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We give an efficient algorithm for computing relative power in-
tegral bases in cubic relative extensions. The problem leads to
solving relative Thue equations as described by [Gaél and Pohst
1999] using the enumeration method of [Wildanger 1997].

The article is illustrated by examples of relative cubic extensions
of quintic and sextic fields which emphasizes the power of the
method. This is the first case that unit equations of 12 unknown
exponents are completely solved. The experiences of our com-
putations may be useful for other related calculations, as well.

1. INTRODUCTION

In a series of papers we investigated algorithms for
computing power integral bases in cubic [Gadl and
Schulte 1989], quartic [Gadl et al. 1993; 1996], quin-
tic [Gadl and Pohst 1997; Gadal and Gy6ry 1999] and
some sextic [Gadl 1995; 1996; Gadl and Pohst 1996],
octic [Gadl and Pohst 2000], and nonic [Gadl 2000]
fields. For a recent survey of connected results see
[Gadl 1999]. The enumeration method of [Wildan-
ger 1997] made possible to extend these computa-
tions from cubic and quartic fields also to higher
degree fields.

Recently we determined relative power integral
bases in quartic relative extensions [Gaal and Pohst
2000]. In case of quadratic base fields the results
were used to determine all power integral bases of
octic fields.

In the present paper we consider the question of
determining relative power integral bases in rela-
tive cubic extensions. The problem reduces to solv-
ing relative Thue equations as described by [Gaél
and Pohst 1999], using the enumeration method of
[Wildanger 1997].

We make interesting computational experiences
about Wildanger’s ellipsoid method. Surprisingly
the method allows to determine relative power inte-
gral bases even for sextic base fields (in the totally
real case) as illustrated by the examples. For sextic
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base fields the resolution of the corresponding rel-
ative Thue equation yields solving a unit equation
of » = 12 unknown exponents. Note that formerly
such equations were solved only with at most » = 10
unknowns [Wildanger 1997] and it was not obvious
that the method works for » > 10. The computa-
tional experiences show that r = 12 is very likely
the limit of the method.

2. RELATIVE CUBIC EXTENSIONS

Let M be a field of degree m and let K = M (£) be
a cubic extension of M, with an algebraic integer
&. Denote by Zjs, Zg the rings of integers of M,
K, respectively. Set O = Zj[€], let d be an integer
with d-Zx C O and set iy = [Zk : O].

Then any o € Zg can be written in the form

~ Xo+ Xi§+ X087
B d

with Xy, X1, Xy € Z ;. The relative index of o with
respect to the extension K /M is

(Zy : Zyla)) = (Zg : O) - (O : Zya]).
(2-2)
For any v € M denote its conjugates by v, for
i =1,...,m. For v € K we denote by v, for
1 =1,...,m and j = 1,2,3, the conjugates of ~
o) that K (”) are the images of those embeddings
of K which leave the conjugate fields M® of M
elementwise fixed.
Calculating the relative index analogously to the
absolute case we have

(2-1)

Ieym () =

é_(ijl) — S(Uz)

- ﬁ ‘X@ +

Denote by 3 the quadratic term of the cubic rela-
tive minimal polynomial of & over M, that is ) =
—£0) @) _¢G3) i — 1 ... m. Then the above
product can be written in the form

m 3
II H‘X(” (89 + €09 X}

=1 j=1

(E(ijl) +£(ij2)) XQ(i)

It means that setting p = 6 + £ we have

From this and (2-2) we deduce that the element o

of (2-1) generates a power integral basis {1, «, o}
of Zy over Zy if and only if ig = [Zk : O] =1
and X, Xy € Z,; are solutions of the relative Thue
equation

Nuja (Nijur (X1 — pXy)) = d°™.

This equation can be solved by the method of [Gaél
and Pohst 1999].

Let ny,...,ns be a system of fundamental units in
M and extend this system to a maximal independent
system 7y, ...,7s,€1,-..,&. of K. Then

X, — pXy =vnhr ..

with bq,...,b,,a1,...,a, € Z and v € Zg is an
element of norm d*™. For I = (ijyj2j3) with 1 <
v < m, {jlaj?aj?)} = {172a3} set

" Y (plide) — plida)) gl o £lin) \
F = Vidz) (plidn) — plida)) (%m)) (6(@2)) :

r

(2-3)
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The relative Thue equation (2-3) reduces to the unit
equation [Gaal and Pohst 1999, (7)], that is

B 4+ I =1

with I = (ij1j273), I' = (ij3j271) in the unknown
exponents ai, ..., Q.

Baker’s method gives an initial bound for A =
max{|a],...,|a,|} which is reduced in several steps
by applying [Gaél and Pohst 1999, Lemma 1]. The
reduced bound implies

(2-4)

<8P < S (2-5)

S
for a certain large S. Set

I={(ij1j2gs) : 1 <1 <m, {jr,J2, 03} ={1,2,3}}.
Note that J contains 3m elements. To replace S

by a smaller s we have to enumerate those exponent
vectors ay, ..., a, for which

- < ‘/3(1)‘ < S forall Iel,

(2-6)

) 1

‘5(1)f1‘ < ) for some I' € J.
S5—

(compare [Gaél and Pohst 1999, Lemma 2]). The
enumeration of this set means enumerating integer
vectors in an ellipsoid. Note that we have 3-m such



ellipsoids to enumerate. We replace S by smaller
values in several consecutive steps. If S is small
enough, the solutions ay,...,a, of (2-4) are already
easy to determine.

Our computations show that equation (2-3) is fea-
sible to solve even for quintic or sextic base fields
M. Note that this is the first case when cubic rela-
tive Thue equations are solved over quintic and sex-
tic fields. For the resolution of these relative Thue
equations we have to the solve the unit equation
(2-4) in 7 = 10 and r = 12 unknown exponents,
respectively.

3. EXAMPLES

Example 1. Cubic extension of a quintic field

Let M = Q(u) where p has minimal polynomial
f(z) = 2° — 523 + 2* + 3z — 1. This totally real
quintic field has integral basis {1, u, u?, p®, u*} and
discriminant D,; = 24217 = 61 - 397.

Consider now the cubic field L = Q(§) where ¢
has minimal polynomial g(z) = 23 —2?—4x+3. This
totally real cubic field has integral basis {1,¢, &%}
and discriminant Dy = 257.

The totally real composite field K = LM is of de-
gree 15 generated by pué over Q with minimal poly-
nomial
h(z) = z'® — 452" + 421 + 6612 — 762" — 37632°

+599z° 4+ 97742" — 19112° — 117852°
+ 25652* + 5877x" — 13232 — 972z + 243.

Since (Dy, D) =1 the elements
{u'é¢? :i=0,...,4,j=0,1,2}

form an integral basis of K; compare [Gadl 1998].
We have

Dy = 15923064047629187967208841
= 61%-397% . 257°.

Hence d =11in (2-1) and ip = [Zk : O] = 1.

The fundamental units of K and M were com-
puted by using Kash [Daberkow et al. 1997]. The
set of fundamental units of M formed a subset of
the set of fundamental units of K. Hence we had
r = 10 relative units.

In the unit equation (2-4) we had » = 10 unknown
exponents. Baker’s method gave A < 108 for the
exponents of this unit equation. The reduction algo-
rithm of [Gadl and Pohst 1999, Lemma 1] was used
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step Xo H X digits min
1 1086 10900 1962 1500 180
2 1962  10°° 113 150 3
3 113 1040 92 150 3
4 92  10% 80 150 3
5 80 103 75 150 3

TABLE 1. Original bound Xy, constant H, reduced
bound X, number of digits and CPU time in minutes
needed for the computation of Example 1.

with 11 terms in the linear form, as shown in Table 1.
In the notation of [Gadl and Pohst 1999, Lemma 1],
in each step X, denotes the original bound for A,
H is the constant playing an important role in the
corresponding lattice, and X is the reduced bound
for A. Table 1 includes the number of digits used
for the computation and the execution time of the
reduction step. The final bound A < 75 implied
the bound S = 10'5'® in (2-5) (compare [Gadl and
Pohst 1999]).

In the enumeration procedure (2-6) we had 15
ellipsoids in 10 variables. The enumeration of the
integer points of the ellipsoids were performed in
several steps, as shown in Table 2. Using the nota-
tion of [Gadl and Pohst 1999], the table includes S,
s from (2-6), the number of digits used, the number
of tuples enumerated in the 15 ellipsoids together
and the execution time. The last line corresponds
to the ellipsoid [Gaél and Pohst 1999, (23)].

The exponent tuples were tested if there are solu-
tions corresponding to them. The element o € Z
generates a relative power integral basis of K over
M if and only if it is of the form

a = Xo + e(X1€ + X,6%) (3-1)

with arbitrary X, € Zj,, an arbitrary unit € in M
and X; = 10 + T1p + T1op® + 2130 + 2 ap?,
Xy = Ty0 + Taapt + Toppt® + Tazp® + To4p*, Whose
coordinates are listed in Table 3.

Example 2. Cubic extension of a sextic field

Let M = Q(u) where p has minimal polynomial
f(z) = 2% — 52" + 22* + 1823 — 112® — 192+ 1. This
totally real quintic field has integral basis

{1, 0%, 0%, 0%, 0}
and discriminant Dy, = 592661 (prime).
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step S S digits  tuples min Ti0 i1 P12 T13 Ti4 | T2o T21 T2 T2z To4
1 101518 1050 200 0 7.0 15 -3 -27 1 5| —54 15 96 —8 —20
2 1050 1020 70 0 2.7 -1 3 -1 -4 2 0 -1 6 -3 0
3 1020 1012 50 28 1.9 —262 77 471 —36 —97 | =219 65 394 —30 —81
4 1012 1010 50 30 1.5 11 -5 -21 2 4 8 —2-14 1 3
5 100 108 50 617 1.5 3 -3 =5 1 1 -7 2 14 -1 -3
6 108 107 50 899 1.6 7-13 -1 3 0 3-10 4 2 -1
7 107 108 50 2629 2.0 -6 0 0 0 O -5 0 0 0 0
8 106 10° 50 6513 2.7 0 -1 0 0 O -2 1 4 0 -1
9 10° 1045 50 4016 2.1 2 0 0 0 0 -7 0 0 0 0
10 10%4% 104 50 4974 2.2 -2 5 -4 -1 1 1 6 -5 -1 1
11 104 6000 40 2848 1.5 -1 0 24 -1 -5 3 1 -5 0 1
12 6000 3000 40 3390 1.6 4 4 -1 -1 0 3 4 -1 -1 0
13 3000 1500 40 3192 1.5 -1 2 4 -1 -1 3 -6 -13 2 3
14 1500 1000 40 2132 1.3 -5 2 9 -1 -2 -3 -1 5 0 -1
15 1000 500 40 2554 1.3 1 -3 -4 1 1 3 -2 -9 1 2
16 500 250 40 2007 1.2 3 -3 -9 1 2 1 0 0 0 O
17 250 150 40 1137 0.9 -2 5 -4 -1 1 4 -3 -5 1 1
18 150 100 40 722 0.8 0O 1 1 0 0 0 -1 0 0 0
19 100 50 40 715 0.9 -3 0 0 0 0 1 0 0 0 O
20 50 25 40 345 0.7 0 -3 —4 1 1 3 -3 -9 1 2
21 25 12 40 136 0.5 0 -1 0 0 0 -1 3 4 -1 -1
22 12 6 40 45 0.4 -2 3 4 -1 -1 2 0 -5 0 1
23 6 3 40 30 0.3 -1 0 0 0 O -1 0 0 0 O
24 3 40 2 0.2 0 0 0 0 0O 1 0 0 0 O

1 0 0 0 0 0O 0 0 0 0

TABLE 2. Values of S and s, plus computational pa-
rameters, arising in the enumeration procedure for
Example 1.

Now consider the cubic field L = Q(§) where ¢
has minimal polynomial g(z) = 2* — 2® — 4z + 3
(same totally real cubic field of Example 1). L has
integral basis {1,¢,£?} and discriminant Dy = 257.

The totally real composite field K = LM is of de-
gree 18 generated by pé over Q with minimal poly-
nomial

h(z) = z'® — 52'" — 822'° 4 3972'® 4- 25012
—119192'3—341002'2+1695322* +1879982*°
—11740962° — 1542402° + 362492827
—11826952° — 42396902° + 1472949z*
+17868602° — 10732522 — 18468z + 729.

Since (Dyr, D) = 1, the elements
{p'¢? :i=0,...,5,j=0,1,2}
form an integral basis of K (compare [Gadl 1998]).
We have
Dy = 59981564379238299956091922221869

= 257% . 5926613.

TABLE 3. Coefficients of X; and X5 (defined by (3-1)
for Example 1.

Hence d =1in (2-1) and i = (O : Zy[§]) = 1.

The fundamental units of K and M were com-
puted by using Kash [Daberkow et al. 1997]. The
set of fundamental units of M formed a subset of
the set of fundamental units of K. Hence we had
r = 12 relative units.

Baker’s method gave A < 10'** for the exponents
of the unit equation (2-4). The reduction algorithm
[Gadl and Pohst 1999, Lemma 1| was used with 13
terms in the linear form, as shown in Table 4. In
the table we use the notation as in Example 1. The
final bound A < 86 implied the bound S = 102% in
(2-5).

In the enumeration procedure we had 18 ellip-
soids in 12 variables. The enumeration of the inte-
ger points of the ellipsoids were performed in several
steps, as shown in Table 5.

The exponent tuples were tested if there are solu-
tions corresponding them. The test of the 565869
exponent tuples took about 240 minutes of CPU
time.



step Xo H X digits min
1 10104 10900 1246 1500 290
2 1246 1080 121 200 19
3 121 1060 91 150 14
4 91 10°7 86 150 13

TABLE 4. Original bound Xy, constant H, reduced
bound X, number of digits and CPU time in minutes
needed for the computation of Example 2.

The element o € Zx generates a relative power
integral basis of K over M if and only if it is of the
form

o= Xo+e(X1€ + Xo6%)

with arbitrary X, € Zjs, an arbitrary unit ¢ in M
and X, :331,0+$1,1M+$1,2,U2+$1,3M3+1‘1,4,U4+1'1,5,U5,
Xy =To0+Top+ -"172,2,u2 + -1'2,3#3 + 1'2,4,U4 + $2,5,U5,
whose coordinates are listed in Table 7 on the next
page.

step S S digits  tuples min
1 10249 1050 200 0 15
2 1050 10%° 100 4 6
3 1020 1015 80 8 4
4 10%° 1012 80 396 4
5 10'2 1010 80 3419 6
6 1010 10° 80 4574 6
7 10° 108 80 14413 9
8 108 107 80 39283 18
9 107 5-10° 80 18093 11
10 5-108 108 80 55989 24
11 108 5-10° 80 33578 16
12 5-10° 105 80 95078 37
13 108 5-104 80 44819 20
14 5-10* 10* 80 113397 43
15 10000 5000 80 38527 20
16 5000 3000 80 27479 14
17 3000 1500 80 27714 14
18 1500 800 80 19034 11
19 800 400 80 14137 9
20 400 200 80 8529 6
21 200 100 80 4447 5
22 100 50 80 1982 3
23 50 25 80 688 2
24 25 10 80 222 2
25 10 3 80 62 1
26 3 80 2 0.5

TABLE 5. Values of S and s, plus computational pa-
rameters, arising in the enumeration procedure for
Example 2.
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4. COMPUTATIONAL EXPERIENCES

The algorithms were developed in Maple and exe-
cuted on a 350 MHz Pentium II PC under Linux.
The integral bases, discriminants and fundamental
units were calculated using Kash [Daberkow et al.
1997]. Note that already the calculation of these ba-
sic data is a hard problem in the totally real fields
of degree 15 and 18 we investigated. Nevertheless,
Kash managed this computation in a couple of min-
utes. The remaining times were as shown in Table 6.

A considerable amount of CPU time was taken by
the reduction procedure. Proceeding from r = 10 to
r = 12 the reduction times are still comparable but
the necessary CPU time for enumeration is about 8
times more. (Note that for 7 = 10 we had 15 ellip-
soids, for 7 = 12 we had 18 ellipsoids to enumerate,
so the main difference in the CPU times is caused
by the difference in the number of variables.) More-
over for = 12 considerable CPU time is taken also
by testing the possible exponent vectors which was
negligable for » = 10. These experiences show that
r = 12 is about the limit of the applicability of the
ellipsoid method [Wildanger 1997].

Example 1 Example 2

reduction 192 min 336 min
enumeration 38.3 min  306.5 min
test 2 min 240 min
total 3.9 hours 14.7 hours

TABLE 6. Summary of the CPU times.
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