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GLOBAL STRUCTURE OF SOME ULTRADISTRIBUTIONS
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Abstract: Given p ∈ N, a non empty open subset Ω of Rk and a semi-regular matrix M,
we characterize the elements of the duals of the Beurling classes D(M)(Ω) and D(M)

Lp (Ω) of
ultradifferentiable functions. We provide a global representation of these ultradistributions with
and without compact support by means of series involving measures in the first case and elements
of Lq

loc(Ω) in the second.

Keywords: countable intersection, non quasi-analytic class, ultradifferentiable function, ultra-
distribution, global representation.

1. Introduction

For the notations, we refer to the Paragraphs 2 and 7.
In this paper, we continue the study of the locally convex properties of the

countable intersections of non quasi-analytic classes of ultradifferentiable func-
tions, initiated in [6]. After the study of the mixed intersections in [7] and their
tensor product characterization in [8], we obtain a global structure of the elements
of the dual of the space D(M)(Ω) in the first part and of the space D(M)

Lp (Ω) in
a second part, M being a semi-regular matrix.

We adopt the method used by Valdivia to obtain global representations of the
ultradistributions u ∈ D(M)(Ω)

′
in [12] and u ∈ D(M)

Lp (Ω)′ in [13], where M is an
increasing, normalized and non quasi-analytic sequence of positive numbers. This
leads to a global representation of the continuous linear functionals on E(M)

0 (Ω) and
of the ultradistributions (i.e. the elements of D(M)(Ω)

′
) with and without compact

support (cf. Theorems 5.1 and 6.2) by means of Borel and Radon measures on Ω.
Starting with Paragraph 7, we follow the introduction by Schwartz ([11], p. 199)

of the space DLp(Rk) and introduce the space D(M)
Lp (Ω). Here also the method is

fruitful: it leads to a global representation of the ultradistributions S ∈ D(M)
Lp (Ω)′

with and without compact support (cf. Theorems 9.1 and 9.3). If the matrix M
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is regular, this leads to a global representation of the elements of D(M)(Ω)
′
by

means of a series of the type
∑

α∈Nk
0

∫
Ω

gαDαϕdx where the functions gα belong
to Lq

loc(Ω).
There is a huge literature on the non quasi-analytic classes of ultradifferentiable

functions of Beurling type E(M)(Ω) and D(M)(Ω); a basic reference is given by [5].
Very similar spaces can also be introduced by means of a weight; in this case,
a basic reference is given by [3]. In these two papers, one finds local representations
of the ultradistributions.

Intersections of non quasi-analytic classes of ultradifferentiable functions have
first been investigated by Chaumat and Chollet in [4] in the case when the matrix
M is defined by Mj,p = M

aj
p where (Mp)p∈N0 is a sequence with moderate growth

and (aj)j∈N a sequence of positive numbers strictly decreasing to 0. They obtained
a Whitney extension theorem, a Łojasiewicz theorem on regular situation, some
theorems of division and preparation and a Whitney spectral theorem.

Later on Beaugendre studied extensively such intersections in [1] and [2] when
the numbers Mj,p are defined by means of a convex and increasing function Φ on
[0,+∞[ such that limt→∞ Φ(t)/t = ∞. In particular he obtained extension results
for Whitney jets and an explicit continuous linear extension map for Whitney jets.

The introduction of semi-regular matrices M appeared in [9] where analytic and
holomorphic extensions of Whitney jets are obtained and has been used in [10] to
describe an explicit continuous linear extension map for Whitney jets.

2. Notations

Let us first introduce the matrices m and M used to define the countable in-
tersections of non quasi-analytic Beurling classes of ultradifferentiable functions
considered in this paper.

Whenever m is a sequence (mp)p∈N0 of real numbers, the notation M des-
ignates the sequence (Mp)p∈N0 where Mp = m0 . . .mp for every p ∈ N0. Such
a sequence m is

(a) normalized if m0 = 1 and mp > 1 for every p ∈ N;
(b) non quasi-analytic if

∑∞
p=0 1/mp < ∞.

From now on m = (mj,p)j∈N,p∈N0 designates a semi-regular matrix, i.e. a matrix
of real numbers such that, for every j ∈ N, the sequence mj = (mj,p)p∈N0 is
normalized, increasing, non quasi-analytic and such that

(a) mj,p > mj+1,p for every p ∈ N0;
(b) limp→∞mj+1,p/mj,p = 0.

Of course, M j designates the sequence (Mj,p)p∈N0 for every j ∈ N and M the
matrix (Mj,p)j∈N,p∈N0 .

The matrix m or equivalently M is regular if it is semi-regular and if, for every
j ∈ N, there are constants Aj > 1 and Hj > 1 such that Mj+1,p+1 6 AjH

p
j Mj,p

for every p ∈ N0.
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Let us say once for all that the functions we consider are complex valued and
that all vector spaces are C-vector spaces. Moreover, throughout the paper,

(a) k is a positive integer;
(b) if f is a function on A ⊂ Rk, we set ‖f‖A := supx∈A |f(x)|;
(c) Ω is a non void open subset of Rk.
Now all is set up to introduce the spaces we deal with in the first part of this

paper.
The Banach space C0(Ω). Its elements are the continuous functions f on Ω

“tending to 0 at infinity” (i.e. for every ε > 0, there is a compact subset K of Ω
such that ‖f‖Ω\K 6 ε) and its norm is ‖.‖Ω. By the Riesz representation theorem,
for every continuous linear functional u on C0(Ω), there is a Borel measure µ on Ω
such that 〈u, .〉 =

∫
Ω

. dµ on C0(Ω) and ‖u‖ = |µ| (Ω).
The Banach space K(K) and the (LB)-space K(Ω). Given a non void compact

subset K of Rk, K(K) is the space of the continuous fonctions on Rk having their
support contained in K; its norm is ‖.‖K . The space K(Ω) is the inductive limit of
the spaces K(H) where H runs through the family of the non void compact subsets
of Ω. The elements of the topological dual of K(Ω) are the Radon measures on Ω.
Given a Radon measure u on Ω and a non void compact subset H of Ω, ‖u‖ (H)
designates the norm of the restriction of u to K(H).

The Fréchet space E(M)
0 (Ω) is the projective limit of the spaces E(Mj)

0 (Ω). For
every j ∈ N, E(Mj)

0 (Ω) is the projective limit of the spaces E(Mj),1/m
0 (Ω) where

E(Mj),h
0 (Ω) is the following Banach space: its elements are the functions f ∈ C∞(Ω)

such that Dαf ∈ C0(Ω) for every α ∈ Nk
0 and

‖f‖j,h := sup
α∈Nk

0

‖Dαf‖Ω
h|α|Mj,|α|

< ∞;

its norm is ‖.‖j,h.
The (FS)-space E(M)(Ω) is the projective limit of the (FS)-spaces E(Mj)(Ω).

For every j ∈ N, E(Mj)(Ω) is the usual Beurling class of the elements f in C∞(Ω)
such that, for every non void compact subset H of Ω and every h > 0,

|f |j,H,h := sup
α∈Nk

0

||Dαf ||H
h|α|Mj,|α|

< ∞

and it is endowed with the system of semi-norms {|.|j,H,h : H b Ω, h > 0}.
The (LFS)-space D(M)(Ω) is the inductive limit of the spaces D(M)(H) =

E(M)
0 (H◦) where H runs through the non void compact subsets of Ω.
Let us recall ([6], Theorem 8.2) that, if M is regular, then the spaces E(M)(Ω),

D(M)(K) and D(M)(Ω) are nuclear.

3. Intermediate step

Given a Banach space X = (X, ‖.‖), it is possible to construct a Fréchet space Z
“similar” for instance to E(M)(Ω).
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Its elements are the elements κ = (xα)α∈Nk
0
of XNk

0 such that

‖κ‖j := sup
α∈Nk

0

j|α| ‖xα‖
Mj,|α|

< ∞

for every j ∈ N, its system of continuous semi-norms being {‖.‖j : j ∈ N}. It is a
vector-valued Köthe space.

We are interested in the use of its dual. For this purpose, given u ∈ Z ′ and
α ∈ Nk

0 , we denote by uα the functional

uα : X → C; 〈x, uα〉 := 〈κ, u〉
where κ is defined by xα = x and xβ = 0 if β 6= α. It is clear that uα belongs
to X ′.

For the sake of completeness, let us state and prove the following two known
results that will be of systematic use later on.

Proposition 3.1. For every u ∈ Z ′, there is j ∈ N such that

sup
α∈Nk

0

j−|α|Mj,|α| ‖uα‖ 6 ‖u‖(j) := sup
‖κ‖j61

|〈κ, u〉| < ∞ (1)

and we have
〈κ, u〉 =

∑

α∈Nk
0

〈xα, uα〉, ∀κ ∈ Z, (2)

these series converging absolutely and uniformly on the bounded subsets of Z.

Proof. As u belongs to Z ′, there is j ∈ N such that ‖u‖(j) < ∞. For every
α ∈ Nk

0 and x ∈ X, κ ∈ Z defined by xα = x and xβ = 0 if β 6= α verifies
‖κ‖j = j|α|M−1

j,|α| ‖x‖ hence ‖u‖(j) > j−|α|Mj,|α|||uα|| and the inequality (1).

Given κ ∈ Z and β ∈ Nk
0 , let us define κβ by xβ

β = xβ and xβ
α = 0 if α 6= β.

Then the family (κβ : β ∈ Nk
0) is summable in Z, with limit κ. Indeed for every

j, q ∈ N, we successively have

||κ −
∑

|β|6q

κβ ||j = sup
|α|>q

j|α| ‖xα‖
Mj,|α|

6 sup
|α|>q

(2j)|α| ‖xα‖
2|α|M2j,|α|

6 2−q ‖κ‖2j

hence the equality (2).
Now let B be any bounded subset of Z. Setting b := supκ∈B ‖κ‖2kj < ∞, for

every κ ∈ B and β ∈ Nk
0 , we successively have

|〈xβ , uβ〉| 6 ‖xβ‖ ‖uβ‖ =
(2kj)|β| ‖xβ‖

Mj,|β|

Mj,|β| ‖uβ‖
(2kj)|β|

6 1
(2k)|β|

(2kj)|β| ‖xβ‖
M2kj,|β|

sup
α∈Nk

0

Mj,|α| ‖uα‖
j|α|

6 b

(2k)|β|
‖u‖(j) .

Hence the conclusion since the series
∑

β∈Nk
0
(2k)−|β| converges. ¥
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Proposition 3.2. Let (vα : α ∈ Nk
0) be a family of elements of X ′. If there is

j ∈ N such that supα∈Nk
0
j−|α|Mj,|α| ‖vα‖ < ∞, there is a unique element u of Z ′

such that uα = vα for every α ∈ Nk
0 .

Proof. Let us note that u : Z → C defined by 〈κ, u〉 =
∑

α∈Nk
0
〈xα, vα〉 for every

κ ∈ Z is a well defined continuous linear functional on Z since, for every κ ∈ Z
and β ∈ Nk

0 , we successively have

|〈xβ , vβ〉| 6 ‖xβ‖ ‖vβ‖ 6 1
(2k)|β|

‖κ‖2kj sup
α∈Nk

0

j−|α|Mj,|α| ‖vα‖ .

Now the previous Proposition leads to 〈κ, u〉 =
∑

α∈Nk
0
〈xα, uα〉 for every κ ∈ Z.

In fact, we have uα = vα for every α ∈ Nk
0 since, for every β ∈ Nk

0 and x ∈ X, we
have 〈x, uβ〉 = 〈κβ , u〉 =

∑
α∈Nk

0
〈xβ

α, vα〉 = 〈x, vβ〉.
To conclude, we note that the uniqueness of u comes from the fact that, in

the previous proof, we obtained as a by-result that {κβ : x ∈ X, β ∈ Nk
0} is total

in Z. ¥

4. Structure of the elements of E(M)
0 (Ω)′

In this paragraph we are going to apply the results of the preceding one with
X = C0(Ω).

Let us consider
V := {(Dαf)α∈Nk

0
: f ∈ E(M)

0 (Ω)}
as a topological vector subspace of Z and introduce the map

Φ: E(M)
0 (Ω) → V ; f 7→ (Dαf)α∈Nk

0
;

it is clear that Φ is a topological isomorphism.

Theorem 4.1. Let (µα : α ∈ Nk
0) be a family of Borel measures on Ω. If there is

j ∈ N such that supα∈Nk
0
j−|α|Mj,|α||µα|(Ω) < ∞, then

S : E(M)
0 (Ω) → C; f 7→

∑

α∈Nk
0

∫

Ω

Dαf dµα

is a well defined continuous linear functional, these series converging absolutely
and uniformly on the bounded subsets of E(M)

0 (Ω).

Proof. For every α ∈ Nk
0 , 〈., µα〉 =

∫
Ω

. dµα is a continuous linear functional
on C0(Ω), of norm ‖µα‖ = |µα|(Ω). Therefore, by the Propositions 3.2 and 3.1
successively, there is u ∈ Z ′ such that

〈(fα)α∈Nk
0
, u〉 =

∑

α∈Nk
0

〈fα, µα〉, ∀(fα)α∈Nk
0
∈ Z,
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and these series converge absolutely and uniformly on the bounded subsets of Z.
Now we consider the restriction of u to V , that we still denote by u to simplify

the notation. For every f ∈ E(M)
0 (Ω), we get

〈(Dαf)α∈Nk
0
, u〉 =

∑

α∈Nk
0

〈Dαf, µα〉 =
∑

α∈Nk
0

∫

Ω

Dαf dµα.

Let finally tΦ: V ′ → E(M)
0 (Ω)′ denote the transpose of Φ and set S := tΦu.

For every f ∈ E(M)
0 (Ω), we then get

〈(Dαf)α∈Nk
0
, u〉 = 〈Φf, u〉 = 〈f, tΦu〉 = 〈f, S〉

hence the conclusion since it is clear that these series converge absolutely and
uniformly on the bounded subsets of E(M)

0 (Ω). ¥

Theorem 4.2. For every S ∈ E(M)
0 (Ω)′, there are j ∈ N and a family (µα : α ∈

Nk
0) of Borel measures on Ω such that

sup
α∈Nk

0

j−|α|Mj,|α||µα|(Ω) < ∞

and

〈f, S〉 =
∑

α∈Nk
0

∫

Ω

Dαf dµα, ∀f ∈ E(M)
0 (Ω),

these series converging absolutely and uniformly on the bounded subsets of E(M)
0 (Ω).

Proof. Let us denote by Ψ the map Φ considered as a map from E(M)
0 (Ω) into

Z. As its transpose tΨ is surjective, there is u ∈ Z ′ such that tΨu = S. The
Proposition 3.1 provides then j ∈ N and a family (uα : α ∈ Nk

0) of elements of
C0(Ω)′ such that

sup
α∈Nk

0

j−|α|Mj,|α| ‖uα‖ < ∞

and
〈(Dαf)α∈Nk

0
, u〉 =

∑

α∈Nk
0

〈Dαf, uα〉, ∀f ∈ E(M)
0 (Ω),

these series converging absolutely and uniformly on the bounded subsets of E(M)
0 (Ω).

For every α ∈ Nk
0 , the Riesz representation theorem provides then a Borel measure

µα on Ω such that ‖uα‖ = |µα|(Ω) and 〈g, uα〉 =
∫
Ω

g dµα for every g ∈ C0(Ω).
Hence the conclusion since we have

〈(Dαf)α∈Nk
0
, u〉 = 〈Ψf, u〉 = 〈f, tΨu〉 = 〈f, S〉. ¥
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5. Structure of the elements of D(M)(Ω)
′
with compact support

Theorem 5.1. Let S ∈ D(M)(Ω)
′
have a compact support H and let K be a

compact subset of Ω such that H ⊂ K◦.
Then there are an integer s ∈ N and a family (να : α ∈ Nk

0) of Borel measures
on Ω such that

sup
α∈Nk

0

s−|α|Ms,|α||να|(Ω) < ∞,

supp(να) ⊂ K, ∀α ∈ Nk
0 ,

〈ϕ, S〉 =
∑

α∈Nk
0

∫

Ω

Dαϕdνα, ∀ϕ ∈ D(M)(Ω),

these series converging absolutely and uniformly on the bounded subsets of E(M)
0 (Ω)

hence of D(M)(Ω).

Proof. Let ψ be an element of D(M)(Ω), identically 1 on a neighbourhood of H
and with support contained in K◦. Proceeding as in [5], S is the restriction to
D(M)(Ω) of the element 〈.ψ, S〉 of E(M)(Ω)′. Therefore, as the canonical injection
from E(M)

0 (Ω) into E(M)(Ω) is continuous, the restriction T of 〈.ψ, S〉 to E(M)
0 (Ω)

is a continuous linear extension of S. Moreover Theorem 4.2 provides an integer
j ∈ N and a family (µα : α ∈ Nk

0) of Borel measures on Ω such that

sup
α∈Nk

0

j−|α|Mj,|α||µα|(Ω) < ∞,

〈f, T 〉 =
∑

α∈Nk
0

∫

Ω

Dαf dµα, ∀f ∈ E(M)
0 (Ω),

these series converging absolutely and uniformly on the bounded subsets of E(M)
0 (Ω).

Let us fix the integer s by the condition s > 4kj.
For every f ∈ E(M)

0 (Ω), we have 〈fψ, S〉 = 〈fψ2, S〉 hence

〈f, T 〉 = 〈fψ, T 〉 =
∑

α∈Nk
0

∑

β6α

(
α

β

) ∫

Ω

Dβψ Dα−βf dµα.

Let us prove that this series converges absolutely so that, setting γ = α − β, we
also have

〈f, T 〉 =
∑

γ∈Nk
0

∑

β∈Nk
0

(β + γ)!
β!γ!

∫

Ω

Dβψ Dγf dµβ+γ .

For this purpose, it suffices to note that

∑

β6α

(
α

β

) ∥∥∥Dβψ
∥∥∥

Ω

∥∥∥Dα−βf
∥∥∥

Ω
6 (2k)−|α| ‖ψ‖s,1/s ‖f‖s,1/s j−|α|Ms,|α|
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leads to
∑

α∈Nk
0

∑

β6α

(
α

β

) ∫

Ω

|Dβψ| |Dα−βf | d|µα|

6 ‖f‖s,1/s ‖ψ‖s,1/s

∑

α∈Nk
0

(2k)−|α| sup
γ∈Nk

0

j−|γ|Mj,|γ||µγ |(Ω) < ∞.

Next we prove that, for every γ ∈ Nk
0 ,

Vγ : C0(Ω) → C; g 7→
∑

β∈Nk
0

(β + γ)!
β!γ!

∫

Ω

gDβψ dµβ+γ

is a well defined continuous linear functional. In fact, it suffices to note that we
successively have

|〈g, Vγ〉| 6 ‖ψ‖s,1/s ‖g‖Ω
∑

β∈Nk
0

2|β+γ|s−|β|Ms,|β||µβ+γ |(Ω)

6 ‖ψ‖s,1/s ‖g‖Ω
s|γ|

Ms,|γ|

∑

β∈Nk
0

(2k)−|β| sup
α∈Nk

0

j−|α|Mj,|α||µα|(Ω).

So, for every γ ∈ Nk
0 , the Riesz representation theorem provides a Borel measure

νγ on Ω such that 〈g, Vγ〉 =
∫
Ω

g dνγ for every g ∈ C0(Ω), in particular for g = Dγf .
Moreover it is clear that νγ has its support contained in K.

Let us now prove that we have

sup
γ∈Nk

0

s−|γ|Ms,|γ||νγ |(Ω) < ∞.

Indeed, for every γ ∈ Nk
0 , we can choose g ∈ C0(Ω) such that ‖g‖Ω 6 2 and

〈g, Vγ〉 = |ν|(Ω). Hence the conclusion since this leads to

s−|γ|Ms,|γ||νγ |(Ω) = s−|γ|Ms,|γ||〈g, Vγ〉|
6 2 ‖ψ‖s,1/s

∑

β∈Nk
0

(2k)−|β| sup
α∈Nk

0

j−|α|Mj,|α||µα|(Ω).

Therefore we may apply Theorem 4.1 to the family (να : α ∈ Nk
0) of Borel

measures on Ω and obtain a continuous linear functional

R : E(M)
0 (Ω) → C; f 7→ 〈f, R〉 =

∑

α∈Nk
0

∫

Ω

Dαf dνα,

the series converging absolutely and uniformly on the bounded subsets of E(M)
0 (Ω).

Hence the conclusion since we have

〈f, R〉 =
∑

α∈Nk
0

∫

Ω

Dαf dνα =
∑

α∈Nk
0

〈Dαf, Vα〉 = 〈f, T 〉

for every f ∈ E(M)
0 (Ω). ¥
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6. Structure of the elements of D(M)(Ω)
′

Theorem 6.1. Let (uα : α ∈ Nk
0) be a family of Radon measures on Ω. If, for

every non void compact subset K of Ω, there is j ∈ N such that

sup
α∈Nk

0

j−|α|Mj,|α| ‖uα‖ (K) < ∞,

then
S : D(M)(Ω) → C; ϕ 7→

∑

α∈Nk
0

〈Dαϕ, uα〉

is a well defined continuous linear functional, these series converging absolutely
and uniformly on the bounded subsets of D(M)(Ω).

Proof. Let (Km)m∈N be a compact exhaustion of Ω such that K◦
1 6= ∅ and Km ⊂

K◦
m+1 for every m ∈ N. For every m ∈ N, let us identify the spaces K(Km)

and C0(K◦
m) and designate by um

α the restriction of uα to K(Km). The Riesz
representation theorem provides then, for every m ∈ N and α ∈ Nk

0 , a Borel
measure µm

α on K◦
m such that

〈f, um
α 〉 =

∫

K◦
m

f dµm
α , ∀f ∈ C0(K◦

m),

||um
α || = |µm

α |(K◦
m), ∀m ∈ N, α ∈ Nk

0 .

So, for every m ∈ N, there is an integer jm ∈ N such that

sup
α∈Nk

0

j−|α|m Mjm,|α||µm
α |(K◦

m) < ∞

and the Theorem 4.1 asserts that

Sm : E(M)
0 (K◦

m) → C; f 7→
∑

α∈Nk
0

∫

K◦
m

Dαf dµm
α

is a well defined continuous linear functional and that these series converge abso-
lutely and uniformly on the bounded subsets of E(M)

0 (K◦
m).

The conclusion is now a standard matter. ¥

Theorem 6.2. For every S ∈ D(M)(Ω)
′
, there is a family (uα : α ∈ Nk

0) of Radon
measures on Ω such that

〈ϕ, S〉 =
∑

α∈Nk
0

〈Dαϕ, uα〉, ∀ϕ ∈ D(M)(Ω),

these series converging absolutely and uniformly on the bounded subsets of D(M)(Ω).
Moreover, for every non empty compact subset K of Ω, there is j ∈ N such

that
sup

α∈Nk
0

j−|α|Mj,|α|||uα||(K) < ∞.
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Proof. Let {Ωm : m ∈ N} be an open, locally finite and relatively compact cover
of Ω. Let moreover {ψm : m ∈ N} be a partition of unity subordinate to this cover
and such that ψm ∈ D(M)(Ωm) for every m ∈ N.

For every m ∈ N, ψmS belongs to D(M)(Ω)
′
and has a compact support con-

tained in Ωm. Therefore, by Theorem 5.1, there are an integer sm ∈ N and a
family (νm

α : α ∈ Nk
0) of Borel measures on Ω such that

sup
α∈Nk

0

s−|α|m Msm,|α||νm
α |(Ω) < ∞;

supp(νm
α ) ⊂ Ωm, ∀α ∈ Nk

0 ,

〈f, ψmS〉 =
∑

α∈Nk
0

∫

Ω

Dαf dνm
α , ∀f ∈ E(M)

0 (Ω),

these series converging absolutely and uniformly on the bounded subsets of E(M)
0 (Ω).

For every f ∈ K(Ω), there is only a finite number of integers m ∈ N such that
Ωm ∩ supp(f) 6= ∅. Therefore, for every α ∈ Nk

0 ,

uα : K(Ω) → C; f 7→
∑

m∈N

∫

Ω

f dνm
α

is a well defined linear functional.
Moreover, for every non void compact subset K of Ω, there is an integer m0 ∈ N

such that K ∩ Ωm = ∅ for every m > m0. Therefore, if f ∈ K(Ω) has its support
contained in K, we get

|〈f, uα〉| 6 ‖f‖Ω
m0∑

m=1

|νm
α |(Ω)

which implies that uα is a Radon measure on Ω such that ‖uα‖ (K) 6
∑m0

m=1 |νm
α |(Ω).

Moreover if we set j := sup{sm : m = 1, . . . ,m0}, we obtain

sup
α∈Nk

0

j−|α|Mj,|α|||uα||(K) 6
m0∑

m=1

s−|α|m Msm,|α||νm
α |(Ω) < ∞.

Therefore, by Theorem 6.1,

R : D(M)(Ω) → C; ϕ 7→
∑

α∈Nk
0

〈Dαϕ, uα〉

is a continuous linear functional, these series converging absolutely and uniformly
on the bounded subsets of D(M)(Ω).

To conclude, we just have to note that, if ϕ ∈ D(M)(Ω) has its support con-
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tained in the non void compact subset K of Ω, we successively have

〈ϕ, S〉 = 〈ϕ,

m0∑
m=1

ψmS〉 =
m0∑

m=1

〈ϕ, ψmS〉 =
m0∑

m=1

∑

α∈Nk
0

∫

Ω

Dαϕdνm
α

=
∑

α∈Nk
0

m0∑
m=1

∫

Ω

Dαϕdνm
α =

∑

α∈Nk
0

〈Dαϕ, uα〉. ¥

7. Notations for the Lp-case

Given p such that 1 6 p 6 ∞, Lp(Ω) and Lp(Ω) designate the classical Lebesgue
spaces and for f ∈ f̃ ∈ Lp(Ω), we set

‖f‖p = ||f̃ ||p = (
∫

Ω

|f |p dx)1/p if 1 6 p < ∞

and
‖f‖∞ = ||f̃ ||∞ = sup ess{|f(x)| : x ∈ Ω}.

Given p ∈ [1,∞[, we now adapt the introduction by Schwartz of the space
DLp(Rk) (cf. [11], p. 199) to our setting.

The Fréchet spaces B(Mj)
Lp (Ω) and B(M)

Lp (Ω).
For every j ∈ N, one first considers the Fréchet space B(Mj)

Lp (Ω) introduced
in [13]. Its elements are the C∞-functions f on Ω such that Dαf ∈ Lp(Ω) for every
α ∈ Nk

0 and

|f |p,j,r := sup
α∈Nk

0

||Dαf ||p
r|α|Mj,|α|

< ∞, ∀r > 0,

and {|.|p,j,r : r > 0} is its fundamental system of semi-norms. We then introduce
the Fréchet space B(M)

Lp (Ω) as the projective limit of the spaces B(Mj)
Lp (Ω).

The spaces D(Mj)
Lp (K), D(Mj)

Lp (Ω), D(M)
Lp (K) and D(M)

Lp (Ω).
Given a non void compact subset K of Rk and j ∈ N, one can introduce as

in [13] the Fréchet spaceD(Mj)
Lp (K) as the topological vector subspace of B(Mj)

Lp (Rk)
the elements of which have their support contained in K and the space D(Mj)

Lp (Ω)
as the inductive limit of the spaces D(Mj)

Lp (H) where H runs through the family
of the non void compact subsets of Ω.

In the same way, the Fréchet space D(M)
Lp (K) is the topological vector subspace

of B(M)
Lp (Rk), the elements of which have their support contained in K and the

(LF)-space D(M)
Lp (Ω) is the inductive limit of the spaces D(M)

Lp (H) where H runs
through the family of the non void compact subsets of Ω.

It is a direct matter to prove the following property.

Proposition 7.1. The multiplication map

B : B(M)
Lp (Ω)× E(M)

0 (Ω) → B(M)
Lp (Ω); (f, g) 7→ fg

is a well defined continuous bilinear map.
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Proposition 7.2. The space D(M)(Ω) is a dense vector subspace of the space
D(M)

Lp (Ω) and the canonical injection from D(M)(Ω) into D(M)
Lp (Ω) is a continuous

linear map.

Proof. From the paragraph 5 of [6], we know that, for every r > 0, there is ϕ ∈
D(M)(Rk) identically 1 on a neighbourhood of 0 and having its support contained
in {x : |x| 6 r}.

Therefore a direct adaptation of the proof of the proposition 5 of [13] with
ψi ∈ D(M)(Rk) for every i ∈ N leads to the conclusion. ¥

The previous result justifies the fact that the elements of D(M)
Lp (Ω)′ may be

considered as ultradistributions. The next one says that the spaces D(M)(Ω) and
D(M)

Lp (Ω) coincide under the nuclearity condition that M is regular.

Proposition 7.3. If the matrix M is regular, then, for every p ∈ [1,∞[, the
canonical injection I from D(M)(Ω) into D(M)

Lp (Ω) is a topological isomorphism.

Proof. As a consequence of the previous result, we just need to prove that, if M
is regular, I is onto and has a continuous inverse. For this purpose, let us remark
that the regularity of M implies that, for every j ∈ J , there are A′j > 1 and H ′

j > 1
such that Mj+k,r+k 6 A′jH

′
j
rkMj,r for every r ∈ N0.

Now let K be any non void compact subset of Ω, ϕ be any element of D(M)
Lp (K)

and ‖.‖j,h be any continuous semi-norm on D(M)(K). Let us set 1 = (1, . . . , 1) ∈
Nk

0 and let C > 0 be such that K ⊂ [−C, C]k. For every α ∈ Nk
0 , we then have

Dαϕ(x) =
∫

Rk

χ[−C,x1]×···[−C,xk](t)Dα+1ϕ(t) dt, ∀x ∈ Ω,

hence ||Dαϕ||K 6 B||Dα+1ϕ||p with B = (2C)k/q if q ∈]1,∞[ and B = 1 if q = ∞.
So, for s ∈]0, h/H ′

j
k[, we get

‖ϕ‖j,h 6 B |ϕ|p,j+k,s sup
α∈Nk

0

s|α|+kMj+k,|α|+k

h|α|Mj,|α|
6 BA′jh

k |ϕ|p,j+k,s

and we conclude at once. ¥

Open question. Are the spaces D(M)(Ω) and D(M)
Lp (Ω) different in general?

8. Structure of the elements of B(M)
Lp (Ω)′

In the following two proofs, we apply the intermediate step with X = Lp(Ω).
Let us consider

V := {(Dαf)α∈Nk
0
: f ∈ B(M)

Lp (Ω)}
as a topological vector subspace of Z and introduce the map

Φ: B(M)
Lp (Ω) → V ; f 7→ (Dαf)α∈Nk

0
;

it is clear that Φ is a topological isomorphism.
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Let also q designate the conjugate number of p, i.e. q = ∞ if p = 1 and
1/q = 1− 1/p if p ∈]1,∞[.

Proceeding as in the proof of the Theorems 4.1 and 4.2 provides directly the
following two results.

Theorem 8.1. Let (gα : α ∈ Nk
0) be a family of elements of Lq(Ω).

If there is j ∈ N such that supα∈Nk
0
j−|α|Mj,|α|||gα||q < ∞, then

S : B(M)
Lp (Ω) → C; f 7→

∑

α∈Nk
0

∫

Ω

gαDαf dx

is a well defined continuous linear functional, these series converging absolutely
and uniformly on the bounded subsets of B(M)

Lp (Ω).

Theorem 8.2. For every S ∈ B(M)
Lp (Ω)′, there are j ∈ N and a family (gα : α ∈ Nk

0)
of elements of Lq(Ω) such that

sup
α∈Nk

0

j−|α|Mj,|α|||gα||q < ∞

〈f, S〉 =
∑

α∈Nk
0

∫

Ω

gαDαf dx, ∀f ∈ B(M)
Lp (Ω),

these series converging absolutely and uniformly on the bounded subsets of B(M)
Lp (Ω).

9. Structure of the elements of D(M)
Lp (Ω)′

Theorem 9.1. Let S ∈ D(M)
Lp (Ω)′ have a compact support H and let K be a

compact subset of Ω such that H ⊂ K◦.
Then there are an integer s ∈ N and a family (gα : α ∈ Nk

0) of elements of
Lq(Ω) such that

sup
α∈Nk

0

s−|α|Ms,|α|||gα||q < ∞,

supp(gα) ⊂ K, ∀α ∈ Nk
0 ,

〈ϕ, S〉 =
∑

α∈Nk
0

∫

Ω

gαDαϕdx, ∀ϕ ∈ D(M)
Lp (Ω),

these series converging absolutely and uniformly on the bounded subsets of B(M)
Lp (Ω)

hence on those of D(M)
Lp (Ω).

Proof. Let ψ be an element of D(M)(Ω), identically 1 on a neighbourhood of H
and with support contained in K◦. By Proposition 7.1, we know that

T : B(M)
Lp (Ω) → C; f 7→ 〈fψ, S〉
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is a continuous linear functional. Therefore, Theorem 8.2 provides an integer j ∈ N
and a family (gα : α ∈ Nk

0) of elements of Lq(Ω) such that

sup
α∈Nk

0

j−|α|Mj,|α|||gα||q < ∞,

〈f, T 〉 =
∑

α∈Nk
0

∫

Ω

gαDαf dx, ∀f ∈ B(M)
Lp (Ω),

these series converging absolutely and uniformly on the bounded subsets of B(M)
Lp (Ω).

To conclude, one has just then to follow the argument of the proof of the
Theorem 5.1. ¥

Theorem 9.2. Let (gα : α ∈ Nk
0) be a family of elements of Lq

loc(Ω). If, for every
non void compact subset K of Ω, there is j ∈ N such that

sup
α∈Nk

0

j−|α|Mj,|α|||gα||q,K < ∞,

then
S : D(M)

Lp (Ω) → C; ϕ 7→
∑

α∈Nk
0

∫

Ω

gαDαϕ dx

is a well defined continuous linear functional and these series converge absolutely
and uniformly on the bounded subsets of D(M)

Lp (Ω).

Proof. Let (Km)m∈N be a compact exhaustion of Ω with negligeable borders
such that K◦

1 6= ∅ and Km ⊂ K◦
m+1 for every m ∈ N. For every m ∈ N and

α ∈ Nk
0 , gm

α = gα|K◦
m

belongs to Lq(K◦
m) with ‖gm

α ‖q = ‖gα‖q,Km
. Therefore, by

Theorem 8.1,

Sm : B(M)
Lp (K◦

m) → C; f 7→
∑

α∈Nk
0

∫

K◦
m

gα
mDαf dx

is a well defined continuous linear functional on B(M)
Lp (K◦

m), these series converging
absolutely and uniformly on the bounded subsets of B(M)

Lp (K◦
m). As D(M)

Lp (Km) can
be considered as a topological vector subspace of B(M)

Lp (K◦
m), the conclusion is now

a standard matter. ¥

Theorem 9.3. For every S ∈ D(M)
Lp (Ω)′, there is a family (gα : α ∈ Nk

0) of ele-
ments of Lq

loc(Ω) such that

〈ϕ, S〉 =
∑

α∈Nk
0

∫

Ω

gαDαϕdx, ∀ϕ ∈ D(M)
Lp (Ω),

these series converging absolutely and uniformly on the bounded subsets of D(M)
Lp (Ω).
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Moreover, for every non void compact subset K of Ω, there is j ∈ N such that

sup
α∈Nk

0

j−|α|Mj,|α|||gα||q,K < ∞.

Proof. One has just to proceed as in the proof of the Theorem 6.2, replacing
K(Ω) by Lp

comp(Ω). ¥

The Proposition 7.3 leads then directly to the following result.

Corollary 9.4. If M is regular and q belongs to ]1,∞[∪{∞}, then, for every
S ∈ D(M)(Ω)

′
, there is a family (gα : α ∈ Nk

0) of elements of Lq
loc(Ω) such that

〈ϕ, S〉 =
∑

α∈Nk
0

∫

Ω

gαDαϕdx, ∀ϕ ∈ D(M)(Ω),

these series converging absolutely and uniformly on the bounded subsets of D(M)(Ω).
Moreover, for every non void compact subset K of Ω, there is j ∈ N such that

sup
α∈Nk

0

j−|α|Mj,|α|||gα||q,K < ∞.
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