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Abstract: We study a division problem for holomorphic functions that vanish to sufficiently
high order near the singularity of a singular complex space.
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1. Introduction

In [4] J. E. Fornaess, N. Øvrelid and S. Vassiliadou obtained existence result for
∂-problem on a complex space with arbitrary singularity. The aim of this note is to
show that the method used in ibid. (however, not the result itself) can be applied
to obtain a solution to the division problem for holomorphic functions vanishing
to high order near the singularity.

Before we present the results, we need to recall the setting. Namely, let X
be a pure n-dimensional reduced Stein space, A ⊃ Xsing a lower dimensional
complex analytic subset with empty interior (we refer the Reader to [5] for back-
ground concerning Stein spaces). Let Ω be an open relatively compact Stein do-
main in X and K = ̂̄Ω be the holomorphic convex hull of the closure of Ω in X.
K has a neighborhood basis of Oka-Weil domains in X and let X0 ⊂ X be such
a neighborhood of K in X. Importantly, X0 can be realized as a holomorphic
subvariety of an open polydisk in CN for some N > 0. Set Ω∗ := Ω \ A. Observe
that since Ω∗ is embedded in the polydisk PN ⊂ CN , it can be equipped with the
Hermitian metric, which is the restriction of the ambient space metric to Ω∗. This
induces a norm | · | on ΛCT ∗z Ω∗ for z ∈ Ω∗ and implies the existence of the volume
element dV on Ω∗. Hence, for any Ω

′ ⊂ Ω and N ∈ Z we may define the following
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seminorms

‖u‖2
Ω′ ,N :=

∫

Ω′
|u|2d−N

A dV,

‖u‖2Ω,N :=
∫

Ω

|u|2d−N
A dV.

The symbol dA stands for the distance to A. Our first result is the following
theorem:

Theorem 1. Let X, Ω be as above and assume that for each Ω
′ ⊂⊂ Ω holomorphic

functions f1, . . . , fm ∈ H(Ω) satisfy the following condition

sup
Ω′

dÑ
A

( m∑

j=1

|fj |2
)−1

< ∞ (1)

for some Ñ ∈ N0.
For every N0 > 0, there exists N > 0 such that if F is a holomorphic function

in Ω with ‖F‖Ω,N < ∞, then there exist functions g1, . . . , gm ∈ H(Ω∗) such that
‖gj‖Ω′ ,N0

6 C‖F‖Ω,N for any Ω
′ ⊂⊂ Ω and

m∑

j=1

fjgj = F (2)

in Ω∗. The constant C depends on Ω
′
, N , N0 and f1, . . . , fm.

Theorem 1 is proved by adapting the Koszul complex technique (cf. [8]) to
sheaf cohomology argument based on a generalization of the result proved by Y.
T. Siu in [10]. The result, which generalizes to lower order sheaf cohomology
groups Theorem obtained by Y. T. Siu was proved by J. E. Fornaess, N. Øvrelid
and S. Vassiliadou in [4].

Theorem 1 implies immediately the following fact.

Corollary 1. Let X, Ω be as above and assume that for each Ω
′ ⊂⊂ Ω functions

f1, . . . , fm ∈ H(Ω) satisfy condition (1). Furthermore, assume that X is normal.
For every N0 > 0, there exists N > 0 such that if F is a holomorphic function

in Ω with ‖F‖Ω,N < ∞, then there exist functions g1, . . . , gm ∈ H(Ω), which
satisfy the equation (2) and ‖gj‖Ω′ ,N0

6 C‖F‖Ω,N , j = 1, . . . , m for any Ω
′ ⊂⊂ Ω.

The constant C depends on Ω
′
, N , N0 and f1, . . . , fm.

Indeed, Corollary 1 is an immediate consequence of the first Riemann extension
theorem, which holds on normal complex spaces (cf. [7]). Recall that a complex
space X is normal at x ∈ X if Ox is reduced and integrally closed inMx – the field
of germs of meromorphic functions at x. A complex space X is normal provided
it is normal at each of its point. In particular if X is smooth, then x is normal.
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The Authors in [4] were able to strengthen their result in case of isolated
singularities. Namely, they proved that if A ∩ Ω̄ is a finite subset of Ω̄ with
bΩ ∩A = ∅, then a weighted L2 estimate on the whole Ω holds for the solution to
the equation ∂u = f .

Theorem 2 (Fornaess, Øvrelid, Vassiliadou). Let X, Ω be as above and as-
sume that A∩ Ω̄ is a finite subset of Ω̄ with bΩ∩A = ∅. Furthermore, assume that
Ω is Stein and Ω̄ has a Stein neighbourhood.

For each N0 there exists N such that for every ∂-closed (p, q)-form f with
‖f‖N,Ω < ∞, there is a solution to ∂u = f such that ‖u‖Ω,N0 6 c‖f‖Ω,N with a
constant c independent of f .

This result can be used to obtain the following theorem:

Theorem 3. Let X, Ω be as above. Assume additionally, that A ∩ Ω̄ is a finite
subset of Ω with bΩ ∩ A = ∅. Also, let Ω be Stein and assume that Ω̄ has a Stein
neighbourhood.

If f1, . . . , fm ∈ H(Ω̄) and there exist Ñ1, Ñ2 ∈ Z such that ‖fj‖Ñ1,Ω < ∞ for
j = 1, . . . , m and

sup
Ω′

dÑ2
A

( m∑

j=1

|fj |2
)−1

< ∞ (3)

then for every N0 there exists N such that for each F with ‖F‖Ω,N < ∞ there
exist g1, . . . , gm such that (2) holds and

‖gj‖Ω,N0 6 C‖F‖Ω,N , j = 1, . . . , m, (4)

where C depends on N0 only.

One comment is in order at this moment. Namely, in Theorem 3 we made the
additional assumption that f1, . . . , fm are holomorphic on Ω̄. The reason for this
is, naturally, that we wanted to get rid of the impact of bΩ on solvability of the
equation (2). Once we prove Theorem 1, The Reader will notice that Theorem
3 is an almost immediate consequence of Theorem 2. This is why we intend to
present the proof of Theorem 1 only.

The division problem for holomorphic functions was studied extensively by
many Authors. Among the manuscripts, which influenced our approach most,
apart from [8], are also [1] and [2].

2. Proof of Theorem 1

There exists a proper, holomorphic surjection π : X̃ → X with the following prop-
erties:

(i) X̃ is an n-dimensional complex manifold.
(ii) Ã = π−1(A) is a hypersurface in Ω̃ with only normal crossing singularities.
(iii) π : X̃ \ Ã → X \A is a biholomorphism.
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This follows from results proved in [3] and [6] – we refer the Reader to [4] for the
corresponding argument.

Denote Ω̃ := π−1(Ω). Following [4] we equip the complex manifold X̃ with
a real analytic metric σ. The symbol dṼx,σ (or dṼσ, or even dṼ ) stands for the
volume form for the metric σ at x ∈ X̃, while dÃ denotes the distance to the
submanifold Ã, which corresponds to the metric σ. The choice of the metric σ
induces also a norm on ΛCT ∗z Ω̃, z ∈ Ω̃, which will be denoted by | · |z,σ, or simply
| · |z, | · |σ.

We will use standard sheaf theoretical notation. Namely, let Lloc
p,q stand for the

sheaf of locally square integrable measurable forms on X̃. Since, for each open set
U ⊂ X̃ it holds Lloc

p,q(U) ⊂ D′
p,q, the operator ∂ is well-defined on Lloc

p,q(U) in the
sense of currents. Hence, we may consider its (maximal) domain

Dom∂(U) :=
{
u ∈ Lloc

p,q(U) : ∂u ∈ Lloc
p,q(U)

}
.

The symbol Lp,q stands for the sheaf (Dom∂(U), rU
V ), where for any open V ⊂ U

the operator rU
V : Lloc

p,q(U) → Lloc
p,q(V ) is induced by restriction of forms defined

on U to the set V . Let J stand for the ideal sheaf of Ã in X̃ and Ωp for the
sheaf of holomorphic (p, 0)-forms. We will consider the sheaf Jk · Lp,q. Recall
that a germ of a differential form u belongs to (Jk · Lp,q)x, if it is locally of the
form hku0, where h generates Jx and u0 ∈ (Lp,q)x. The fact that Ã = π−1(A)
is a hypersurface with only normal crossing singularities means that around each
point z ∈ Ã there are local holomorphic coordinates (z1, . . . , zn) in terms of which
Ã is given by h(z) = z1 . . . zm = 0, where 1 6 m 6 n. This explains why Jx is a
principal ideal.

We will repeatedly invoke the following fact, which was also used in [4] (cf.
proof of Theorem 1.1 [4]). Namely, assume that u is a ∂-closed differential form
in Ω̃ \ Ã, which is locally square-integrable around each point z ∈ Ã. Then u
extends to a ∂-closed differential form in Ω̃. Naturally, the extension is also locally
square-integrable, since int Ã = ∅. Also, the statement that u is ∂-closed means
that ∂u = 0 in the sense of currents. When u is a holomorphic function, this is
the first Riemann extension theorem.

The following Lemma was proved in [4].

Lemma 1 (Lemma 3.1 in [4]). We have for x ∈ Ω̃ \ Ã and v ∈ ΛrTx(Ω̃)

c
′
dt

Ã
(x) 6 dA(π(x)) 6 C

′
dÃ(x),

cdM
Ã
|v|x,σ 6 |π∗v|π(x) 6 C|v|x,σ

for some positive constants c
′
, c, C

′
, C, t,M , where c, C,M may depend on r.

For an r-form a in Ω∗ set

|π∗a| := max
{|〈aπ(x), π∗v〉| : |v|x,σ 6 1, v ∈ ΛrTx(Ω̃ \ Ã)

}
,

where 〈 · , · 〉 stands for the pairing between an r-forms and a r-tangent vectors.
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This implies
cdM

Ã
(x)|a|π(x) 6 |π∗a|x,σ 6 C|a|π(x)

on Ω̃, for some constant M .

The following estimates, or rather their versions for (0, q)-forms with q > 0,
were used in [4].

Lemma 2. Let Ω, Ω̃, A, Ã be as above.

(i) Assume that F is a function in Ω∗. There exist constants M1, c > 0 such
that ∫

Ω̃\Ã
|F ◦ π|2dM1−N

Ã
dṼ 6 c‖F‖2N,Ω.

(ii) Assume that g is a ∂-closed (p, q)-form on Ω̃. There exists a natural number
M2 ∈ N such that if for some N1 > 0

∫

Ω̃

|g|2σd−N1

Ã
dṼσ < ∞,

then g ∈ J lLp,q(Ω̃) provided l 6 N1
2M2

.

(iii) For any N0 there exists M3 ∈ N such that for any Ω
′ ⊂⊂ Ω there is a

constant c > 0 such that for any function h on Ω̃
∫

Ω′
|h ◦ π−1|2d−N0

A dV 6 c

∫

Ω̃′\Ã
|h|2d−M3

Ã
dṼσ,

where Ω̃
′
:= π−1(Ω

′
).

(iv) If v ∈ Jk · Lp,q(Ω̃), then for each Ω̃
′ ⊂⊂ Ω̃

∫

Ω̃′
|v|2σd−2k

Ã
dṼσ < ∞.

Proof. In particular Lemma 1 implies that there exist c, C, M such that for x ∈
Ω \A

cdM
Ã

dṼx,σ 6 (π∗dV )x 6 C1dṼx,σ.

This is the key fact, which suffices to prove (i) and (iii). Property (iv) is obvi-
ous. We sketch part (ii), which is not proved in [4]. Recall first the Łojasiewicz
inequalities (cf. [9]). Assume that φ is a real valued, real analytic function defined
in an open set V ⊂ Rd and let Zφ = {x ∈ V : φ(x) = 0}. Then, for every compact
set K ⊂ V , there exist positive constants c,m such that

|f(x)| > cd(x, Zφ)m, (5)

where d(·, Zφ) stands for the distance to Zφ.
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Recall that the fact that Ã = π−1(A) is a hypersurface with only normal cross-
ing singularities means that around each point z ∈ Ã there are local holomorphic
coordinates (z1, . . . , zn) in terms of which Ã is given by h(z) = z1 . . . zm = 0, where
1 6 m 6 n. Choose a cover (Vα) of Ã consisting of such charts and let hα be the
corresponding functions, which locally define Ã. Since Ω̄ is a compact subset of
X and π is proper, the set π−1(Ω̄) is compact. Since an analytic set is closed, the
intersection Ã ∩ ¯̃Ω is compact as a closed subset of a compact set.

Therefore, among (Vα) there exist charts Vα1 , . . . , Vαν such that

Ã ∩ Ω̃ ⊂ Vα1 ∪ · · · ∪ Vαν .

Furthermore, we may assume that there exist sets Kαi , i = 1, . . . , ν compactly
contained in Vαi

such that

Ã ∩ Ω̃ ⊂ intKα1 ∪ · · · ∪ intKαν
.

In view of the Łojasiewicz inequality (5), there exist positive numbers mi, ci,
i = 1, . . . , ν such that |hαi(z)| > cid(z, Zhαi

)mi for z ∈ Kαi
, i = 1, . . . , ν.

In order to complete the proof that g ∈ J l · Lp,q(Ω̃), it suffices to show that
around each point z ∈ Ã the form g may be represented as hlu0, where h generates
Jz and u0 ∈ (Lp,q)z. This follows from the fact that in Kαi \ Ã we may simply
write

g = hl
αi

g

hl
αi

,

Indeed, if we set c := max{c−1
i : i = 1, . . . , ν} and M1 := max{mi : i = 1, . . . , ν},

then
∫

Kαi

∣∣∣ g

hl
αi

∣∣∣
2

σ
dṼσ 6 c−1

i

∫

Kαi

|g|2σd−2lmi

Ã
dṼσ

. c

∫

Ω̃

|g|2σd−N1

Ã
dṼσ,

(6)

provided 2lM1 6 N1. Hence, g/hl
αi

is well-defined as a square integrable form on
intKαi , not only on intKαi \ Ã, since int Ã has empty interior. This argument
implies also that g/hl

αi
, a priori defined on intKαi \ Ã, extends to a ∂-closed

form in intKαi . Hence, it belongs to Lp,q(intKαi) but this means precisely that
g ∈ J l · Lp,q(Ω̃). ¥

Denote by Λ the exterior algebra over C generated by e1, . . . , em and by Λl its
subspace spanned by eI := ei1 ∧ · · · ∧ eil

with I = (i1, . . . , il). The assumption
that eI with I =

{
ei1 < · · · < ei|I|

} ⊂ {1, . . . , m} are orthonormal turns Λ into
2m-dimensional Hilbert space. For any given e ∈ Λ we use the symbol e∨ • : Λ →
Λ in order to denote the adjoint operator, in the Hilbert space sense, of right
multiplication in Λ by e.
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For each k ∈ N0 we consider now the sheaf
(
Jk · L)⊗C Λ of EX̃ ⊗C Λ-modules

and for each (p, q) and 0 6 l 6 m its subsheaf of linear spaces
(
Jk · Lp,q

)⊗C Λl.

The operator ∂ is extended in a canonical way to a OX̃ ⊗C Λ-sheaf homomor-
phism between Lp,q ⊗C Λl and Lp,q+1 ⊗C Λl. The latter statement means that for
each open set V ⊂ X̃, section uV ∈ Lp,q(V ) and e ∈ Λ

∂
(
uV ⊗ e

)
:=

(
∂uV

)⊗ e.

Similarly, we extend the operation ∨ to (Jk · L) ⊗C Λ. Namely, let s be a global
section of L⊗ Λ, i.e.

s =
∑

I

sI ⊗ eI ,

with sI ∈ L(X̃). Furthermore, assume that for any open set U ⊂ X̃ and s ∈ L(U)
it holds sI ∧ s ∈ L(U). Then the adjoint of s ∧ • : L(U) → L(U) is well-defined.
As a consequence, we obtain the sheaf morphism s∨∨∨• : L⊗C Λ → L⊗C Λ once we
set

s∨∨∨ (
sU ⊗ e

)
=

(∑

I

sI ⊗ eI
)
∨∨∨ (

sU ⊗ e
)

:=
∑

I

(
sI ∨ sU

)⊗(
eI ∨ e

)
.

For any such s the sheaf map
(
s ∨∨∨ •) : L ⊗ Λ → L ⊗ Λ is a E ⊗C 1-morphism of

sheaves. Let δ stand for sheaf morphism

( m∑

j=1

f̃j ⊗ ej

)
∨∨∨ •,

where f̃j := fj ◦ π. It follows from the definition that δ2 = 0 and the sheaf
morphisms ∂ and δ commute. Also, it is a consequence of the assumption that

δ : Jk · Lp,q ⊗C Λl → Jk · Lp,q ⊗C Λl−1

if l > 1 and δ|Jk·Lp,q⊗CΛ0 = 0. Hence, we have for each k ∈ N0 the following
commuting diagram of sheaf morphisms
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0 0 0 0

0 // JkΩp
∂ //

δ

OO

JkLp,0
∂ //

δ

OO

. . . ∂ //

δ

OO

JkLp,n
∂ //

δ

OO

0

0 // JkΩp ⊗ Λ1

δ

OO

∂ // JkLp,0 ⊗ Λ1

δ

OO

∂ // . . .

δ

OO

∂ // JkLp,n ⊗ Λ1

δ

OO

∂ // 0

0 // . . .

δ

OO

∂ // . . .

δ

OO

∂ // . . .

δ

OO

∂ // . . .

δ

OO

∂ // 0

0 // JkΩ⊗ Λl

δ

OO

∂ // JkLp,0 ⊗ Λl

δ

OO

∂ // . . .

δ

OO

∂ // JkLp,n ⊗ Λl

δ

OO

∂ // 0

0 // . . .

δ

OO

∂ // . . .

δ

OO

∂ // . . .

δ

OO

∂ // . . .

δ

OO

∂ // 0

0 // JkΩp ⊗ Λm

δ

OO

∂ // JkLp,0 ⊗ Λm

δ

OO

∂ // . . .

δ

OO

∂// JkLp,n ⊗ Λm

δ

OO

∂ // 0

with exact rows. The latter statement is a consequence of the Poincaré lemma. If
we denote this diagram by Jk, then the following inclusions hold

J0 ←↩ J1 ←↩ . . . ←↩ Jk ←↩ . . .

Furthermore, the corresponding row in the diagram is a fine resolution of JkΩp⊗Λl.
Therefore,

Hq(Ω̃, Jk · Ωp ⊗ Λl) ∼=
ker

(
∂ : Jk · Lp,q(Ω̃)⊗ Λl → Jk · Lp,q+1(Ω̃)⊗ Λl

)

∂
(
Jk · Lp,q−1(Ω̃)⊗ Λl

) . (7)

The key fact proved in [4], which we shall refer to, is the next Proposition. The
case q = n was proved by Y. T. Siu in [10].

Proposition 1 (Proposition 1.3 [4]). For q > 0 and k > 0 given, there exists
a natural number l, l > k such that the map

i∗ : Hq(Ω̃, J l · Ωp) → Hq(Ω̃, Jk · Ωp)

induced by the inclusion i : J l · Ωp → Jk · Ωp, is the zero map.

Since
Hq(Ω̃, Jk · Ωp ⊗ Λl) ∼= Hq(Ω̃, Jk · Ωp)⊗ Λl

we have also that for each k and q there exists l such that the map

(i⊗ id)∗ : Hq(Ω̃, J l · Ωp ⊗ Λ) → Hq(Ω̃, Jk · Ωp ⊗ Λ), (8)
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induced on the sheaf cohomology by i ⊗ id, is the zero map. Naturally, we will
be concerned with the case p = 0, when Ωp is just equal to OΩ̃ – the sheaf of
holomorphic functions on Ω̃.

Define

γ =
m∑

j=1

γjej :=
m∑

j=1

f̃ j∑m
i=1 |f̃i|2

ej ,

where as before f̃j := fj ◦ π. Naturally, it follows from the assumptions that
γ ∈ E(Ω̃ \ Ã)⊗ Λ1.

Naturally, the norm | · |z,σ on ΛCT ∗z Ω̃ can be extended in a canonical way to a
norm on ΛCT ∗z Ω̃⊗ Λ ∼=

(
ΛCT ∗Ω̃⊗ Λ

)
z
. Namely, one sets

∣∣∣
∣∣∣
∣∣∣
∑

I

uIe
I
∣∣∣
∣∣∣
∣∣∣2z,σ :=

∑

I

∣∣uI

∣∣2
z,σ

.

Lemma 3. Denote F̃ := F ◦ π. Under assumption (1) for each M ∈ N0 and
k̃ ∈ N there exists k such that if for each Ω̃

′ ⊂⊂ Ω̃
∫

Ω̃′
|F̃ |2d−k

Ã
dṼσ < ∞,

then for each Ω̃
′ ⊂⊂ Ω̃

∫

Ω̃′

∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1)
∣∣∣∣∣∣2
σd−k̃

Ã
dṼσ < ∞. (9)

Before we prove this fact notice that in (9) we may integrate over Ω̃
′
since Ã

has empty interior.

Proof. Functions f̃1, . . . , f̃m are holomorphic in Ω̃ as composition of holomorphic
maps. A holomorphic function is continuous and, hence, locally bounded and
locally square integrable. Also, it follows from (1) that there exists t ∈ R>0 such
that for each Ω̃

′ ⊂⊂ Ω̃ there exists CΩ̃′ such that for z ∈ Ω̃
′

( m∑

j=1

|f̃j(z)|2
)−1

=
( m∑

j=1

|fj(π(z))|2
)−1

6 CΩ̃′d
−Ñ
A (π(z)) 6 C

′
CΩ̃′d

−tÑ

Ã
(z).

The last estimate is proved as Lemma 3.1 in [4] and is a consequence of the
Łojasiewicz inequality (we recalled it above as Lemma 1). This implies that there
exists nM ∈ N such that for each Ω̃

′ ⊂⊂ Ω̃ there exists a constant CΩ̃′ such that
for each z ∈ Ω̃

′ \ Ã ∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M∣∣∣∣∣∣2
z,σ 6 CΩ̃′d

−nM

Ã
(z).

Observe that nM 6 nM+1. Naturally,
∫

Ω̃′

∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1)
∣∣∣∣∣∣2
σd−k̃

Ã
dṼ 6 CΩ̃′

∫

Ω̃′
|F̃ |2d−k̃−nM

Ã
dṼ ,

which completes the proof if we simply put k = nM + k̃. ¥
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Fix N0 and define F̃ := F ◦ π, where F ∈ H(Ω) is the function on the right-
hand side of (2). There exists M ∈ N such that γ∧∧∧ (∂γ)M ∧∧∧ (F̃ ⊗ 1) is ∂-closed in
π−1(Ω∗). Notice that

∂
(∑

I

uIe
I
)

= 0 ⇐⇒ ∀I ∂uI = 0.

Hence, if for each Ω̃
′ ⊂⊂ Ω̃

∫

Ω̃′

∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1)
∣∣∣∣∣∣
σdṼ < ∞,

then we may treat γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1) as ∂-closed in the sense of currents in Ω̃,
not only in π−1(Ω∗). Since F is a function it holds M 6 n and M + 1 6 m. We
recall the Reader at this moment that n is the dimension of the manifold and m is
the number of functions in (2). The fact that M 6 n is obvious, while the second
inequality follows from the fact f̃1γ1 + · · · + f̃mγm = 1 in π−1(Ω∗). This means
that in Ω̃ \ Ã

f̃1∂γ1 + · · ·+ fm∂γm = 0

and, consequently, in this set ∂γ1 ∧ · · · ∧ ∂γm = 0. This implies, under a suitable
assumption concerning order of vanishing of F , that ∂γ1 ∧ · · · ∧ ∂γm = 0 in Ω̃. We
may, therefore, assume that M = min{n,m− 1}.

Assume that we managed to solve the equation

∂vM = γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1). (10)

Then, for a fixed k ∈ N
∫

Ω̃′

∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M−1 ∧∧∧ (F̃ ⊗ 1)− δvM

∣∣∣∣∣∣
σd−2M2k

Ã
Ṽσ

6 CΩ̃′

∫

Ω̃′
|F |2d−2M2k−nM−1

Ã
dṼσ + CΩ̃′

∫

Ω̃′
|||vM|||2σd−2M2k

Ã
dṼσ.

(11)

It is a consequence of Proposition 1 that for k̃ := 2M2k there exists l = l(n, k̃)
such that

(i⊗ id)∗ : Hn(Ω̃, J l · Ωp ⊗ Λn+1) → Hn(Ω̃, J k̃ · Ωp ⊗ Λn+1) (12)

is the zero map. Furthermore, as we have already noticed

Hq(Ω̃, Jk · Ωp ⊗ Λl) ∼=
ker

(
∂ : Jk · Lp,q(Ω̃)⊗ Λl → Jk · Lp,q+1(Ω̃)⊗ Λl

)

∂
(
Jk · Lp,q−1(Ω̃)⊗ Λl

) .

From Lemma 2 it follows that there exists κ1 = κ1(M, k̃) such that if for each
Ω̃
′ ⊂⊂ Ω̃ ∫

Ω̃′
|F̃ |2d−κ1

Ã
dṼ < ∞, (13)
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then for each Ω̃
′ ⊂⊂ Ω̃

∫

Ω̃′

∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1)
∣∣∣∣∣∣2
σd
−2M2l(n,k̃)

Ã
dṼ < ∞.

Lemma 2 implies now that γ ∧∧∧ (
∂γ

)M ∧∧∧ (F̃ ⊗ 1) is a ∂-closed element of J l(n,k̃) ·
L(Ω̃)⊗ Λ and, as a consequence in view of Proposition 1 in concert with (7) and
(8), there exists vM ∈ J k̃ · L(Ω̃) ⊗ Λ such that equation (10) is, indeed, satisfied
in Ω̃.

Consider now the expression γ ∧∧∧ (∂γ)M−1 ∧∧∧ F̃ − δvM and observe that

∂
[
γ ∧∧∧ (∂γ)M−1 ∧∧∧ F̃ − δvM

]
= (∂γ)M ∧∧∧ F̃ − δ∂vM = 0, (14)

since δ
[
γ ∧∧∧ (∂γ)M ∧∧∧ F

]
= (∂γ)M ∧∧∧ F .

In order to sum up the argument set

κ̃2(M, k) := max{2M2k, κ1(M, 2M2k)}.

We have shown so far that if for any Ω̃
′ ⊂⊂ Ω̃

∫

Ω̃′
|F̃ |2d−κ̃2(M,k)

Ã
dṼσ < ∞,

then for each Ω̃
′ ⊂⊂ Ω̃

∫

Ω̃′

∣∣∣∣∣∣γ ∧∧∧ (
∂γ

)M−1 ∧∧∧ (F̃ ⊗ 1)− δvM

∣∣∣∣∣∣
σd−2M2k

Ã
Ṽσ < ∞.

Lemma 2 implies now, in view of (14), that

γ ∧∧∧ (
∂γ

)M−1 ∧∧∧ (F̃ ⊗ 1)− δvM ∈ Jk · L(Ω̃)⊗ Λ.

Lemma 4. For each k ∈ N there exists κ2(k) ∈ N such that if F is a holomorphic
function in Ω with ∫

Ω∗
|F |2d−κ2

A dV < ∞

then, there exist vM , . . . , v1 ∈ L(Ω̃)⊗ Λ such that

(i) γ ∧∧∧ (F̃ ⊗ 1)− δv1 ∈ Jk · L(Ω̃)⊗ Λ
(ii) ∂vM−j = γ∧∧∧(

∂γ
)M−j∧(F̃⊗1)−δvM−j+1, j = 0, . . . , M−1, where F̃ = F ◦π

and we put vM+1 = 0.

Furthermore,

δ
[
γ ∧∧∧ (F̃ ⊗ 1)− δv1

]
= F̃ ,

∂
[
γ ∧∧∧ (F̃ ⊗ 1)− δv1

]
= 0.

(15)
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Proof. Set vM+1 = 0 and consider the following property:
For a fixed k ∈ N and i = 0, . . . ,M − 1 there exists κ3 = κ3(k, i) such that if

for each Ω̃
′ ⊂⊂ Ω̃ ∫

Ω̃′
|F̃ |2d−κ3

Ã
dṼ < ∞,

then there exist vM , . . . , vM−j ∈ L(Ω̃)⊗ Λ such that

(i) γ ∧∧∧ (
∂γ

)M−i−1 ∧∧∧ (F̃ ⊗ 1)− δvM−i ∈ Jk · L(Ω̃)⊗ Λ,
(ii) ∂vM−j = γ ∧∧∧ (

∂γ
)M−j ∧∧∧ (F̃ ⊗ 1)− δvM−j+1, where j = 0, . . . , i.

Denote this property by S(k, i). We have already proved that the property S(k, 0)
holds for each k ∈ N.

Fix k̂ ∈ N. Notice that γ ∧∧∧ (
∂γ

)M−i ∧∧∧ (F̃ ⊗ 1) − δvM−i+1 is ∂-closed in Ω̃.
Therefore, it is a consequence of Proposition 1, (7) and (8), that there exists
l = l(k̂) such that a solution to the equation

∂vM−i = γ ∧∧∧ (
∂γ

)M−i ∧∧∧ (F̃ ⊗ 1)− δvM−i+1

exists in J k̂ ·L(Ω̃)⊗Λ if γ∧∧∧(
∂γ

)M−i∧∧∧(F̃ ⊗1)−δvM−i+1 ∈ J l(k̂) ·L(Ω̃)⊗Λ. Hence,
for the fixed k̂ ∈ N if S(k, i) folds for each k ∈ N, then the property S(k̂, i + 1)
holds true as well. This completes the induction argument, which allows us to
infer that the property S(k, i) holds for each k ∈ N and i = 0, . . . ,M − 1.

In particular, property S(k,M − 1) holds true. According to Lemma 2, there
exists M1 ∈ N and c > 0 such that for each N ∈ N

∫

Ω̃

|F̃ |2dM1−N

Ã
dṼ 6 c

∫

Ω

|F |2d−N
A dV.

Therefore, it suffices to define κ2(k) := κ3(k, M − 1)+M1. One easily checks that
equations (15) are also satisfied. ¥

Proof of Theorem 1. Fix N0 as in Theorem 1. We intend to show that there
exists a natural number N and functions g1, . . . , gm ∈ H(Ω∗) with ‖gj‖Ω′ ,N0

6
C‖F‖Ω,N for any Ω

′ ⊂⊂ Ω such that
m∑

j=1

fjgj = F

in Ω∗. First choose M3 for N0 according to (iii) of Lemma 2 and let k =
⌈

M3
2

⌉
.

It follows from Lemma 4 that if
∫

Ω∗
|F |2d−κ2(k)

A dV < ∞

then there exists v1 such that
m∑

j=1

g̃jej := γ ∧∧∧ (F̃ ⊗ 1)− δv1
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belongs to Jk · L(Ω̃) ⊗ Λ and satisfies (15). Set gj := g̃j ◦ π−1 and notice that
Lemma 2 implies that for any Ω

′ ⊂⊂ Ω it holds
∫

Ω′
|gj |2d−N0

A dV < ∞ (16)

for j = 1, . . . , m. Obviously, functions gj are holomorphic in Ω∗ and in Ω∗ satisfy
the condition

m∑

j=1

gjfj =
( m∑

j=1

g̃j f̃j

)
◦ π−1 = F̃ ◦ π−1 = F.

This completes the proof with N := κ2

(⌈M3(N0)
2

⌉)
. ¥
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