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From the geometric study of the elementary cell of hexagonal

circle packings — a flower of 7 circles — the class of conformally

symmetric circle packings is defined. Up to Möbius transforma-

tions, this class is a three parameter family, that contains the

famous Doyle spirals as a special case. The solutions are given

explicitly. It is shown that these circle packings can be viewed

as discretization s of the quotient of two Airy functions.

The online version of this paper contains Java applets that let

you experiment with the circle packings directly. The applets

are found at http://www-sfb288.math.tu-berlin.de/Publications/

online/cscpOnline/Applets.html

1. INTRODUCTIONCircle packings (and more generally patterns) as dis-crete analogs of conformal mappings is a fast de-veloping �eld of research on the border of analy-sis and geometry. Recent progress was initiated byThurston's idea [1985] about the approximation ofthe Riemann mapping by circle packings. The cor-responding convergence was proved by Rodin andSullivan [1987]; many additional connections withanalytic functions, such as the discrete maximumprinciple and Schwarz's lemma [Rodin 1987] andthe discrete uniformization theorem [Beardon andStephenson 1990], have emerged since then.Circle packings constitute a natural topic for com-puter experimentation and visualization. Computerexperiments demonstrate a surprisingly close anal-ogy of the classical theory in the emerging \discreteanalytic function theory" [Dubejko and Stephenson1995]. Although computer experiments give con-vincing evidence for the existence of discrete analogsof many standard holomorphic functions, Doyle spi-rals (which are discrete analogs of the exponentialfunction; see Section 4) are the only circle packingsthat have been described explicitly.
c
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Circle packings are usually described analyticallyin the Euclidean setting, that is, through their radiifunction. On the other hand, circles and tangen-cies are preserved by the fractional-linear transfor-mations of the Riemann sphere (M�obius transfor-mations). It is natural to study circle packings inthis setting, i.e., modulo the group of the M�obiustransformations. Z.-X. He and O. Schramm [1998]developed a conformal description of hexagonal cir-cle packings, and used it to show that Thurston'sconvergence of hexagonal circle packings to the Rie-mann mapping is actually C1. They describe circlepackings in terms of the cross-ratiosq(a; b; c; d) := (a� b)(c� d)(b� c)(d� a)of their touching points.Schramm [1997] introduced circle patterns withthe combinatorics of the square grid (SG patterns).In many aspects the SG theory is analogous to thetheory of the hexagonal circle packings. However,the SG theory is analytically simpler. The corre-sponding discrete equations describing the SG pat-terns, in the Euclidean as well as in the confor-mal setting, turn out to be integrable [Bobenko andPinkall 1999]. Methods of the theory of integrableequations made it possible to �nd Schramm's circlepatterns that are analogs of the holomorphic func-tions z� and log z [Agafonov and Bobenko 2000].Discrete z2 and log z had been conjectured earlier[Schramm 1998] by Schramm and Kenyon.One big question is which results on the Schramm'scircle patterns carry over to the hexagonal setting,in particular whether some discrete standard func-tions can be described explicitly. This is closelyrelated to the question of integrability of the ba-sic discrete equations for hexagonal circle packings(the He{Schramm equation; see Section 3). In thepresent paper the �rst simple step in this directionis made. We study (surprisingly nontrivial) confor-mal geometry of hexagonal circle packings. In termsof this approach, a special class of conformally sym-metric circle packings, which are generalizations ofDoyle spirals, is introduced and all such packingsare described explicitly.Since this article deals with families of circle pack-ings it seems natural to show not only arbitrar-ily chosen members in the �gures, but to provide
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FIGURE 1. A circle 
ower (applet version available).a possibility to present them all. Therefore thereis an interactive version of this paper available on-line. It has some of the �gures replaced by applets,which allow one to explore the families directly. Seethe section on Electronic Availability at the end formore information on this version.
2. GEOMETRY OF CIRCLE FLOWERS AND

CONFORMALLY SYMMETRIC CIRCLE PACKINGSThis paper concerns patterns of circles in the planecalled hexagonal circle packings. Their basic unit isthe 
ower, consisting of a center circle tangent toand surrounded by petals. A hexagonal 
ower is il-lustrated in Figure 1; the six petals form a closedchain which wraps once in the positive direction(counterclockwise) about the center. Whereas neigh-boring petals touch, the circles of non-neighboringpetals of a 
ower may intersect. We call a 
ower im-mersed if none of its circles degenerates to a point.A hexagonal circle packing is a collection of orientedcircles where each of its internal circles is the cen-ter of a hexagonal 
ower. Orientations of the circlesshould agree: at the touching points the orientationsof the touching circles must be opposite. A hexag-onal circle packing can be labeled by the triangular(hexagonal) latticeHL = n+mei�=3 2 C ; for n;m 2 Z :or by one of its subsets. A circle packing is calledimmersed if all its 
owers are immersed. Immer-sions of the whole HL are called entire. Fractional-linear transformations of the complex plane (M�obiustransformations) preserve circles, their orientation
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and their tangencies. In this paper we study circlepackings modulo the group of M�obius transforma-tions.The center circle of a 
ower contains 6 pointsz1; : : : ; z6 (see Figure 1) where it touches the petals.We call them center touching points of a circle 
ower.
Proposition 2.1. Let z1; : : : ; z6 be points ordered coun-terclockwise on a circle C. The following three state-ments are equivalent :(i) There exists a 
ower with the center C and centertouching points z1; : : : ; z6.(ii) The multiratio m of z1; : : : ; z6 is equal to �1,that is ,m(z1; z2; z3; z4; z5; z6) := (z1�z2)(z3�z4)(z5�z6)(z2�z3)(z4�z5)(z6�z1)= �1: (2–1)(iii) There exists an involutive M�obius transforma-tion M (M�obius involution) such thatM(zk) = zk+3 (k mod 6):

z2 z5
r5r1

z1 z3 z4r2 r4r3
FIGURE 2. A 
ower with one central touching pointat in�nity.

Proof. Mapping the point z6 to in�nity by a M�obiustransformation one obtains two parallel lines and�ve touching circles as in Figure 2. An elementarycomputation yieldszk+1 � zk = 2prk+1rk; for k = 1; : : : ; 4; (2–2)where rk are the radii of the corresponding circles.Together with r1 = r5 and (z5 � z6)=(z6 � z1) = �1this implies (2{1).On the other hand, given arbitrary r1 > 0 andordered z1; : : : ; z6 satisfying (2{1), after normalizingz6 = 1 formula (2{2) provides us with the radii ofthe touching circles as in Figure 2. This proves theequivalence of (i) and (ii).

To show the equivalence of (ii) and (iii), de�nethe M�obius transformation M through M(z1) = z4,M(z2) = z5, M(z3) = z6. Consider z� = M(z4).The invariance of the cross-ratios q(z1; z2; z3; z4) =q(z4; z5; z6; z�) implies the equivalence of (2{1) andz� = z1. The same proof holds for M(z5) = z2 andM(z6) = z1. �To each center touching point zk of a 
ower, onecan associate a circle Sk passing through 4 touchingpoints zk�1; zk+1; wk; wk�1 of the 
ower containingzk (see Figure 3). Here wk is the touching pointof petals Pk+1 and Pk (the petals are labeled by thecorresponding touching points zk). Indeed, mappingthe point zk by a M�obius transformation to 1, it iseasy to see that the points zk�1, zk+1, wk, wk�1 aremapped to vertices of a rectangle, thus lie on a circle.We call these circles s-circles of a 
ower.

wk�1
zk�1

Sk
wk zkzk+1 P

FIGURE 3. A conformally symmetric 
ower (appletversion available).
Theorem 2.2. There exist a one-parameter family of
owers with the same center touching points . More-over , there exists a unique 
ower F in this family ,which satis�es the following equivalent conditions :(i) F is invariant with respect to a M�obius involutionM with a �xed point P ,(ii) All s-circles of F intersect in one point P .We call the 
ower F of the theorem conformallysymmetric.
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One can view the whole family of 
owers using anapplet (see Electronic Availability at the end).
Proof. Keeping the points z1; : : : ; z5 in Figure 2 �xedand varying r1 one obtains a one parameter fam-ily of 
owers with the same touching central points.Let us now construct the 
ower F . The M�obiusinvolution of Proposition 2.1 preserves the centralcircle C. Consider the circles Ck, for k = 1; 2; 3,orthogonal to C and passing through the pairs ofpoints fzk; zk+3g. All these three circles intersectin 2 points P and P 0, which are the �xed points ofM lying inside and outside C, respectively. By aM�obius transformation, map the point P to in�nity.The M�obius involution M becomes M(z) = �z andthe circles C1; C2; C3 become straight lines intersect-ing in the center of C. To construct the 
ower F ,connect the zk-points with even (respectively, withodd) labels by straight lines and consider their in-tersection points wk (see Figure 4). The circles Ckpassing through the triples wk, wk�1, zk touch atthe points wk. Let us prove this fact for C1 and C2.Indeed, the triangles �(w1; w6; z1) and �(z3; z5; z1)are similar, therefore the tangent lines to the circleC1 at w1 and to the circle C at z3 are parallel. Thetangent lines to C2 at w1 and to C at z6 are alsoparallel. Since the points z3 and z6 are opposite onC, the circles C1 and C2 touch at w1. The circles Ck

w6w5
w4

z1

z2
z3z4

z5
z6

w3
w1

w2

FIGURE 4. A normalized conformally symmetric 
ower.

are the petals of the desired 
ower F , which is obvi-ously M -symmetric. The s-circles of this 
ower arethe straight lines (zk; zk+2). The latter obviously in-tersect at in�nity, thus all the s-circles of F intersectin the �xed point P of M .The proof of (ii) =) (i) is similar. After mappingthe point P to in�nity the s-circles become straightlines and the 
ower is as in Figure 4. Since thecircles in this �gure touch, their tangent lines at thepoints zk; zk+3 and wk+1 are parallel. This impliesthat zk and zk+3 are opposite points on C, and the
ower is symmetric with respect to the �-rotationof C. �
Definition 2.3. A hexagonal circle packing is calledconformally symmetric or an s-circle packing if itconsists of conformally symmetric 
owers; that is,if the s-circles of each of its 
owers intersect in onepoint.
3. ANALYTIC DESCRIPTION OF CONFORMALLY

SYMMETRIC CIRCLE PACKINGSIn this section we describe all conformally symmet-ric circle packings using the conformal description ofcircle packings proposed by He and Schramm [1998].To each central touching point zk of a 
ower oneassociates the cross-ratiosk := q(zk; zk�1; wk�1; wk) = (zk�zk�1)(wk�1�wk)(zk�1�wk�1)(wk�zk) :
(3–1)(Note that our normalization of sk di�ers from theone in [He and Schramm 1998].) Mapping zk to1, one observes that tree other points in (3{1) aremapped to vertices of a rectangle, which implies thatsk is purely imaginary. Moreover, the cross-ratios ofan immersed oriented 
ower are positive imaginary,�isk > 0. Also note thatsk = �q(zk+1; zk�1; wk�1; zk) = q(zk; wk; zk+1; zk�1);
(3–2)and that s2k = q(zk+1; zk�1; wk�1; wk) is the cross-ratio of the four touching points lying on the s-circleSk.

Lemma 3.1. The cross-ratios sk of a 
ower satisfy theHe{Schramm equationsk + sk+2 + sk+4 + sksk+1sk+2 = 0 (3–3)for all k mod 6.
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Proof. Let mk be the M�obius transformation thattakes zk;zk�1;wk�1 to the points1;0;1, respectively.By the de�nition of sk we havesk = q(zk; zk�1; wk�1; wk) = q(1; 0; 1;mk(wk));�sk = q(zk+1; zk�1; wk�1; zk) = q(mk(zk+1); 0; 1;1);thus mk(wk) = 1� skand mk(zk+1) = �sk:For Mk := mk+1m�11 this yields Mk(�sk) = 1,Mk(1) = 0, Mk(1� sk) = 1 and, �nally,Mk = � 0 11 sk � ;in the usual matrix notation for the M�obius transfor-mations. The equality of the corresponding M�obiustransformations impliesM3M2M1 = �M�14 M�15 M�16 ;which is� s2 1+s1s21+s2s3 s1+s3+s1s2s3�= ���s4�s6�s4s5s6 1+s4s51+s5s6 �s5 � :Since the set of immersed 
owers is connected ands's do not vanish the sign in this equation is thesame for all 
owers. Taking all the circles with thesame radius one checks that the correct sign is plus,which implies the claim. �It is convenient to associate the touching points of ahexagonal circle pattern (as well as the cross-ratiossk) to the edges of the honeycomb lattice. Equation(3{3) is a partial di�erence equation on the honey-comb lattice. The cross-ratios on the edges of eachhexagon satisfy (3{3). Moreover, it is easy to checkthat the He{Schramm equation is su�cient to guar-antee the existence of the corresponding circle pack-ing.
Proposition 3.2. Given a positive-imaginary functions : E ! iR + on the edges E of the honeycomb lat-tice satisfying (3{3) on each honeycomb, there ex-ists unique (up to M�obius transformation) immersedhexagonal circle packing with the cross-ratios givenby the corresponding values of s.

Theorem 3.3. A circle 
ower is conformally symmet-ric if and only if its opposite cross-ratios sk are equalsk = sk+3 (k mod 6): (3–4)

Proof. The property (3{4) for conformally symmetric
owers follows from (i) of Theorem 2.2. A simplecomputation with the 
owers in Figure 4 shows thatthe map (s1; s2) of immersed conformally symmetric
owers to (iR +)2 3 (s1; s2) is surjective. Since a
ower is determined through the s's, the conversestatement follows. �The general solution of (3{3, 3{4) on the whole HLdepends on three arbitrary constants and can begiven explicitly. There is a Java applet that lets youexplore this three parameter family of circle pack-ings interactively (see section on Electronic Avail-ability at the end.)
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FIGURE 5. Cross-ratios of conformally symmetric cir-cle patterns.
Theorem 3.4. The general solution of (3{3, 3{4) isgiven by an = i tan(�n+ �);bn = i tan(�n+ �);cn = i tan(�n+ 
); (3–5)

where � = �����
 and the cross-ratios sk on theedges of the hexagonal lattice are labeled by an; bn; cnas shown in Figure 5 (n varies over the integers).
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FIGURE 6. Continuation of conformally symmetric sabout a honeycomb.
Proof. We start with a simple proof of the consistencyof the following continuation of a solution of (3{3){(3{4).Given s satisfying (3{3) and (3{4) on a honey-comb H , that is, a; b; c in Figure 6 satisfyinga+ b+ c+ abc = 0; (3–6)and a value of s on one of the edges attached tothe honeycomb (for example, d1 in Figure 6), itcan be uniquely extended to the full six honeycombsH1; : : : ; H6 neighboring H . Indeed, (3{3) and (3{4)yield b+ d1 + d2 + bd1d2 = 0;thus d2 =M1(d1) is a M�obius transformation of d1.Passing once around the honeycomb H in this wayone can check that (3{6) implies the monodromyM�obius transformation M = M6 : : :M1 is the iden-tity, thus this continuation implies no constraints ond1.Proceeding this way, one reconstructs s on thewhole lattice HL from its values on three adjacentedges (a; b; d1 above). Then (3{3) and (3{4) implyan + b�n + c1 + anb�nc1 = 0;an+1 + b�n + c0 + an+1b�nc0 = 0;and similar relations for other an; bn; cn. These iden-tities become just the addition theorem for the tan-gent function, implying the formulas in (3{5), whichcan be checked directly. �

4. DOYLE SPIRALSDenote byR the radius of the center circle of a 
owerand by R1; : : : ; R6, the radii of its petals. Doylespirals are characterized through the constraint (see[Beardon et al. 1994; Callahan and Rodin 1993] fora complete analysis of Doyle spirals)RkRk+3 = R2; RkRk+2Rk+4 = R3 (4–1)on the radii of the circles (see Figure 7, where thecentral radius is normalized to be R = 1). Doylespirals have two degrees of freedom (for example theratios R1=R and R2=R, which are the same for thewhole spiral) up to similarities. Again, you can ex-periment online with the two radii in a Java applet.

B

1B
BA

1 BA

1A

A
FIGURE 7. Radii of a Doyle spiral with the normal-ized central radius R = 1 (applet version available).

Proposition 4.1. Doyle spirals are conformally sym-metric.
Proof. The con�gurations of four touching circleswith the radii R, Rk�1, Rk, Rk+1 and with the radiiRk+3, Rk+4, R, Rk+2 di�er by scaling. This impliessk = sk+3 (use both (3{1) and the second repre-sentation of sk in (3{2)) and the claim follows byTheorem 3.3. �
Theorem 4.2. Doyle spirals and their M�obius trans-formations can be characterized by the following twoequivalent properties :
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(i) The circle packing is conformally symmetric, andthe corresponding solution of (3{3) is \constant".It is of the form (3{5) with �; �; 
 2 (0; �=2) and�+ � + 
 = 0 (mod �) or , equivalently ,an = a0; bn = b0; cn = c0; a0; b0; c0 2 iR +;a0 + b0 + c0 + a0b0c0 = 0:(ii) The whole circle packing is invariant with respectto the M�obius involution of each of its 
owers .
Proof. All the 
owers of a Doyle spiral di�er by scal-ing, which implies (i). Consider the Doyle spiral asin Figure 7. Computing the cross-ratios through theradii, one shows that the map�(A;B) 2 R 2+	!�(a; b; c) 2 (iR +)3 : a+ b+ c+ abc = 0	:is surjective; thus (i) characterizes Doyle spirals andtheir M�obius transforms. The proof of the equiv-alence (i) () (ii) is elementary and is left to thereader. �It is an open problem whether Doyle spirals are theonly entire circle packings. Formulas (3{5) implythat it is possible to have all cross-ratios being pos-itive imaginary (necessary condition for entireness)only when � = 0.
Corollary 4.3. Doyle spirals are the only entire con-formally symmetric circle packings .
5. AIRY FUNCTIONS AS CONTINUOUS LIMITBecause of the property (4{1), Doyle spirals are in-terpreted as a discrete exponential function.In the conformal setting this interpretation canalso be easily observed. Indeed, let P " be a family ofcircle packings approximating a holomorphic map-ping in the limit " ! 0. He and Schramm [1998]investigated the behavior of the cross-ratios sk inthis limit: sk = ip3(1 + "2h"k);where hk is called the discrete Schwarzian deriva-tive (Schwarzian) of P " at the corresponding edgeof the hexagonal lattice. The discrete Schwarziansconverge to the Schwarzian derivative

S(f) := �f 00f 0 �0 � 12 �f 00f 0 �2 (5–1)

of the corresponding holomorphic mapping. Moreprecisely, there exist continuous limitsa = lim"!0h"1; b = lim"!0h"2; c = lim"!0h"3for the smooth functions a; b; c. (Note that we havelim"!0 h"k = lim"!0 h"k+3.) Because of (3{3) thesefunctions satisfy a+ b+ c = 0 (5–2)at each point. The Schwarzian equalsS(f) = 4(a+ !2b+ !c); with ! = e2�i=3;and, using (5{2), this also yields6a = ReS(f);6b = Re(!S(f));6c = Re(!2S(f)):
9>=>; (5–3)

We see that, because of Theorem 4.2, Doyle spiralscorrespond to holomorphic functions with constantSchwarzian derivative S(f) = const. The generalsolution of the last equation is the exponential func-tion and its M�obius transformations.It is natural to ask which holomorphic functionscorrespond to general conformally symmetric circlepackings. In Figure 5 one observes that each of thecross-ratios an; bn; cn is constant along one latticedirection. For the functions a; b; c above, this impliesa = a(Re z);b = b(Re(!z));c = c(Re(!2z));where z is the complex coordinate. Comparing theseequations with (5{3) we see that the Schwarzian isa linear function of z:S(f) = Az +B; A 2 R ; B 2 C : (5–4)Equation (5{4) can be easily solved by standardmethods. The general solution of S(f) = u(z) withholomorphic u(z) is given byf(z) :=  1= 2;where  1(z) and  2(z) are two independent solu-tions of the linear di�erential equation  00 = u(z) .By a shift and scaling of the variable z, equation(5{4) with A 6= 0 can be brought to the formS(f) = z: (5–5)
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As solutions of the corresponding linear equation 00 = z we have the Airy functions Ai(z) and Bi(z). On thereal line the �rst of these is given byAi(x) = 1� Z 10 cos�xt+ t33 � dt;[Spanier and Oldham 1987], while the second is re-lated to it byBi(z) = iq2Ai(!2z)� iqAi(!z):In the corresponding M�obius class of solutions of(5{5) it is natural to choose
f(z) := Bi(z)�p3Ai(z)Bi(z) +p3Ai(z) ; (5–6)

which is the most symmetric one, f(qz) = qf(z).The corresponding circle packing, symmetric withrespect to the rotation z ! qz, is shown in Figure 8.
Remark. One observes that the approximation in Fig-ure 8 is excellent. On the other hand the resultsof Sections 3 and 4 imply that this approximationholds in �nite domains only. For some large n 2 N ,some cross-ratios become negative imaginary, whichone can interpret as passing through in�nity. Thus,the circle packing arrives at in�nity for �nite n.By re�ning the discretization|taking � ! 0 in(3{5)|one can approximate the above-mentionedratio of two Airy functions in an arbitrary �nite do-main.As mentioned in the introduction, in connectionwith explicit examples, Schramm's SG-patterns arericher than the packings with hexagonal combina-torics. SG-patterns corresponding to ratios of twoAiry functions were constructed in [Schramm 1997](compare Figure 8.1.a of that paper with Figure 8).In contrast with our conformally symmetric circlepackings, the Schramm circle patterns correspond-ing to them are entire, that is, they have regularbehavior for all (n;m) 2 Z 2.
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ELECTRONIC AVAILABILITYSince the families of circle packings discussed in thispaper have a �nite (and even small) number of pa-rameters, it seemed natural to look for a way tovisualize whole families and experiment directly.Java applets have been provided to illustrate thefamilies of circle packing 
owers, the whole class ofconformally symmetric circle packings, and the spe-cial case of Doyle spirals. They also let the viewerwear \M�obius glasses", allowing the application ofarbitrary M�obius transformation, which can helpgain intuition. (Except for Doyle spirals, the fam-ilies are only de�ned modulo an arbitrary M�obiustransformation.) These applets can be found athttp://www-sfb288.math.tu-berlin.de/Publications/online/cscpOnline/Applets.html.The page http://www-sfb288.math.tu-berlin.de/Publications/online/cscpOnline/index.html includesthese applets and the text of this paper, with in-structions for the interactive �gures. This onlineversion renders a dvi �le inside a Java applet. Itrequires a web browser that includes a Java virtualmachine (any recent browser does). Note, however,that rendering the pages is slow on older machines;that's why we also provide the applets separately.
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