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HAUSDORFF DIMENSION OF THE RECURRENCE SETS
OF GAUSS TRANSFORMATION ON THE FIELD OF LAURENT
SERIES

LAN ZHANG, SIKUI WANG

Abstract: Define the recurrence set of Gauss transformation 7" on the field of Laurent series as
following
E(zg) ={xz€I:T"(z) € I, (xo) for infinitely many n},

where It, (o) denotes t,-th order cylinder of zg. In this paper, the Hausdorff dimension of the
set F(wxo) is determined.
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1. Introduction

It is known that the continued fraction of a real number can be generated by the
Gauss transformation T : [0,1) — [0,1) defined by

T(x):=——[=], 70 := 0.

where [z] denotes the integer part of . Fernandez and Melian [4] have considered
with quantitative recurrence properties in continued fraction dynamical system.

In this paper, we consider the analogous problem for the continued fraction
expansion on the field of formal Laurent series. We study the Hausdorff dimen-
sions of the recurrence sets of Gauss transformation on the field of Laurent series.
The Hausdorff dimensions of some other sets occurring in the continued fraction
expansion of Laurent series have been discussed in [6], [8], [9] and [12].

2. Preliminaries

Let p be a prime, ¢ be a power of p, and F, be a finite field of ¢ elements.
Let F,((271)) denote the field of all formal Laurent series B = Y. ¢,2~" in an

n=uv
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indeterminate z, with coefficients ¢, all lying in the field F,. Recall that F,[z]
denotes the ring of polynomials in z with coefficients in F,. For the above formal
Laurent series B, we may assume that ¢, # 0. Then the integer v = v(B) is called
the order of B. The norm (or valuation) of B is defined to be ||B|| = ¢~ *(5). Tt is
well known that || - || is a non-Archimedean valuation on the field F,((27!)) and
F,((z71)) is a complete metric space under the metric p defined by p(B1, B2) =
[|Br — Ba|l.

For B= Y c,27" € Fy((z7Y)), let [B] = Y cpz™ € Fylz]. We call [B]

n=v v<n<0

the integral part of B. It is evident that the integer —v(B) := —wv is equal to the
degree deg[B] of the polynomial [B] provided v < 0, i.e., [B] # 0. Let I denote

the valuation ideal of F,((271)). It consists of all formal series Y ¢,2~™. The
n=1
o0
ideal I is compact because it is isomorphic to [] F,. A natural measure on I is

n=1

the normalized Haar measure on [[ F,, which we denote by P.
n=1
Consider the following transformation from I to I defined by

T(x) :=——[—], 70 :=0.

this map describes the regular continued fraction over the field of Laurent series
and has been introduced by Artin [1]. As in the classical theory, every z € T has
the following continued fraction expansion

1

= [O;Al(z)7A2(x)7"']’ (1)

A3(1‘) =+ E

where the digits A,,(z) are polynomials of a strictly positive degree and are defined
by

]
T 1(z)"

The metric and ergodic properties of continued fraction of Laurent series have
been studied by Niederreiter [8], Niederreiter and Vielhaber [9] and Berthé and
Nakada [2].

The following results will be used frequently. For more details, we refer to the
results in [2], [5], [7] and [11].

As in the real case, P,(x) and @, (z) are obtained by the following recurrence
formulae

Ap(z) =] n>1.

P_; =1, Py =0, Pn:AnPn,—1+Pn—2; n = 2.

Q,]_ =0, QO =1, Qn = Ananl + Qn727 n 2= 2.
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We call (};7((?) the n-th convergents of z, since

P, (x)

Lemma 2.1 ([2]). Let Ay, As, -+, Ay, be given polynomials with a strictly positive
degree and put

= [0; A1 (w), A2 (2), -+, Ap(2)], (2= 1).

In(A17A2, v 7An) = {l’ el: Al(fﬂ) = Al,AQ(IE) = AQ,' . ,An(IE) = An}
Then I,(A1, Ag, -+, A,) is a closed disc with diameter equal to

—2 i deg Ap—1
|I77,(A17A27' o ?An)l =q k=1

and B
-2 deg A
P(I,(A1, Ay, -, An)) =4 g::l ¢ .

Remark 2.2. We call I,,(A1, As,--- , Ay,) in Lemma 2.1 an n-th digital cylinder.
Since the valuation ||-|| is non-Archimedean, if two cylinders intersect, one contains
the other.

Lemma 2.3 ([6]). Let s, be the unique solution of
oo 1 .
=Y - D) = 1 2)
k=1

Then sq is continuous with respect to a. Furthermore,

lim s, =1, lim s, = =.
a—1 a—00 2

3. Hausdorff dimension of E(xo)

Now, we are ready to study the Hausdorff dimension of the set E(x(), which is
the main result of this paper.

Theorem 3.1. Let xg € I have continued fraction expansion xo = [A1(xo),
As(xg), -] and t,, be a non decreasing sequence of natural numbers. Write

tn
2 5" deg Ak (zo)
liminf =L — .
n—0oo n

If 1 < a < 400, then we have

dimy E(xz0) = Sa-
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Before proving Theorem 3.1, we state the mass distribution principle (see[3]),
which shall be applied to obtain a lower bound for dimg E(x¢).

Lemma 3.2 ([3]). Suppose E C I and p is a measure with u(E) > 0. If there
exist constants ¢ > 0 and § > 0 such that

w(D) = ¢|DJ*,
for all discs D with diameter |D| < 0, then
dimg F > s

Proof of Theorem 3.1. Firstly we give an upper bound for dimy F(z(). Notice
that

E(xg) ={x € I:T"(z) € I, (x) for infinitely many n}

=limsup{z € [ : T"(z) € I, (x9)} = ﬂ U{xé[ T"(z) € It, (x0)}

n—oo N=1n>N

:ﬁ U U {rel:Ap(x)=AreN, 1 <k<n

N=1n>N Ay, A,
Apyj(r) = Apgj(zo), 1 <J <t}

where the fourth union takes over all (41, -+, 4,) € (F4[z])™ with strictly positive
degree.
For any € > 0 and 7 > 0, when n is large enough, we have s, < so—_c + 7 and

tn
2 3 deg Ag(xo0)
k=1

n

1 Sa—etT
Se—etT <1 .
H (E(xo))\lmgfz ZA< )

n=N Ap,-, A, 2 Z deg A (z0) 2 Z deg Ak

> « — €. Then

q *=! q*
1 Sa—etT
hmlnf Z Z ( )
SN AL An (a— )2ZdegAxc
qmeTq
n Sa—etT
:1}\1/'11}513 n(a E)(ga e+7) HZ( 2deg A; >
n}N j=1 Aj
1 n
= lim inf
N—o00 q”(a 6)(éa e+7) Qk(sCY e+7)
n>N 1
o QA—€)Sa—e
S ot (q(a A oa 5+T)>

Therefore
dimpy E(zg) < Sq—e + T
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Since 7 and € are arbitrary positive constants, from Lemma 2.3, we have
dimpg E(zo) < Sq-
Now we give a lower bound of dimpg E(x¢). Let I denote the set {ng,nx + 1,

ng 42, g +tn, — 1,k > 1}

Step I In this part, we will construct a subset Eg(xo) C E(zo).
tng,

k
2 Y deg Ak (zo)

Fix 8 € N and a sequence {ny} C N, which satisfy klin;o k=1 o = o and
+oodng it < ! v (3)
ny+--+n ne < ——"Ngt1, .
1 k P g e k>1
by
Assume that ng(a—e€) <2 > deg Aj(xo) < ng(a+e€), Vis1.
j=1
Let
Eg(zo) ={zx €l :x=[ai,a2, - ,an, |, degan,,+; = deg Aj(z0), k > 1,
1<]<tn“ 1 nggaJ gﬂv]%{nk+1ank+2v ank—'_tnk? k> 1}}
Obviously

Let sq+c(8) be the unique solution of

B

> (g —1)gFq " = glotos,
k=1

we will show that dimy Eg(z0) = Sate(5)-
For any n > 1, define

Dn={(o1,--- o) € (Fy[2])" - Ep(wo) N In(on, -+, 0m) # 0}

D= L_JODR, (Dg := 0).

For any n > 1 and (01, ,0,) € Dy, we call
T on) = | dlusilon ou) (1)
On+1

a basic interval of order n with respect to Eg(x¢), where the union in (4) is taken
over all 0,41 such that (o1, ,0p,0,+1) € Dpt1 and cl stands for the closure.

For any z,y € J(o1, - ,0n), let & € I(01,- - ,0n,0n4+1) and y € I(o1,- -+ ,0n,
U;LH) with degop41 < deg U;LH. Then

n - ;1 1
T Tl (5)

x—y|= .
= e 0@ S Q@)

Equality holds if deg g,,11 # deg O‘;L 11
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Combining with Lemma 2.1, we have

Case I. If n €T, ie., ny <n <ng+ty,,, for some k > 1.

nt1
—2 % degop—1
|J(01"" 7Un)|:q k=1 . (6>

Case II. If n ¢ T, ie., ng +t,, <n < mngyi, for some k > 1.

—2 z”: degor—1
|J(Ulv"' 7Jn)|:q k=1 .

It is clear that

Be=0 U Jon o ®

n2l (o1, ,0n)€Dn

Step II. For the lower bound, we define a probability measure supported on Eg(x¢).
Let my = ng — ng—1 — tp,_, with k£ > 1 and ng = ¢,,, := 0. Now we define a
set function p : {J(0),0 € D\Do} — R as follows .

Denote
on;
2 = dega;
L _ I=n g4t _q+1
dm; = qm; (ani71+tni_1+1’ e 7U’M) =q
For any n > 1 and (o1, ,0,) € Dy, let

M(J(Ula T ’an)) =
k 1 Sa+e 1
szl(m)g +»(ﬁ), 1fn€{nk’... 7nk—i—tnk,k‘Zl} 9)
IU’(J(Ula"' 70nk))a if Nk—1 +tnk_1 <n<ng
deg oy, degon, <B

Until now, the set function p : {J(¢),0 € D\Dy} — R* is well defined. By
Lemma 2.3, for any n > 1 and (o1, -+ ,0,) € D,, we have

,LL(J(O'l,”' ’UTL)) = Z N(J(O'lﬁ"' 70n+1))7

On+1

where the summation is taken over all 0,1 such that (o1, -+ ,0,,0,41) € Dpt1.
Notice that

Z N(J(Jlﬂ'"ﬂa—m)):l'

(o1, 7’771,1)6Dn1

By Kolmogorov extension theorem, the set function u can be extended into a
probability measure supported on Eg(xz¢), which is still denoted by u.
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Step III. We now give the estimation of u(J(o1, -+ ,0n)), for each (o1, ,0p) €
D,.
Fix 0 < t < sq+c(0), take 7 = % We claim that there is an integer NV
such that n > N and (o1, ,0,) € D,, implies
:u(‘](o'lf" ’a'n)) <c- |J(Ul7"' 70n)|t72‘r7 (10)

where ¢ > 0 is an absolute constant.

Choose ky sufficiently large such that

Take ¢o = ¢*0P Hfozl ¢"i(@+9) Then

ko 1 ko 1 t
(—————)%+B) <1 < e ( ) . (12)
jl;[l qma(a+e)qmj =0 ]1;[1 qny(aJre)qmj
For any n > ny, and (o1, -+ ,0,) € Dy, we will distinguish two cases to

establish pu(J (o1, ,0n)).

Case I. ni, < n < ng + ty,, for some k > ko.

k
1 S
(o sou)) = [ (g )
j=1 mj

Sate(B) K 1 sate(B)
o H < mJ(a+e)q ) j:l;)[H (qmj(a+€)qmj)
ko 1 t k 1 t+7
<oll (q”f(““)qmj) 11 (qmﬂ'(“*f)qmj) (by (12))

Jj=ko+1

ko 1 t k 1 t k 1 t
<oll (Gma,) 1L G) 1L G) ovow)

( 1 )t : 1
- X Co-

n;(ate tn

q ( )Qmj i=1 2t Zk deg A;(z0)

g =1 (Qmj )t
<colJ(o1,---,00)|"" "  (by (6) and (7)).

|

Q

o
BN
I =
N
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Case II. ng_y + tp, , <n < ny, for some k > ko.
Let ¢ = ny — n. By the definition of p, proceeding in the similar way as in
Case I, we have

N(J(Ulﬂ"' 7Un)> = Z N(J(Ulf" yOny On+1, """ 7Jnk))

On+1,"""0ny,

k—1 1 Sa+te(B) 1 Sa+e(B)
(e > N\ owera
qmj(a+6)Qmj qu(a+e)qu

j=1 On41,""",0ny

. 1 Sa+e(B)
< ¢ ng_1+tng_, Z (W%>

2(t—T) > i Tn+1,""",0ny,

q i=1

1 1 Su+s(ﬁ)
<cp— Z <qer(a+e)ql%>

2(t—7) > dego; C1im 1O
q i=1 v

< coglJ (01, ,00)["7*7 (by (6) and (7)).

Step IV. In this part, we will estimate the measure of B(z, 7).

For any « € Eg(zg), there exists an infinite sequence {1, 02, - - - } with oy, 4; =
Aj(xO)v k 2 17 1 gjg tnka 1 g Uj <ﬁ7 .7 ¢{nk+1,nk—|—2, 7nk7+t’ﬂk7k 2 1}7
such that € J(o1,---,0n), for all n > 1. Let 7y = Hll)in |J(o)|, for any

(4SS ko
0 < r < g, there exists an integer n > ny, such that

[J(o1;- s om, onpa)| <7 < [J(01, -+ 5 0m)]- (14)

Now we distinguish two cases to estimate the measure of B(z,r).
Case I. n €T, ie., np < n < ng+ty,, for some k > 1.

In this case, the ball B(x,r) can only intersect with one basic interval of order
n, which is just J(oy,- -+ ,0,) and can intersect at most one basic interval of order
n + 1. From the dimension of the measure p and (10), we have

w(B(z,r)) < p(J(o1, -+ ,00))
=Hu J(o )" ,O0n
(J (o1 +1))1t N (15)
<colJ (o1, O0ng1)]
< Co"l“|t_2T

Case II. n ¢ T
By the dimension of the measure p, we have

1
/L(J((Tl,... ,Un70n+1)) = WM(J(UL... 70n))'
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From (10) and (14), we obtain

M(B(l’, 7“)) < q(a+6)+2ﬁﬂ(‘](o—17 T ,0n+1))
< Co - q(a—&-e)—&-?ﬂ'(](o_l’ T 7Un+1)|t_2T (16)
< 4coq(a+6)+2ﬁ . ,],,t72‘r'

Combining these two cases with Lemma 3.2, we can get
dimy Eg(xo) >t — 27 = 2t — S(q4¢)(5).
Since t < 8(q4¢) () is arbitrary, we have
dimpg E(z0) > dimpy Eg(20) = S(ate)(0)-
Therefore Theorem 3.1 is proved . |
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