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We study the distribution of prime numbers that have a given
number of one bits in their binary representation, and of those
that have a given number of zero bits. We consider basic ques-
tions such as whether there are infinitely many of them, and ex-
plain their distribution in residue classes modulo small primes.
We prove the unexpected result that, for m > 3, there is no
prime number with precisely 2™ bits, exactly two of which are
zero bits.

1. INTRODUCTION

Several authors [Gel’fond 1967/68; Bésineau 1971;
Olivier 1971; Fouvry and Mauduit 1996; Dartyge
and Mauduit 2000] have studied the binary repre-
sentation of prime numbers. It is claimed in [Olivier
1971] that the number of primes < x having an even
number of one bits is asymptotic to w(z)/2. Al
though this statement is likely true, Montgomery
[1994, Item 67, p. 208] suggests that Olivier’s proof
is incomplete.

For natural numbers k, let P, denote the set of
all primes with exactly k£ one bits in their binary
representation. Then P; = {2} and P, is the set of
all Fermat primes F,, = 22" + 1. Hardy and Wright
[1960] have argued that P is probably finite. It is
well known that F, is prime for 0 < m < 4. It is
known [Brillhart et al. 1988] that F,, is composite
for 5 < m < 30 and for scores of larger m. We will
give a heuristic argument that P, is infinite for each
k > 3. This argument is supported by counts of the
primes in P, for £ = 3 and 4 given in Tables 1 and 2
(page 269).

One motivation for this work was to discover new
prime divisors of F},. The factor 2424833 of Fy has
only four one bits. (Of course, any factor of F,,, must
be congruent to 1 modulo 2™+2; see [Brillhart et al.
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1988]. Thus 10 of the 21 bits of 2424833 must be 0.
Many primes of the form

t-2"+1

with n > 0 and small ¢ are known. See [Baillie 1979]
and its references. These primes have one more one
bit than t does.) This made us wonder whether
primes with few one bits are more likely than primes
with many one bits to divide Fermat numbers. We
tested each prime we found for dividing the possi-
ble Fermat numbers. Unfortunately, no new prime
divisors of F,, were found.

Additional motivation derives from work of Joel
Brenner (personal communication, 1985) and oth-
ers on the word problem for finite groups. A word
x4yt ... from a free group covers a given group G if
every element of G can be represented by the word
when its variables are replaced by suitable elements
of G. Suppose G is the symmetric group on s let-
ters and the word is z%y®. If @ and b are both even
integers, then the word does not cover G. If ¢ and
b are both odd, then the word does cover G. The
remaining case with one of a, b even and one odd
could be settled if one knew there were infinitely
many primes of one of the forms 2" +1, 2" +2i £ 1.
We present some evidence supporting the existence
of infinitely many primes 2" + 2° + 1.

Some might think that another use of primes with
few one bits would be in the Pohlig-Hellman cryp-
tosystem [1978]. For some reason, a few cryptogra-
phers use prime numbers as the secret exponents in
this system. The fast exponentiation algorithm used
in enciphering and deciphering runs faster when the
exponent has few one bits. However, it would be
silly to use a prime number with only three or four
one bits for this purpose, as it would be easy to
guess. Furthermore, there is no obvious advantage
to using a prime exponent. The exponent just has
to be random.

We also study primes with a fixed number of zero
bits. For k£ > 0, let @, denote the set of all primes
having exactly k (non-leading) zero bits in their
binary representation. Then @, is the set of all
Mersenne primes 27 — 1, which is probably an in-
finite set. Indeed, probably @), is infinite for each
k > 0. We support this claim with a heuristic argu-
ment and counts of the primes in @, for £ = 1 and
2 given in Tables 3 and 4.

2. SIMPLE HEURISTICS

For natural numbers n and 2 < k <n+1 let Ax(n)
denote the cardinality of P, N [2",2" %] that is, the
number of primes between 2" and 2"*! having ex-
actly k one bits.

By the prime number theorem, odd integers near
x are prime with probability about 2/(In z). Assume
that odd numbers with exactly k£ one bits and the
same length have this same chance of being prime.
Then odd numbers between 2" and 2" with ex-
actly k one bits have probability about 2/(In(2"))
of being prime. There are (Z:;) odd numbers be-
tween 2" and 2"*! with exactly k one bits. Thus we
have the estimate

n—1\ 2
A R~ —.
() (k:—Q) nln2

For small values of k the estimates are

2
Az (n) ~ nln?2’
(n-1)2 2
A o~ N — 2.
3(n) nln2 In2 89,
(n—1)(n—2) n
A ~ -~ o ~]1.44n.
4(n) nln?2 In2 n

For n > 1 and 0 < k < n, let Bi(n) denote the
cardinality of @, N [2"7',2"). There are (";2) odd
numbers with n non-leading bits of which exactly k
are zero bits. Each has probability about 2/(ln z) of

being prime. This leads to the estimate

n—2\ 2
Bk(n)z( k )nan'

For small k£ the estimates are

2
(n—2)2 2
B ~ ~ — ~ 2.89
1(n) nln2 In2 ’

(n—2)(n—3) n
B ~N— Y — x 1.44n.
2(n) nln2 In2 "

Note the similarity of these estimates to those for
Ay (n) above. In fact, we expect that

By (n) = Apya(n)

for each k£ > 0 and for large n.
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3. EMPIRICAL DATA

As a result of the work factoring Fermat numbers
and testing them for primality [Brillhart et al. 1988],
it is known that Ay(n) =1ifn=2"for 0 <m <4
and that Ay(n) = 0 for all other n < 23°.

We computed Az(n) for 2 < n < 200 and Ay(n)
for 3 < n < 100.

The average value of Az(n) for 2 < n < 200
is 2.97, which is higher than the predicted 2.89.
The running average > .. _, Asz(n)/(z—1) increases
steadily over the range of Table 1: It has values 2.63,
2.80, 2.85, 2.97 at z = 50, 100, 150, 200. The results
suggest that if A;(n) has an average, it exceeds 3.

nmod10 0 1 2 3 4 5 6 7 8 9
1n/10) 1 2 1 2 3 3 0 4
1 2 3 2 2 2 4 1 3 4 5
2 32 1 5 1 0 2 5 2 2
3 8 6 0 5 3 4 2 3 2 2
4 0 35 0 1 5 3 7 0 1
5 2 5 1 5 2 6 0 6 0 2
6 3 2 1 2 0 2 3 5 3 6
7 2 2 2 5 2 7 1 3 2 3
8 1 6 2 4 3 3 2 6 1 1
9 5 7 2 4 2 5 0 3 4 3
10 1 2 1 3 0 5 4 6 3 1
11 2 3 0 7 8 1 1 5 2 5
12 002 1 2 1 4 4 6 0 4
13 2 4 2 1 0 7 2 7 2 1
14 05 1 7 1 0 3 8 2 4
15 5 7 010 5 2 1 3 2 6
16 0 6 4 3 2 5 5 3 1 2
17 2 4 3 2 610 0 4 1 1
18 4 1 2 7 1 0 8 2 4 3
19 3 4 07 3 5 1 3 2 5
20 1

TABLE 1. A3(n) for 2 < n < 200.

The average value of A4(n)/n for 3 < n < 100 is
1.34, which is lower than the predicted 1.44. The
running average of A4(n)/n increases steadily over
the range of Table 2. It has values 1.06, 1.22, 1.28,
1.34 at = = 25, 50, 75, 100. It is plausible that it
might have a limit near 1.44.

The Mersenne primes have been studied exten-
sively. At present, it is known that 2?—1 is prime
for these 38 primes p: 2, 3, 5, 7, 13, 17, 19, 31, 61,
89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253,
4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,

o 1 2 3 4 5 6 7 8 9

0o 2 2 5 4 10 6
13 11 9 16 16 18 25 15 19 15
37 17 37 29 29 32 40 23 49 31
51 39 37 30 52 46 40 42 62 43
57 42 68 52 78 60 89 54 63 59
92 58 79 82 99 73 87 47 99 74
72 81 106 56 102 85 117 85 97 64
132 93 117 93 117 102 120 101 118 104
141 97 157 91 115 113 158 97 152 109
187 120 152 83 177 141 118 125 200 127
176
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TABLE 2. A4(n) for 3 <n < 100.

86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377 and 6972593.
The search for Mersenne primes is being conducted
by GIMPS; at http://www.mersenne.org/prime.htm
one can see the latest results. At this writing, all
exponents p up to about 5 - 10° have been tested.

Now By(p) is 1 if 27—1 is a Mersenne prime and 0
otherwise. Thus, By(n) has been computed for all n
up to about 5-10°, far beyond any calculation in this
paper. This has been possible because the Lucas-
Lehmer test [Hardy and Wright 1960] for primality
of 2P—1 is so swift, and because much more com-
puter time has been devoted to the GIMPS project.

We computed B;(n) for 1 < n < 200 and Bs(n)
for 2 < n < 100.

The average value of By(n) for 1 < n < 200 is
3.53, which is higher than the predicted 2.89. The
running average

i Bi(n)

n=1 z
increases steadily over the range of Table 3: It has
values 3.14, 3.27, 3.55, 3.53 at = = 50, 100, 150, 200.
The results suggest that if B;(n) has an average, it
exceeds 3.

The average value of By(n)/n for 2 < n < 100 is
1.08, which is lower than the predicted 1.44. The
running average of By(n)/n increases steadily over
the range of Table 4. It has values 0.78, 0.94, 1.05,
1.08 at x = 25, 50, 75, 100. It is plausible that it
might have a limit near 1.44.

It was easy to prove the primality of the numbers
in these tables which were identified as “probably
prime” by a variation of Fermat’s theorem. We used
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nmod10 0 1 2 3 4 5 6 7 8 9

|n/10] 01 1 2 2 3 0 4 4
1 31 5 1 4 0 3 2 8 1
2 11 4 5 0 7 1 2 0 1 5
3 007 5 1 1 9 0 6 0
4 7 1 6 0 4 7 2 110 3
5 3 1.2 1 6 0 4 3 0 1
6 8 33 0 3 1 8 1 2 2
7 309 1 5 2 5 8 3 0
8 10 3 0 2 4 4 6 1 4 4
9 9 0 2 3 9 0 6 2 6 5
10 5 2 7 1 7 4 1 2 7 1
11 8 0 8 1 6 3 4 7 4 1
12 6 4 8 0 5 3 5 0 4 3
13 10 2 5 0 4 0 6 411 0
14 9 3 3 014 6 4 2 0 3
15 7 0 5 7 1 2 3 1 9 0
16 4 3 5 1 4 4 5 017 0
17 7 2 0 0 6 0 3 2 2 0
18 9 4 2 0 4 6 4 1 8 5
19 2 0 9 2 7 0 1 4 5 0
20 6

TABLE 3. B (n) for 1 < n < 200.

o 1 2 3 5 6 7 8 9

4
o o o 1 2 4 0 9
5 14 4 16 9 18 0 21 21 21

7T 41 22 31 5 3r 20 33 14 37

0 47 0 69 31 36 34 55 34 11
10 60 50 69 22 81 52 59 5 97
71 79 42 67 8 95 13 103 61 81
47 98 50 110 0 108 87 116 36 125
98 98 29 126 90 125 46 107 100 125

8§ 158 81 109 65 156 94 131 27 127
144 146 38 167 129 137 6 127 112 178
76

O © 00O O WwiN
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TABLE 4. By(n) for 2 < n < 100.

the methods of [Brillhart et al. 1988]. The num-
bers counted in Table 1 were especially easy to prove
prime, for if p = 2" +2¢+1, then p—1 = 2/(2" 7"+ 1),
and the complete factorization of (2"* +1) is avail-
able in [Brillhart et al. 1988]. Likewise, the numbers
counted in Table 3 were easy to prove prime, for if
p=2"—2"—1, then p+1 = 2°(2"'—1), and (2""*—1)
is factored in [Brillhart et al. 1988].

4. DEEPER HEURISTICS

We first consider primes having a fixed number of
one bits. It is known [Hardy and Wright 1960] that
2" +1 must be composite unless n = 2™. (The proof
exhibits a factor of 2" + 1 when n # 2™.) Thus
[Hardy and Wright 1960] the expected number of
Fermat primes is

A0mM ST 4 _ % 577 <
n;) 2(2") szlnz In2 o0

m=0

rather than

“~In(2" +1)

On the other hand, every divisor of F}, is congruent
to 1 modulo 2™*2. This restriction on possible divi-
sors might seem to increase F),’s probability of be-
ing prime, but in fact the possible divisors divide the
F,,’s with a higher than expected probability, which
just compensates for their reduced number. Do sim-

=2
>z =

n=1

ilar considerations influence the primality chances of
odd integers with exactly k& one bits when k& > 27
Can we exhibit factors of some of them? Are their
possible divisors restricted?

Consider the case k = 3. It is easy to see that
the prime 3 divides 2" + 2¢ + 1 if and only if both
n and i are even. Thus, 3 divides 1/4 of the odd
numbers with exactly 3 one bits. However, for fixed
n, either 3 divides 2" + 2¢ + 1 for half of the i’s
(when n is even) or 3 divides 2" + 2" 4+ 1 for no @
(when n is odd). Thus, 2" + 2* + 1 is more likely to
be a multiple of 3, and hence less likely to be prime,
when n is even than when n is odd. This difference
is easy to observe in Table 1, since

200 199

> As(n) =204, while ) As(n) = 386.
n=2 n=3
n even n odd

Similar analysis of divisibility by 5 and 7 of odd
numbers with 3 one bits suggests that As(n) should
be larger when n = 2 (mod 4) than when n = 0
(mod 4) and that Aj(n) should be larger when 3
divides n than when n lies in one of the other two
residues classes modulo 3. Table 1 supports these
observations. The sums of A3(n) with n in a fixed
residue class modulo 4 are 61, 171, 143, 215, for
classes 0, 1, 2, 3 (mod 4). The sums of Az(n) with n
in a fixed residue class modulo 3 are 254, 165, 171,
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for classes 0, 1, 2 (mod 3). This analysis (explained
below) also concludes that 5 divides 3/16 of the odd
numbers with 3 one bits and that 7 divides 2/9 of
them.

We now argue heuristically that the fraction of
odd numbers with 3 one bits divisible by an odd
prime p is on average 1/(p—1). If the set of all
odd numbers with 3 one bits were sufficiently dense
(an arithmetic progression, for example), then we
could show by a sieve argument that about ¢/(ln x)
of these odd numbers < x would be prime. This
conclusion (with ¢ = 2) was our starting point in
Section 2.

Let p be an odd prime. Let [3(p) denote the least
[ > 0 for which 2! =1 (mod p). Then I,(p) divides
p—1 and the function f(n) = 2" mod p is periodic
with period l5(p). The set

A={2"mod p:0<n <lp)}
is a subset of {1,2,...,p—1} of size l3(p). The set
B={p-1-(2'modp):0<i<l(p)}

is a subset of {0,1,...,p—2} of size l5(p). There
is a one-to-one correspondence between solutions to
2"+ 2"+ 1 = 0 (mod p) and elements of AN B.
Each element of A has probability about (size of
B)/(p—1) = l2(p)/(p—1) of also being in B. As-
suming independent probabilities, the expected size
of ANBis (l5(p))?/(p—1). Thus, p divides 2" +2¢+1
with probability
size of AN B
number of pairs (n,i)

(L(p)?*/(p—1) 1

(2(p)?  p-1
Note that when 2 is a primitive root for p, lo(p) =

p—1, A={1,2,...,p—1}, B={0,1,...,p—2}, and
so p divides 2" 4 2¢ 4- 1 with probability
p—2 1
(p-17 p

There is a heuristic argument [Lehmer and Lehmer
1962; Hooley 1967] that concludes that 2 is a prim-
itive root for about 37 percent of all primes.

The analysis above consisted of counting the solu-
tions to 2" + 2+ 1 =0 (mod p) with 0 < n < ly(p)
and 0 < ¢ < ly(p). For example, for p = 5, l5(p) =4,
and the congruence has the three solutions (n,7) =
(0,3), (1,1) and (3,0). Thus, 5 divides 3/16 of the
odd numbers with three one bits. Similarly, 7 di-
vides 2/9 of the odd numbers with three one bits.

There are some primes for which the congruence has
no solution, for example, the Mersenne primes larger
than 7. In fact, much more is true:

Theorem 1. No positive integer multiple of 2¥—1 has
fewer than k one bits.

This theorem is a special case of [Stolarsky 1980,
Theorem 2.1].

The theorem restricts the combinations of primes
which may divide 2" + 2¢ 4+ 1: Suppose ¢ is a prime
divisor of 2¥—1 for some k& > 3. Then ¢ may divide
2" 4+ 2¢ + 1, but not in combination with the factor
(28—1)/q because 2¥—1 cannot divide 2" + 2+ 1 by
the theorem.

Now consider the case k = 4. When does 3 divide
2" 4+ 2¢ 42/ 41?7 The parity of j needed for this to
happen depends on those of n and ¢ as follows:

n mod 2 0 0 1 1

7 mod 2 0 1 0 1

2"mod3 1 1 2 2

22mod3 1 2 1 2
(2"+2"+1)mod3 0 1 1 2
2mod3 - 2 2 1

jmod2 — 1 1 0

When n is even, both ¢ and j must be odd, and
when 7 is odd, ¢ and j must have different parity, in
order for 3 to divide 2" +2¢+27+1. This means that
2" + 20 + 29 + 1 is twice as likely to be divisible by
3, and hence less likely to be prime, when n is odd
than when n is even. This effect is easy to notice in
Table 2, since

100

99
> Ay(n)=4175 while > Ay(n) = 2987.
n=4 3

n even nnchd

We now consider primes having a fixed number of
zero bits, beginning with the case of no zero bits.
The simple heuristics predict that the probability
that M, = 2°—1 is prime is about 2/(pIn2). We ex-
plained in [Wagstaff 1983] why the constant 2/1n 2 ~
2.89 should be replaced with €?/In2 ~ 2.57. The
same two constants appear in heuristic estimates
for the number of Mersenne primes < z. Simple
heuristic arguments suggest that the number M (z)
of Mersenne primes < z should be about

(2/In2)Inlnz,
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while deeper analysis predicts the number should be
about

(¢7/In2)Inlnz.

We compared these two predictions in a table [Wag-
staff 1983, p. 388] when only 27 Mersenne primes
were known. We extend that table here as Table 5.
In this table, M, is the m-th Mersenne prime. The
two heuristic analyses predict different limits for the
ratio M(z)/Inlnz. As x increases, this ratio de-
creases slowly between Mersenne primes and jumps
up from (m—1)/Inln M, to m/Inln M, at the m-
th Mersenne prime M,. The last two columns give

sliding lower and upper bounds for the limit, if any,
of the ratio M(z)/Inlnz.

m—1 m
mn p Inln M, Inln M,
27 44497 2.52 2.61
28 86243 2.46 2.55
29 110503 2.49 2.58
30 132049 2.54 2.63
31 216091 2.52 2.60
32 756839 2.35 2.43
33 859433 2.41 2.48
34 1257787 2.41 2.49
35 1398269 2.47 2.54
36 2976221 2.41 2.48
37 3021377 2.47 2.54
38 6972593 2.40 2.47

TABLE 5. Lower and upper estimates for the ratio
M(z)/Inlnx.

If the numbers in the last two columns of Table
5 converge to a limit, that limit is more likely to be
near 2.57 than 2.89. The limit 2.57 seemed more
plausible with the limited data in [Wagstaff 1983]
than it does with the data exhibited here. In fact,
the new data suggests that either the limit e7/1n 2 ~
2.57 is too large or that one or two Mersenne primes
have been missed.

The function B;(n) counts primes 2"—2'—1 with
1 < i < n—-2. It is easy to see that 3 divides
27 —2¢—1 if and only if n is odd and i is even. How-
ever, for fixed n, either 3 divides 2" — 2¢ — 1 for half
of the i’s (when n is odd) or 3 divides 2" — 2° — 1
for no ¢ (when n is even). Thus, 2" — 2/ — 1 is more
likely to be a multiple of 3, and hence less likely to

be prime, when n is odd than when n is even. This
effect is easy to notice in Table 3, since
200 199

> Bi(n) =517 while Y  Bi(n)=184.

n=2 n=1

n even n odd

Similar reasoning explains the variations in the sum
of By(n) when n ranges over different residue classes
modulo small primes.

The analysis for the function By(n) is similar to
that for A4(n), with divisibility of 2" —2*—27 —1 by
3 explaining why Bs(n) tends to be larger when n is
odd than when n is even. But there is one surprise:
In Table 4, By(n) = 0 whenever n is a power of 2.
One can prove that this always happens.

Theorem 2. For all m > 1, we have By(2™) = 0.
For all m > 3, we have B;(2™—1) = 0. This means
that, for m > 3, there is no prime number with
precisely 2™ bits, exactly two of which are zero bits.
In other words, there is no prime number of the form
22" 2127 1, where1 <i < j<2™-2andm > 1,
and no prime number of the form 2271 — 20 — 1,
where 1 << 2™ —2 and m > 3.

Proof. We see from Table 4 that By(2') = B,(2%) =
0. Let m > 3. Let p = 22" — 2" — 2/ — 1 with
1 <i<j<2m—1. Note that p = 22"t — 20 — 1
when j = 2™ — 1. Write j —i = 2*e, where e is odd.
We will show that d = 22" + 1 is a proper divisor of
p. Note first that 28 < j—i < 2™ —2, 50 kK < m and

l<d=2"+1<2"2_2<p

since m > 3. Clearly, 22" = —1 (mod d). Since
k < m, we have 22" = 1 (mod d), and so d di-
vides 22" — 1. Write —2! — 2/ = 22977 + 1) =
—2i(22"¢ 4+1). Since 22" = —1 (mod d) and e is odd,
we have 22 = —1 (mod d), and d divides 22°° + 1.
Therefore, d divides —2° — 27 and hence also p. It
follows that p is composite. [l

In the case j = 2™—1 and i = 2™ — 2, the proof
shows that d = 22 +1 =3 is a proper divisor of
p=22""2 — 1 when m > 3. Of course, it is easy to
prove this fact directly.

One observes that, in Table 4, B,(n) is small when
n is not a power of 2, but is divisible by a high
power of 2. The proof of Theorem 2 explains this
phenomenon, too. Suppose n = 2™ f, where f is
odd and > 1. Then Bsy(n) counts primes of the
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form p = 22"f — 20 -2/ — 1 with 1 < i < j <
2mf—2. Write j — i = 2*e, where e is odd. Let
d = 22" + 1. Then the proof above shows that d is
a proper divisor of p provided that k < m. But if
k > m, then 22" # 1 (mod d), so d does not divide
22" —1. However, d still divides —2°—27. (The proof
above works.) Therefore, d does not divide p, and
p is not prevented from being prime. We see that
B,(2™f) is small because no number of the form
p=22"1_-2_2 _1withl<i<j<2™f-2can
be prime unless 2™ divides j — . If m is large, this
restriction on j — ¢ excludes most candidate p’s.

5. OPEN QUESTIONS

Does there exist any k for which we can prove there
are infinitely many primes with exactly k£ one bits?
Does there exist any k for which we can prove that
there are infinitely many primes with < k one bits?
We conjecture that both questions have the answer,
“Yes, any k > 3 will do.”

One may ask the same questions with “one” re-
placed by “zero.” It seems likely that the answers
to the “zero” questions are, “Yes, for any k£ > 0.”
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