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Abstract: Given p € N, a non empty open subset Q of R¥ and a semi-regular matrix 91,

we characterize the elements of the duals of the Beurling classes D™ (Q) and ngt) (92) of
ultradifferentiable functions. We provide a global representation of these ultradistributions with
and without compact support by means of series involving measures in the first case and elements
of L{ (€) in the second.
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distribution, global representation.

1. Introduction

For the notations, we refer to the Paragraphs 2 and 7.

In this paper, we continue the study of the locally convex properties of the
countable intersections of non quasi-analytic classes of ultradifferentiable func-
tions, initiated in [6]. After the study of the mixed intersections in [7] and their
tensor product characterization in [8], we obtain a global structure of the elements
of the dual of the space D™)(Q) in the first part and of the space D(ngz)(Q) in
a second part, 9 being a semi-regular matrix.

We adopt the method used by Valdivia to obtain global representations of the
ultradistributions u € 'D(M)(Q)/ in [12] and v € D(L]XI)(Q)/ in [13], where M is an
increasing, normalized and non quasi-analytic sequence of positive numbers. This
leads to a global representation of the continuous linear functionals on 5ém) (©) and
of the ultradistributions (i.e. the elements of D™ (Q)/) with and without compact
support (cf. Theorems 5.1 and 6.2) by means of Borel and Radon measures on Q.

Starting with Paragraph 7, we follow the introduction by Schwartz ([11], p. 199)

of the space Dr»(R¥) and introduce the space D(L?)(Q) Here also the method is

fruitful: it leads to a global representation of the ultradistributions S € D(ngz) Q)
with and without compact support (cf. Theorems 9.1 and 9.3). If the matrix 9t
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is regular, this leads to a global representation of the elements of D(m)(Q)I by
means of a series of the type ZaeNg Jo 9aD% ¢ dx where the functions g, belong

to Li (Q).

There is a huge literature on the non quasi-analytic classes of ultradifferentiable
functions of Beurling type £) () and D™)(Q); a basic reference is given by [5].
Very similar spaces can also be introduced by means of a weight; in this case,
a basic reference is given by [3]. In these two papers, one finds local representations
of the ultradistributions.

Intersections of non quasi-analytic classes of ultradifferentiable functions have
first been investigated by Chaumat and Chollet in [4] in the case when the matrix
M is defined by M;, = M’ where (M) en, is a sequence with moderate growth
and (a;) en a sequence of positive numbers strictly decreasing to 0. They obtained
a Whitney extension theorem, a Y.ojasiewicz theorem on regular situation, some
theorems of division and preparation and a Whitney spectral theorem.

Later on Beaugendre studied extensively such intersections in [1] and [2] when
the numbers M; , are defined by means of a convex and increasing function ® on
[0, +00[ such that lim;_, o ®(t)/t = co. In particular he obtained extension results
for Whitney jets and an explicit continuous linear extension map for Whitney jets.

The introduction of semi-regular matrices 91 appeared in [9] where analytic and
holomorphic extensions of Whitney jets are obtained and has been used in [10] to
describe an explicit continuous linear extension map for Whitney jets.

2. Notations

Let us first introduce the matrices m and 99t used to define the countable in-
tersections of non quasi-analytic Beurling classes of ultradifferentiable functions
considered in this paper.

Whenever m is a sequence (mp)pen, of real numbers, the notation M des-
ignates the sequence (M,)pen, Where M, = mg...m, for every p € Ny. Such
a sequence m is

(a) normalized if my =1 and m,, > 1 for every p € N;
(b) non quasi-analytic if 37, 1/my, < oo.
From now on m = (m; ) e pen, designates a semi-reqular matrix, i.e. a matrix

of real numbers such that, for every j € N, the sequence m; = (m;p)pen, is
normalized, increasing, non quasi-analytic and such that

(a) m,, = mjy1, for every p € Ny;
(b) hmp_,oo mj+1’p/m]"p =0.
Of course, M ; designates the sequence (M, p)pen, for every j € N and 9 the
matrix (M) eN,pen, -
The matrix m or equivalently 9 is regular if it is semi-regular and if, for every
j € N, there are constants A; > 1 and H; > 1 such that M; i 41 < AijMj,p
for every p € Np.
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Let us say once for all that the functions we consider are complex valued and
that all vector spaces are C-vector spaces. Moreover, throughout the paper,
(a) k is a positive integer;

(b) if [ is a function on A C R, we set || f]| 4 := sup,ea |f(@)];
(c) Q2 is a non void open subset of RF.

Now all is set up to introduce the spaces we deal with in the first part of this
paper.

The Banach space Co(Q2). Its elements are the continuous functions f on €
“tending to 0 at infinity” (i.e. for every € > 0, there is a compact subset K of {2
such that || f]|o\ ¢ < €) and its norm is [|.[|. By the Riesz representation theorem,
for every continuous linear functional u on Cy(2), there is a Borel measure y on §2
such that (u,.) = [, .dp on Co() and ||ul| = |u| (Q).

The Banach space K(K) and the (LB)-space (). Given a non void compact
subset K of R*, IC(K) is the space of the continuous fonctions on R* having their
support contained in K its norm is ||.|| . The space () is the inductive limit of
the spaces K(H ) where H runs through the family of the non void compact subsets
of Q. The elements of the topological dual of K(€2) are the Radon measures on £.
Given a Radon measure u on Q and a non void compact subset H of Q, |ju|| (H)
designates the norm of the restriction of u to C(H).

The Fréchet space Sém)(Q) is the projective limit of the spaces SéMj)(Q). For
every j € N| ESMJ)(Q) is the projective limit of the spaces 5(§Mj)’1/m(§2) where
EéMj )’h(Q) is the following Banach space: its elements are the functions f € C*(Q)
such that D*f € Cy(Q) for every a € N& and

AP fllg

< o0;
s T o

1flljn = sup
its norm is [|.[|; ;.
The (FS)-space €™ (Q) is the projective limit of the (FS)-spaces £&Mi)(0Q).
For every j € N, £Mi) () is the usual Beurling class of the elements f in C*°(Q)
such that, for every non void compact subset H of Q and every h > 0,

ID%fllm _

1l n = sup « AITM, )

and it is endowed with the system of semi-norms {|.|; , : H € Q,h > 0}.
The (LFS)-space D™ (Q) is the inductive limit of the spaces D™ (H) =
Eém)(H °) where H runs through the non void compact subsets of .

Let us recall ([6], Theorem 8.2) that, if 9 is regular, then the spaces &™) (Q),
D (K) and D™ (Q) are nuclear.

3. Intermediate step

Given a Banach space X = (X, ||.||), it is possible to construct a Fréchet space Z
“similar” for instance to &™) (Q).
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k
Its elements are the elements s = (,’Ea)aeng of XMo such that

7 lzall _

aent Mol

for every j € N, its system of continuous semi-norms being {|.||; : 7 € N}. It is a
vector-valued Kéthe space.

We are interested in the use of its dual. For this purpose, given u € Z’ and
a € NE, we denote by u, the functional

Ug: X — C; (@, uq) = (3¢,u)

where ¢ is defined by z, = = and 23 = 0 if 3 # «. It is clear that u, belongs
to X'.

For the sake of completeness, let us state and prove the following two known
results that will be of systematic use later on.

Proposition 3.1. For every u € Z', there is j € N such that

sup j 1M M; o uall < llull ;) = sup |(s¢,u)| < oo (1)
(4)
aeNk llo<]l ;<1

and we have
(st,u) = Z (Ta,Ua), Ve Z, (2)
aEN’g
these series converging absolutely and uniformly on the bounded subsets of Z.

Proof. As u belongs to Z', there is j € N such that |lul| ;) < oo. For every

a € Nf and 2 € X, » € Z defined by z, = x and x5 = 0 if 3 # « verifies
(|5l ; :jla‘M]Tﬁx\ ||| hence [|ul| ;) = j"“'ij‘a|||ua|| and the inequality (1).

Given » € Z and 3 € NE, let us define »° by ;Ug = a5 and 28 = 0 if a # .
Then the family (»”: 8 € N§) is summable in Z, with limit . Indeed for every
7, ¢ € N, we successively have

il 927 |
e — 37 )5 = sup Izall gy GV NZall g,

< ST, l2;
s jal>a Mjjal " ja>q 2% Maja)

hence the equality (2).
Now let B be any bounded subset of Z. Setting b := sup,.cp | 5lyy; < oo, for

every » € B and 3 € Nk, we successively have

(2k5) 1P gl M, 61 llugl
(w5, up)| < [|zg]| |lupll = S
Mj g (2k4)15]

L k)P lgll o Mot luell b
@) Mawsis)  aeng  J1° kel e

Hence the conclusion since the series ) BeNk (2k) =18 converges. |
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Proposition 3.2. Let (v,: o € N&) be a family of elements of X'. If there is
J € N such that supqenx F71M; o Jval| < oo, there is a unique element u of Z'

such that ug, = vy for every a € N&.

Proof. Let us note that u: Z — C defined by (3¢,u) = ZaeN’g (Ta, Vo) for every
» € Z is a well defined continuous linear functional on Z since, for every » € Z
and 3 € Nk, we successively have

1 o
(zg,v8)| < [lg] lvgll < 2Ry [Eza|PY® Sup J 1M oy Vel -
aelNg

Now the previous Proposition leads to (s, u) = ZaeNg (Ta, uq ) for every s € Z.
In fact, we have u, = v, for every a € Nk since, for every 8 € N§ and z € X, we
have <'T7uﬁ> = <%ﬁvu> = ZagN{? <x§,va> = <$7v,3>'

To conclude, we note that the uniqueness of u comes from the fact that, in
the previous proof, we obtained as a by-result that {s°: 2 € X,8 € N’g} is total
in Z. |

4. Structure of the elements of Sém)(ﬂ)’

In this paragraph we are going to apply the results of the preceding one with
X =Co(92).
Let us consider
V= {(D° facws: £ €650 (2)}

as a topological vector subspace of Z and introduce the map
m
e 67 Vi [ (D aengs
it is clear that ® is a topological isomorphism.

Theorem 4.1. Let (io: o € N&) be a family of Borel measures on ). If there is
J € N such that sup, ey F71M; 0|16 |(Q) < oo, then

S: eV T fe Y /QD"“fdua

aeNk

is a well defined continuous linear functional, these series converging absolutely
and uniformly on the bounded subsets of €ém)(Q),

Proof. For every a € NE, (o) = fQ .djt is a continuous linear functional
on Co(Q2), of norm ||pta|| = |tal(2). Therefore, by the Propositions 3.2 and 3.1
successively, there is u € Z' such that

<<f06)aeN’g7u> = Z <fa>/14a>7 v(fa)aeN’g € Z,

aEN’g
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and these series converge absolutely and uniformly on the bounded subsets of Z.
Now we consider the restriction of v to V, that we still denote by u to simplify
the notation. For every f € 5ém)(Q), we get

(D Flacngot) = 3 (D" frpia) = 3 / D f djto.

aeNk aeNk

Let finally t®: V' — £™(Q)’ denote the transpose of ® and set S := tdu.
For every f € Eésm)(Q), we then get

(D faent, u) = (f,u) = (f,"Pu) = (£, )

hence the conclusion since it is clear that these series converge absolutely and
uniformly on the bounded subsets of Ség’n)(ﬂ). |

Theorem 4.2. For every S € Sém)(Q)/, there are j € N and a family (ua: a €
NE) of Borel measures on § such that

sup j 1M o |1al () < 00
S\

and

18 =% [ D fdue, @),

a€ENg
these series converging absolutely and uniformly on the bounded subsets ofé'ém) (Q).

Proof. Let us denote by ¥ the map ® considered as a map from Séim)(Q) into
Z. As its transpose 'V is surjective, there is u € Z’ such that ‘Uu = S. The
Proposition 3.1 provides then j € N and a family (u,: a € NE) of elements of
Co(Q)' such that

sup j 1M o uall < 0o
aEng

and

(D Paerg-u) = S (D frua),  Vf e &),

aEN’g

these series converging absolutely and uniformly on the bounded subsets of Eém) ().
For every a € NE, the Riesz representation theorem provides then a Borel measure
fio on Q such that [lua| = [pal(Q) and (g,uq) = [, 9dpua for every g € Co(9).
Hence the conclusion since we have

(D" flaeng, w) = (Lfu) = (f,"Tu) = (£, 5). u
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5. Structure of the elements of ’D(m)(ﬂ), with compact support

Theorem 5.1. Let S € D(Em)(Q)/ have a compact support H and let K be a
compact subset of Q such that H C K°.

Then there are an integer s € N and a family (vo: o € NE) of Borel measures
on ) such that

sup Sila‘Ms,kx\‘VaKQ) < 00,
aeNk
supp(v,) C K, Vo € N§,

=> /D pdvy, Vo e DTV (Q),

a€ENg

these series converging absolutely and uniformly on the bounded subsets of é’ém)(Q)
hence of D™ (Q).

Proof. Let ¢ be an element of D™)(Q), identically 1 on a neighbourhood of H
and with support contained in K°. Proceeding as in [5], S is the restriction to
DM (Q) of the element (.1h, S) of £ (Q)’. Therefore, as the canonical injection
from Eém)(Q) into £™)(Q) is continuous, the restriction T of (.1, S) to Séim)(Q)
is a continuous linear extension of S. Moreover Theorem 4.2 provides an integer
j € N and a family (uq: « € N§) of Borel measures on €2 such that

sup j UM o) 10l (2) < 00,
aEN

=% [ D vreE™ @)
a€ENE

these series converging absolutely and uniformly on the bounded subsets of &; (o) ().
Let us fix the integer s by the condition s > 4kj.

For every f € £7V(Q), we have (f1, S) = (f¢2,S) hence

ST =T = 3 Y ( ) [ D% D
a€eNg Ba
Let us prove that this series converges absolutely so that, setting v = o — 3, we

also have 3
+
SDID Iy

~vENE BENE

For this purpose, it suffices to note that

> (5) oo, o], < et ol
BLa

—le
51/5 MS>|O“
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leads to

S 50 (5) [t el

aeNEk f<a

< ||f||s,1/s s,l/s Z (2]{)7‘(’4 Supkjil’}/leJ’Ylllu"Y‘(Q) < 0.

aeN’g Y€ENG

Next we prove that, for every v € Nk,

VyiCo() = C; g Y Bl /gDﬁwdﬂﬁ+v
Z

is a well defined continuous linear functional. In fact, it suffices to note that we
successively have

g, V)l < 1Ml s gl D 2P s™IPIM, 1) 105441 (9)
BENE
sl

Sl iz l9lle 57— > k) sup 1M o pa ()
7|'7 ﬁENk OlGN

So, for every v € NE, the Riesz representation theorem provides a Borel measure
vy on Q such that (g, V) = [, g dv, for every g € Co(£), in particular for g = D7 f.
Moreover it is clear that v, has its support contained in K.

Let us now prove that we have

sup S_|7|M37|W||VW|(Q) < 0.
~vENE

Indeed, for every v € N§, we can choose g € Co(Q) such that ||gllq, < 2 and
(g,V4) = |v|(€2). Hence the conclusion since this leads to

S—|7|Ms7|7||y,y|(Q) = s"’*'Ms,MKg,VM

<2l D (207 sup j 1M a1 (5)-
BENS aeN 0

Therefore we may apply Theorem 4.1 to the family (v4: o € NE) of Borel
measures on {2 and obtain a continuous linear functional

RiE™@) - T fe(fR)= 3 [ D,

aEN’“

the series converging absolutely and uniformly on the bounded subsets of 5((]m) Q).
Hence the conclusion since we have

-y /Dafdua— (Df, V) = (£, T)

a€EeNE a€eNE

for every f € Sém)(ﬂ). |
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6. Structure of the elements of ’D(m)(ﬂ),

Theorem 6.1. Let (uy: o € NE) be a family of Radon measures on Q. If, for
every non void compact subset K of ), there is j € N such that

sup jle |M Jal luall () < oo,
aeN, 0
then
S: D(Q) - C; © = Z 0, Uq,)
ocEN]C

is a well defined continuous linear functional, these series converging absolutely
and uniformly on the bounded subsets of D™ (Q).

Proof. Let (K;)men be a compact exhaustion of Q such that K7 # () and K,,, C
K3, ., for every m € N. For every m € N, let us identify the spaces K(K,,)

m

and Co(K;,) and designate by ul' the restriction of u, to K(K,,). The Riesz
representation theorem provides then, for every m € N and a € N’& a Borel
measure ' on K, such that

<f7 U'ZL> = fdllgla vf € CO(K:)n)a
K3,
ug' ] = |ua’[(K5,), vm € N, a € Nj.
So, for every m € N, there is an integer j,, € N such that

sup jp M, o [l [(KS,) < o0
aEN

and the Theorem 4.1 asserts that

St 6K =T feo Y / D° f dyi
a€ENg
is a well defined continuous linear functional and that these series converge abso-

lutely and uniformly on the bounded subsets of Eégﬁ)(Kfn).
The conclusion is now a standard matter. |

Theorem 6.2. For every S € ’D(im)(Q)/, there is a family (uq: o € NE) of Radon
measures on ) such that

(@, 8) = > (D,ua), Vo e DPV(Q),

aeNg

these series converging absolutely and uniformly on the bounded subsets of D™ (Q).
Moreover, for every non empty compact subset K of ), there is j € N such
that
sup j~ 1@ Iij‘a|||ua||(K) < 0.
aENE
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Proof. Let {Q,,: m € N} be an open, locally finite and relatively compact cover
of Q. Let moreover {1,,: m € N} be a partition of unity subordinate to this cover
and such that 1, € D™ (Q,,) for every m € N.

For every m € N, 9,,S belongs to ’D(m)(Q)/ and has a compact support con-
tained in ,,. Therefore, by Theorem 5.1, there are an integer s,, € N and a
family (v : @ € N§) of Borel measures on Q such that

sup s;J“‘MSm7|a‘|1/;"|(Q) < 00;
a€eNg
supp(vy') C Qi Va € N,
(Fom$) = 3 [ Dofar. vree™ @)
Q

aeNk
these series converging absolutely and uniformly on the bounded subsets of Sém) ().

For every f € (), there is only a finite number of integers m € N such that
Q. Nsupp(f) # 0. Therefore, for every o € NE,

U K(Q) — C; /fdz/
meN

is a well defined linear functional.

Moreover, for every non void compact subset K of €0, there is an integer mg € N
such that K N, = 0 for every m > mg. Therefore, if f € K(Q) has its support
contained in K, we get

(Fruadl < Il Y vatl(2)
m=1

which implies that u, is a Radon measure on 2 such that ||u, || (K) < >0 [v2](€).

Moreover if we set j := sup{s,,: m =1,...,mg}, we obtain
mo
sup j 1M o [[ual [(K) <Y s, My, jagV2](9) < oo,
(XEN m=1

Therefore, by Theorem 6.1,

R:D"(Q) - C; o Y (D%, uq)
a€EeNg

is a continuous linear functional, these series converging absolutely and uniformly
on the bounded subsets of D™ (Q).
To conclude, we just have to note that, if ¢ € D™ (Q) has its support con-
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tained in the non void compact subset K of {2, we successively have

(0.5) = (0. > tnS) = > (pmS) = Y. 3 [ Dy
m=1 m=1 m:laeNg Q
= Z Z / D% dv]' = Z (D%, uq)- |
aeNf m=1 @ aeNg

7. Notations for the LP-case

Given p such that 1 < p < oo, LP(Q2) and LP(2) designate the classical Lebesgue
spaces and for f € f € LP(Q), we set

||fup:||f||p:</ﬂ|f|” d)/P i 1<p< oo

and ~
[fllse = Ilfllcc = supess{[f ()] : x € Q}.
Given p € [1,00[, we now adapt the introduction by Schwartz of the space
D, (RF) (cf. [11], p. 199) to our setting.
The Fréchet spaces B(LJ,\,/Ij)(Q) and B(LD,?)(Q)
For every j € N, one first considers the Fréchet space B(LJI\,/“ )(Q) introduced
in [13]. Its elements are the C*°-functions f on € such that D®f € £P(Q) for every

o € NE and

D% /]
| flp = OCS;\II)’SM<OO’ vr >0,
and {[.|, ;. : 7 > 0} is its fundamental system of semi-norms. We then introduce
the Fréchet space B(Lgpm(Q) as the projective limit of the spaces B(LI,\J/IJ )(Q)
The spaces D(LZ]\)/IJ')(K), D(LJI\,/I-j)(Q), D(LSZI) (K) and D(ngt)(Q)
Given a non void compact subset K of R¥ and j € N, one can introduce as
in [13] the Fréchet space D(L]ZI" ) (K) as the topological vector subspace of B(L]:,/Ij) (RF)

the elements of which have their support contained in K and the space D(LI,\J/Ij)(Q)

as the inductive limit of the spaces D(L];Jj)(H ) where H runs through the family
of the non void compact subsets of 2.

In the same way, the Fréchet space D(Lg,;n)(K ) is the topological vector subspace
of B(LDZI)(R’“), the elements of which have their support contained in K and the
(LF)-space D(ngt)(Q) is the inductive limit of the spaces D(ngt)(H) where H runs
through the family of the non void compact subsets of 2.

It is a direct matter to prove the following property.

Proposition 7.1. The multiplication map
B: B (@) < 70(@) = BRIV (f9) = fg

is a well defined continuous bilinear map.
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Proposition 7.2. The space D(m)(Q) is a dense vector subspace of the space
D(ngl)(ﬂ) and the canonical injection from D™ (Q) into D(ngt)(Q) is a continuous
linear map.
Proof. From the paragraph 5 of [6], we know that, for every r > 0, there is ¢ €
D) (RF) identically 1 on a neighbourhood of 0 and having its support contained
in{x: |z| <r}.

Therefore a direct adaptation of the proof of the proposition 5 of [13] with
¥; € DPV(RF) for every i € N leads to the conclusion. |

The previous result justifies the fact that the elements of D(LSZI)(Q)/ may be
considered as ultradistributions. The next one says that the spaces D™ (2) and

D(LD}?) (Q) coincide under the nuclearity condition that 9t is regular.

Proposition 7.3. If the matriz M is regular, then, for every p € [1,00[, the
canonical injection I from D™ (Q) into D(L?)(Q) s a topological isomorphism.
Proof. As a consequence of the previous result, we just need to prove that, if 9t

is regular, I is onto and has a continuous inverse. For this purpose, let us remark
that the regularity of 91 implies that, for every j € J, there are A; > 1 and HJ/ >1

such that Mj g ik < A;-H;”’“MN for every r € Ny.

Now let K be any non void compact subset of €2, ¢ be any element of D(ngt) (K)
and |[|.||;,, be any continuous semi-norm on DOM(K). Let usset 1 = (1,...,1) €

N§ and let C > 0 be such that K C [-C, C]*. For every a € N§, we then have
D%(x) = /k X[=Cyzr]x [~ Crp] (DT 0(2) dt, V€ Q,
R

hence ||[D%p||x < B||[D" ||, with B = (2C)*/7 if ¢ €]1,00[ and B = 1 if ¢ = c0.
So, for s €]0, h/H}"|, we get

a|+k
s M g ol 4k
« .
M 1o

11k
< BAGR” ol

lelly,n < Blely jtn,s S;\E)k poitk,s
0

[e3%

and we conclude at once. | |

Open question. Are the spaces D™ (Q) and D(ngt)(Q) different in general?

8. Structure of the elements of Bg{t)(ﬂ)'

In the following two proofs, we apply the intermediate step with X = LP(Q).
Let us consider

V= {(D*faeny : £ € B (Q))
as a topological vector subspace of Z and introduce the map
©: BI(Q) = Vi f e (D) genss

it is clear that ® is a topological isomorphism.
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Let also g designate the conjugate number of p, ie. ¢ = oo if p = 1 and
1/¢g=1-1/pif p €]1, 0.

Proceeding as in the proof of the Theorems 4.1 and 4.2 provides directly the
following two results.

Theorem 8.1. Let (go: « € N§) be a family of elements of LI().
If there is j € N such that supqene G719 0l |gallq < 0o, then

S:BOQ) - C fe Y /gaD fda

a€eNE
is a well defined continuous linear functz’onal these series converging absolutely

and uniformly on the bounded subsets ofB )(Q)

Theorem 8.2. For every S € B(m)( Q)’, there are j € N and a family (9o : o € N§)
of elements of L1(QY) such that

sup j_la‘Mj,\OLIHgqu <00
a€eNg

=y /gaD fdz,  VfeBI(Q),

aeNk

these series converging absolutely and uniformly on the bounded subsets ofB(Lgpm (Q).

9. Structure of the elements of ’D(Sm)(ﬂ)'

Theorem 9.1. Let S € D(Lm,})(ﬂ)/ have a compact support H and let K be a
compact subset of Q such that H C K°.

Then there are an integer s € N and a family (go: o € N§) of elements of
L(Q) such that

sup s~ 1M, 1) [|galls < o0,
aEN

supp(ga) C K, Vo € ng,

=> /ga “pde, VoD (Q),

ocENk

these series converging absolutely and uniformly on the bounded subsets ofo?)(Q)
hence on those of DSB?)(Q)

Proof. Let ¢ be an element of D™)(Q), identically 1 on a neighbourhood of H
and with support contained in K°. By Proposition 7.1, we know that

T:BOV(Q) - C; [ (fy,5)
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is a continuous linear functional. Therefore, Theorem 8.2 provides an integer j € N
and a family (g,: o € N¥) of elements of L9(f2) such that

sup 1M jallgallq < oo,
aEN

=y /gaD fdr,  VfeBU (@),

aeNg

these series converging absolutely and uniformly on the bounded subsets of B}, () (Q).
To conclude, one has just then to follow the argument of the proof of the
Theorem 5.1. |

Theorem 9.2. Let (go: o € N) be a family of elements of L (). If, for every
non void compact subset K of 2, there is j € N such that

sup j~ 1 M; | o|lgallgx < oo,
aeNg

then
S D@ —C o Y / ga D¢ da
a€eNg
is a well defined continuous linear functional and these series converge absolutely

and uniformly on the bounded subsets of D(g’n)(ﬂ).

Proof. Let (K,,)men be a compact exhaustion of 2 with negligeable borders
such that K7 # 0 and K,, C K, for every m € N. For every m € N and
o € N, g™ = ga|ke belongs to LY(Kg,) with lga'll, = llgall, x,,- Therefore, by
Theorem 8.1,

Smi BRV(KS) —C; fe > [ gaD*fdx

ety

is a well defined continuous linear functional on B(ngt) (K?,), these series converging
absolutely and uniformly on the bounded subsets of B(gﬁ) (Kp,). As D(ngz) (Ky) can

be considered as a topological vector subspace of B I (thb)7 the conclusion is now
a standard matter. [ |

Theorem 9.3. For every S € D zm)( Q)', there is a family (go: o € NE) of ele-
ments of L{ () such that

Z /gaD pdx, V@GD(W)(Q),

aGNk

these series converging absolutely and uniformly on the bounded subsets ofD(L?) Q).
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Moreover, for every non void compact subset K of ), there is j € N such that

sup 5 1M; | algallax < oo
aENé

Proof. One has just to proceed as in the proof of the Theorem 6.2, replacing
K(2) by L2 (). [ |

comp

The Proposition 7.3 leads then directly to the following result.

Corollary 9.4. If M is regular and q belongs to ]1,00[U{oco}, then, for every
Se D(m)(Q)/, there is a family (go: o € NE) of elements of L{ (Q) such that

loc

(0.9 =Y /gaD%dx, Ve € DPV(Q),
Q

a€ENg

these series converging absolutely and uniformly on the bounded subsets of D™ (Q).
Moreover, for every non void compact subset K of 2, there is j € N such that

sup §1M; jallgalle.x < 00
aENS
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