Enumerating Large Orbits and Direct Condensation

Frank Libeck and Max Neunhoffer

CONTENTS

1. Introduction

2. The Orbit Algorithm and Variations
3. Matrices Acting on Vectors

4. Parallelization

5. Direct Condensation
Acknowledgements

Electronic Availability

References

We describe a new algorithm for direct condensation, which is
a tool in computational representation theory. The crucial point
for this is the enumeration of very large orbits for a group acting
on some set. We present a variation of the standard orbit enu-
meration algorithm that reduces the amount of storage needed
and behaves well under parallelization. For the special case of
matrices acting on a finite vector space an efficient implemen-
tation is described. This allows us to use condensation methods
for considerably larger permutation representations than could
be handled before.

1. INTRODUCTION

Notation. Let G = (g1, ..., g,) be a group given by r
generators. Let M be a set, Sym M the symmetric
group on M and 7 : G — Sym M a homomorphism.
We say that G acts on M, and form € M and g € G
we write mg := w(g)(m). Clearly, 7 is uniquely
determined by the images 7(g;), 1 < i < r, of its
generators. We call the elements of M points, and
for m € M the set mG = {mg | g € G} is called
the G-orbit of m (under the action). Let mg € M
such that its G-orbit myG is finite.

Let K be a subgroup of G, also given by a finite
number of generators. The main purpose of this pa-
per is the discussion of an algorithm which computes
for each K-orbit mK C myG, where m € myG, the
intersection numbers of its translates mK g; with all
such K-orbits. This is explained in Section 2 which
starts with the description of two basic algorithms
for enumerating an orbit.

An interesting interpretation of these numbers in
the representation theory of the group G is explained
briefly in Section 5, which also contains two explicit
examples. This application, called direct condensa-
tion, was our original motivation for this note. But
we hope that our general remarks about enumerat-
ing large orbits will be useful for other applications
as well.

(© A K Peters, Ltd.

1058-6458/2001 $0.50 per page
Experimental Mathematics 10:2, page 197

198 Experimental Mathematics, Vol. 10 (2001), No. 2

The result in Section 5C is of independent interest
because it can be used to finish the determination of
the (previously unknown) decomposition numbers
of the symmetric groups S,, for 21 < n < 23, in
characteristic 5.

Our algorithm for orbit intersection matrices (Al-
gorithm 2.5) is given in such a way as to make it
easy to find variations allowing practical applica-
tion to very large cases. For example, it may not
be possible to store all points of the orbit on a com-
puter for lack of memory. Therefore we introduce a
concept of minimal points in an orbit and only such
points need to be stored during the algorithm.

In Section 3 we make this explicit in the important
practical case were G acts via matrices on a (finite)
vector space. We show a way to define minimal ele-
ments that allows us to get very efficiently from an
arbitrary vector in the orbit to a minimal one in the
same K-orbit. This is the key point which makes
our algorithm for direct condensation much more
efficient than a previous implementation described
in [Cooperman and Tselman 1996] (see Section 5B
for more details). In Section 4 we discuss a paral-
lelization of the algorithm and our implementation.
This can be used to treat substantially larger cases
than could be handled before.

2. THE ORBIT ALGORITHM AND VARIATIONS

In this section we first describe algorithms to enu-
merate the G-orbit myG from the given mg € M
and given 7(g;), where 1 < i < r. (Recall that we
assume mG finite.)

2A. The Basic Algorithm

Algorithm 2.1 (Orbit)
Input: my € M and w(g;) for 1 <i<r
Output: a list L containing the elements of moG
Initialize: L < [my)]
for m in L
for ¢ from 1 to r
T+ mg;
ifc ¢ L
append z to the list L

return L

The algorithm terminates because the orbit mgG is
finite. It is clear that the resulting list L contains
only elements from the G-orbit of my. Furthermore

L is invariant under the action of the generators g;
and so under their inverses g;'. Since each element
of G is a finite product of these generators and their
inverses, L is invariant under the action of G. This
shows that L contains exactly the elements of the
orbit myG.

Counting the number of necessary operations in
the algorithm we find:

Proposition 2.2. Algorithm 2.1 needs r times the length
of moG operations consisting of an application of a
generator of G to a point and a lookup of the result-
ing point in the list of known points.

With a naive implementation of the lookup of points
in L by sequential comparison, the lookup part of
an operation described in the proposition would take
most of the running time in the case of large orbits.
But with the help of standard techniques like hash-
ing [Knuth 1997, Section 6.4], the time for a single
lookup becomes (almost) independent of the length
of the orbit.

2B. Large Orbits

Our interest here is the practical enumeration of
large orbits. Two problems arise: the list of all
points in an orbit does not fit into the computer
memory and the running time of the algorithm may
be longer than we want to wait for the result.

Both problems are addressed by the following vari-
ation of Algorithm 2.1.

We now assume that we have a partition of M
that is a refinement of the partition into G-orbits.
As a typical example think of the partition into or-
bits under a subgroup of G. Furthermore we as-
sume that for each part a nonempty subset is de-
fined whose points we will call minimal. Finally we
assume the availability of three functions (whose im-
plementation is discussed later):

e part, which returns for a given m € M a list of
the points in the part containing m.

e minimals, which returns for a given m € M a list
of the minimal points of part(m).

e minimal, which returns for a given m € M one
minimal point in part(m).

To save memory for the orbit myG the following
algorithm computes only a list of its minimal points.

Lubeck and Neunhoffer: Enumerating Large Orbits and Direct Condensation 199

Algorithm 2.3 (OrbitByPartition)
Input: my € M and 7(g;) for 1 <i<r
Output: a list L containing the minimal elements of
moG with one element of each part marked as a
representative
Initialize: L < minimals(my); mark first element as a
representative
for m’ in L which is marked as a representative
L, + part(m’)
for m in [
for ¢ from 1 to r
x < minimal(mg;)
if ¢ L
append the elements of minimals(z) to L
and mark one of the new points as
a representative
return L

With the output L of this algorithm it is possible
to run through all points in mG using the function
part as above. Also, one can check for an arbitrary
point m € M whether it is contained in myG by
checking whether minimal(m) is in L.

The order in which the parts are handled in the
outer loop of this algorithm does not matter (except
for the ordering of the points in the resulting list
L). We will show in Section 4 how to use this for
parallelizing the algorithm.

2C. Orbit Intersection Matrices

Let K = (ky,...,ks) be a subgroup of G given by s
generators and let my, ..., m,, be representatives of
the K-orbits within myG.

Definition 2.4. In this setting we define the K-orbit
intersection matrices of the g; on myG to be the
matrices (ax(9:))<p 1< With

ar(g:) == ‘kagi ﬂle‘ for1<i<nr.

We are interested in the practical computation of
these orbit intersection matrices. In Section 5 we
will discuss an application of these matrices in the
representation theory of the group G.

From now on we will assume that the partition
of M described in Section 2B is a refinement of its
partition into K-orbits.

In the following algorithm we use OrbitByPartition
(Algorithm 2.3) in two ways: first (with some book-
keeping for the orbit intersection matrices) for the

whole orbit myG, the partition being given by the
K-orbits; and second, the parts being as before, to
compute the K-orbits.

Algorithm 2.5 (OrbitIntersectionMatrices)

Input: mo; 7(g;), 1 <i<r; w(k;),1<j<s

Output:

e a list L containing the minimal elements of myG
with one element of each part marked as a repre-
sentative

eamapnr:L—{1,...,m} with nr(a)=lif aem K

e the orbit intersection matrices A < (az;(g;)) for
1< <r

Initialize:

e k< 1 [loop variable for number of K-orbit]

e L < OrbitByPartition(mg, w(k1),...,m(ks)) [start
with minimal elements in first K-orbit mq K]

e n < 1 [number of last found K-orbit]

e nr(a) < 1forallaclL

e AW « (0) for 1 <i <r [initialize A®¥ with 1 x 1
zero matrices]|

while £ < n [loop over the K-orbits in m,G, eval-

uating only one of its parts at a time]
L, « list of a € L with nr(a) =k
for each m’ € L, marked as a representative of its
part
Ly < part(m’)
for m in L,
for ¢ from 1 to r
x <— minimal(mg;)
if 2 ¢ L [the K-orbit K is not known yet;
compute it now]
n—n+1
append OrbitByPartition(z,7(k1),. .., m(k))
to L
set nr(a) < n for the new points in L
enlarge all AY), for 1 < j < r, by adding
a column and a row of zeros
A,(;i —1
else [number of K-orbit of z is known]
[« nr(x)
AD — AD 1
return L, nr and A® for 1 <i<r

Only the minimal points of myG plus the points of
one part at a time have to be stored. Typical orbit
intersection matrices are dense. That means that
during the execution of this algorithm there are two
phases. During the first phase mainly new K-orbits

200 Experimental Mathematics, Vol. 10 (2001), No. 2

are evaluated. After the computation of the first few
rows of the orbit intersection matrices the list L is
complete. In the second phase the remaining part
of the orbit intersection matrices is determined.

Remark 2.6. Assume we have run Algorithm 2.5 once
and want to know the orbit intersection matrices
for additional elements of G. This can be achieved
by a small modification of the previous algorithm.
As input we take the elements of G whose orbit in-
tersection matrices we want to know and the re-
sulting L and nr from a previous call to Orbitinter-
sectionMatrices. The only difference is now that in
the initialization L and nr are set to the given ones.
Of course, here the case x ¢ L in the inner loop
never occurs.

3. MATRICES ACTING ON VECTORS

One case for the setup in Section 2 is that the set
M is a finite-dimensional vector (row) space over a
finite field and the action of the generators g; (and
the k;) is described by matrices acting on M by right
multiplication.

G. Cooperman and M. Tselman [1996] have imple-
mented a parallelized algorithm for computing orbit
intersection matrices in this case. An important as-
pect of their algorithm consists also in saving mem-
ory by not storing all points in the orbit. However,
if the proportion of stored elements in such an orbit
is 1/, one needs on average about « vector-matrix
multiplications to find from an arbitrary point in
this K-orbit one of the stored points. This essen-
tially leads to a multiplication of the total running
time of the algorithm by a factor a.

Another approach was taken by R. Parker and
R. Wilson, who have a (sequential) program that
uses “tadpoles” to save memory. There seems to be
no reference for this, so here is the idea: One defines
a “random-looking” successor function on the set of
points and stores only “attracting points” under re-
peated application of this function. Under certain
statistical assumptions one expects to buy a sav-
ing factor 1/« in memory usage with a loga time
penalty factor. But it seems to be difficult to predict
the behavior of the algorithm in practical cases.

We will now explain a way to realize our functions
minimals, minimal and part described in 2B efficiently
for this case. This allows us to reduce the needed

memory by a large factor. But the computing time is
only increased by a small constant factor compared
to the basic orbit algorithm.

We consider a subgroup U of K with the following
properties:

(1) U is small enough that we can store all elements
of U in our process for computing the orbit in-
tersection matrices.

(2) There is a U-invariant subspace V of M such that
all U-orbits of the quotient space M/V can easily
be computed.

(3) The average length of the U-orbits on M/V is
“close to” |U/|.

In practical examples it seems not to be difficult
to find such U and V. The space M viewed as a
G-module is typically irreducible. Small subgroups
of K as candidates for U can be found by con-
sidering some subgroups generated by random el-
ements. Now M considered as U-module usually
has a composition series consisting of many small-
dimensional modules. This can be found using the
MeatAxe [Ringe 1998], and so we find candidates for
V.

Assume that we have found U and V as above.
Let pr: M — M/V be the projection map. Note
that the action of U on M and the induced action
on M/V commute with pr. We enumerate M/V
and call m € M minimal if pr(m) is minimal in
its U-orbit with respect to this enumeration. (pr is
particularly easy to implement when the basis of M
is chosen to contain a basis of V.)

In a precomputation—a short one, because of
property (2)—we compute by a variation of the
basic orbit Algorithm 2.1 for each point of M/V
either an element of U mapping it onto the mini-
mal element in its U-orbit or, if the point is already
minimal, the elements of U stabilizing this point.

Now we implement part(m) by computing all mu,
u € U, and removing multiple points. Because of
property (3) this takes not much more than one
vector-matrix multiplication per element in part(m).

For minimal(m) we use the precomputation; for
pr(m) we have stored a u € U such that mu is min-
imal. All minimals(m) are computed by applying all
u’ from the stabilizer of pr(mu) to mu and removing
multiples. Because of property (3) this stabilizer is
often trivial.

Lubeck and Neunhoffer: Enumerating Large Orbits and Direct Condensation 201

Using these considerations we can count the basic
operations needed in Algorithm 2.5.

Proposition 3.1. Assume that in the situation above
the computation of minimals(m) takes on average less
than 2 wvector-matriz multiplications and that the
computation of part(m) takes on average less than 2
vector-matriz multiplications per point in the part.
Then:

(a) OrbitByPartition (Algorithm 2.3) requires 2 + 2r
vector-matriz multiplications and r list lookups
per point in the considered orbit (neglecting the
computation of all minimal points once for each
part).

(b) OrbitintersectionMatrices (Algorithm 2.5) requires
(242s)+(2+42r) vector-matriz multiplications and
s+ r list lookups per point in the considered or-
bit (here we neglect the calls to minimals once for
each part and the bookkeeping effort for the orbit
intersection matrices).

A similar idea also works in the case of G acting on
the subspaces of M, instead of the vectors.

In certain cases one can think of further improve-
ments by choosing subgroups U with additional nice
properties. For example, if M is a semisimple U-
module then one can take a basis of M such that
elements of U have a (very sparse) block diagonal
form. (In general one can reach a block triangular
form.)

4. PARALLELIZATION

We do not see an improvement of Algorithm 2.5
OrbitintersectionMatrices which reduces the computa-
tion time considerably. But we can reduce the wait-
ing time for the result by distributing the computa-
tions in parallel among several computer processors.
We are mainly thinking of using networks of work-
stations. In this section we describe our approach
to a parallelization of OrbitlntersectionMatrices.

4A. Parallel version of OrbitlntersectionMatrices

Looking at the algorithm we see that it is essential
to have a central place where the list L and the map
nr are managed (in form of a hash table) to avoid
many computations of the same K-orbits by several
processes and also to guarantee a unique numbering
of the K-orbits found.

We divide the work into pieces by giving single
runs through a K-orbit as jobs to single processors.
In such a job, corresponding to a run through the
body of the outer loop in Algorithm 2.5, one row of
each of the orbit intersection matrices is computed.

We have written a small library which allows com-
munication of processes running on computers con-
nected via a network (using UNIX domain sockets,
which are available on many computer operating
systems). The communication is of the type that
one process sends to another a number indicating a
type of a request plus some data. The other process
may do some computation and then sends back an
answer in form of a block of data. Using this we
have implemented three different programs which
work together.

First there is one process called the jobserver: It
can be asked for a job to do (a number k in Algo-
rithm 2.5), or for a number for a newly found K-
orbit, and it collects the computed rows of the orbit
intersection matrices and stores them into files.

Then there is one process (or several, see below)
called the hashserver: This one manages the hash
table for the list L. It can be asked to send for
a given list of points the corresponding numbers of
their K-orbits or the information which points are
lying in a not yet known K-orbit. Also this pro-
cess can be asked to store the information about a
new K-orbit in its hash table (it writes it to a file,
too), and also to send a list of representatives for
the parts which are contained in the K-orbit with a
given number.

Finally there can be many processes called dc-
client: They ask the jobserver for a job, get the
representatives for the K-orbit they have to handle
from the hashserver, then run through the body of
the outer loop of Algorithm 2.5, send the computed
rows of the orbit intersection matrices to the job-
server, and start from the beginning. When such a
process has to check whether a point is contained
in L and wants to know the number of its K-orbit
then it sends the point to the hashserver to get the
answer. When a new K-orbit is computed it is sent
to the hashserver (which ignores it in the rare case
that this K-orbit was in the meanwhile already com-
puted by another process). Actually a dcclient does
not send single points as requests to the hashserver
but always computes minimal(mg;) for all m in a

202 Experimental Mathematics, Vol. 10 (2001), No. 2

fixed part and puts a collected request to the hash-
server into a queue. Before computing the next such
request it checks for available answers from the hash-
server. This way the client process does not have to
be idle in case of a temporarily overloaded network.

As a variant we also allow multiple hashservers:
Here we use a function which computes for a given
point the number of a hashserver which is responsi-
ble to store this point and to answer requests about
it. This makes the preparation of hashserver re-
quests by a dcclient slightly more complicated but
it can be very useful in certain situations: For exam-
ple if the data for the requests are computed so fast
that the network bandwidth is too small and if we
have a switched network (which allows several par-
allel connections with full bandwidth) then multiple
hashservers can increase the overall available net-
work bandwidth for the requests. And this is simi-
lar when a hashserver cannot handle all the requests
fast enough. Another point is that the hashserver is
usually the process which needs most of the mem-
ory. For efficiency it is desirable that a hashserver
can keep the list L in the physical memory of the
computer. Using multiple hashservers we can use
the physical memory of several computers for this
purpose.

Concerning the memory needed by these processes
the hash servers need to hold all minimal points of
moG and a client process needs to store at most all
minimal elements of a K-orbit and the points in one
part of the partition. The orbit intersection matrices
can also become very big (there may be up to 10000
K-orbits, say). But it is never necessary to store
more than one row in a client. Once a row is com-
puted it can be stored in a file and is not needed any
more. (We only have to append some zeros when we
use them, because some new K-orbits can be found
after finishing a row.)

The computation time for the algorithm scales al-
most linearly with the number of clients as long as
the bandwidth of the communication between the
clients and the hash servers or the computing power
of the hash servers do not reach their limit. And the
amounts of data which have to be transferred can
be estimated very well from 3.1. If network band-
width becomes a problem one can at least speed up
linearly the second phase of the algorithm described
after Algorithm 2.5: We interrupt the computation

after finding all K-orbits and start it again in the
form of 2.6 with several hash servers who all use the
same already computed data.

4B. Comments on the Implementation

Our implementation of the parallel version of Orbit-
IntersectionMatrices is written as far as possible in a
generic way (the programming language is C), where
we assume almost nothing about how the points of
M, elements of G and the action are given. To get
a program for a special case one has to write a file
containing functions for initializing the clients, op-
eration of group elements on points, the functions
part, minimal and minimals, and hash functions for
the points. This can then be linked easily with the
main part of the program.

The part for the client-server communication is a
separate small package which can be used for other
programs as well. It supports simple blocking re-
quests, i.e., where a process waits for an answer, as
well as queues of nonblocking requests.

One advantage of our communication approach
seems to be robustness: The crash of any single pro-
cess involved in a computation does not waste the
computing time spent so far. Client processes can be
terminated and new ones started up at any time. Of
course the whole computation crashes when one of
the server processes is terminated for some reason.
But we are saving the results which are already ob-
tained into files and this makes it possible to restart
the computation almost at the point where it was
stopped. This feature is very important for the use
of such programs on networks where any single ma-
chine can be down at any time for various reasons.
The lack of this feature was also the reason that we
did not use a (in certain aspects much more sophisti-
cated) communication protocol like MPI [Snir et al.
1998].

The initial revision of our package contains two
versions of the programs. One with permutations as
group elements for doing the computation described
in 5C and another more general one for matrices
acting on vectors over a finite field. In the latter we
use some basic functions from the MeatAxe [Ringe
1998]. Since we want to use this program for very
large examples we have put some effort in optimizing
the vector-matrix arithmetic, e.g., by precomputing
certain linear combinations of rows of the operating

Lubeck and Neunhoffer: Enumerating Large Orbits and Direct Condensation 203

matrices (Parker calls this “greasing”) and by using
partial row operations for sparse rows.

Our software is freely available under the Gnu
Public License; see Electronic Availability at the end
of this article.

5. DIRECT CONDENSATION

Let A be a finite-dimensional algebra over a field F’
and let e = e-e € A an idempotent. The idea of con-
densation is to get information on A-modules M by
studying the eAe-modules Me. In particular this is
an important tool in computational representation
theory. The latter modules can be of much smaller
dimension but still encode interesting information
on the structure of M, since the map M — Me is
an exact functor from the category of A-modules to
the category of eAe-modules.

For more details we refer to [Cooperman et al.
1997] and the references given there. The first ref-
erence describing the use of this method in modular
representation theory is J. Thackray’s thesis [1981].

5A. Interpretation of the OrbitIntersectionMatrices

We want to consider the special case when A = FG
is the group algebra of a finite group G over the
field F, e is the idempotent 1/|K|->", _, k € FG
corresponding to the subgroup K of G whose order
is not a multiple of the characteristic of F', and M
is a permutation module of F'G. (If e is of this form
then K is called the condensation subgroup).

Now we assume that G and M are finite. A per-
mutation representation G — Sym M of G describes
a permutation module M of FG. A basis for this
module is parameterized by the elements of M. Let
T = cyamm € M and O be a K-orbit of M.
Then for all m € O the coefficient of m in ze is
1/10] - >_,/co @m:- This shows that the orbit sums
X0 = Y _meo ™ for all K-orbits in M are a basis of
Me. Furthermore we see how for g € G the element
ege is acting on this basis: for another K-orbit O’
the coefficient of o/ in xpege is 1/|0’'| - ap,or with
ap.or = ‘{m €0 |mgc¢€ O’}|.

Clearly M is a direct sum of the permutation
modules on the G-orbits in M. Our Algorithm 2.5
(OrbitintersectionMatrices) computes exactly the num-
bers ap, o for all K-orbits in a single G-orbit. (Note
that the sum of entries in a fixed row or column of

an orbit intersection matrix gives the length of the
corresponding K-orbit.) The method was called di-
rect condensation by Parker and Wilson because
one only needs to know for a given point m € M and
g € G its image mg but one does not need to write
down in full detail the explicit permutation induced
by g on M.

5B. An Application with G = Th

As first example for our program we have checked
the computations in [Cooperman et al. 1997]. There
G is the sporadic simple Thompson group acting
linearly on a vector space M of dimension 248 over
the field with 2 elements. The considered G-orbit
has about 10° elements. The cited paper contains
enough details that we could redo the computations
starting with the matrices for this representation
given in R. Wilson’s WWW-Atlas of group repre-
sentations [Wilson et al. 1996+].

We used the approach described in Section 3. As
subgroup U for the partition of the orbit we con-
structed a group of order 336 which has an invari-
ant subspace in M of codimension 20. It turned out
that about 1 out of 257 points in the considered G-
orbit is minimal. The minimal vectors can be stored
in 125 Megabytes of memory using one bit per field
element.

After we measured the time needed for a single
vector-matrix multiplication, we estimated the to-
tal running time of the condensation using Propo-
sition 3.1. We found that this estimate was very
close to the actual running time. The computations
were done on 18 machines (450 MHz Pentium II pro-
cessors) of a cluster at the university of St. Andrews
(provided by an EPSRC grant), which are connected
by a “switched fast ethernet network”. We used one
hashserver which had to handle about 65 Giga-
bytes of lookup requests. The computation needed
less than 4 hours. (To compare with [Cooperman
et al. 1997, 3.3]: There 8 machines computed for
one month—a single vector-matrix multiplication
took about the same time as in our case—and 610
Megabytes of vectors had to be stored.)

We have also done some larger computations for
other sporadic simple groups. The results can hope-
fully contribute to the determination of the modu-
lar character tables of these groups. Details will be
given elsewhere.

204 Experimental Mathematics, Vol. 10 (2001), No. 2

5C. An Application with G = S,; a Symmetric Group

As another application we condensed the permuta-
tion module of a Young subgroup of type (8,8,4,1)
in the symmetric group G = S3;. The motivation
was a question by G. James and A. Mathas who
could determine the decomposition matrix for the
irreducible representations of G in characteristic 5
up to a single entry. The question was whether in
the Specht module of G labelled by the partition
(8,8,4,1) reduced modulo 5 the irreducible module
labelled by (12,9) occurs once or twice.

J. Miiller has found a subgroup K of G with the
property that the permutation module of type (8,
8,4,1) condensed with K as condensation subgroup
has either 761 or 762 constituents in a composition
series depending on the two possible cases. Such a
consideration can be made using only the two pos-
sible tables of Brauer characters for G and the char-
acter table of K. (See again [Cooperman et al. 1997]
for a more detailed explanation.) The group K is a
transitive subgroup of order 47,029,248 having the
number 147 in the database of transitive groups con-
tained in GAP [GAP 2000].

In this case our M consists of 21-tuples of numbers
on which G acts by permutation. The permutation
module we want to condense is described by the or-
bit of [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2, 3.
It has dimension 1,309,458,150. As generators of
G we took two random elements and K was also
given by two generating permutations. As partition
of the orbit for Algorithm 2.5 we took again orbits
under a subgroup of K. There is a nice subgroup
which is a direct product of 7 symmetric groups Ss,
each factor permuting the entries of 3 consecutive
positions. We define for each part a unique mini-
mal point, namely that one whose entries are sorted
in positions {1,2,3}, {4,5,6} and so on. There are
only about 660,000 minimal points in the orbit. So,
the operation of group elements on the points and
the functions part, minimal and minimals are imple-
mented easily and efficiently for this case.

In this example the operation of group elements
on points can be computed so fast that even in a
parallel computation with few clients the network
bandwidth can be reached with the requests for the
hashserver. Our approach with multiple hash-
servers improves the situation considerably here.

On 20 machines of the network already mentioned
in 5B using 20 client and 20 hash server processes
the orbit intersection matrices for the two generators
of G could be computed in 38 minutes and during
this time about 96 Gigabytes of data were sent over
the network.

The condensed module has dimension 4197. A
composition series of this module for the algebra
generated by the two computed elements of form ege
can be found with the MeatAxe [Ringe 1998] within
a few hours of computation time. We found 761
constituents and this rules out the possibility for
the decomposition number which would imply 762
constituents. (Note that it is not clear whether our
two elements ege generate the whole algebra eF'Ge,
but taking further generators into account cannot
increase the number of constituents.)

Proposition 5.1. Let G = Sy; and F be a field of
characteristic 5. The multiplicity of the simple F'G-
module labeled by the partition (12,9) in the FG-
Specht module labeled by (8,8,4,1) is one.

This result together with work of A. Mathas and
G. James, in particular the software package Specht
[Mathas 1997], determine the decomposition num-
bers in characteristic 5 for all symmetric groups S,
with n < 23.

ACKNOWLEDGEMENTS

We would like to thank J. Miiller for very useful
discussions on the topic.
The cluster of machines used to perform the calcu-

lations described in Section 5B was purchased with
funds from EPSRC grant GR/M32351.

ELECTRONIC AVAILABILITY

An implementation of the algorithms described here
is freely available under the terms of the Gnu Public
License, at http://www.math.rwth-aachen.de/~-DC.
For details on the Gnu Public License scheme, see
http: //www.gnu.org/copyleft /gpl.html.

REFERENCES

[Cooperman and Tselman 1996] G. Cooperman and
M. Tselman, “New sequential and parallel algorithms
for generating high dimension Hecke algebras us-
ing the condensation technique”, pp. 155-160 in

Lubeck and Neunhoffer: Enumerating Large Orbits and Direct Condensation 205

ISSAC’96: Proceedings of the International Sympo-
stum on Symbolic and Algebraic Computation (Zurich,
1996), edited by Y. N. Lakshman, ACM Press, New
York, 1996.

[Cooperman et al. 1997] G. Cooperman, G. Hiss, K.
Lux, and J. Miiller, “The Brauer tree of the principal
19-block of the sporadic simple Thompson group”,
Ezperiment. Math. 6:4 (1997), 293-300.

[GAP 2000] The GAP group, GAP: Groups, algo-
rithms, and programming, Version 4.2, RWTH Aachen
and University of St. Andrews, 2000. See http://
www-gap.dcs.st-and.ac.uk/~gap.

[Knuth 1997] D. E. Knuth, The art of computer
programming, v. 3: Sorting and searching, 2nd ed.,
Addison Wesley, Reading, MA, 1997.

[Mathas 1997] A. Mathas, Specht: Decomposition ma-
trices for the Hecke algebras of type A (manual for
version 2.4), University of Sydney, 1997. See http://
www.maths.usyd.edu.au:8000/u/mathas/specht/.

[Ringe 1998] M. Ringe, The C-MeatAxe, a manual,
Lehrstuhl D fiir Mathematik, RWTH Aachen, 1998.
See http://www.math.rwth-aachen.de/~-MTX/.

[Snir et al. 1998] M. Snir et al., MPI—the complete
reference, 2nd ed., MIT Press, Cambridge (MA), 1998.
See also http://www-unix.mcs.anl.gov/mpi/.

[Thackray 1981] J. G. Thackray, Modular representations
of finite groups, Ph.D. thesis, Cambridge University,
1981.

[Wilson et al. 1996+] R. Wilson et al., “WWW-
Atlas of group representations”, 1996+. See http://
www.mat.bham.ac.uk/atlas/.

Frank Liibeck, Lehrstuhl D fiir Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany
(Frank.Luebeck@math.rwth-aachen.de, http: //www.math.rwth-aachen.de/~Frank.Luebeck)

Max Neunhoffer, Lehrstuhl D fiir Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany
(Max.Neunhoeffer@math.rwth-aachen.de, http: /www.math.rwth-aachen.de/~Max.Neunhoeffer)

Received May 10, 2000; accepted in revised form October 13, 2000

