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CYCLE-LENGTHS OF A CLASS OF MONIC BINOMIALS

Władysław Narkiewicz

Abstract: Let K be an algebraic field of degree N and let p be an odd prime. It is shown that
if K does not contain p-th primitive roots of unity and f(X) = Xpk

+ c with k > 1 and non-zero
c ∈ K, then the length of cycles of f in K is bounded by a value depending only on K and p. If
p > 2N , then this bound depends only on N .
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1. Let F be a polynomial with coefficients in a field K. A sequence a1, a2, . . . , ak

of distinct elements of K is said to be a cycle of length k for F provided one has
F (ai) = ai+1 for i = 1, 2, . . . , k − 1 and F (ak) = a1.

It has been conjectured by P.Russo and R.Walde in [RW] that the length of
a cycle for a quadratic polynomial in the rational number field is bounded by an
absolute constant. One expects this constant to be equal to 3. P.Morton ([Mo])
proved that quadratic polynomials cannot have a cycle of length four in the rational
field, and T.Erkama ([Er]) showed that the same happens in the field Q(i). The
impossibility of a cycle of length five in the rational case has been established
by E.V.Flynn, B.Poonen and E.F.Schaefer ([FPS]), and M.Stoll ([S]) showed that
the conjecture of Birch and Swinnerton-Dyer implies the non-existence of 6-cycles.
The Russo-Walde conjecture was later extended by P.Morton and J.Silverman
([MS]), who conjectured that there is a constant B(n, d) such that the union of all
finite orbits of polynomials of degree d in an algebraic number field K of degree n
cannot have more than B(n, d) elements.

In this note we shall consider binomials F (X) = Xn + c with n = pr, where p
is an odd prime. If K is a real field, then F is increasing hence it cannot have in K
cycles longer than 1. This argument is not applicable to totally complex algebraic
number fields but we shall show that if K does not contain primitive p-th roots
of unity, then the lengths of cycles of F in K are bounded by a value depending
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on K and p, and if p > 2[K:Q], then this bound depends only on the degree of K.
Note that the assumption about roots of unity implies that every finite orbit of F
forms necessarily a cycle.

Theorem. Let K be a totally complex extension of the rationals of degree N > 1,
denote by R its ring of integers and let D be the maximal order of a primitive
root of unity contained in K. Let p be a prime not dividing D, and put F (X) =
Xn + c ∈ K[X] with n being a power of p and c 6= 0. Then the lengths of cycles
of F in K are bounded by a constant depending only on K and p. If p > 2N , then
this constant can be taken to be N2N+1(2N − 1).

2. In this section R will be an arbitrary Dedekind domain, and K its field of
fractions. For a prime ideal p we denote by νp the corresponding additive valuation
of K. We shall deal with polynomials F (X) = Xn +c with c ∈ K \R. This implies
that there exist prime ideals p with νp(c) < 0. We shall denote the m-th iterate
of polynomial F by Fm.

We start with a simple observation:

Lemma 1. Let n > 2, F (X) = Xn + c with c ∈ K \R, let

r1 7→ r2 7→ . . . 7→ rk 7→ r1

be a cycle of F , lying in K, and prolong this cycle periodically by putting rm+k =
rm for m = 1, 2, . . . . Then all rj’s are non-zero, and if p is a prime ideal of R
with νp(rj) < 0 for some j, then νp(c) < 0.

Proof. Let p be a prime ideal with λ = νp(c) < 0 and assume ri = 0 for some i.
We may assume i = k. Then r1 = F (rk) = F (0) = c, hence νp(r1) = λ, and in
view of r2 = F (r1) = F (c) = cn + c and νp(cn) = nλ < λ we get

νp(r2) = νp(cn) = nλ < λ.

An easy induction leads now to

νp(rj) = nj−1λ

for j = 2, 3, . . . , hence νp(rk) = nk−1λ, contradicting rk = 0.
To prove the second assertion observe that if νp(c) > 0, then F ∈ Rp[X], Rp

being the closure of R in the completion Kp of K. Since Rp is integrally closed
and F is monic, all elements of its cycle in K, being roots of the monic polynomial
Fk(X)−X lie in Rp. ¥

Note, that the assumption c /∈ R is essential, as the example K = Q(i), f(X) =
X3 + i, with 0 7→ i 7→ 0 shows.

The following lemma generalizes slightly the results obtained in [RW] and [CG]
(Corollary 6.7), where the case n = 2 has been considered.
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Lemma 2. Let n > 2, F (X) = Xn + c with c ∈ K \R, and assume that

r1 7→ r2 7→ . . . 7→ rk 7→ r1

is a cycle of length k > 3 for F , lying in K. Put I0 = cR, Ij = rjR (j =
1, 2, . . . , k), and define the fractional ideals Aj , Bj by

Ij = AjB
−1
j (j = 0, 1, . . . , k),

where A0, A1, . . . , Ak, B0, B1, . . . , Bk are ideals of R satisfying (Aj , Bj) = R for
j = 0, 1, . . . , k. Then the ideal B0 is an n-th power, say B0 = Bn, and for
j = 1, 2, . . . , k one has Bj = B.

Proof. It follows from Lemma 1 that none of the rj ’s vanishes, hence the ideals
Aj ,Bj are well-defined. Note also that in view of c /∈ R we have B0 6= R. Let p
be a prime ideal dividing B0 and denote, for shortness, νp(x) by ν(x). Putting
rk+1 = r1 we have rj+1 = rn

j + c for j = 1, 2, . . . , k, hence

ν(rj+1) > min{nν(rj), ν(c)}, (1)

with equality in the case nν(rj) 6= ν(c). Observe first that we must have

ν(c) 6 nν(rj) (2)

for all j. Indeed, if for some i one would have

ν(c) > nν(ri), (4)

then (1) would imply
ν(ri+1) = nν(ri). (3)

Since ν(c) < 0 we get ν(ri) < 0, and (3) leads to ν(ri+1) < ν(ri), hence

nν(ri+1) = n2ν(ri) < nν(ri) < ν(c),

so we may repeat this argument to obtain that the sequence ν(rj) decreases indef-
initely, contradiction.

If for a certain i we would have nν(ri) > ν(c), then ν(ri+1) = ν(c) < 0, hence
nν(ri+1) = nν(c) < ν(c), contradicting (2). Finally we see that for all prime ideals
p dividing B0 and all j one has

νp(c) = nνp(rj). (4)

This shows that if a prime ideal divides B0, then it divides B1, . . . , Bk. On the
other hand Lemma 1 implies that every prime ideal dividing Bj divides B0, and
therefore (4) holds for all p|Bj , showing that the ideal B0 is an n-th power of an
ideal, say B, and for all j one has Bj = B, as asserted. ¥
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Lemma 3. Let F (X) = Xn + c with n > 2 and c ∈ K \ R, and assume that
r1 7→ . . . 7→ rk 7→ r1 is a cycle of length k > 3 for F lying in K.

Then there is a class X in the class-group of ideals of R such that if the ideal
I lies in X and is prime to B, then there exist a, b,N1, . . . , Nk ∈ R such that

c =
a

bn
, rj =

Nj

b
, (aR, bnR) = In, (NjR, bR) = I, (j = 1, 2, . . . , k).

If we extend the sequence Nj be periodicity, putting Nj+k = Nj for j > 1, then
the following holds:

(i) The sequence Nj satisfies the recurrence bn−1Nj+1 = Nn
j + a,

(ii) One has
k∏

i=1

(Nn−1
i+1 + Nn−2

i+1 Ni + · · ·+ Nn−1
i ) = bk(n−1),

(iii) For i = 1, 2, . . . , k one has (NiR,B) = R.

Note that in case n = 2 and R = Z the equality (ii) is a simple consequence of
Theorem 1 in [Be].

Proof. Let Ai, Bi be as in Lemma 2, let Y be the ideal class containing B, let
X = Y−1, and choose an ideal I ∈ X with (I, B) = R. Then with some b ∈ R we
have IB = bR. If we now put a = cbn and Nj = rjb for j = 1, 2, . . . , k, then

NjR = rjbR = rjIB = IjIB = AjB
−1IB = AjI ⊂ R,

hence Nj ∈ R, and we obtain

(NjR, bR) = (AjI, BI) = I.

In view of B0 = Bn we get

(aR, bnR) = (cbnR, bnR) = (A0B
−1
0 InBn, InBn) = (A0I

n, BnIn) = In.

Now (i) results from

Nj+1

b
= rj+1 = rn

j + c =
(

Nj

b

)n

+
a

bn
,

and to obtain (ii) multiply for i = 1, . . . , k the equalities

bn−1(Ni+2 −Ni+1) = (Ni+1 −Ni)(Nn−1
i+1 + Nn−2

i+1 Ni + · · ·+ Nn−1
i )

which follow from (i). Finally (iii) follows from the equality NiR = AiI and
(Ai, B) = (I,B) = R. ¥
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3. Now let R be the ring of integers of an algebraic number field K of degree N
over the rationals.

We shall need three auxiliary results. The first is well-known, the second has
been proved by T.Pezda ([Pe], Theorem 1 (ii)), and the third is a theorem of Bauer
([Ba]), of which a proof can be found in [Na] (Corollary 1 to Theorem 7.38):

Lemma 4.

(i) If R is the ring of integers of a finite extension of the rationals, a 6= b are
non-zero elements of R and n is a power of an odd prime p, then for every
prime ideal p of R containing (an − bn)/(a− b) either p divides both aR and
bR, or p|pR and a ≡ b (mod p), or, finally, one has Np ≡ 1 (mod p), Np
denoting the norm of p.

(ii) Let q be a prime, let L be a finite extension of the q-adic field Qq and let
ZL be its ring of integers. The lengths of cycles in ZL of any polynomial
f ∈ ZL[X] are bounded by a constant B(L), depending only on L. More
precisely, one has

B(L) = N(Q)(N(Q)− 1)q1+log2 e,

where Q is the the unique prime ideal of ZL and e is the ramification index
of the extension L/Qq.

(iii) If K is an algebraic number field, p is a rational prime and for all except
finitely many prime ideals p of the first degree one has

N(p) ≡ 1 (mod p),

then K contains p-th primitive roots of unity.

4. Proof of the Theorem: In the proof we may assume c /∈ R, as otherwise all
assertions of Theorem 3 are direct consequences of results of Pezda ([Pe]).

Observe first that to establish our assertion it suffices to find a prime ideal P
not dividing B whose norm is bounded in terms of K and p. Indeed, if KP is the
completion of K at P and RP is its ring of integers, then F (X) ∈ RP[X] and as
every cycle of F in K lies in RP the Theorem will follow from Lemma 4 (ii).

We shall use now the notation of Lemma 3. Let p be a prime ideal dividing B.
Since p|bR it follows from part (ii) of Lemma 3 that p contains an integer of the
form (Nn

i+1 −Nn
i )/(Ni+1 −Ni). Lemma 4 (i) implies now that one has either

(i) p|(NiR,Ni+1R), or
(ii) p|pR, or
(iii) Np ≡ 1 (mod p).

Observe that (i) is impossible due Lemma 3 (iii). This shows that every prime
ideal P with P - pR, and N(P) 6≡ 1 (mod p) does not divide B, thus satisfies our
needs. It remains thus to find such P with bounded norm.

First assume p > 2N . In that case if p2 is a prime ideal containing 2, then
its norm does not exceed 2N , hence N(p2) 6 2N < p, violating (iii). Since p 6= 2
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condition (ii) is also impossible. Therefore p2 - B, and Lemma 4 (ii) gives the
bound N2N+1(2N − 1) for any cycle of F in K.

If p 6 2N , then recall that K does not contain p-th roots of unity, hence by
Lemma 4 (iii) there exist N+1 prime ideals, say P1, P2, . . . , PN+1 with N(Pj) 6≡ 1
(mod p). Since the prime p can lie in at most N distinct prime ideals, hence at
least one Pi does not not divide pR. Therefore Pi - B and the application of
Lemma 4 (ii) bounds the length of any cycle of F in K by a number depending
only on K and p. ¥
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