GLOBAL STRUCTURE OF SOME ULTRADISTRIBUTIONS

JEAN SCHMETS, MANUEL VALDIVIA

To the memory of our dear friend Susanne Dierolf

Abstract: Given $p \in \mathbb{N}$, a non empty open subset Ω of \mathbb{R}^k and a semi-regular matrix \mathfrak{M} , we characterize the elements of the duals of the Beurling classes $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ and $\mathcal{D}^{(\mathfrak{M})}_{L^p}(\Omega)$ of ultradifferentiable functions. We provide a global representation of these ultradistributions with and without compact support by means of series involving measures in the first case and elements of $L^q_{loc}(\Omega)$ in the second.

Keywords: countable intersection, non quasi-analytic class, ultradifferentiable function, ultradistribution, global representation.

1. Introduction

For the notations, we refer to the Paragraphs 2 and 7.

In this paper, we continue the study of the locally convex properties of the countable intersections of non quasi-analytic classes of ultradifferentiable functions, initiated in [6]. After the study of the mixed intersections in [7] and their tensor product characterization in [8], we obtain a global structure of the elements of the dual of the space $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$ in the first part and of the space $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$ in a second part, \mathfrak{M} being a semi-regular matrix.

We adopt the method used by Valdivia to obtain global representations of the ultradistributions $u \in \mathcal{D}^{(M)}(\Omega)'$ in [12] and $u \in \mathcal{D}^{(M)}_{L^p}(\Omega)'$ in [13], where M is an increasing, normalized and non quasi-analytic sequence of positive numbers. This leads to a global representation of the continuous linear functionals on $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$ and of the ultradistributions (i.e. the elements of $\mathcal{D}^{(\mathfrak{M})}(\Omega)'$) with and without compact support (cf. Theorems 5.1 and 6.2) by means of Borel and Radon measures on Ω .

Starting with Paragraph 7, we follow the introduction by Schwartz ([11], p. 199) of the space $\mathcal{D}_{L^p}(\mathbb{R}^k)$ and introduce the space $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$. Here also the method is fruitful: it leads to a global representation of the ultradistributions $S \in \mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)'$ with and without compact support (cf. Theorems 9.1 and 9.3). If the matrix \mathfrak{M}

is regular, this leads to a global representation of the elements of $\mathcal{D}^{(\mathfrak{M})}(\Omega)'$ by means of a series of the type $\sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} \mathrm{D}^{\alpha} \varphi \, dx$ where the functions g_{α} belong to $L^q_{\mathrm{loc}}(\Omega)$.

There is a huge literature on the non quasi-analytic classes of ultradifferentiable functions of Beurling type $\mathcal{E}^{(M)}(\Omega)$ and $\mathcal{D}^{(M)}(\Omega)$; a basic reference is given by [5]. Very similar spaces can also be introduced by means of a weight; in this case, a basic reference is given by [3]. In these two papers, one finds local representations of the ultradistributions.

Intersections of non quasi-analytic classes of ultradifferentiable functions have first been investigated by Chaumat and Chollet in [4] in the case when the matrix \mathfrak{M} is defined by $M_{j,p}=M_p^{a_j}$ where $(M_p)_{p\in\mathbb{N}_0}$ is a sequence with moderate growth and $(a_j)_{j\in\mathbb{N}}$ a sequence of positive numbers strictly decreasing to 0. They obtained a Whitney extension theorem, a Łojasiewicz theorem on regular situation, some theorems of division and preparation and a Whitney spectral theorem.

Later on Beaugendre studied extensively such intersections in [1] and [2] when the numbers $M_{j,p}$ are defined by means of a convex and increasing function Φ on $[0, +\infty[$ such that $\lim_{t\to\infty} \Phi(t)/t = \infty$. In particular he obtained extension results for Whitney jets and an explicit continuous linear extension map for Whitney jets.

The introduction of semi-regular matrices \mathfrak{M} appeared in [9] where analytic and holomorphic extensions of Whitney jets are obtained and has been used in [10] to describe an explicit continuous linear extension map for Whitney jets.

2. Notations

Let us first introduce the matrices \mathfrak{m} and \mathfrak{M} used to define the countable intersections of non quasi-analytic Beurling classes of ultradifferentiable functions considered in this paper.

Whenever \boldsymbol{m} is a sequence $(m_p)_{p\in\mathbb{N}_0}$ of real numbers, the notation \boldsymbol{M} designates the sequence $(M_p)_{p\in\mathbb{N}_0}$ where $M_p=m_0\dots m_p$ for every $p\in\mathbb{N}_0$. Such a sequence \boldsymbol{m} is

- (a) normalized if $m_0 = 1$ and $m_p \ge 1$ for every $p \in \mathbb{N}$;
- (b) non quasi-analytic if $\sum_{n=0}^{\infty} 1/m_p < \infty$.

From now on $\mathfrak{m} = (m_{j,p})_{j \in \mathbb{N}, p \in \mathbb{N}_0}$ designates a *semi-regular* matrix, i.e. a matrix of real numbers such that, for every $j \in \mathbb{N}$, the sequence $m_j = (m_{j,p})_{p \in \mathbb{N}_0}$ is normalized, increasing, non quasi-analytic and such that

- (a) $m_{j,p} \geqslant m_{j+1,p}$ for every $p \in \mathbb{N}_0$;
- (b) $\lim_{p\to\infty} m_{j+1,p}/m_{j,p} = 0$.

Of course, M_j designates the sequence $(M_{j,p})_{p\in\mathbb{N}_0}$ for every $j\in\mathbb{N}$ and \mathfrak{M} the matrix $(M_{j,p})_{j\in\mathbb{N},p\in\mathbb{N}_0}$.

The matrix \mathfrak{m} or equivalently \mathfrak{M} is regular if it is semi-regular and if, for every $j \in \mathbb{N}$, there are constants $A_j > 1$ and $H_j > 1$ such that $M_{j+1,p+1} \leq A_j H_j^p M_{j,p}$ for every $p \in \mathbb{N}_0$.

Let us say once for all that the functions we consider are complex valued and that all vector spaces are C-vector spaces. Moreover, throughout the paper,

- (a) k is a positive integer;
- (b) if f is a function on $A \subset \mathbb{R}^k$, we set $||f||_A := \sup_{x \in A} |f(x)|$;
- (c) Ω is a non void open subset of \mathbb{R}^k .

Now all is set up to introduce the spaces we deal with in the first part of this paper.

The Banach space $C_0(\Omega)$. Its elements are the continuous functions f on Ω "tending to 0 at infinity" (i.e. for every $\varepsilon > 0$, there is a compact subset K of Ω such that $||f||_{\Omega \setminus K} \leq \varepsilon$) and its norm is $||.||_{\Omega}$. By the Riesz representation theorem, for every continuous linear functional u on $C_0(\Omega)$, there is a Borel measure μ on Ω such that $\langle u, . \rangle = \int_{\Omega} .d\mu$ on $C_0(\Omega)$ and $||u|| = |\mu|(\Omega)$.

The Banach space $\mathcal{K}(K)$ and the (LB)-space $\mathcal{K}(\Omega)$. Given a non void compact subset K of \mathbb{R}^k , $\mathcal{K}(K)$ is the space of the continuous fonctions on \mathbb{R}^k having their support contained in K; its norm is $\|.\|_K$. The space $\mathcal{K}(\Omega)$ is the inductive limit of the spaces $\mathcal{K}(H)$ where H runs through the family of the non void compact subsets of Ω . The elements of the topological dual of $\mathcal{K}(\Omega)$ are the Radon measures on Ω . Given a Radon measure u on Ω and a non void compact subset H of Ω , $\|u\|$ (H) designates the norm of the restriction of u to $\mathcal{K}(H)$.

The Fréchet space $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$ is the projective limit of the spaces $\mathcal{E}_0^{(M_j)}(\Omega)$. For every $j \in \mathbb{N}$, $\mathcal{E}_0^{(M_j)}(\Omega)$ is the projective limit of the spaces $\mathcal{E}_0^{(M_j),1/m}(\Omega)$ where $\mathcal{E}_0^{(M_j),h}(\Omega)$ is the following Banach space: its elements are the functions $f \in \mathcal{C}^{\infty}(\Omega)$ such that $D^{\alpha} f \in \mathcal{C}_0(\Omega)$ for every $\alpha \in \mathbb{N}_0^k$ and

$$||f||_{j,h} := \sup_{\alpha \in \mathbb{N}_0^h} \frac{||\mathbf{D}^{\alpha} f||_{\Omega}}{h^{|\alpha|} M_{j,|\alpha|}} < \infty;$$

its norm is $\|.\|_{i,h}$.

The (FS)-space $\mathcal{E}^{(\mathfrak{M})}(\Omega)$ is the projective limit of the (FS)-spaces $\mathcal{E}^{(M_j)}(\Omega)$. For every $j \in \mathbb{N}$, $\mathcal{E}^{(M_j)}(\Omega)$ is the usual Beurling class of the elements f in $\mathcal{C}^{\infty}(\Omega)$ such that, for every non void compact subset H of Ω and every h > 0,

$$|f|_{j,H,h} := \sup_{\alpha \in \mathbb{N}_0^k} \frac{||\mathbf{D}^\alpha f||_H}{h^{|\alpha|} M_{j,|\alpha|}} < \infty$$

and it is endowed with the system of semi-norms $\{|.|_{i,H,h}: H \in \Omega, h > 0\}.$

The (LFS)-space $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ is the inductive limit of the spaces $\mathcal{D}^{(\mathfrak{M})}(H) = \mathcal{E}_{0}^{(\mathfrak{M})}(H^{\circ})$ where H runs through the non void compact subsets of Ω .

Let us recall ([6], Theorem 8.2) that, if \mathfrak{M} is regular, then the spaces $\mathcal{E}^{(\mathfrak{M})}(\Omega)$, $\mathcal{D}^{(\mathfrak{M})}(K)$ and $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ are nuclear.

3. Intermediate step

Given a Banach space $X=(X,\|.\|)$, it is possible to construct a Fréchet space Z "similar" for instance to $\mathcal{E}^{(\mathfrak{M})}(\Omega)$.

Its elements are the elements $\varkappa = (x_{\alpha})_{\alpha \in \mathbb{N}_{c}^{k}}$ of $X^{\mathbb{N}_{0}^{k}}$ such that

$$\left\|\varkappa\right\|_{j}:=\sup_{\alpha\in\mathbb{N}_{0}^{k}}\frac{j^{\left|\alpha\right|}\left\|x_{\alpha}\right\|}{M_{j,\left|\alpha\right|}}<\infty$$

for every $j \in \mathbb{N}$, its system of continuous semi-norms being $\{\|.\|_j : j \in \mathbb{N}\}$. It is a vector-valued Köthe space.

We are interested in the use of its dual. For this purpose, given $u \in Z'$ and $\alpha \in \mathbb{N}_0^k$, we denote by u_α the functional

$$u_{\alpha}: X \to \mathbb{C}; \qquad \langle x, u_{\alpha} \rangle := \langle \varkappa, u \rangle$$

where \varkappa is defined by $x_{\alpha} = x$ and $x_{\beta} = 0$ if $\beta \neq \alpha$. It is clear that u_{α} belongs to X'.

For the sake of completeness, let us state and prove the following two known results that will be of systematic use later on.

Proposition 3.1. For every $u \in Z'$, there is $j \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} \|u_\alpha\| \leqslant \|u\|_{(j)} := \sup_{\|\varkappa\|_j \leqslant 1} |\langle \varkappa, u \rangle| < \infty \tag{1}$$

and we have

$$\langle \varkappa, u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_\alpha, u_\alpha \rangle, \qquad \forall \varkappa \in Z,$$
 (2)

these series converging absolutely and uniformly on the bounded subsets of Z.

Proof. As u belongs to Z', there is $j \in \mathbb{N}$ such that $\|u\|_{(j)} < \infty$. For every $\alpha \in \mathbb{N}_0^k$ and $x \in X$, $\varkappa \in Z$ defined by $x_\alpha = x$ and $x_\beta = 0$ if $\beta \neq \alpha$ verifies $\|\varkappa\|_j = j^{|\alpha|} M_{j,|\alpha|}^{-1} \|x\|$ hence $\|u\|_{(j)} \geqslant j^{-|\alpha|} M_{j,|\alpha|} \|u_\alpha\|$ and the inequality (1).

Given $\varkappa \in Z$ and $\beta \in \mathbb{N}_0^k$, let us define \varkappa^{β} by $x_{\beta}^{\beta} = x_{\beta}$ and $x_{\alpha}^{\beta} = 0$ if $\alpha \neq \beta$. Then the family $(\varkappa^{\beta} \colon \beta \in \mathbb{N}_0^k)$ is summable in Z, with limit \varkappa . Indeed for every $j, q \in \mathbb{N}$, we successively have

$$||\varkappa - \sum_{|\beta| \leqslant q} \varkappa^{\beta}||_{j} = \sup_{|\alpha| > q} \frac{j^{|\alpha|} ||x_{\alpha}||}{M_{j,|\alpha|}} \leqslant \sup_{|\alpha| > q} \frac{(2j)^{|\alpha|} ||x_{\alpha}||}{2^{|\alpha|} M_{2j,|\alpha|}} \leqslant 2^{-q} ||\varkappa||_{2j}$$

hence the equality (2).

Now let B be any bounded subset of Z. Setting $b := \sup_{\varkappa \in B} \|\varkappa\|_{2kj} < \infty$, for every $\varkappa \in B$ and $\beta \in \mathbb{N}_0^k$, we successively have

$$\begin{aligned} |\langle x_{\beta}, u_{\beta} \rangle| &\leqslant \|x_{\beta}\| \|u_{\beta}\| = \frac{(2kj)^{|\beta|} \|x_{\beta}\|}{M_{j,|\beta|}} \frac{M_{j,|\beta|} \|u_{\beta}\|}{(2kj)^{|\beta|}} \\ &\leqslant \frac{1}{(2k)^{|\beta|}} \frac{(2kj)^{|\beta|} \|x_{\beta}\|}{M_{2kj,|\beta|}} \sup_{\alpha \in \mathbb{N}_{c}^{k}} \frac{M_{j,|\alpha|} \|u_{\alpha}\|}{j^{|\alpha|}} &\leqslant \frac{b}{(2k)^{|\beta|}} \|u\|_{(j)} \,. \end{aligned}$$

Hence the conclusion since the series $\sum_{\beta \in \mathbb{N}_c^k} (2k)^{-|\beta|}$ converges.

Proposition 3.2. Let $(v_{\alpha} : \alpha \in \mathbb{N}_0^k)$ be a family of elements of X'. If there is $j \in \mathbb{N}$ such that $\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||v_{\alpha}|| < \infty$, there is a unique element u of Z' such that $u_{\alpha} = v_{\alpha}$ for every $\alpha \in \mathbb{N}_0^k$.

Proof. Let us note that $u: Z \to \mathbb{C}$ defined by $\langle \varkappa, u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_\alpha, v_\alpha \rangle$ for every $\varkappa \in Z$ is a well defined continuous linear functional on Z since, for every $\varkappa \in Z$ and $\beta \in \mathbb{N}_0^k$, we successively have

$$|\langle x_{\beta}, v_{\beta} \rangle| \le ||x_{\beta}|| \, ||v_{\beta}|| \le \frac{1}{(2k)^{|\beta|}} \, ||\varkappa||_{2kj} \sup_{\alpha \in \mathbb{N}_{0}^{k}} j^{-|\alpha|} M_{j,|\alpha|} \, ||v_{\alpha}||.$$

Now the previous Proposition leads to $\langle \varkappa, u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_\alpha, u_\alpha \rangle$ for every $\varkappa \in Z$. In fact, we have $u_\alpha = v_\alpha$ for every $\alpha \in \mathbb{N}_0^k$ since, for every $\beta \in \mathbb{N}_0^k$ and $x \in X$, we have $\langle x, u_\beta \rangle = \langle \varkappa^\beta, u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle x_\alpha^\beta, v_\alpha \rangle = \langle x, v_\beta \rangle$.

To conclude, we note that the uniqueness of u comes from the fact that, in the previous proof, we obtained as a by-result that $\{\varkappa^{\beta} \colon x \in X, \beta \in \mathbb{N}_0^k\}$ is total in Z.

4. Structure of the elements of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)'$

In this paragraph we are going to apply the results of the preceding one with $X = \mathcal{C}_0(\Omega)$.

Let us consider

$$V := \{ (D^{\alpha} f)_{\alpha \in \mathbb{N}_0^k} \colon f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega) \}$$

as a topological vector subspace of Z and introduce the map

$$\Phi \colon \mathcal{E}_0^{(\mathfrak{M})}(\Omega) \to V; \qquad f \mapsto (\mathrm{D}^{\alpha} f)_{\alpha \in \mathbb{N}_0^k};$$

it is clear that Φ is a topological isomorphism.

Theorem 4.1. Let $(\mu_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$ be a family of Borel measures on Ω . If there is $j \in \mathbb{N}$ such that $\sup_{\alpha \in \mathbb{N}_{0}^{k}} j^{-|\alpha|} M_{j,|\alpha|} |\mu_{\alpha}|(\Omega) < \infty$, then

$$S \colon \mathcal{E}_0^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad f \mapsto \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} f \, d\mu_{\alpha}$$

is a well defined continuous linear functional, these series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$.

Proof. For every $\alpha \in \mathbb{N}_0^k$, $\langle ., \mu_{\alpha} \rangle = \int_{\Omega} . d\mu_{\alpha}$ is a continuous linear functional on $C_0(\Omega)$, of norm $\|\mu_{\alpha}\| = |\mu_{\alpha}|(\Omega)$. Therefore, by the Propositions 3.2 and 3.1 successively, there is $u \in Z'$ such that

$$\langle (f_{\alpha})_{\alpha \in \mathbb{N}_{0}^{k}}, u \rangle = \sum_{\alpha \in \mathbb{N}_{0}^{k}} \langle f_{\alpha}, \mu_{\alpha} \rangle, \quad \forall (f_{\alpha})_{\alpha \in \mathbb{N}_{0}^{k}} \in Z,$$

and these series converge absolutely and uniformly on the bounded subsets of Z. Now we consider the restriction of u to V, that we still denote by u to simplify the notation. For every $f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega)$, we get

$$\langle (\mathrm{D}^{\alpha} f)_{\alpha \in \mathbb{N}_0^k}, u \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle \mathrm{D}^{\alpha} f, \mu_{\alpha} \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} \mathrm{D}^{\alpha} f \, d\mu_{\alpha}.$$

Let finally ${}^t\Phi\colon V'\to \mathcal{E}_0^{(\mathfrak{M})}(\Omega)'$ denote the transpose of Φ and set $S:={}^t\Phi u$. For every $f\in \mathcal{E}_0^{(\mathfrak{M})}(\Omega)$, we then get

$$\langle (D^{\alpha} f)_{\alpha \in \mathbb{N}_{\alpha}^{k}}, u \rangle = \langle \Phi f, u \rangle = \langle f, {}^{t} \Phi u \rangle = \langle f, S \rangle$$

hence the conclusion since it is clear that these series converge absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$.

Theorem 4.2. For every $S \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega)'$, there are $j \in \mathbb{N}$ and a family $(\mu_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of Borel measures on Ω such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} |\mu_{\alpha}|(\Omega) < \infty$$

and

$$\langle f, S \rangle = \sum_{\alpha \in \mathbb{N}_{\alpha}^{k}} \int_{\Omega} D^{\alpha} f \, d\mu_{\alpha}, \qquad \forall f \in \mathcal{E}_{0}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$.

Proof. Let us denote by Ψ the map Φ considered as a map from $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$ into Z. As its transpose ${}^t\Psi$ is surjective, there is $u \in Z'$ such that ${}^t\Psi u = S$. The Proposition 3.1 provides then $j \in \mathbb{N}$ and a family $(u_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of elements of $\mathcal{C}_0(\Omega)'$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} \|u_\alpha\| < \infty$$

and

$$\langle (\mathbf{D}^{\alpha} f)_{\alpha \in \mathbb{N}_0^k}, u \rangle = \sum_{\alpha \in \mathbb{N}_n^k} \langle \mathbf{D}^{\alpha} f, u_{\alpha} \rangle, \quad \forall f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$. For every $\alpha \in \mathbb{N}_0^k$, the Riesz representation theorem provides then a Borel measure μ_{α} on Ω such that $\|u_{\alpha}\| = |\mu_{\alpha}|(\Omega)$ and $\langle g, u_{\alpha} \rangle = \int_{\Omega} g \, d\mu_{\alpha}$ for every $g \in \mathcal{C}_0(\Omega)$. Hence the conclusion since we have

$$\langle (D^{\alpha}f)_{\alpha \in \mathbb{N}_0^k}, u \rangle = \langle \Psi f, u \rangle = \langle f, {}^t \Psi u \rangle = \langle f, S \rangle.$$

5. Structure of the elements of $\mathcal{D}^{(\mathfrak{M})}(\Omega)'$ with compact support

Theorem 5.1. Let $S \in \mathcal{D}^{(\mathfrak{M})}(\Omega)'$ have a compact support H and let K be a compact subset of Ω such that $H \subset K^{\circ}$.

Then there are an integer $s \in \mathbb{N}$ and a family $(\nu_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$ of Borel measures on Ω such that

$$\sup_{\alpha \in \mathbb{N}_0^k} s^{-|\alpha|} M_{s,|\alpha|} |\nu_{\alpha}|(\Omega) < \infty,$$

$$\sup_{\alpha \in \mathbb{N}_0^k} (\nu_{\alpha}) \subset K, \qquad \forall \alpha \in \mathbb{N}_0^k,$$

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} \varphi \, d\nu_{\alpha}, \qquad \forall \varphi \in \mathcal{D}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$ hence of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$.

Proof. Let ψ be an element of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$, identically 1 on a neighbourhood of H and with support contained in K° . Proceeding as in [5], S is the restriction to $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ of the element $\langle .\psi, S \rangle$ of $\mathcal{E}^{(\mathfrak{M})}(\Omega)'$. Therefore, as the canonical injection from $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$ into $\mathcal{E}^{(\mathfrak{M})}(\Omega)$ is continuous, the restriction T of $\langle .\psi, S \rangle$ to $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$ is a continuous linear extension of S. Moreover Theorem 4.2 provides an integer $j \in \mathbb{N}$ and a family $(\mu_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of Borel measures on Ω such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} |\mu_{\alpha}|(\Omega) < \infty,$$

$$\langle f, T \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} f \, d\mu_{\alpha}, \quad \forall f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$. Let us fix the integer s by the condition s > 4kj.

For every $f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega)$, we have $\langle f\psi, S \rangle = \langle f\psi^2, S \rangle$ hence

$$\langle f, T \rangle = \langle f \psi, T \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \sum_{\beta \leqslant \alpha} {\alpha \choose \beta} \int_{\Omega} D^{\beta} \psi D^{\alpha - \beta} f d\mu_{\alpha}.$$

Let us prove that this series converges absolutely so that, setting $\gamma = \alpha - \beta$, we also have

$$\langle f, T \rangle = \sum_{\gamma \in \mathbb{N}_0^k} \sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} D^{\beta} \psi \ D^{\gamma} f \, d\mu_{\beta + \gamma}.$$

For this purpose, it suffices to note that

$$\sum_{\beta \leq \alpha} {\alpha \choose \beta} \left\| \mathcal{D}^{\beta} \psi \right\|_{\Omega} \left\| \mathcal{D}^{\alpha - \beta} f \right\|_{\Omega} \leqslant (2k)^{-|\alpha|} \left\| \psi \right\|_{s, 1/s} \left\| f \right\|_{s, 1/s} j^{-|\alpha|} M_{s, |\alpha|}$$

leads to

$$\begin{split} \sum_{\alpha \in \mathbb{N}_0^k} \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} \int_{\Omega} |\mathcal{D}^{\beta} \psi| \; |\mathcal{D}^{\alpha - \beta} f| \, d|\mu_{\alpha}| \\ \leqslant \|f\|_{s, 1/s} \, \|\psi\|_{s, 1/s} \sum_{\alpha \in \mathbb{N}_k^k} (2k)^{-|\alpha|} \sup_{\gamma \in \mathbb{N}_0^k} j^{-|\gamma|} M_{j, |\gamma|} |\mu_{\gamma}|(\Omega) < \infty. \end{split}$$

Next we prove that, for every $\gamma \in \mathbb{N}_0^k$,

$$V_{\gamma} \colon \mathcal{C}_0(\Omega) \to \mathbb{C}; \qquad g \mapsto \sum_{\beta \in \mathbb{N}_0^k} \frac{(\beta + \gamma)!}{\beta! \gamma!} \int_{\Omega} g \mathrm{D}^{\beta} \psi \, d\mu_{\beta + \gamma}$$

is a well defined continuous linear functional. In fact, it suffices to note that we successively have

$$\begin{aligned} |\langle g, V_{\gamma} \rangle| &\leq \|\psi\|_{s, 1/s} \|g\|_{\Omega} \sum_{\beta \in \mathbb{N}_{0}^{k}} 2^{|\beta + \gamma|} s^{-|\beta|} M_{s, |\beta|} |\mu_{\beta + \gamma}|(\Omega) \\ &\leq \|\psi\|_{s, 1/s} \|g\|_{\Omega} \frac{s^{|\gamma|}}{M_{s, |\gamma|}} \sum_{\beta \in \mathbb{N}_{0}^{k}} (2k)^{-|\beta|} \sup_{\alpha \in \mathbb{N}_{0}^{k}} j^{-|\alpha|} M_{j, |\alpha|} |\mu_{\alpha}|(\Omega). \end{aligned}$$

So, for every $\gamma \in \mathbb{N}_0^k$, the Riesz representation theorem provides a Borel measure ν_{γ} on Ω such that $\langle g, V_{\gamma} \rangle = \int_{\Omega} g \, d\nu_{\gamma}$ for every $g \in \mathcal{C}_0(\Omega)$, in particular for $g = D^{\gamma} f$. Moreover it is clear that ν_{γ} has its support contained in K.

Let us now prove that we have

$$\sup_{\gamma \in \mathbb{N}_{\alpha}^{k}} s^{-|\gamma|} M_{s,|\gamma|} |\nu_{\gamma}|(\Omega) < \infty.$$

Indeed, for every $\gamma \in \mathbb{N}_0^k$, we can choose $g \in \mathcal{C}_0(\Omega)$ such that $||g||_{\Omega} \leq 2$ and $\langle g, V_{\gamma} \rangle = |\nu|(\Omega)$. Hence the conclusion since this leads to

$$\begin{split} s^{-|\gamma|} M_{s,|\gamma|} |\nu_{\gamma}|(\Omega) &= s^{-|\gamma|} M_{s,|\gamma|} |\langle g, V_{\gamma} \rangle| \\ &\leqslant 2 \left\|\psi\right\|_{s,1/s} \sum_{\beta \in \mathbb{N}_0^k} (2k)^{-|\beta|} \sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} |\mu_{\alpha}|(\Omega). \end{split}$$

Therefore we may apply Theorem 4.1 to the family $(\nu_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$ of Borel measures on Ω and obtain a continuous linear functional

$$R \colon \mathcal{E}_0^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad f \mapsto \langle f, R \rangle = \sum_{\alpha \in \mathbb{N}_k^k} \int_{\Omega} \mathcal{D}^{\alpha} f \, d\nu_{\alpha},$$

the series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$. Hence the conclusion since we have

$$\langle f, R \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} f \, d\nu_{\alpha} = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} f, V_{\alpha} \rangle = \langle f, T \rangle$$

for every $f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega)$.

6. Structure of the elements of $\mathcal{D}^{(\mathfrak{M})}(\Omega)'$

Theorem 6.1. Let $(u_{\alpha} : \alpha \in \mathbb{N}_0^k)$ be a family of Radon measures on Ω . If, for every non void compact subset K of Ω , there is $j \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} \|u_\alpha\| (K) < \infty,$$

then

$$S \colon \mathcal{D}^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad \varphi \mapsto \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle$$

is a well defined continuous linear functional, these series converging absolutely and uniformly on the bounded subsets of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$.

Proof. Let $(K_m)_{m\in\mathbb{N}}$ be a compact exhaustion of Ω such that $K_1^{\circ} \neq \emptyset$ and $K_m \subset K_{m+1}^{\circ}$ for every $m \in \mathbb{N}$. For every $m \in \mathbb{N}$, let us identify the spaces $\mathcal{K}(K_m)$ and $\mathcal{C}_0(K_m^{\circ})$ and designate by u_{α}^m the restriction of u_{α} to $\mathcal{K}(K_m)$. The Riesz representation theorem provides then, for every $m \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^k$, a Borel measure μ_{α}^m on K_m° such that

$$\langle f, u_{\alpha}^{m} \rangle = \int_{K_{m}^{\circ}} f \, d\mu_{\alpha}^{m}, \qquad \forall f \in \mathcal{C}_{0}(K_{m}^{\circ}),$$
$$||u_{\alpha}^{m}|| = |\mu_{\alpha}^{m}|(K_{m}^{\circ}), \qquad \forall m \in \mathbb{N}, \alpha \in \mathbb{N}_{0}^{k}.$$

So, for every $m \in \mathbb{N}$, there is an integer $j_m \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j_m^{-|\alpha|} M_{j_m,|\alpha|} |\mu_\alpha^m|(K_m^\circ) < \infty$$

and the Theorem 4.1 asserts that

$$S_m \colon \mathcal{E}_0^{(\mathfrak{M})}(K_m^{\circ}) \to \mathbb{C}; \qquad f \mapsto \sum_{\alpha \in \mathbb{N}_n^k} \int_{K_m^{\circ}} \mathrm{D}^{\alpha} f \, d\mu_{\alpha}^m$$

is a well defined continuous linear functional and that these series converge absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(K_m^{\circ})$.

The conclusion is now a standard matter.

Theorem 6.2. For every $S \in \mathcal{D}^{(\mathfrak{M})}(\Omega)'$, there is a family $(u_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$ of Radon measures on Ω such that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \langle D^{\alpha} \varphi, u_{\alpha} \rangle, \quad \forall \varphi \in \mathcal{D}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$. Moreover, for every non empty compact subset K of Ω , there is $j \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||u_{\alpha}||(K) < \infty.$$

Proof. Let $\{\Omega_m : m \in \mathbb{N}\}$ be an open, locally finite and relatively compact cover of Ω . Let moreover $\{\psi_m : m \in \mathbb{N}\}$ be a partition of unity subordinate to this cover and such that $\psi_m \in \mathcal{D}^{(\mathfrak{M})}(\Omega_m)$ for every $m \in \mathbb{N}$.

For every $m \in \mathbb{N}$, $\psi_m S$ belongs to $\mathcal{D}^{(\mathfrak{M})}(\Omega)'$ and has a compact support contained in Ω_m . Therefore, by Theorem 5.1, there are an integer $s_m \in \mathbb{N}$ and a family $(\nu_\alpha^m : \alpha \in \mathbb{N}_0^k)$ of Borel measures on Ω such that

$$\sup_{\alpha \in \mathbb{N}_0^k} s_m^{-|\alpha|} M_{s_m,|\alpha|} |\nu_\alpha^m|(\Omega) < \infty;$$

$$\sup_{\alpha \in \mathbb{N}_0^k} (\nu_\alpha^m) \subset \Omega_m, \quad \forall \alpha \in \mathbb{N}_0^k,$$

$$\langle f, \psi_m S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} D^{\alpha} f \, d\nu_\alpha^m, \quad \forall f \in \mathcal{E}_0^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{E}_0^{(\mathfrak{M})}(\Omega)$.

For every $f \in \mathcal{K}(\Omega)$, there is only a finite number of integers $m \in \mathbb{N}$ such that $\Omega_m \cap \operatorname{supp}(f) \neq \emptyset$. Therefore, for every $\alpha \in \mathbb{N}_0^k$,

$$u_{\alpha} \colon \mathcal{K}(\Omega) \to \mathbb{C}; \qquad f \mapsto \sum_{m \in \mathbb{N}} \int_{\Omega} f \, d\nu_{\alpha}^{m}$$

is a well defined linear functional.

Moreover, for every non void compact subset K of Ω , there is an integer $m_0 \in \mathbb{N}$ such that $K \cap \Omega_m = \emptyset$ for every $m > m_0$. Therefore, if $f \in \mathcal{K}(\Omega)$ has its support contained in K, we get

$$|\langle f, u_{\alpha} \rangle| \le ||f||_{\Omega} \sum_{m=1}^{m_0} |\nu_{\alpha}^m|(\Omega)|$$

which implies that u_{α} is a Radon measure on Ω such that $||u_{\alpha}|| (K) \leq \sum_{m=1}^{m_0} |\nu_{\alpha}^m|(\Omega)$. Moreover if we set $j := \sup\{s_m : m = 1, \dots, m_0\}$, we obtain

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||u_\alpha||(K) \leqslant \sum_{m=1}^{m_0} s_m^{-|\alpha|} M_{s_m,|\alpha|} |\nu_\alpha^m|(\Omega) < \infty.$$

Therefore, by Theorem 6.1,

$$R \colon \mathcal{D}^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad \varphi \mapsto \sum_{\alpha \in \mathbb{N}_0^k} \langle \mathrm{D}^{\alpha} \varphi, u_{\alpha} \rangle$$

is a continuous linear functional, these series converging absolutely and uniformly on the bounded subsets of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$.

To conclude, we just have to note that, if $\varphi \in \mathcal{D}^{(\mathfrak{M})}(\Omega)$ has its support con-

tained in the non void compact subset K of Ω , we successively have

$$\langle \varphi, S \rangle = \langle \varphi, \sum_{m=1}^{m_0} \psi_m S \rangle = \sum_{m=1}^{m_0} \langle \varphi, \psi_m S \rangle = \sum_{m=1}^{m_0} \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} \mathbf{D}^{\alpha} \varphi \, d\nu_{\alpha}^m$$

$$= \sum_{\alpha \in \mathbb{N}_0^k} \sum_{m=1}^{m_0} \int_{\Omega} \mathbf{D}^{\alpha} \varphi \, d\nu_{\alpha}^m = \sum_{\alpha \in \mathbb{N}_0^k} \langle \mathbf{D}^{\alpha} \varphi, u_{\alpha} \rangle.$$

7. Notations for the L^p -case

Given p such that $1 \leq p \leq \infty$, $L^p(\Omega)$ and $\mathcal{L}^p(\Omega)$ designate the classical Lebesgue spaces and for $f \in \tilde{f} \in \mathcal{L}^p(\Omega)$, we set

$$||f||_p = ||\tilde{f}||_p = (\int_{\Omega} |f|^p dx)^{1/p}$$
 if $1 \le p < \infty$

and

$$||f||_{\infty} = ||\tilde{f}||_{\infty} = \sup \operatorname{ess}\{|f(x)| : x \in \Omega\}.$$

Given $p \in [1, \infty[$, we now adapt the introduction by Schwartz of the space $\mathcal{D}_{L^p}(\mathbb{R}^k)$ (cf. [11], p. 199) to our setting.

The Fréchet spaces $\mathcal{B}_{L^p}^{(M_j)}(\Omega)$ and $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)$.

For every $j \in \mathbb{N}$, one first considers the Fréchet space $\mathcal{B}_{L^p}^{(M_j)}(\Omega)$ introduced in [13]. Its elements are the \mathcal{C}^{∞} -functions f on Ω such that $D^{\alpha} f \in \mathcal{L}^{p}(\Omega)$ for every $\alpha \in \mathbb{N}_0^k$ and

$$|f|_{p,j,r} := \sup_{\alpha \in \mathbb{N}_0^k} \frac{||\mathbf{D}^{\alpha} f||_p}{r^{|\alpha|} M_{j,|\alpha|}} < \infty, \quad \forall r > 0,$$

The spaces
$$\mathcal{D}_{L^p}^{(M_j)}(K)$$
, $\mathcal{D}_{L^p}^{(M_j)}(\Omega)$, $\mathcal{D}_{L^p}^{(\mathfrak{M})}(K)$ and $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$.

and $\{|.|_{p,j,r}: r>0\}$ is its fundamental system of semi-norms. We then introduce the Fréchet space $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)$ as the projective limit of the spaces $\mathcal{B}_{L^p}^{(M_j)}(\Omega)$.

The spaces $\mathcal{D}_{L^p}^{(M_j)}(K)$, $\mathcal{D}_{L^p}^{(M_j)}(\Omega)$, $\mathcal{D}_{L^p}^{(\mathfrak{M})}(K)$ and $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$.

Given a non void compact subset K of \mathbb{R}^k and $j\in\mathbb{N}$, one can introduce as in [13] the Fréchet space $\mathcal{D}_{L^p}^{(M_j)}(K)$ as the topological vector subspace of $\mathcal{B}_{L^p}^{(M_j)}(\mathbb{R}^k)$ the elements of which have their support contained in K and the space $\mathcal{D}_{L,p}^{(M_j)}(\Omega)$ as the inductive limit of the spaces $\mathcal{D}_{L^p}^{(M_j)}(H)$ where H runs through the family of the non void compact subsets of Ω .

In the same way, the Fréchet space $\mathcal{D}_{L,p}^{(\mathfrak{M})}(K)$ is the topological vector subspace of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\mathbb{R}^k)$, the elements of which have their support contained in K and the (LF)-space $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$ is the inductive limit of the spaces $\mathcal{D}_{L^p}^{(\mathfrak{M})}(H)$ where H runs through the family of the non void compact subsets of Ω .

It is a direct matter to prove the following property.

Proposition 7.1. The multiplication map

$$\mathcal{B} \colon \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega) \times \mathcal{E}_0^{(\mathfrak{M})}(\Omega) \to \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega); \qquad (f,g) \mapsto fg$$

is a well defined continuous bilinear map.

Proposition 7.2. The space $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ is a dense vector subspace of the space $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$ and the canonical injection from $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ into $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$ is a continuous linear map.

Proof. From the paragraph 5 of [6], we know that, for every r > 0, there is $\varphi \in \mathcal{D}^{(\mathfrak{M})}(\mathbb{R}^k)$ identically 1 on a neighbourhood of 0 and having its support contained in $\{x \colon |x| \leq r\}$.

Therefore a direct adaptation of the proof of the proposition 5 of [13] with $\psi_i \in \mathcal{D}^{(\mathfrak{M})}(\mathbb{R}^k)$ for every $i \in \mathbb{N}$ leads to the conclusion.

The previous result justifies the fact that the elements of $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)'$ may be considered as ultradistributions. The next one says that the spaces $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ and $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$ coincide under the nuclearity condition that \mathfrak{M} is regular.

Proposition 7.3. If the matrix \mathfrak{M} is regular, then, for every $p \in [1, \infty[$, the canonical injection I from $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ into $\mathcal{D}^{(\mathfrak{M})}_{L^p}(\Omega)$ is a topological isomorphism.

Proof. As a consequence of the previous result, we just need to prove that, if \mathfrak{M} is regular, I is onto and has a continuous inverse. For this purpose, let us remark that the regularity of \mathfrak{M} implies that, for every $j \in J$, there are $A'_j > 1$ and $H'_j > 1$ such that $M_{j+k,r+k} \leqslant A'_j H'^{rk}_j M_{j,r}$ for every $r \in \mathbb{N}_0$.

Now let K be any non void compact subset of Ω , φ be any element of $\mathcal{D}_{L^p}^{(\mathfrak{M})}(K)$ and $\|.\|_{j,h}$ be any continuous semi-norm on $\mathcal{D}^{(\mathfrak{M})}(K)$. Let us set $\mathbf{1}=(1,\ldots,1)\in\mathbb{N}_0^k$ and let C>0 be such that $K\subset[-C,C]^k$. For every $\alpha\in\mathbb{N}_0^k$, we then have

$$D^{\alpha}\varphi(x) = \int_{\mathbb{R}^k} \chi_{[-C,x_1] \times \cdots [-C,x_k]}(t) D^{\alpha+1}\varphi(t) dt, \qquad \forall x \in \Omega,$$

hence $||D^{\alpha}\varphi||_K \leq B||D^{\alpha+1}\varphi||_p$ with $B = (2C)^{k/q}$ if $q \in]1, \infty[$ and B = 1 if $q = \infty$. So, for $s \in]0, h/H_j^{\prime k}[$, we get

$$\|\varphi\|_{j,h} \leqslant B |\varphi|_{p,j+k,s} \sup_{\alpha \in \mathbb{N}_{k}^{k}} \frac{s^{|\alpha|+k} M_{j+k,|\alpha|+k}}{h^{|\alpha|} M_{j,|\alpha|}} \leqslant B A'_{j} h^{k} |\varphi|_{p,j+k,s}$$

and we conclude at once.

Open question. Are the spaces $\mathcal{D}^{(\mathfrak{M})}(\Omega)$ and $\mathcal{D}^{(\mathfrak{M})}_{L^p}(\Omega)$ different in general?

8. Structure of the elements of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)'$

In the following two proofs, we apply the intermediate step with $X = L^p(\Omega)$. Let us consider

$$V := \{ (D^{\alpha} f)_{\alpha \in \mathbb{N}_0^k} \colon f \in \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega) \}$$

as a topological vector subspace of Z and introduce the map

$$\Phi \colon \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega) \to V; \qquad f \mapsto (\mathrm{D}^{\alpha} f)_{\alpha \in \mathbb{N}_0^k};$$

it is clear that Φ is a topological isomorphism.

Let also q designate the conjugate number of p, i.e. $q = \infty$ if p = 1 and 1/q = 1 - 1/p if $p \in]1, \infty[$.

Proceeding as in the proof of the Theorems 4.1 and 4.2 provides directly the following two results.

Theorem 8.1. Let $(g_{\alpha} : \alpha \in \mathbb{N}_0^k)$ be a family of elements of $L^q(\Omega)$. If there is $j \in \mathbb{N}$ such that $\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||g_{\alpha}||_q < \infty$, then

$$S \colon \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad f \mapsto \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} f \, dx$$

is a well defined continuous linear functional, these series converging absolutely and uniformly on the bounded subsets of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)$.

Theorem 8.2. For every $S \in \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)'$, there are $j \in \mathbb{N}$ and a family $(g_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of elements of $L^q(\Omega)$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||g_\alpha||_q < \infty$$

$$\langle f, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} f \, dx, \qquad \forall f \in \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)$.

9. Structure of the elements of $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)'$

Theorem 9.1. Let $S \in \mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)'$ have a compact support H and let K be a compact subset of Ω such that $H \subset K^{\circ}$.

Then there are an integer $s \in \mathbb{N}$ and a family $(g_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$ of elements of $L^{q}(\Omega)$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} s^{-|\alpha|} M_{s,|\alpha|} ||g_{\alpha}||_q < \infty,$$

$$\sup_{\alpha \in \mathbb{N}_0^k} |g_{\alpha}| \subset K, \qquad \forall \alpha \in \mathbb{N}_0^k,$$

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} \varphi \, dx, \qquad \forall \varphi \in \mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)$ hence on those of $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$.

Proof. Let ψ be an element of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$, identically 1 on a neighbourhood of H and with support contained in K° . By Proposition 7.1, we know that

$$T \colon \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad f \mapsto \langle f\psi, S \rangle$$

is a continuous linear functional. Therefore, Theorem 8.2 provides an integer $j \in \mathbb{N}$ and a family $(g_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of elements of $L^q(\Omega)$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||g_\alpha||_q < \infty,$$

$$\langle f, T \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} f \, dx, \qquad \forall f \in \mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(\Omega)$. To conclude, one has just then to follow the argument of the proof of the Theorem 5.1.

Theorem 9.2. Let $(g_{\alpha} : \alpha \in \mathbb{N}_0^k)$ be a family of elements of $L_{loc}^q(\Omega)$. If, for every non void compact subset K of Ω , there is $j \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||g_{\alpha}||_{q,K} < \infty,$$

then

$$S \colon \mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega) \to \mathbb{C}; \qquad \varphi \mapsto \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} \varphi \, dx$$

is a well defined continuous linear functional and these series converge absolutely and uniformly on the bounded subsets of $\mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)$.

Proof. Let $(K_m)_{m\in\mathbb{N}}$ be a compact exhaustion of Ω with negligeable borders such that $K_1^{\circ} \neq \emptyset$ and $K_m \subset K_{m+1}^{\circ}$ for every $m \in \mathbb{N}$. For every $m \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^k$, $g_{\alpha}^m = g_{\alpha}|_{K_m^{\circ}}$ belongs to $L^q(K_m^{\circ})$ with $\|g_{\alpha}^m\|_q = \|g_{\alpha}\|_{q,K_m}$. Therefore, by Theorem 8.1,

$$S_m \colon \mathcal{B}_{L^p}^{(\mathfrak{M})}(K_m^{\circ}) \to \mathbb{C}; \qquad f \mapsto \sum_{\alpha \in \mathbb{N}_m^k} \int_{K_m^{\circ}} g_m^{\alpha} \mathrm{D}^{\alpha} f \, dx$$

is a well defined continuous linear functional on $\mathcal{B}_{L^p}^{(\mathfrak{M})}(K_m^{\circ})$, these series converging absolutely and uniformly on the bounded subsets of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(K_m^{\circ})$. As $\mathcal{D}_{L^p}^{(\mathfrak{M})}(K_m)$ can be considered as a topological vector subspace of $\mathcal{B}_{L^p}^{(\mathfrak{M})}(K_m^{\circ})$, the conclusion is now a standard matter.

Theorem 9.3. For every $S \in \mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega)'$, there is a family $(g_{\alpha} : \alpha \in \mathbb{N}_0^k)$ of elements of $L^q_{loc}(\Omega)$ such that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} \varphi \, dx, \qquad \forall \varphi \in \mathcal{D}_{L^p}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{D}_{L_{P}}^{(\mathfrak{M})}(\Omega)$.

Moreover, for every non void compact subset K of Ω , there is $j \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||g_\alpha||_{q,K} < \infty.$$

Proof. One has just to proceed as in the proof of the Theorem 6.2, replacing $\mathcal{K}(\Omega)$ by $L^p_{\text{comp}}(\Omega)$.

The Proposition 7.3 leads then directly to the following result.

Corollary 9.4. If \mathfrak{M} is regular and q belongs to $]1, \infty[\cup\{\infty\}]$, then, for every $S \in \mathcal{D}^{(\mathfrak{M})}(\Omega)'$, there is a family $(g_{\alpha} : \alpha \in \mathbb{N}_{0}^{k})$ of elements of $L^{q}_{loc}(\Omega)$ such that

$$\langle \varphi, S \rangle = \sum_{\alpha \in \mathbb{N}_0^k} \int_{\Omega} g_{\alpha} D^{\alpha} \varphi \, dx, \qquad \forall \varphi \in \mathcal{D}^{(\mathfrak{M})}(\Omega),$$

these series converging absolutely and uniformly on the bounded subsets of $\mathcal{D}^{(\mathfrak{M})}(\Omega)$. Moreover, for every non void compact subset K of Ω , there is $j \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{N}_0^k} j^{-|\alpha|} M_{j,|\alpha|} ||g_\alpha||_{q,K} < \infty.$$

References

- [1] P. Beaugendre, Extension de jets dans des intersections de classes non quasianalytiques, Ann. Polon. Math. LXXVI (2001), 214–243.
- [2] P. Beaugendre, *Intersection de classes non quasi-analytiques*, Thèse de doctorat, Université de Paris XI, UFR Scientifique d'Orsay, **2404** (2002), 84 pp.
- [3] R. W. Braun, R. Meise and B. A. Taylor, *Ultradifferentiable functions and Fourier analysis*, Result. Math. 17 (1990), 206–237.
- [4] J. Chaumat and A.-M. Chollet, Propriétés de l'intersection des classes de Gevrey et de certaines autres classes, Bull. Sci. math. 122 (1998), 455–485.
- [5] H. Komatsu, *Ultradistributions, I: Structure theorems and a characterization*, J. Fac. Sc. Tokyo, Ser. I A, **20** (1973), 25–105.
- [6] J. Schmets and M. Valdivia, Intersections of non quasi-analytic classes of ultradifferentiable functions, Bull. Soc. Roy. Sc. Liège, 77 (2008), 29–43. (available at http://www.srsl-ulg.net)
- [7] J. Schmets and M. Valdivia, *Mixed intersections of non quasi-analytic classes*, Rev. R. Acad. Cien. Serie A. Mat., **102** (2008), 211–220.
- [8] J. Schmets and M. Valdivia, Tensor product characterizations of mixed intersections of non quasi-analytic classes and kernel theorems, Math. Nach., 282 (2009), 604–610.
- [9] J. Schmets and M. Valdivia, Extension properties in intersections of non quasi-analytic classes, Note Mat., 25 (2005/2006), 159–185.
- [10] J. Schmets and M. Valdivia, Explicit extension maps in intersections of non quasi-analytic classes, Ann. Polon. Math. 86 (2005), 227–243.

- [11] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
- [12] M. Valdivia, On the structure of the space of ultradistributions of Beurling type, Rev. R. Acad. Cien. Serie A. Mat. 102 (2) (2008), 1–15.
- [13] M. Valdivia, On the ultradistributions of Beurling type, Rev. R. Acad. Cien. Serie A. Mat. 103 (1) (2009), 55–74.

Addresses: Jean Schmets: Institut de Mathématique, Université de Liège, Sart Tilman Bât.
B 37, B-4000 Liege 1, Belgium;
Manuel Valdivia: Facultad de Matemáticas, Universidad de Valencia, Dr. Moliner 50,
E-46100 Burjasot (Valencia), Spain.

E-mail: j.schmets@ulg.ac.be

Received: 23 November 2009; revised: 29 June 2010