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Abstract: We study a division problem for holomorphic functions that vanish to sufficiently
high order near the singularity of a singular complex space.
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1. Introduction

In [4] J. E. Fornaess, N. @vrelid and S. Vassiliadou obtained existence result for
O-problem on a complex space with arbitrary singularity. The aim of this note is to
show that the method used in ibid. (however, not the result itself) can be applied
to obtain a solution to the division problem for holomorphic functions vanishing
to high order near the singularity.

Before we present the results, we need to recall the setting. Namely, let X
be a pure n-dimensional reduced Stein space, A O X, a lower dimensional
complex analytic subset with empty interior (we refer the Reader to [5] for back-
ground concerning Stein spaces). Let Q be an open relatively compact Stein do-

main in X and K = Q be the holomorphic convex hull of the closure of  in X.
K has a neighborhood basis of Oka-Weil domains in X and let X¢o C X be such
a neighborhood of K in X. Importantly, Xy can be realized as a holomorphic
subvariety of an open polydisk in CV for some N > 0. Set Q* := Q\ A. Observe
that since Q* is embedded in the polydisk PN C C¥, it can be equipped with the
Hermitian metric, which is the restriction of the ambient space metric to Q*. This
induces a norm |- | on ACT}Q* for z € Q* and implies the existence of the volume
element dV on 2*. Hence, for any Q' cQand N € Z we may define the following
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seminorms
ully = / updzNav,

b= [ JuPdzYav.

[l

The symbol d4 stands for the distance to A. Our first result is the following
theorem:

Theorem 1. Let X, 2 be as above and assume that for each Q' cc holomorphic
functions fi1,..., fm € H(Q) satisfy the following condition

sup dﬁ (Z |fj|2)71 < 0 (1)
Q =

for some N € Ny.

For every No > 0, there exists N > 0 such that if F is a holomorphic function
in Q with ||F|lq,n < 00, then there exist functions g1,...,gm € H(Q*) such that
lgillo’ N, < ClF|lon for any @ CC Q and

> figi=F (2)
j=1

in Q*. The constant C' depends on Q/, N, Ny and f1,..., fm-

Theorem 1 is proved by adapting the Koszul complex technique (cf. [§8]) to
sheaf cohomology argument based on a generalization of the result proved by Y.
T. Siu in [10]. The result, which generalizes to lower order sheaf cohomology
groups Theorem obtained by Y. T. Siu was proved by J. E. Fornaess, N. @Qvrelid
and S. Vassiliadou in [4].

Theorem 1 implies immediately the following fact.

Corollary 1. Let X,Q be as above and assume that for each Q' CC Q functions
fis-ooy fm € H(Q) satisfy condition (1). Furthermore, assume that X is normal.

For every Ng > 0, there exists N > 0 such that if F' is a holomorphic function
in Q with ||Fllan < oo, then there exist functions g1,...,9m € H(), which
satisfy the equation (2) and ||g;llq' n, < ClIF|lon,7=1,...,m for any Q cca.
The constant C' depends on Q,, N, Ng and f1,..., fm-

Indeed, Corollary 1 is an immediate consequence of the first Riemann extension
theorem, which holds on normal complex spaces (cf. [7]). Recall that a complex
space X is normal at z € X if O, is reduced and integrally closed in M, — the field
of germs of meromorphic functions at x. A complex space X is normal provided
it is normal at each of its point. In particular if X is smooth, then x is normal.



Division on a complex space with arbitrary singularities 329

The Authors in [4] were able to strengthen their result in case of isolated
singularities. Namely, they proved that if A N € is a finite subset of Q with
2N A = (), then a weighted L? estimate on the whole €2 holds for the solution to
the equation du = f.

Theorem 2 (Fornaess, @vrelid, Vassiliadou). Let X,Q be as above and as-
sume that AN is a finite subset of Q with QN A = 0. Furthermore, assume that
Q) is Stein and Q has a Stein neighbourhood.

For each Ny there exists N such that for every 0-closed (p,q)-form f with
Il fllvg < oo, there is a solution to du = f such that ||ullo,n, < c||fllo,N with a
constant ¢ independent of f.

This result can be used to obtain the following theorem:

Theorem 3. Let X,Q be as above. Assume additionally, that AN is a finite
subset of Q with bYN A = (). Also, let Q be Stein and assume that Q0 has a Stein
neighbourhood.

If fi,...s fm € H(Q) and there exist Ni, N, € Z such that I fill 7, . < 00 for
j=1,....m and 7

sup 3 (S_15) <o )
Q =

then for every Ny there exists N such that for each F with |F|q.N < oo there
exist g1, ..., gm such that (2) holds and

951l.no < CIIF|

Q,N» j:]-v"'?ma (4)
where C' depends on Ny only.

One comment is in order at this moment. Namely, in Theorem 3 we made the
additional assumption that f1,..., fm are holomorphic on Q. The reason for this
is, naturally, that we wanted to get rid of the impact of b on solvability of the
equation (2). Once we prove Theorem 1, The Reader will notice that Theorem
3 is an almost immediate consequence of Theorem 2. This is why we intend to
present the proof of Theorem 1 only.

The division problem for holomorphic functions was studied extensively by
many Authors. Among the manuscripts, which influenced our approach most,
apart from [8], are also [1] and [2].

2. Proof of Theorem 1

There exists a proper, holomorphic surjection 7: X — X with the following prop-
erties:

(1) )g' is an n-dimensional complex manifold.
(ii) A =7"1(A) is a hypersurface in © with only normal crossing singularities.

(iii) 7: X \ A — X \ A is a biholomorphism.
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This follows from results proved in [3] and [6] — we refer the Reader to [4] for the
corresponding argument.

Denote 2 := 7~ 1(Q). Following [4] we equip the complex manifold X with
a real analytic metric . The symbol de, (or dV(,7 or even dV) stands for the
volume form for the metric o at € X, while d; i denotes the distance to the
submanifold A, which corresponds to the metric o. The choice of the metric
induces also a norm on A(CTZ*Q7 z € Q, which will be denoted by |- |2,0, Or simply
| : |z> | ’ |U~

We will use standard sheaf theoretical notation. Namely, let 2;707; stand for the
sheaf of locally square integrable measurable forms on X. Since, for each open set
U C X it holds gle(U) D, ., the operator 8 is well-defined on glec(U) in the

P’
sense of currents. Hence, we may consider its (maximal) domain

Domg(U) := {u € £5(U): du € £5(U)}.

The symbol Ep ¢ stands for the sheaf (Domg(U), r{}), where for any open V C U
the operator r{: 2100( ) — SL‘TE(V) is induced by restriction of forms defined
on U to the set V. Let J stand for the ideal sheaf of A in X and QP for the
sheaf of holomorphic (p,0)-forms. We will consider the sheaf J* - £, ,. Recall
that a germ of a differential form u belongs to (J* - L, )., if it is locally of the
form h*ug, where h generates .J, and ug € (L, 4).. The fact that A = 77 1(A)
is a hypersurface with only normal crossing singularities means that around each
point z € A there are local holomorphic coordinates (#1,...,2n) in terms of which
A is given by h(z) = 2 ... 2y, = 0, where 1 < m < n. This explains why J, is a
principal ideal.

We will repeatedly invoke the following fact, which was also used in [4] (cf.
proof of Theorem 1.1 [4]). Namely, assume that u is a 0O-closed differential form
in Q \ A, which is locally square-integrable around each point z € A. Then u
extends to a 0-closed differential form in Q. Naturally, the extension is also locally
square-integrable, since int A = 0. Also, the statement that u is d-closed means
that Ou = 0 in the sense of currents. When u is a holomorphic function, this is
the first Riemann extension theorem.

The following Lemma was proved in [4].

Lemma 1 (Lemma 3.1 in [4]). We have for z € Q\ A and v € A"T,(Q)

da(r(x)) < C'dj(x),
< Cvgo

’

cd()

<
cdi v]e0 <

|7T*'U|7'r(x

for some positive constants c/, c, C’I7 C,t, M, where ¢,C, M may depend on r.
For an r-form a in Q* set

Im*a| == max{|[(@r(z), m)|: [V]s,0 < 1,0 € AT, (Q\A)}

where (-, -} stands for the pairing between an r-forms and a r-tangent vectors.
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This implies
cd%(:vﬂa\ﬂ(z) < m*alz,0 < Clalrm)

on §2, for some constant M.

The following estimates, or rather their versions for (0, ¢)-forms with ¢ > 0,
were used in [4].

Lemma 2. Let Q, Q, A, A be as above.

(i) Assume that F is a function in Q*. There exist constants My,c > 0 such
that

/@\A P o x2a¥ ~NaV < o F 0.

(i) Assume that g is a O-closed (p,q)-form on Q. There exists a natural number
Ms € N such that if for some N1 > 0

/ l9l2d M1 dV, < oo,
Q

then g € Jl/lp,q(fl) provided | < 211\(/}2.

(7i) For any No there exists Mz € N such that for any Q cc Q there is a
constant ¢ > 0 such that for any function h on Q

/ \hon ! 2d,Noadv < c/ h2dMedv,,
Q Q'\A

where Q=77 1(Q).
() Ifve J*- L, (Q), then for each Q' cC Q

[ |v\§d£2kd‘~/g < 00.
Q/

Proof. In particular Lemma 1 implies that there exist ¢, C, M such that for = €
Q\A

cd¥dV, » < (7*dV), < C1dVy,.
This is the key fact, which suffices to prove (i) and (iii). Property (iv) is obvi-
ous. We sketch part (i7), which is not proved in [4]. Recall first the Lojasiewicz
inequalities (cf. [9]). Assume that ¢ is a real valued, real analytic function defined

in an open set V C R? and let Z; = {z € V: ¢(z) = 0}. Then, for every compact
set K C V, there exist positive constants ¢, m such that

|f(17)| > cd(x,Z¢)m, (5)

where d(-, Z,) stands for the distance to Z,.
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Recall that the fact that A = 71 (A) is a hypersurface with only normal cross-
ing singularities means that around each point z € A there are local holomorphic
coordinates (21, ..., z,) in terms of which A is given by h(z) = z; ... 2, = 0, where
1 < m < n. Choose a cover (V) of A consisting of such charts and let h,, be the
corresponding functions, which locally define A. Since Q is a compact subset of

X and r is proper, the set 7€) is compact. Since an analytic set is closed, the
intersection A N Q is compact as a closed subset of a compact set.
Therefore, among (V) there exist charts Vi, ,...,V,, such that

ANQCV, U---UV,,.

Furthermore, we may assume that there exist sets K,,, ¢ = 1,...,v compactly
contained in V,, such that

ANQCintK, U---Uint K,, .

In view of the Lojasiewicz inequality (5), there exist positive numbers m;, ¢;,
i=1,...,vsuch that |ha,(2)| > cid(z, Zp, )™ for z € Ko, i=1,...,v.

In order to complete the proof that g € J!- £, ,(Q), it suffices to show that
around each point z € A the form g may be represented as hlug, where h generates
J, and ug € (Lpq).. This follows from the fact that in K,, \ A we may simply

write

19
g:hi77
« thL7

Indeed, if we set ¢ := max{ci*l: i=1,...,v} and My := max{m;: i =1,...,v},
then

9 1% - -1 2 3—2lm; 17
/K’hg V< /K lg12d ;2™ av,

) (6)
5 C/Q|g|3'd£NldVO'a

provided 2IM; < N;. Hence, g/ hi” is well-defined as a square integrable form on
int K,,, not only on int K,, \fl, since int A has empty (interior. This argument
implies also that g/h! , a priori defined on int K,, \ A, extends to a O-closed

;)

form in int K,,,. Hence, it belongs to £, ,(int K,,) but this means precisely that

geJ L, (). |

Denote by A the exterior algebra over C generated by e1, ..., e, and by A; its
subspace spanned by el := e; A--- Ae;, with I = (i1,...,4;). The assumption
that e/ with I = {e;, < -+ < eim} C {1,...,m} are orthonormal turns A into

2"-dimensional Hilbert space. For any given e € A we use the symbol eVe: A —
A in order to denote the adjoint operator, in the Hilbert space sense, of right
multiplication in A by e.
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For each k € Ny we consider now the sheaf (Jk . E) ®c A of £¢ ®c A-modules
and for each (p,q) and 0 <! < m its subsheaf of linear spaces (Jk . Epyq) ®c Ay

The operator 0 is extended in a canonical way to a O ¢ ®c A-sheaf homomor-
phism between £, ; ®c A; and £, 441 ®c A;. The latter statement means that for
each open set V' C X, section uy € £, 4(V) and e € A

5(uv (24 e) = (5uv) X e.

Similarly, we extend the operation V to (J* - £) ®c A. Namely, let s be a global
section of £ ® A, i.e.

5= E sI®eI,
I

with s’ € S(X) Furthermore, assume that for any open set U C X and s € £(U)
it holds sy A s € £(U). Then the adjoint of s A e: £(U) — £(U) is well-defined.
As a consequence, we obtain the sheaf morphism sVe: £®¢c A — £ ®c A once we
set

sV (5U®e) = (ZSI®61) \% (5U®e)
= zj:(s[\/sU)(EQ(eI\/e).

For any such s the sheaf map (5 \Y o) LA - L£®Ais af Q¢ 1-morphism of
sheaves. Let ¢ stand for sheaf morphism

(zm:fj ® ej) Ve,
j=1

where f] := fj om. It follows from the definition that 02 = 0 and the sheaf
morphisms 0 and § commute. Also, it is a consequence of the assumption that

§:J% Lya@c A — I Ly, 00 Ay

if { > 1 and 5\‘];9_[;?,(1@@/\0 = 0. Hence, we have for each k € Ny the following
commuting diagram of sheaf morphisms
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0 0 0 0
§ 1 § §

0—>Jka—5>Jk/3p70 o o Jk£p7n5—>0
§ 1 é §

0—= JEWP @ Ay —2 J* Lo @ Ay e —L TR, 9 A 0
§ 1 é §

0 Gl a | 3 a
§ é é §

00— T QoA —2= T Lo Ay s — L, e A0
§ é § §

0 o o o 14] 0
§ 1 é §

0—> JFQP @ Ay — J*Lp o @ Ay > - —L TRL, 1 @ A —> 0

with exact rows. The latter statement is a consequence of the Poincaré lemma. If
we denote this diagram by J*, then the following inclusions hold

~0

J

ol ek

Furthermore, the corresponding row in the diagram is a fine resolution of J*QP®A;.
Therefore,
ker(9: J* - L, 4(Q) @ Ay — JF - L, 441(Q2) @ A)

HYQ,JF - QP @A) = L .
( l) a(Jk "Cp,q—l(Q) ® Al)

(7
The key fact proved in [4], which we shall refer to, is the next Proposition. The
case ¢ = n was proved by Y. T. Siu in [10].

Proposition 1 (Proposition 1.3 [4]). For ¢ > 0 and k > 0 given, there exists
a natural number l,1 > k such that the map

iv: H1(Q,J' - QP) — HY(Q, J* - QP)
induced by the inclusion i: J' - QP — Jk . QP is the zero map.

Since ~ ~
HYQ,JF QP @ A)) = HIQ,JF - QP) @ A

we have also that for each k£ and ¢ there exists [ such that the map

(i®@id),: HI(Q,J - QP @ A) — HI(Q, J* - QP @ A), (8)
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induced on the sheaf cohomology by ¢ ® id, is the zero map. Naturally, we will
be concerned with the case p = 0, when QP is just equal to Og — the sheaf of
holomorphic functions on €.

Define B
Y= Z%‘eg‘ = Zim T 56>
j=1 j=1 Zi:l |f1|
where as before f} = f; om. Naturally, it follows from the assumptions that

yeEQ\A) @ A,. )
Naturally, the norm |- |, , on ACTQ) can be extended in a canonical way to a
norm on ACT;Q® A = (ACT*Q ® A)Z. Namely, one sets

| > we |2, =3 Jul?,
I

I
Lemma 3. Denote F' := Fon. Under _assumption (1) for each M € Ny and
k € N there exists k such that if for each Q' cc Q

S -
/Q/ |F2ddV, < oo,
then for each Q' cc

/Q’ |'y/\(57) F® |2 de < 00. 9)

Before we prove this fact notice that in (9) we may integrate over Q since A
has empty interior.

Proof. Functions fl, ey fm are holomorphic in Q as composition of holomorphic
maps. A holomorphic function is continuous and, hence, locally bounded and
locally square mtegrable Also, it follows from (1) that there exists t € Ry such
that for each Q CC Q there exists Cg such that for z € Q'

(IR = (S IHEEP) < Cad¥(r(2) < O O3V (2)
j=1 j=1

The last estimate is proved as Lemma 3.1 in [4] and is a consequence of the
Lojasiewicz inequality (we recalled 1t above as Lemma 1). This implies that there
exists nys € N such that for each Q' CC  there exists a constant Cg such that

for each z € Q' \ A
A )" 2.0 < Card™ (2)

Observe that nys < npr41. Naturally,
/ Iy A (@0 A (F @ 1)|2d75dV < Cg / |F2azFmav,
Q' Q

which completes the proof if we simply put & = ny; + k. |
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Fix Ny and define F := F o7, where F € H(Q) is the function on the right-
hand side of (2). There exists M € N such that v A (97)M A (F ®1) is d-closed in
7~1(Q*). Notice that

_ N\ Fur — 0.
8(2[:1”6 ) =0<«<=V; 8u1 0

Hence, if for each Q' cc Q
[ |fy/\ (EW)M A(F® 1)|gd1~/ < o0,
Q/

then we may treat v A (gv)M A (I:" ® 1) as O-closed in the sense of currents in Q,
not only in 771(Q*). Since F is a function it holds M < n and M + 1 < m. We
recall the Reader at this moment that n is the dimension of the manifold and m is
the number of functions in (2). The fact that M < n is obvious, while the second
inequality follows from the fact fiv1 4+ - + finYm = 1 in 7~1(Q*). This means
that in O\ A 5
fiovi+ -+ fmOym =0
and, consequently, in this set dy; A - - - A 0¥y, = 0. This implies, under a suitable
assumption concerning order of vanishing of F, that 9y, A--- A 87, = 0 in Q. We
may, therefore, assume that M = min{n, m — 1}.
Assume that we managed to solve the equation

doar =y A () A (Fo1). (10)
Then, for a fixed k € N
F.\M-1 - —2Mo kY7
[ |7 A (97) ANF®1) - 6vM|UdA v,
Q/

(11)
< Cy /Q RPN, 1oy /Q oul2d 72V a

It is a consequence of Proposition 1 that for k := 2Myk there exists | = I(n, k)
such that

(i@id)e: H*(Q,J' - QP @ Apyr) — HY(Q,J5 - QP @ Apis) (12)
is the zero map. Furthermore, as we have already noticed

ker (9: J* - L, 0(Q) @ A — TF - L, 011(Q) @ AY)

HIQ, T - QP @A) = L _
(JF - Lpg—1(Q) @A)

From Lemma 2 it follows that there exists x; = k1 (M ,l;) such that if for each
Q' ccQ
/ |FPd3"dV < o, (13)
Q/
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then for each Q' cc Q

YA @D A(F ) 2 2Rl (R g
~ | ( ) g A
Q'

Lemma 2 implies now that v A (57)M A (F ® 1) is a -closed element of JUmR) .

L(2) ® A and, as a consequence in view of Proposition 1 in concert with (7) and
(8), there exists vy € J* - L(Q) ® A such that equation (10) is, indeed, satisfied
in Q.

Consider now the expression v A (9) =1 A F — §vy; and observe that

Oy A (@M EANE —dup] = (0)M A F — 0vpr = 0, (14)

since [y A (O™ AF] = (07)M A F.
In order to sum up the argument set

IZJQ(M, k) = max{QMgk, K)l(M, 2M2k)}

We have shown so far that if for any Q cc
/ PR, < o,
Q/
then for each Q' cc Q
3. \M—1 - —2MakT;
/~ |’y/\(8’y) /\(F®1)751)M|Udj 2R < o0.
QI
Lemma 2 implies now, in view of (14), that

YA (@)Y T A(F@1) = dva € JF - L(Q) @ A,

Lemma 4. For each k € N there exists ko(k) € N such that if F' is a holomorphic
function in Q with

/ |F2d,"2dV < oo
Qx

then, there exist vy, ... ,v1 € L(Q) ® A such that
(i) YA(F®1)—dv, € J¥- L) QA

(1) Oupr—j = YA (gv)ij/\(F@)l)—(SvM,jH, j=0,...,M—1, where F = For
and we put var41 = 0.

Furthermore,
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Proof. Set vp;4+1 = 0 and consider the following property:
For a fixed k € N and 7 = 0,..., M — 1 there exists k3 = r3(k,7) such that if
for each Q CcC Q

/Q, |FPd3™dV < o,

then there exist var,...,vp—j € E(Q) ® A such that
(i) YA (57)M_i_1 A(F ®1) = dvpr—; € JE L) @A,
(ii) 51}ij = ’7/\ (57)A[_j A (F ® 1) - (5UM,j+1, where ] = 0, cee 7i.
Denote this property by &(k,i). We have already proved that the property &(k,0)
holds for each k € N. v ~ 7 }
Fix k € N. Notice that v A (Eh) A (F®1) — dvpr—iq1 is O-closed in €.
Therefore, it is a consequence of Proposition 1, (7) and (8), that there exists

I = I(k) such that a solution to the equation
gvai =7 A (5’}/)]\/[—1 A (F ® ].) — 6UM71'+1

exists in J¥- L(Q) @A if yA (gv)M_l/\(F@) 1) —dvar_is1 € JI®) . L(Q)®A. Hence,
for the fixed k € N if &(k, 1) folds for each k € N, then the property 6(1%,1’ +1)
holds true as well. This completes the induction argument, which allows us to
infer that the property &(k, ) holds for each k € Nand i =0,..., M — 1.

In particular, property &(k, M — 1) holds true. According to Lemma 2, there
exists M7 € N and ¢ > 0 such that for each N € N

I Mi—N gy, _
/§l|F|2djl dvgc/Q\FPdANdv.

Therefore, it suffices to define ko (k) := k3(k, M — 1) + M;. One easily checks that
equations (15) are also satisfied. |

Proof of Theorem 1. Fix Ny as in Theorem 1. We intend to show that there
exists a natural number N and functions gi,..., g, € H(Q") with |g;{lq n, <

C||Flla.n for any Q cC Q such that
> figi=F
j=1

in Q*. First choose M3 for Ny according to (ii¢) of Lemma 2 and let k = [%W
It follows from Lemma 4 that if

/ 1FPPdyMav < oo
Q*

then there exists v, such that

Zgjej =7A(F®1)—5v1

j=1
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belongs to J* - £(Q) ® A and satisfies (15). Set g; := g o 7' and notice that
Lemma 2 implies that for any Q' cc Q it holds

[ losazeav < oc (16)
Q/
for j = 1,...,m. Obviously, functions g; are holomorphic in {2* and in Q* satisfy
the condition . .
Zg]f] = (Zgjf:Y) 07'1'71 = FO7T71 =F.
j=1 j=1
. . M;3 (N
This completes the proof with N := ﬁg([%}) |
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