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For � 2 (0, 2), let k(�) denote the smallest positive value of �
so that the truncated power function '�,�(t) = (1�jtj�)�+ is pos-

itive definite. We give lower and upper estimates of Kuttner’s

function k(�) through detailed numerical and symbolic com-

putations, and we show analytically that k
�

4n+1
2n+1

� � 2n+1 for

n 2 IN.

1. INTRODUCTIONA complex-valued function ' is said to be positivede�nite if the matrix�'(ti � tj)�ki;j=1is nonnegative de�nite for all �nite systems of realnumbers t1; : : : ; tk. Positive de�nite functions havesigni�cant applications in probability theory, statis-tics, and approximation theory, where they occur ascharacteristic functions, covariance functions, andradial basis functions, respectively. The celebratedtheorem of Bochner [1933] characterizes continuous,positive de�nite functions as the Fourier transformsof nonnegative �nite measures.Wintner [1942] raised the question for which val-ues of � > 0 and � > 0 the truncated power function'�;�(t) = �1� jtj���+ = ( (1� jtj�)� if jtj � 1,0 if jtj � 1,is positive de�nite (see [Gneiting 2000] for an ex-tensive discussion of, and corrections to, Wintner'sresults). The question is an appealing special caseof a recent problem of Bisgaard and Sasv�ari [1997].By Bochner's theorem and Fourier inversion, '�;� ispositive de�nite if and only ifZ 10 (1� t�)� cos(!t) dt � 0 for ! � 0: (1–1)Rephrased this way, the problem super�cially lookssimple, but it is not. Kuttner [1944] showed that'�;� is not positive de�nite if � � 2, regardless of
c
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the value of �. For each � 2 (0; 2), there existsa positive number k(�) such that '�;� is positivede�nite if and only if � � k(�). The function k(�),for � 2 (0; 2), is known as Kuttner's function. It iscontinuous and strictly increasing, and satis�eslim�!0 k(�) > 0;k(1) = 1;lim�!2 k(�) =1;k(�) > � if � 6= 1:Almost 60 years after Wintner's and Kuttner'scontributions, exact values of k(�), for � 6= 1, arestill out of reach. Here we provide estimates of Kutt-ner's function based on extensive experimentation.In Section 2 we �nd upper bounds through an ap-plication of a criterion of P�olya type. Speci�cally,we prove that
k�4n+12n+1� � 2n+1 for n = 0; 1; : : : ; (1–2)

this provides upper bounds for all � 2 (0; 2) andsettles a problem of Zastavnyi [2000, p. 79]. Theestimate implies similar inequalities and P�olya-typecriteria for norm-dependent positive de�nite func-tions in R d. In Section 3 we apply a numerical ap-proach to �nd lower bounds on Kuttner's function;in particular, we show thatlim�!0 k(�) > 0:4279: (1–3)Our �ndings are illustrated in Figure 1. The esti-mates divide the (�; �) plane into three regions; forparameter values on or above the upper estimate,'�;� is positive de�nite; for parameter values on orbeneath the lower estimate, it is not. Between thetwo bounds, rigorous results are not available, butwe expect the lower estimates in Table 2 to be sharpwithin an accuracy of 10�4.
2. UPPER ESTIMATES OF KUTTNER’S FUNCTIONAs mentioned, Zastavnyi [2000, p. 79] called for ex-plicit upper bounds on Kuttner's function. We ad-dress the problem through criteria of P�olya type,an approach suggested by [Gneiting 2000; 2001].In particular, we prove the crucial estimate (1{2).
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FIGURE 1. Lower and upper bounds of Kuttner's function.Whenever convenient, we identify a symmetric func-tion '(jtj), t 2 R , with its restriction '(t), t � 0.We can then formulate a classical criterion ([P�olya1949]; see also [Sasv�ari 1998]):
Criterion 1 (Pólya). If ' : [0;1) ! R is a continu-ous and convex function that satis�es '(0) = 1 andlimt!1 '(t) = 0, then '(jtj), where t 2 R , is positivede�nite.This criterion applies to the truncated power func-tion '�;� if and only if � � 1 and � � 1. This doesnot go beyond the results of [Kuttner 1944]; Kutt-ner knew that k(�) is an increasing function withk(1) = 1. To proceed, we rely on an analogue of thecriterion of [Gneiting 2001].
Criterion 2 (Gneiting). Let ' : [0;1)! R be a contin-uous function with '(0) = 1 and limt!1 '(t) = 0.Let n be a positive integer , and suppose that '(t)posesses derivatives of all orders up to 2n for t > 0.Put �1(t) = � ddu�n'(u1=2) ���u=t2 ;�2(t) = � ddt�n�1�01(t1=2): (2–1)

If �2(t) is convex for t > 0, then '(jtj), t 2 R , ispositive de�nite.
Definition 3. Let n be a positive integer. If a function' : [0;1) ! R satis�es the conditions of Criterion2, we call it a function of type Pn.
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According to [Gneiting 2001, Proposition 2.1], ' isof type Pn if and only if it is a scale mixture of acertain basis function 'n, that is, the representation
'(t) = Z(0;1) 'n(rt) dF (r) for t � 0 (2–2)

holds, where F is a probability measure on (0;1).Furthermore, the even continuation 'n(jtj), t 2 R ,of the basis function is precisely 2n-times di�eren-tiable at t = 0. We return to these observationswhen we subsequently check whether the truncatedpower function '�;� is of type Pn, for n = 1; 2; : : : Apositive answer will evidently provide an upper es-timate of Kuttner's function. Figure 2 summarizesthe results of extensive calculations with Maple. Forn = 1; 2; 3, and 4, the graph of the function kn(�)divides the (�; �) plane into two regions; for param-eter values above the graph, '�;� is of type Pn; forparameter values below the graph, it is not.The �gure and similar experiments for higher val-ues of n suggest a clear pattern, and Theorem 4summarizes the results that we have been able toshow.
Theorem 4. Let n be a positive integer .(a) There exists a function kn(�), � 2 (0; 2), suchthat '�;� is of type Pn if and only if � � kn(�).(b) If kn(�) � � and � is an integer , then kn(�0) � �for all �0 � �.(c) kn(�) = 2n+1 if � � �(n) = (4n+1)=(2n+1).(d) There exists a number �(n) satisfying �(n) � �(n)and�(n) � sup�� 2 (0; 2) : exp(�t�) isof type Pn	 < 2 : (2–3)Furthermore, kn(�)<1 if � < �(n), and kn(�) =1 if � > �(n).We conjecture, but do not know how to prove, that�(n) < �(n), that kn(�) is continuous and strictlyincreasing for � 2 (�(n); �(n)), and thatlim�!�(n) kn(�) =1:
We believe furthermore that the �rst relation in(2{3) is an equality, and that �(n) increases with n.
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FIGURE 2. The graphs of the function kn(�) forn = 1; 2; 3, and 4 indicate whether '�;� is of type Pn(above the graph) or not (below it). The vertical tickmarks correspond to �(n) = (4n+1)=(2n+1), andthe thick line illustrates the upper estimate (2{7)for Kuttner's function.The crucial estimate (1{2) is immediate from part(c). The �rst inequality in (2{3) allows us to com-pute upper bounds on �(n); for example,�(1) < 1:8418;�(3) < 1:9789; �(2) < 1:9489;�(4) < 1:9902:
Proof of Theorem 4. (a) For � 2 (0; 2), let kn(�) =inff� > 0 : '�;� is of type Png if the in�mum exists;if not, let kn(�) = 1. Then '�;� is not of type Pnif � < kn(�), and it is of type Pn if � = kn(�), bya continuity argument. A corollary of [Williamson1956, p. 198] shows that '�;�0 is a scale mixture of'�;� whenever �0 � �. In other words, the represen-tation'�;�0(t) = Z(0;1) '�;�(st) dG(s) for t � 0 (2–4)

holds, where G is a probability measure on (0;1).We know from the representation (2{2) that a func-tion ' is of type Pn if and only if it is a scale mixtureof the basis function 'n. If we insert (2{4) into (2{2)we see that '�;�0 is of type Pn, because it is a scalemixture of 'n.
(b) Suppose that kn(�) � � where � is an integer.By [Gneiting 1999, Proposition 4.5], '�0;� is a scalemixture of '�;� whenever �0 � �. An argument inanalogy to that in part (a) shows that kn(�0) � �.
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(c) For t 2 (0; 1), expand'(4n+1)=(2n+1); 2n+1(t)= �1� t(4n+1)=(2n+1)�2n+1
= 2n+1Xj=0 (�1)j�2n+1j �tj(4n+1)=(2n+1); (2–5)

and di�erentiate termwise to �nd �2(t). The chainrule for higher derivatives of composite functions[Gradshteyn and Ryzhik 1994, Eq. 0.430.2] showsthat �2(t) is continuous but not di�erentiable att = 1. Nevertheless, �2(t) will be convex if we canprove that �00(t) exists and is positive for t 2 (0; 1).Direct calculation based on (2{1) and (2{5) yields
�002 (t) = 2 2nXj=1�(�1)j�2n+1j ��4n+14n+2 j�(n)��4n+14n+2 j�n� 12�(n)tj(4n+1)=(4n+2)�2n�3=2�; (2–6)where m(k) = m(m�1) � � � (m�k). Notice that wecan write �002 (t) = t�2n�3=2p(t(4n+1)=(4n+2));where p is a polynomial of degree 2n. The �rst n+1coe�cients of p are nonnegative and its �nal n coef-�cients are negative. By Descartes' rule of signs (see[Albert 1943], for example), p has at most one pos-itive root. Furthermore, we show in the appendixthat the expression on the right-hand side of (2{6)has a root at t = 1. Thus, the unique positive rootof the polynomial p(t) is at t = 1 and p(t) is posi-tive for t 2 (0; 1). We conclude that �002 (t) is posi-tive for t 2 (0; 1), too, and that �2(t) is convex fort 2 (0;1). In view of part (b), we have shown thatkn(�) � 2n+1 if � � (4n+1)=(2n+1).It remains to prove that kn(�) � 2n+1. If � � 2n,'�;� is not su�ciently smooth at t = 1 and thereforenot of type Pn. For � 2 (2n; 2n+1), we apply thechain rule for higher derivatives of composite func-tions to �nd �02(t). The argument is analogous tothe reasoning in the appendix, and we merely notethat �02(t) involves derivatives (dj=dtj) ((1� t)�) oforder j = 1; : : : ; 2n+1. The �rst 2n derivatives andthe associated terms are bounded at t = 1, but thederivative of order 2n+1 and the associated term inthe sum for �02(t) have a singularity at t = 1. Thus,�2(t) is not convex and '�;� is not of type Pn.

(d) Let �(n) = supf� 2 (0; 2) : kn(�) < 1g; then�(n) � �(n), kn(�) = 1 if � > �(n), and kn(�) < 1if � < �(n), by part (b). To prove the �rst inequal-ity in (2{3), recall from the results of Williamson[1956] that exp(�t�) is a scale mixture of (1� t�)�+for all � > 0. Similarly to the argument in part(a), we see that exp(�t�) is of type Pn wheneverkn(�) is �nite. To prove the third inequality, as-sume that exp(�t�j) is of type Pn for a sequence �j ,j = 1; 2; : : : , which tends to 2 as j ! 1. A conti-nuity argument implies that exp(�t2) is of type Pn,too. This contradicts the representation (2{2) forfunctions of type Pn, because exp(�t2) is analyticand does not admit a scale mixture representationin terms of a basis function 'n(jtj) whose derivativeof order 2n+1 does not exist. �We now apply Criterion 3 and Theorem 4 to �nd up-per bounds on Kuttner's function k(�), � 2 (0; 2).If � � 1, k(�) � 1 by P�olya's criterion; if � � 32 ,k(�) � 2 by [Gneiting 2001, Proposition 3.1]; andif � � 53 , k(�) � 3 by the estimate (1{2). Part (c)of Theorem 4 shows that these estimates are bestpossible with the present tools. For � > 53 , let l� bethe smallest positive integer n such that � � �(n);and let u� � l� be the smallest positive integer nsuch that � � �(n). The upper estimates of Kutt-ner's function k(�), for � = 1:71, 1.72, . . . , 1.99, inTable 1 have been found ask(�) � minl��n�u� kn(�) (2–7)and complement the results in [Gneiting 2000; 2001].Theorem 4 shows that they are best possible withthe given tools.Finally, we note that the estimates in Table 1 andEq. (1{2) lead to similar inequalities and criteriaof P�olya type for norm-dependent positive de�nite� u.b. � u.b. � u.b. � u.b.1 1 1:76 3:3534 1:84 5:0763 1:92 7:48973=2 2 1:77 3:4930 1:85 5:1317 1:93 7:80085=3 3 1:78 3:6884 1:86 5:2123 1:94 8:31161:71 3:0481 1:79 3:9718 1:87 5:3277 1:95 9:22431:72 3:0784 1:80 4:4063 1:88 5:4936 1:96 10:56211:73 3:1199 1:81 5:0038 1:89 5:7357 1:97 12:01711:74 3:1760 1:82 5:0161 1:90 6:1004 1:98 14:57701:75 3:2514 1:83 5:0392 1:91 6:6814 1:99 19:7466
TABLE 1. Upper bounds for Kuttner's function.



Gneiting, Konis, and Richards: Experimental Approaches to Kuttner’s Problem 121

functions in R d. Let kxk� = (jx1j� + � � �+ jxdj�)1=�denote the l� (quasi)norm of x 2 R d, and let n =0; 1; 2; : : : Then we may combine results of Zas-tavnyi [2000] with the estimate (1{2) to show thatthe norm-dependent function'(x) = �1� kxk����+ for x 2 R dis positive de�nite whenever0 < � � � � 4n+12n+1 and � � 2d (n+1)� 1:This settles a problem of Richards [1986], gives ex-plicit upper bounds on the Richards{Askey function[Gneiting 1998, Section 3], and provides criteria ofP�olya type for k � k�-dependent function. We referto [Gneiting 2001, Section 4] and leave details to thereader.
3. LOWER ESTIMATES OF KUTTNER’S FUNCTIONOur approach in this section is based on the follow-ing criterion of Kuttner [1944]. We note the connec-tion to nonnegative trigonometric sums [Askey 1975,Lecture 9], to the Fourier integral (1{1), and to non-negative integrals of Bessel functions [Misiewicz andRichards 1994].
Criterion 5 (Kuttner). The truncated power function'�;� is positive de�nite if and only if �;�;n(!) = 12 + nXj=1 �1� � jn���� cos(!j) � 0
for ! 2 [0; �], n = 1; 2; : : :The criterion suggests numerical tests for positivede�niteness. If, for a given � 2 (0; 2), we can �ndvalues of �, n, and ! such that  �;�;n(!) < 0, thenwe have shown that k(�) > �. We developed andimplemented the following algorithm, which uses anumber � 2 (0; 2), � 6= 1, and a positive integer nas input.
1. Put � = � and � = max��; 14�.
2. Minimize  �;�+�;n(!) over ! 2 [0; �]. This isdone in a golden section search, and facilitatedby the empirical observation that the �rst localminimum of the trigonometric sum is also theglobal minimum. If the minimum is negative,then �+� is a lower bound for k(�); put � = �+�.Otherwise, put � = �=2.

3. Repeat until � < 10�10.For given � and n, the algorithm returns the lowerbound � and the location of the minimum of theassociated trigonometric sum. We repeat this forincreasing values of n, and use the asymptotic rela-tionship1n  �;�;n�!n� �! Z 10 (1� t�)� cos(!t) dtfor ! � 0, n!1, to locate the minimum e�cientlyas n increases. Table 2 and the lower graph in Fig-ure 1 summarize our results. We used values of nbetween 104 and 107, with smaller values of � call-ing for larger values of n. Extensive experimentationsuggests that the lower estimates for � = 0:01, 0.02,. . . , 1.99 cannot be improved within the numericalprecision of Table 2. In other words, we conjecturethat the di�erence between the true value of k(�)and our lower estimate is less than 10�4.� l.b. � l.b. � l.b. � l.b.0:01 0:4312 0:40 0:5853 1:00 1:0000 1:60 2:13130:02 0:4344 0:45 0:6098 1:05 1:0519 1:65 2:33240:03 0:4377 0:50 0:6357 1:10 1:1081 1:70 2:57590:04 0:4410 0:55 0:6630 1:15 1:1691 1:75 2:87940:05 0:4444 0:60 0:6918 1:20 1:1235 1:80 3:2733� � � � � � 0:65 0:7224 1:25 1:3086 1:85 3:81620:10 0:4617 0:70 0:7548 1:30 1:3889 1:90 4:64430:15 0:4798 0:75 0:7893 1:35 1:4779 1:95 6:20970:20 0:4989 0:80 0:8260 1:40 1:5772 � � � � � �0:25 0:5189 0:85 0:8651 1:45 1:6889 1:97 7:46330:30 0:5399 0:90 0:9069 1:50 1:8158 1:98 8:50630:35 0:5620 0:95 0:9518 1:55 1:9615 1:99 10:3650
TABLE 2. Lower bounds for Kuttner's function. (Thedots indicate a transition in the � increment.)
More accurate estimates for small values of � sug-gest that lim�!0 k(�) = 0:4279 : : : Kuttner [1944,p. 84] shows thatZ 10 (� log t)� cos(!t) dt � 0 for ! � 0if � � lim�!0 k(�). The integral becomes numer-ically tractable if we change coordinates to u =� log t and approximate the tail integral by the in-complete gamma function. The inequality is vio-lated if � = 0:4279 and ! = 5:40324, which provesthe estimate (1{3), lim�!0 k(�) > 0:4279.
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APPENDIXIn this appendix we provide a technical detail in the proof of Theorem 4(c). We denote the right-hand sideof (2{6) by �002 (t), which we consider as a function of t 2 (0;1). Our goal is to show that this function hasa root at t = 1. Toward this end, we recall the construction of �002 (t) through Eq. (2{1), where '(t) is givenby (2{5), so that '(u1=2) = �1� u(4n+1)=(4n+2)�2n+1 :The chain rule for higher derivatives of composite functions [Gradshteyn and Ryzhik 1994, Eq. 0.430.2]shows that� ddu�n'(u1=2) =X(�1)j1+���+jn n!j1! � � � jn! (2n+1)(j1+���+jn�1)�1� u(4n+1)=(4n+2)�2n+1�(j1+���+jn)
� �4n+14n+2 u 4n+14n+2�1�j1� 12!�4n+14n+2�(1)u4n+12n+1�2�j2 � � �� 1n!�4n+14n+2�(n�1)u 4n+12n+1�n�jn

=X cj1;:::;jnu(j1+���+jn)(4n+1)=(4n+2)�(j1+2j2+���+njn)�1� u(4n+1)=(4n+2)�2n+1�(j1+���+jn);wherem(k) = m(m�1) � � � (m�k), and where the sum extends over all n-tuples (j1; j2; : : : ; jn) of nonnegativeintegers for which j1 + 2j2 + � � �+ njn = n. Thus, we can write
�1(t) = � ddu�n'(u1=2) ���u=t2 = nXk=1 ck tk(4n+1)=(2n+1)�2n�1� t(4n+1)=(2n+1)�2n+1�k;

where ck =Pj1+���+jn=k cj1;:::;jn for k = 1; : : : ; n; in particular,
cn = (�1)n (2n+1)!(n+1)! �4n+14n+2�n; cn�1 = (�1)n n(n� 1)(2n)!4(n+2)! �4n+14n+2�n�1: (A–1)It is then immediate that�01(t) = nXk=1 ck �4n+12n+1k � 2n� tk(4n+1)=(2n+1)�2n�1 �1� t(4n+1)=(2n+1)�2n+1�k

� nXk=1 ck (2n+1� k) 4n+12n+1 t(k+1)(4n+1)=(2n+1)�2n�1 �1� t(4n+1)=(2n+1)�2n�k
and �01(t1=2) = nXk=1 ck fk(t) �1� t(4n+1)=(4n+2)�2n+1�k � nXk=1 ck gk(t) �1� t(4n+1)=(4n+2)�2n�k ; (A–2)

wherefk(t) = �4n+12n+1k � 2n� tk(4n+1)=(4n+2)�n�1=2; gk(t) = (2n+1� k) 4n+12n+1 t(k+1)(4n+1)=(4n+2)�n�1=2; (A–3)for k = 1; : : : ; n. Finally, we recall that �002 (t) = � ddt�n+1��01(t1=2)�:To show that �002 (1) = 0, we apply Leibniz's rule to each term in the representation (A{2) for �01(t1=2). Thereare 2n terms in the representation, and taking the derivative of order n+1 splits each into n+1 terms.
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Notice that all but four of the resulting 2n(n+1) terms in the sum for �002 (t) vanish at t = 1. We combinethe exceptional terms in a remainder�(t) = cn fn(t)� ddt�n+1�1� t(4n+1)=(4n+2)�n+1 � cn�1 gn�1(t)� ddt�n+1�1� t(4n+1)=(4n+2)�n+1
� cn gn(t)� ddt�n+1�1� t(4n+1)=(4n+2)�n � cn (n+1) ddt�gn(t)�� ddt�n�1� t(4n+1)=(4n+2)�n (A–4)and proceed to show that �(t) vanishes at t = 1, too. Expanding the higher order derivatives by the chainrule yields � ddt�n+1�1� t(4n+1)=(4n+2)�n���t=1 = (�1)n+1 n(n+1)!4(2n+1)�4n+14n+2�n;� ddt�n+j�1� t(4n+1)=(4n+2)�n+j ���t=1 = (�1)n+j (n+ j)!�4n+14n+2�n+j for j = 0; 1: (A–5)

If we insert (A{1), (A{3), and (A{5) in (A{4), we �nd that �(1) = 0. We have shown that �002 (t) has a rootat t = 1.
REFERENCES[Albert 1943] A. A. Albert, \An inductive proof ofDescartes' rule of signs", Amer. Math. Monthly 50(1943), 178{180.[Askey 1975] R. Askey, Orthogonal polynomials andspecial functions, SIAM, Philadelphia, 1975.[Bisgaard and Sasv�ari 1997] \On the positive de�nitenessof certain functions", Math. Nachrichten 186 (1997),81{99.[Bochner 1933] S. Bochner, \Monotone Funktionen,Stieltjessche Integrale und harmonische Analyse",Math. Annalen 108 (1933), 378{410.[Gneiting 1998] T. Gneiting, \On �-symmetric multivari-ate characteristic functions", J. Multivariate Analysis64 (1998), 131{147.[Gneiting 1999] T. Gneiting, \Radial positive de�nitefunctions generated by Euclid's hat", J. MultivariateAnalysis 69 (1999), 88{119.[Gneiting 2000] T. Gneiting, \Kuttner's problem anda P�olya type criterion for characteristic functions",Proc. Amer. Math. Soc. 128 (2000), 1721{1728.[Gneiting 2001] T. Gneiting, \Criteria of P�olya typefor radial positive de�nite functions", Proc. Amer.Math. Soc. posted on January 17, 2001, PII S 0002-9939(01)05839-7 (to appear in print).[Gradshteyn and Ryzhik 1994] I. S. Gradshteyn andI. M. Ryzhik, 5th ed., Table of integrals, series, andproducts, Academic Press, Boston, 1994.
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