BSp(2). Let j be
the composite j : ΣA

Σi−→ ΣSp(2) ev−→ BSp(2). Define the space R and the map λ by
the homotopy fibration

R
λ−→ ΣA

j−→ BSp(2).

Looping we obtain a homotopy fibration

ΩR
Ωλ−→ ΩΣA

Ωj−→ Sp(2).

The usual method for proving a universal property for an H-space X, as in Theo-
rem 1.1, involves trying to show that there is a split fibration

ΩR(X)
Ωλ(X)−−−−→ ΩΣA(X)

j(X)−−−−→ X,

where λ(X) factors through Whitehead products. Then an H-map from ΩΣA(X)
to a homotopy associative, homotopy commutative space Z has the property that it
composes trivially with Ωλ(X), and so it factors through j(X). In our case, we do not
have enough control over the space R to identify λ as factoring through Whitehead
products. So we aim to replace R by a homotopy equivalent space R and construct a
map R

λ−→ ΣA which, although it does not quite factor through Whitehead products,
deviates from this in a manner over which we have control.

While the statements of the following lemmas are phrased in terms of Whitehead
products, it will often be helpful in the proofs to adjoint and use Samelson products
instead. In general, for a space X, let sk : X(k) −→ ΩΣX be the adjoint of the White-
head product wk. If E : X −→ ΩΣX is the suspension map, then s2 is homotopic to
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the Samelson product 〈E, E〉, and sk for k > 2 is homotopic to the Samelson product
〈E, sk−1〉.

We begin with the following observation:

Lemma 3.1. For each k > 2, there is a lift

ΣA(k)

wk

²²||z
z

z
z

zewk

R
λ // ΣA

for some map w̃k.

Proof. By adjointing, it is equivalent to show that the Samelson product

A(k) sk−→ ΩΣA

lifts through the map

ΩR
Ωλ−→ ΩΣA.

Such a lift exists if and only if the composite A(k) sk−→ ΩΣA
Ωj−→ Sp(2) is null homo-

topic. Samelson products are natural for H-maps between homotopy associative
H-spaces, so Ωj ◦ sk is homotopic to s̄k ◦ i(k), where s̄k is the k-fold Samelson product
of the identity map on Sp(2) with itself. But as Sp(2) is homotopy commutative, s̄k

is null homotopic.

We need to focus on the k = 2 and k = 3 cases of Lemma 3.1. When k = 2, Exam-
ple 2.4 says that there is a homotopy decomposition ΣA(2) ' R2 ∨ S11. Define λ2 as
the composite

R2 −→ ΣA(2) w2−→ ΣA.

The following two lemmas give the relevant properties of λ2; the first is a special case
of Lemma 2.2:

Lemma 3.2. In homology, ΩR2
Ωλ2−→ ΩΣA has image UL〈V2〉, where

V2 = {[u, u], [u, v], [v, v]}
is the Lie basis of length 2 brackets in L〈u, v〉.
Lemma 3.3. There is a lift

R2

λ2

²²

eλ2

~~}}
}}

}}
}}

R
λ // ΣA

for some map λ̃2.

Proof. This is immediate from the k = 2 case of Lemma 3.1. Simply define λ̃2 as the
composite R2 −→ ΣA(2) ew2−→ R.
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The k = 3 case is more delicate. As we are localized at 3, we have (k, p) = 3 and
so Lemma 2.2 no longer applies. The way we get around this will essentially boil
down to Lemma 3.4. Let t : S3 −→ A be the inclusion of the bottom cell. Notice that
S10 Σt(3)−−→ ΣA(3) is the inclusion of the bottom cell.

Lemma 3.4. The composite S10 Σt(3)−−→ ΣA(3) w3−−→ ΣA is null homotopic.

Proof. By the naturality of the Whitehead product, it is equivalent to show that the
composite S10 w3−→ S4 Σt−→ ΣA is null homotopic. In fact, more is true. By [To], the
three-primary component of π10(S4) is the direct sum of two cyclic groups of order 3,
generated by the suspension of α1 ◦ α1 on S3, and by the Whitehead product [α1, ι],
where ι is the identity map on S4. Both maps compose trivially into ΣA since it is the
homotopy cofiber of the map S7 α1−→ S4. Thus π10(S4) composes trivially into ΣA.

Now observe that as ΣA(2) ' R2 ∨ S11, we have

ΣA(3) ' A ∧ (R2 ∨ S11) ' (A ∧R2) ∨ (Σ11A).

Let w̃3 be the composite

w̃3 : A ∧R2 −→ ΣA(3) w3−→ ΣA.

The space A ∧R2 consists of six cells and has a cell diagram

22 '&%$Ã!"#
GGGGGG

Â
Â
Â
Â
Â
Â
Â

18 '&%$Ã!"# '&%$Ã!"#

14 '&%$Ã!"#
GGGGGG '&%$Ã!"#

10 '&%$Ã!"#

(∗)

Here, the left column records the dimensions of the cells, and the lines between cells
record the presence of nontrivial Steenrod operations, as determined by the Cartan
formula. Solid lines represent the operation P1

∗ and the dashed line represents the
operation P3

∗ . By a change of basis in homology if necessary, we can regard the
left strand as the image of the inclusion S3 ∧R2 −→ A ∧R2. We wish to consider
the adjoint of the composite S3 ∧R2 −→ A ∧R2

ew3−→ ΣA and determine its image in
homology.

To simplify matters, observe that the 11-skeleton of R2 is homotopy equivalent
to Σ4A, and consider the further restriction of S3 ∧R2 to S3 ∧ Σ4A ' Σ7A. By
Lemma 3.2, the adjoint of the composite Σ4A −→ R2

λ2−→ ΣA sends the degree 6
and 10 generators of H∗(Σ3A) to the elements [u, u] and [u, v] in H∗(ΩΣA). Since
the Whitehead product w3 is defined as the iterated Whitehead product [1, w2], the

adjoint of the composite S3 ∧ Σ4A −→ S3 ∧R2 −→ A ∧R2
ew3−→ ΣA sends the gen-

erators in degrees 9 and 13 of H∗(Σ6A) to the elements [u, [u, u]] and [u, [u, v]] in
H∗(ΩΣA). The element [u, [u, u]] is zero for degree reasons, but [u, [u, v]] is nonzero.
Moreover, taking into account the Steenrod operation P1

∗ we have the following:
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Lemma 3.5. The adjoint of the composite S3 ∧R2 −→ A ∧R2
ew3−→ ΣA sends the

generators in degrees 13 and 17 of Σ−1H∗(S3 ∧R2) to the elements [u, [u, v]] and
2[v, [u, v]] in H∗(ΩΣA).

Proof. It remains to show that the degree 17 generator in Σ−1H∗(S3 ∧R2) has the
asserted image. Observe that for degree reasons, P1

∗ ([v, [u, v]]) = 2[u, [u, v]]. So the
Steenrod operation implies that the degree 17 generator of Σ−1H∗(S3 ∧R2) is sent
to 2[v, [u, v]] + t, where t is primitive and P1

∗ (t) = 0. But the submodule of primitives
in H17(ΩΣA) is generated only by the element [v, [u, v]], so t = 0.

Define X as the quotient space obtained by collapsing out the bottom cell in
A ∧R2. This gives a homotopy cofibration

S10 −→ A ∧R2 −→ X.

Lemma 3.6. There is a homotopy commutative diagram

A ∧R2
ew3 //

²²

ΣA

X
ε // ΣA

for some map ε.

Proof. By Lemma 3.4, the composite S10 ↪→ ΣA(3) w3−→ ΣA is null homotopic. The
inclusion of the bottom cell into ΣA(3) factors through the map A ∧R2 −→ ΣA(3)

by connectivity. Thus the composite S10 ↪→ A ∧R2
ew3−→ ΣA is null homotopic, and

so the lemma follows.

The cell diagram for A ∧R2 in (∗) implies that X has five cells, two each in
dimensions 14 and 18 and one in dimension 22. Moreover, when the inclusion of the
left strand S3 ∧R2 −→ A ∧R2 has the bottom cell pinched out we obtain a composite
Σ11A −→ X. Let R3 = Σ11A, and define λ3 as the composite

λ3 : R3 −→ X
ε−→ ΣA.

Lemma 3.5 lets us determine the image of (Ωλ3)∗.

Lemma 3.7. In homology, ΩR3
Ωλ3−→ ΩΣA has image UL〈V3〉, where

V3 = {[u, [v, u]], [v, [v, u]]}
is the Lie basis of length 3 brackets in L〈u, v〉.
Proof. We have R3 = Σ11A; thus, by the Bott-Samelson theorem, there is an algebra
isomorphism H∗(ΩR3) ∼= T (H̃∗(Σ10A)) ∼= T (x, y), where x and y are in degrees 13
and 17 respectively. By Lemma 3.5, (Ωλ3)∗ sends x and y to [u, [u, v]] and 2[v, [u, v]]
respectively. That is, (Ωλ3)∗ sends {x, y} isomorphically onto V3. Extending multi-
plicatively gives an isomorphism from T (x, y) to the submodule T (V3) ∼= UL〈V3〉 of
UL〈u, v〉.

We also want the analogue of Lemma 3.3 for λ3. To get this, we need a preliminary
lemma which will also be used later in Section 4.



A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3 9

Lemma 3.8. Let k > 0. Suppose X is a space with the property that π3+k(X) =
π7+k(X) = 0. Then any map ΣkA −→ X is null homotopic.

Proof. There is a homotopy cofibration S3+k r−→ ΣkA
q−→ S7+k, where r is the inclu-

sion of the bottom cell and q is the pinch onto the top cell. Suppose there is a
map f : ΣkA −→ X. The composite f ◦ r represents an element of π3+k(X). Since
this homotopy group is zero, f ◦ r is null homotopic. Thus f extends across q to a
map g : S7+k −→ X. Since π7+k(X) = 0, g is null homotopic. Hence f is null homo-
topic.

Lemma 3.9. There is a lift

R3

λ3

²²

eλ3

~~}}
}}

}}
}}

R
λ // ΣA

for some map λ̃3.

Proof. The space R was defined by the homotopy fibration R −→ ΣA
j−→ BSp(2). So

the asserted lift λ̃3 exists if the composite j ◦ λ3 is null homotopic. But by definition
R3 = Σ11A and by [MT] we have π14(BSp(2)) = π18(BSp(2)) = 0, so Lemma 3.8
implies that j ◦ λ3 is null homotopic.

Now we combine the results for R2 and R3. Let R = R2 ∨R3 and define

λ : R −→ ΣA

as the wedge sum of λ2 and λ3. Define

λ̃ : R −→ R

as the wedge sum of λ̃2 and λ̃3. Note that Lemmas 3.3 and 3.9 imply that λ̃ is a lift

of λ through the map R
λ−→ ΣA.

Lemma 3.10. The map R
eλ−→ R is a homotopy equivalence.

Proof. Since R and R are simply connected, λ̃ is a homotopy equivalence if and only
if Ωλ̃ is a homotopy equivalence. For the latter, it suffices to show that (Ωλ̃)∗ is an
ismorphism in homology. We will do this by showing that both ΩR

Ωλ−→ ΩΣA and

ΩR
Ωλ−→ ΩΣA are injections in homology and have isomorphic images.

As in Section 2, with L = L〈u, v〉, there is a short exact sequence of Lie alge-

bras 0 −→ [L,L]
f−→ L

g−→ Lab −→ 0 which determines a split short exact sequence

of Hopf algebras 0 −→ U [L,L]
Uf−→ UL

Ug−→ ULab −→ 0 such that there is an isomor-
phism UL ∼= U [L,L]⊗ ULab as left U [L,L]-modules. Note in our case that as u, v are
in odd dimensions, ULab

∼= Λ(u, v).

First, consider the homotopy fibration ΩR
Ωλ−→ ΩΣA

Ωj−→ Sp(2) and the Eilenberg-
Moore spectral sequence which converges to H∗(ΩR). Since (Ωj)∗ sends u and v to the
generators of H∗(Sp(2)), multiplicativity implies that (Ωj)∗ is the abelianization of
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the tensor algebra. Thus ΩΣA
Ωj−→ Sp(2) is modelled homologically by UL

Ug−→ ULab.
Since UL is a free left U [L,L]-module, the Eilenberg-Moore spectral sequence under
consideration collapses, and therefore there is an isomorphism H∗(ΩR) ∼= U [L,L] and
an identification of (Ωλ)∗ with Uf .

Next, consider the map ΩR
Ωλ−→ ΩΣA. Since R = R2 ∨R3 and λ is the wedge sum

of λ2 and λ3, Lemmas 3.2 and 3.7 imply that (Ωλ)∗ is an isomorphism onto the
subalgebra UL〈V2 ⊕ V3〉 of UL = UL〈u, v〉. By Lemma 2.1, V2 ⊕ V3 is a Lie basis for
U [L,L], and so (Ωλ)∗ is an isomorphism onto U [L,L]. Hence (Ωλ)∗ and (Ωλ)∗ have
isomorphic images, as required.

The homotopy equivalence in Lemma 3.10 lets us replace the space R and the

map λ in the homotopy fibration R
λ−→ ΣA

j−→ BSp(2) with R and λ to get the
following:

Proposition 3.11. There is a homotopy fibration R
λ−→ ΣA

j−→ BSp(2).

4. The universal property

We begin by stating a theorem due to James [J].

Theorem 4.1. Let X be a path-connected space and let Y be a homotopy associative
H-space. Let f : X −→ Y be any map. Then there is a unique H-map f : ΩΣX −→ Y
such that f ◦ E ' f .

In our case, suppose we are given a map f : A −→ Z where Z is a homotopy
associative, homotopy commutative H-space. The homotopy associativity property of
Z lets us apply Theorem 4.1 to extend f in a unique way to an H-map f : ΩΣA −→ Z.
In Lemmas 4.2 and 4.3 we consider how f behaves with respect to the homotopy
fibration ΩR

Ωλ−→ ΩΣA
Ωj−→ Sp(2).

Lemma 4.2. Let Z be a homotopy associative, homotopy commutative H-space with

the property that π13(Z) = π17(Z) = 0. Then the composite ΩR
Ωλ−→ ΩΣA

f−→ Z is
null homotopic.

Proof. In general, let X and Y be spaces. Let evX be the composite

ΣΩX
ev−→ X

iX−→ X ∨ Y,

where ev is the evaluation map and iX is the inclusion. Define evY similarly with
respect to Y . It is well known that the inclusion of the wedge into the product gives
a homotopy fibration ΣΩX ∧ ΩY

W−→ X ∨ Y −→ X × Y , where W is the Whitehead
product of the maps evX and evY . After looping, the maps ΩiX , ΩiY , and ΩW
multiply to give a homotopy equivalence

e : ΩX × ΩY × Ω(ΣΩX ∧ ΩY ) −→ Ω(X ∨ Y ).

In our case we can apply the previous paragraph to R = R2 ∨R3. Since Ωλ and f
are H-maps, the composite f ◦ Ωλ ◦ e is determined by its restrictions to the factors
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ΩR2, ΩR3, and Ω(ΣΩR2 ∧ ΩR3). So to prove the lemma it is equivalent to show that
each of these three restrictions is null homotopic.

Next, in general, suppose ΣX
w−→ Y is a Whitehead product. After looping, The-

orem 4.1 implies that ΩΣX
Ωw−→ ΩY is determined by the restriction Ωw ◦ E. Note

that s = Ωw ◦ E is a Samelson product. Now suppose that Ωw is composed with
an H-map ΩY

g−→ Z, where Z is homotopy associative. Theorem 4.1 implies that
g ◦ Ωw is determined by g ◦ Ωw ◦ E, that is, by g ◦ s. Moreover, since g is an H-map
and Z is homotopy associative, g ◦ s is a Samelson product. So if Z is also homotopy
commutative then g ◦ s is null homotopic, implying that g ◦ Ωw is null homotopic.

We apply this twice to our case. First, consider f ◦ Ωλ ◦ e restricted to ΩR2. By
the definitions of λ and e, the restriction of Ωλ ◦ e to ΩR2 is Ωλ2. By the definition
of λ2, it factors through the Whitehead product ΣA(2) w2−→ ΣA. The argument in the
previous paragraph therefore implies that f ◦ Ωλ2 is null homotopic. Second, consider
f ◦ Ωλ ◦ e restricted to Ω(ΣΩR2 ∧ ΩR3). By the definition of e, this restriction is
homotopic to f ◦ Ωλ ◦ ΩW . Since W is a Whitehead product, the argument in the
previous paragraph implies that f ◦ Ωλ ◦ ΩW is null homotopic.

Third, consider f ◦ Ωλ ◦ e restricted to ΩR3. By the definitions of λ and e, the
restriction of Ωλ ◦ e to ΩR3 is Ωλ3. Recall that R3 = Σ11A. Theorem 4.1 therefore

implies that ΩΣ11A
Ωλ3−→ ΩΣA

f−→ Z is determined by f ◦ Ωλ3 ◦ E. This restriction is
a map Σ10A −→ Z. By hypothesis, π13(Z) = π17(Z) = 0, and so Lemma 3.8 implies
that any map Σ10A −→ Z is null homotopic. Hence f ◦ Ωλ3 is null homotopic.

The null homotopy in Lemma 4.2 will now be used to factor f through a map
Sp(2) −→ Z which can be chosen to be an H-map. First observe that in homol-

ogy the map ΩΣA
Ωj−→ Sp(2) induces the abelianization of the tensor algebra. So by

Lemma 2.3, Ωj has a right homotopy inverse s : Sp(2) −→ ΩΣA. Thus there is a
homotopy equivalence

Sp(2)× ΩR
s×Ωλ−→ ΩΣA× ΩΣA

µ−→ ΩΣA,

where µ is the loop multiplication. Define g as the composite

g : Sp(2) s−→ ΩΣA
f−→ Z.

The decomposition of ΩΣA and the null homotopy for f ◦ Ωλ in Lemma 4.2 lets us
argue exactly as in [G2, 4.2] or [T1, 5.2] to prove the following:

Lemma 4.3. There is a homotopy commutative diagram

ΩΣA
Ωj //

f

²²

Sp(2)

g

²²
Z Z

and g is an H-map.
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Proof of Theorem 1.1. Lemma 4.3 proves the first assertion that any map

f : A −→ Z

can be extended to an H-map

g : Sp(2) −→ Z.

To show uniqueness, suppose that g, h : Sp(2) −→ Z are H-maps extending f . Con-

sider the composites ΩΣA
Ωj−→ Sp(2)

g,h−→ Z. Note that by adjunction the inclusion
A

i−→ Sp(2) of the bottom two cells is homotopic to the composite

A
E−→ ΩΣA

Ωj−→ Sp(2).

Thus there is a string of homotopies

g ◦ Ωj ◦ E ' g ◦ i ' f ' h ◦ i ' h ◦ Ωj ◦ E.

Therefore, both g ◦ Ωj and h ◦ Ωj are H-maps extending f . As Z is homotopy asso-
ciative, Theorem 4.1 implies that there is a unique H-map extending f , and so
g ◦ Ωj ' h ◦ Ωj. Since s is a right homotopy inverse of Ωj, we have

g ' g ◦ Ωj ◦ s ' h ◦ Ωj ◦ s ' h.

At this point, we have proved that the map θ : [A,Z] −→ H[Sp(2), Z], defined by
sending f to g, is a one-to-one correspondence. Note that the homotopy associativity
and homotopy commutativity of Z implies that both [A,Z] and H[Sp(2), Z] are
abelian groups. So to show θ is a group isomorphism it suffices to show it is a group
homomorphism. This is done exactly as in [GT, Lemma 2.3].

5. The necessity of the π13 and π17 homotopy group conditions

Theorem 1.1 states that Sp(2) is universal for A provided Z satisfies a condition
on the homotopy groups π13 and π17. In this section we give examples to show that
these conditions are necessary and that Sp(2) fails to be universal for A in full gener-
ality. These require two lemmas as preparation. In Lemma 5.1 we show that certain
maps are not H-maps. In Lemma 5.3 we give an extension property of Sp(2) for A
which is weaker than the universal one. Namely, given a map f : A −→ Y , where Y
is a homotopy associative H-space, there is an extension to a map f ′ : Sp(2) −→ Y .
Compared to the universal framework, Y need not be homotopy commutative and f ′

need not be an H-map.
As reported in [H], Harper and Zabrodsky showed that any map q : Sp(2) −→ S7

which is onto in homology cannot be an H-map. A succinct way of seeing this is
to compare the projective planes of Sp(2) and S7 and see that the action of the
Steenrod operation P1 is incompatible with q being an H-map. We make use of
this by composing q with the double suspension E2 : S7 −→ Ω2S9. A priori , it may
be possible that E2 ◦ q is an H-map even if q is not. However, Lemma 5.1, based
on [H, Proposition 3], shows that this is not the case.

In general, if f : A −→ B is a map between H-spaces, let D(f) : A×A −→ B be
the difference f ◦ µA − µB ◦ (f × f), where µA and µB are the multiplications on A



A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3 13

and B respectively. Observe that D(f) is null homotopic when restricted to A ∨A,
and so it factors through a map D(f) : A ∧A −→ B whose homotopy class is uniquely
determined by that of D(f). In particular, f is an H-map if and only if D(f) is null
homotopic, which is the case if and only if D(f) is null homotopic. Also, if g : B −→ C
is an H-map then D(g ◦ f) ' g ◦D(f).

Lemma 5.1. Let Sp(2)
q−→ S7 be any map which is onto in homology. Then the

composite Sp(2)
q−→ S7 E2

−→ Ω2S9 is not an H-map.

Proof. Suppose E2 ◦ q is an H-map. Then D(E2 ◦ q) is null homotopic. It is well
known that E2 is an H-map when localized at an odd prime, so

D(E2 ◦ q) ' E2 ◦D(q).

Thus E2 ◦D(q) is null homotopic and so there is a lift

Sp(2) ∧ Sp(2)

D(q)

²²

γ

yyrrrrrrrrrrr

W // S7 E2
// Ω2S9

for some map γ, where W is the homotopy fiber of E2. As W is 20-connected and
the dimension of Sp(2) ∧ Sp(2) is 20, the map γ is null homotopic. Hence D(q) is null
homotopic and so q is an H-map, a contradiction.

Next, recall from Section 4 that there is a homotopy equivalence

Sp(2)× ΩR
s×Ωλ−→ ΩΣA× ΩΣA

µ−→ ΩΣA,

where µ is the loop multiplication.

Lemma 5.2. There is a homotopy commutative diagram

A
E //

i

²²

ΩΣA

Sp(2) s // ΩΣA.

Proof. It is equivalent to show that the composite h : A
E−→ ΩΣA

π2−→ ΩR is null
homotopic, where π2 is the projection. As A is of dimension 7, it suffices to consider
the 7-skeleton of ΩR. By definition, R = R2 ∨R3, where R2 has cells in dimensions
7, 11 and 15, and R3 is 13-connected. Thus the 7-skeleton of ΩR2 is S6. Since π3(S6) =
π7(S6) = 0, Lemma 3.8 implies that h is null homotopic.

Lemma 5.3. Suppose there is a map f : A −→ Y where Y is a homotopy associative
H-space. Then there is a map f ′ : Sp(2) −→ Y such that f ′ ◦ i ' f .

Proof. By Theorem 4.1, f extends to an H-map f : ΩΣA −→ Y such that f ◦ E ' f .
By Lemma 5.2, E ' s ◦ i, so if we define f ′ = f ◦ s then the lemma follows.
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In Example 5.4 we will show that Sp(2) cannot be universal for A without quali-
fication. Example 5.5 will build on Example 5.4 to show that some condition on π13

is necessary in Theorem 1.1 and Example 5.6 will show that some condition on π17

is also necessary.

Example 5.4. Let f be the composite A −→ S7 E2

−→ Ω2S9, where the left map is the
pinch onto the top cell. Since Ω2S9 is a homotopy associative, homotopy commutative
H-space, if Sp(2) were universal for A there would be a homotopy commutative
diagram

A
f //

i

²²

Ω2S9,

Sp(2)
f

;;vvvvvvvvv

where f is an H-map. Since Sp(2) is 10-dimensional and S7 E2

−→ Ω2S9 is a homotopy
equivalence through dimension 20, f lifts through E2 to a map q : Sp(2) −→ S7. As f
is onto in H7( ), the commutativity of the previous diagram implies that f is too,
and therefore so is q. Now q is onto in homology and q ◦ E2 is an H-map as it is
homotopic to f , contradicting Lemma 5.1. Thus f cannot extend to an H-map, and
so Sp(2) is not universal for A.

Example 5.5. Continuing Example 5.4, by Lemma 5.3, the map f does extend to
a map f ′ : Sp(2) −→ Ω2S9. Example 5.4 states that f ′ cannot be chosen to be an
H-map. We wish to pinpoint the obstruction that prevents this. Toda’s [To] calcu-
lations of the homotopy groups of spheres in low dimensions show that π13(Ω2S9) ∼=
π15(S9) = 0 and π17(Ω2S9) ∼= π19(S9) = Z/3Z. Had π17(Ω2S9) been 0 as well, Theo-
rem 1.1 would have implied that the map f did extend to an H-map. As this cannot
be the case, the obstruction to extending f to an H-map lies in π17(Ω2S9). Thus the
partial universal property in Theorem 1.1 does require some condition on π17.

Example 5.6. By [H], there is a homotopy fibration S9 −→ B(9, 13) −→ S13, where
H∗(B(9, 13)) ∼= Λ(x9, x13) and P1(x9) = x13. Looping six times, there is a map
f : A −→ Ω6B(9, 13) which includes the bottom two cells. By Lemma 5.3, f extends
to a map f ′ : Sp(2) −→ Ω6B(9, 13). Suppose that f ′ can be chosen to be an H-

map. Let g′ be the composite g′ : Sp(2)
f ′−→ Ω6B(9, 13) −→ Ω6S13, where the right

side is the 6-fold loop map. Now g′ is an H-map, and arguing as in Example 5.4

shows that g′ factors as a composite Sp(2)
q−→ S7 E6

−→ Ω6S13, where q is onto in
homology and E6 is the 6-fold suspension. Arguing as in the proof of Lemma 5.1
shows that q cannot be an H-map. Thus the extension f ′ cannot be chosen to be an
H-map. By [MNT], π13(Ω6B(9, 13)) = π19(B(9, 13)) ∼= Z/3Z and π17(Ω6B(9, 13)) =
π23(B(9, 13)) ∼= 0. Had π13(Ω6B(9, 13)) been 0 as well, then Theorem 1.1 would have
implied that the map f did extend to an H-map. As this is not the case, the obstruc-
tion to extending f to an H-map lies in π13(Ω6B(9, 13)). Thus the partial universal
property in Theorem 1.1 also requires some condition on π13.



A UNIVERSAL PROPERTY FOR Sp(2) AT THE PRIME 3 15

References

[CN] F.R. Cohen and J.A. Neisendorfer, A construction of p-local H-spaces,
Algebraic topology, Aarhus 1982, 351–359, Lecture Notes in Math. 1051,
Springer-Verlag, New York, 1984.

[CHZ] G. Cooke, J. Harper, and A. Zabrodsky, Torsion free mod p H-spaces of
low rank, Topology 18 (1979), no. 4, 349–359.

[Gr] B. Gray, Homotopy commutativity and the EHP sequence, Algebraic topol-
ogy, 181–188, Contemp. Math. 96, A. M. S., Providence R.I., 1989.
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