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The requirement for solving a polynomial is a means of breaking
its symmetry, which in the case of the quintic, is that of the sym-
metric group 8s. Induced by its five-dimensional linear permu-
tation representation is a three-dimensional projective action. A
mapping of complex projective 3-space with this 85 symmetry
can provide the requisite symmetry-breaking tool.

The article describes some of the 85 geometry in CP? as well
as several maps with particularly elegant geometric and dynam-
ical properties. Using a rational map in degree six, it culminates
with an explicit algorithm for solving a general quintic. In con-
trast to the Doyle-McMullen procedure, which involves three
1-dimensional iterations, the present solution employs one 3-
dimensional iteration.

1. OVERVIEW

In [Doyle and McMullen 1989], a solution to the
quintic takes place in three iterative steps—a tower
of algorithms each of which involves iteration in one
complex dimension. Given almost any quintic p and
almost any initial point in C, the series of algorithms
produces a root of p. The method is geometrically
distinguished in that the tower has the 85 symme-
try of the general quintic. Its central feature is a
map on the Riemann sphere with icosahedral (As)
Symmetry.

The present paper describes a solution to a full
measure’s worth of quintics that runs as a single
iteration in three dimensions. That the procedure
produces a root for almost any initial point in com-
plex projective 3-space (CP?) is conjectural at the
moment. At its core is a map on CP? with 85 sym-
metry. Motivating this general project is a desire
to develop solutions to equations that use geometri-
cally elegant dynamical systems.

The work unfolds in three stages: some back-
ground geometry; special maps with 85 symmetry;
and a solution to the quintic based on the preceding
stages.
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Section 2: S5 geometry. The setting here is CP?
upon which the symmetric group S5 acts. Finding
a map with special 85 geometry requires some fa-
miliarity with this action. We will consider some
features associated with the maps that emerge in
the second stage. Indeed, the discovery of these
maps derives from an awareness of the geometric
landscape:

e coordinate systems

e the structure of an Ss-invariant quadric surface

e the structure of certain special orbits of points,
lines, planes, and conics.

In addition, the system of Ss-invariant polynomials
plays a fundamental role in the search for maps.

Section 3: Maps with S5 symmetry. At this stage,
we exploit our geometric understanding to discover
empirically several maps with special qualities. Ap-
pearing here are families of maps associated with
the icosahedron, the dodecahedron, and the com-
plete graph on five vertices. The known features of
their geometric and dynamical behavior come under
discussion. However, they are not known to possess
several desired properties. In light of significant ex-
perimental evidence, I leave claims concerning these
properties as conjectures.

Section 4: Dynamical solution to the quintic. Follow-
ing the Doyle-McMullen framework, a special fam-
ily of quintics corresponds to a 7igid family & of
85 maps on CP?. ‘Rigidity’ means that each mem-
ber of € is conjugate to a single reference map f
with elegant geometry and dynamics. The solution
is general since almost any quintic p transforms into
the special family. Thus, associated with p is a map
9p = ¢p [, that we iterate. Using 85 tools, its
output — conjecturally, a single 85 orbit — provides
for an approximate solution to {p = 0}.

The paper [Crass 1999b] extends the method to
the octic in a way that seems to generalize to higher
degree.

2. 8; ACTS ON CIP’

The permutation action of 85 on C® preserves the
hyperplane

5
H, = {Zxk :0} ~ C*
k=1

and, thereby, restricts to a faithful four-dimensional
irreducible representation. (Since there will be two
variables that describe the hyperplane, the subscript
x appears here.) This induces an 85 action on CP?;
we denote the corresponding subgroup of PGL,C by
G120-

2A. Coordinates

For many purposes, the most perspicuous geomet-
ric description of G159 employs five coordinates that
sum to zero. One advantage is the simple expres-
sion of the G;99-duality between points and planes.
In general, for a finite action § whose matrix rep-
resentatives are unitary, a point a is G-dual to a
hyperplane L if

L ={a z=0}

Consequently, a and £ have the same stabilizer in
§. By the orthogonal action of 85 on C*, a point

3
a = lay, as, az, as, as)ys a=0 € CP

(where as usual the brackets indicate homogeneous
coordinates in projective space) corresponds to the

plane 5
{a-x=0}= {Zakmk :0}.

k=1
A system of four u-coordinates also describes the

hyperplane H,. These hyperplane coordinates arise
from the “hermitian” change of variable

u=Hz, x=HTu,
with
2 3 4
1 wsy wi w; wg
oo 1 1 w? wi ws wd
- 1 3 4 2 ’
V5 Wy Ws Wy W
1 wi wi w? ws

2mi/5

where ws = e . The choice of scalar factor gives



2B. Invariant Polynomials

The fundamental result on symmetric functions says
that the n elementary symmetric functions of de-
grees 1, ..., n generate the ring of §,,-invariant poly-
nomials. Since the §; action on CP? occurs where
the degree-1 symmetric polynomial vanishes, there

are four generating Gisp-invariants. By Newton’s
identities, the power sums Fi(z) = Y.,_, z, for
k = 2,...,5, also generate the G5 invariants. In

hyperplane coordinates, the power sums are
®y(u) = Fo(HTu) = 2 (u1us+usus),

3
P3(u) = 7 (uruj+ufus+udus+usuj),

Py(u) = 2 (2ufus +3uduj +2usui+2ujuy

+12u1u2U3u4+3u§ui+2u3u2),

D5 (u) uf +ud +20u; uluz +30ut ugul +uf

_L(
55

+30u%u§U4+20u§u3U4+20uzu§U4
+30u3 uzuj +30u; ugui—l—%ulugui—l—ui).

In classical invariant theory, relative invariants
result from taking the determinant of, on the one
hand, the hessian H(F') of an invariant F', and, on
the other, the “bordered hessian” B(F,G) of two
invariants F' and G:

oG
Oz,
H(F)
B(F,G) = 0C
oz,
el oG
0z, T Oz,

A polynomial F is relatively invariant if
FoTl=apF forallT e g,

where « is a character on G.

Proposition 2.1. Given T' € GL,(C) and invariants
F, G, we have

|H(F(Tz))| = |T|7*|H(F(x))],
|B(F(Tz),G(Tz))| = |T|7*|B(F(x),G(x))],

where | - | indicates the determinant.

Crass: Solving the Quintic by Iteration in Three Dimensions 3

For the permutation action of 8s, the Hessian and
bordered Hessian determinants give absolute invari-
ants—the character is trivial. Thus, each is ex-
pressible in terms of the generators ®,. The fol-
lowing result will serve a subsequent computational
purpose. (Note: Many of this work’s results derive
from calculations made with Mathematica. I will
refer to such results as Facts.)

Fact 2.2. With G4 = |H((p3)‘ and G5 = |B((I)3,@2)|,
the “power-sum?” invariants of degrees four and five
are given by

P, = 27 (®5 —5G,),

1
324
i I

= (7202, ®; + Gs).

2
1
86
2C. Quadric Surface

The degree-2 invariant defines an Ss-invariant sur-
face in CP3

The quadratic form associated with Q is

us Uy

®, =2detU with U:<“1 _“2).

Accordingly, Q is ruled by two families of lines

fU=(a; a)( " ") =(0 0),
()

Uus Uy

. Uq — U2 b1 . 0
we= (i 7)) = ()
Alternatively, the “a-ruling” is defined by
Ula =0.

Each ruling forms a projective line CP., CPj re-
spectively.

Given a point u = [uy, ug, uz, us] on Q, the matri-
ces U and UT each have rank one. Thus, distinct
lines in CP} (or CP;) are skew while exactly one
a-line and one b-line intersect at w. This gives the
quadric a CP} x CP; structure. See [Hodge and
Pedoe 1947, Chapter XIII: Quadrics].

Furthermore, as a set, each ruling has an A5 stabi-
lizer G4 and, hence, CP. and CP; have icosahedral
geometry. The “odd” elements G199 — G0 exchange
the a-ruling with the b-ruling.

2D. Special Orbits

The 3-dimensional S5 action comes in both real and
complex versions. This means that, in the standard



4 Experimental Mathematics, Vol. 10 (2001), No. 1

size representative descriptor  stabilizer
5 [—4,1,1,1,1] 3 84

10 [0,0,0,1,—1] p}lgl 83 X Zg

10 [2,2,2,—3,—3] p}lgz 83X 7Zs

15 [0,1,1,—1,—1] p%,s23 = p%i;s Dy

20 [0,-3,1,1,1] [-3,0,1,1,1] pi%,5 pa%ys 83

30 [0,0,1,1,—2] p?(2)734 Zio X Z.a

TABLE 1. Special points on RP3, the set of points
with real components.

x coordinates, Gq90 acts on R, the RP? of points with
real components. Table 1 enumerates some special
orbits contained in R, while Table 2 describes ele-
ments of Q that are fixed by members of Gy59. For
ease of expression, I will refer to special points, lines,
and planes in terms of the orbit size: “20-points”
(10-lines, 5-planes). Also, these points get a sym-
bolic description in reference to orbit size (super-
script) and coordinate expression (subscript).
Corresponding to each special point ¢ is the plane
{a -z = 0}. In the case of the 10-points
[1,-1,0,0,0], ..., [0,0,0,1,—1],

there are 10-planes {x; = 2}, ..., {x4s = x5} that
are pointwise fixed by the involutions

X1 <> Ta,

cey Ty < T5.

These ten transpositions generate G5y, making it
the projective image of a real or complex reflection
group [Shephard and Todd 1954].

Other noteworthy orbits are that of the five S,-
stable coordinate planes

L ={z; =0}, fori=1,...,5,
and that of the five octahedral conics
Qi =QnkL:.

Some data for special two-dimensional orbits appear
in Table 3. I describe these sets in terms of dimen-
sion (superscript), orbit-size (subscript), and coor-
dinate expression (sub-subscript).

Finally, a number of special lines appear as in-
tersections of the 5-planes and 10-planes. Table 4
summarizes the situation.

2E. Configurations

Some of the geometry that will have dynamical sig-
nificance shows up in various collections of lines.
First, the 10-lines

1 _ 2 2 2
Mio,,, = Lio,; N L, N LY,

form a complete graph on the 5-points. Figure 1 il-
lustrates this in two ways. The pentagon-pentagram
figure displays a 5-fold symmetry while the double
pyramid exhibits the D3 structure of a single 10-line.
(The illustration suppresses the subscript 10.)

FIGURE 1. Configuration of 10-lines and 5-points.
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size representative descriptor stabilizer = remarks
20 [0,0,1,ws, w?] a9 ) antipodal pair of eight octahedral face-centers
0,0,1, 3, ] i, on ©},9;, with 9] = £3,14
—3+V151
0 [11Laa][LL1Laal o, 6, o=
24 [lvwévwgv wlg’ wé] qi?;lkl wy = e27i/k
30 [0,1,4,—1, —1] 0%, = 4i%s, antipodal pair of six octahedral vertices on Qi
[07 1, -4, -1, Z] q%,o242 = inSSl
—2++/5i
30 [lylaﬂaﬁ)_2(1+ﬁ)] q%8,341 Liy X Ly /B: T
[1)17ﬂ767_2(1+ﬂ)] q§(2),342
60 [0,1,1,7,7] 499, antipodal pair of 12 octahedral
0,1,1,7,9] %, edge-midpoints on Q}; v = —14++/2i
Pt Bt B B ,122

TABLE 2. Special points on Q = {22:1 zi =0}.

size alg. def. point desc. s.st. p.st. r.act.

5 {l‘i = 0} p? ng 84 Zl 84
10 {:E, = CL‘J‘} pzlj()l L%Oi]‘ 83 XZZ Zg 83

10 {z;=-z;} pj;, M%Ou 83XZy Z1 83XZa

TABLE 3. Some fundamental CP? orbits. The columns
give the size or the orbit, the algebraic definition, the
corresponding point, the descriptor, the setwise sta-
bilizer, the pointwise stabilizer, and the restricted
action.

size alg. def. desc.  s.st.  p.st.  r.act.

10 £2.0L2, Ll SsxZs Ly S
10 L%oijﬁﬁ%ojkﬂgioik M%oijk S3XZa 33 Ty
15 L%oiij%Okl(iaj7ékal) L%sij,k, Dy Zoxly Ly
15 M2y NMSo,, (ij2kD) Ml . Da  Zo ZaxZs

30 LINL3,, (i#4k) Lk, ZoxZo Tn I

TABLE 4. Special CP' orbits. The columns have the
same meaning as in the preceding table.

The intersections of “complementary” pairs of 10-
planes yield an orbit of 15-lines

L}S {Zﬁj}m{kal}ZQ
This forms a graph on 15 vertices: the 5-points and

10-points pi?Y

ij2°

. r2 2
- LIO_;J' N Llokﬂ

Gkl

e At a 5-point p?, there are three 15-lines
L}Sjk,lm7£}5 Ll i #jakalam'

Gl km? 185 m k1 ?

e Onalb-line L5, , there is one 5-point p} where

i# 4,k 1l,m.

e At a 10-point pi?

iin> there are three 15-lines

1 1 1
1545, k17 1555, km? 1555, 1m "

10

e On a 15-line L5, there are two 10-points p;},,

10
Pk, -

Within each of the icosahedral rulings on Q there
are three special line-orbits, corresponding to the
12 vertices, 20 face-centers, and 30 edge-midpoints
of the icosahedron. Intersections of lines between
rulings yield special point structures.

e Two 20-line Ggp-orbits form ten “quadrilaterals”
at two pairs of 20-points. (See Figure 2.)

e Two 12-line Ggp-orbits form six quadrilaterals at
24-points.

e Two 30-line Ggp-orbits orbits form 15 quadrilat-
erals at two pairs of 30-points.

Since G120 — Geo exchanges the orbits in CP} with
those in CP}, these three types of Ggo orbits give
overall line-orbits of sizes 40, 24, and 60.

3. EQUIVARIANT MAPS

The primary tool to be used in solving the general
quintic is a rational map

f:CP® — CP?
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QN Tz O
kl

/

QNT29

M

N\

%ijq

QﬂTZO

FIGURE 2. Configuration of 40-lines and 20-points on Q. At a 20-point ¢;} or ¢},

/

Q

Tkimo

ik there are two 40-lines, one in

each ruling on the quadric. This pair of lines is the intersection of Q with the tangent plane to Q at the respective
20-point. Also indicated are the 10-lines determined by a pair of antipodal 20-points.

with 85 symmetry. In algebraic terms, this means
that

foT =Tof forall T € SGy.

Furthermore, such an equivariant map (or simply
equivariant) should have reliable dynamics: its at-
tractor

(1) is a single G129 orbit, and

(2) has a corresponding basin with full measure in
CP? or, alternatively,

(2') has a corresponding basin that is dense in CP3.

Recall that a periodic point a in a space X is at-
tracting when, for all x in some neighborhood of a,

fHz) — {a, fla),..., f"(a)},

where m is the period of a. A point s is superat-
tracting in a direction L if the derivative f’(s) has

a zero eigenvalue in the direction L. The basin of
attraction B, of a is the set of all points attracted
to the f-orbit of a;

B,={zeX: ffz) —{a, fla),..., " '}}.

The attractor of f is the set of all attracting points.

3A. Basic Maps

A finite group action § on C™ induces an action
on the associated exterior algebra. Moreover, G-
invariant (n—1)-forms correspond to G-equivariant
maps [Crass 1999c|. Briefly, let

dZI = (—1)‘”dzi1 FANCIERIVAN dzinfn
where I is the ordered set
{in,-.

. a2n71}7 41 << In—1,



I is the single index in {1,...,n} — I, and o7 is the

sign of the permutation
1 2 . n
I i, -~ i, )

P2 = 3 i)’

If

is a G-invariant (n — 1)-form, then the map

f(2) = (f1(2), - fn(2))

is relatively G-equivariant (a multiplicative charac-
ter appears under the action of § on f).

For a reflection group, the number of generating
O-forms (i.e., polynomials) is the dimension of the
action [Shephard and Todd 1954, p. 282]. From a
result in complex reflection groups, this is also the
number of generating 1-forms and (n —1)-forms [Or-
lik and Terao 1992, p. 232]. Indeed, the 1-forms are
exterior derivatives of the O-forms while the (n—1)-
forms are wedge products of 1-forms.

Proposition 3.1. With X} = —4xj +3 ., x¥, the four
maps

fiu(z) = [ X, X5, X5, X5, X2, k=1,...,4

generate the module of Gia9 equivariants over the
ring of Gia0-invariants.

These maps are projections onto the hyperplane 3,
along [1,1,1,1,1] of the power maps

k k .k k _k
[x17I2a$37$47$5:|'

Proposition 3.2. Under an orthogonal action an in-
variant F(z) gives rise to an equivariant f(x) by

means of a formal gradient
oF oF
f(z) =V, F(z) = (ac),,aT(x) .

R

Proof. For a homogeneous polynomial F'(z) of degree
m, the Euler identity gives

mF(z)=V,F(z)'r =V, F(z) -z = f(z) -z
Invariance of F' yields
mF(z) =mF(Az) = V,F(Az)" Az.
Using an auxiliary variable y,

V,F(Az) = A"V, F(y)l,-a. = A" f(y) = A f(Ax).
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By orthogonality of A, mF(z) = A ' f(Az) - z.
Equating expressions for mF'(z) reveals equivari-
ance:

A f(4z) = f(2). O

Remark. Note that the Ss-equivariant fi(x) is not
equal to V,Fj1(z), but is a multiple of

Ve Fy1 ()] o= x5

While this may be a source of confusion, it does
not cause problems, since we are working on the
hyperplane H,. When we use hyperplane coordi-
nates on H,, the discrepancy appears as a factor of
—5/(k+1). (See page 19.)

A map on H, produces
¢(u) = Hf(HTu)

on H,. It will be useful to express the generating
u-equivariants

¢i(u) = H fi(HTu)
in terms of the basic u-invariants @y (u).

Definition. Let

0 0 0 1
0 010
R_0100
10 0 O

represent the reversed identity and
VI F(u) = RV, F(u)
the reversed gradient.

Proposition 3.3. In 3}, coordinates, the map ¢(u) =
H f(H"u) is given by

p(u) =V, ®(u)
where ®(u) = F(H™u) = F(z) and f(z) = V.F(x).

Proof. For the change of variable v = Hz and z =
HTu, the chain rule yields

f(z) =V, F(z) = V,®(u) = H' V,®(u).
Since HHT = R,
Hf(x)=HH"V,®(u),
Hf(HTu) = RV, ®(u),
o(u) =V, ®(u). O
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Thus, bearing in mind the remark after Proposi-
tion 3.2, the basic maps in u are

— 5
¢r(u) = H f(H"u) = —mvﬁ‘l’kﬂ(u)-
Explicitly,
Sol(u) =-5 I:ula U2, us, u4] )

p2(u) = —V5 [u3 +2usus, uf +2uzua,

2 2
2u1U2+u4,u2+2u1u3],

p3(u) = — [ug—i—Gul usus 4+ 3uug + 3uzu’,
3usuz+3ugui +6ug uguy +ul,
u‘;’+3u2u§+3u§U4+6u1 U3 Uy,

3U?U2+Ug+6U2U3U4+3U1Ui],

wa(u) = _ L [4uiuj + 4ufus + duzud + 12udusuy
i +12u1u§U4+12u1u2ui+ui,
duyud + 12u ugug + uj + duduy
+ 12uQu§u4 + 6u§ui + 1QU1U3UZ,
uj + 12wy uduz + 6ulu3 + 12uduguy
+ 4ugU4 + 12uzu;3ui + 4u, uz,
uf + duduz + 12us ugus + 12u; ujug

+ 1202 uzug + 6ulul + 4uzui].

3B. A Fixed Point Property

For a Giy-equivariant f and a point a that an ele-
ment T € G4 fixes,

Tf(a) = f(Ta) = f(a).

Hence, equivariants preserve fixed points of a group
element.
Being pointwise fixed by the involution

T; < Zj,
a 10-plane
L3, = {zi —z; =0}

either maps to itself or collapses to its companion
10-point

pip=1[..0...,71,...0..., —1,...0...]¢L§0ij.

In the former generic case, the map preserves the
10-line and 15-line orbits My, . and Li;  that are
intersections of 10-planes.

3C. Families of Equivariants

The G199 equivariants form a module over the Giaq
invariants for which degree provides a grading. This
means that for an invariant F; and equivariant g,,
of degrees I and m, the product

ﬂ'gm

is an equivariant of degree [ +m. When looking for
a map in a certain degree k with special geometric
or dynamical properties, my approach is to express
the entire family of “k-maps” and by manipulation
of parameters, locate a subfamily with the desired
behavior.

3D. Quadric-Preserving Maps

The rich geometry of the quadric Q provides an
intriguing setting for dynamical exploration. Are
there Ss-symmetric maps that send Q to itself? If
so, how do they behave on and off Q7 I will describe
discoveries of two species of such maps: one associ-
ated with the icosahedron and the other with the
octahedron.

Maps that preserve icosahedral rulings. Were a G1,9-equi-
variant to preserve the Aj rulings on Q, its restric-
tion to either ruling CP} or CP; would express itself
in terms of the basic equivariants under the one-
dimensional icosahedral action. Such maps occur in
degrees 11, 19, and 29 [Doyle and McMullen 1989,
p. 166]. Consequently, the 20-parameter family of
11-maps comes under scrutiny:

f11 = (a1F25 =+ QQF;F?? =+ 043F23F4 =+ Oé4F32F4
+ s R Fy + ag R Fs Fs + o7 ) fi
+ (O[8F23F3 + OégF33 + a10F2F3F4
+ agy Fzst + a2 Fy Fy) fo
+ (a13F24 =+ a14F2F32 + ()[15F22F4
+ ais F; + 17 F3Fs) fs
+ (s Fi F3 + a1g F3 Fy 4 az Fy F5) f4.
From the geometric description of the icosahe-
dral 11-map on CP} or CP; [Doyle and McMullen
1989, p. 163], a ruling-preserving 11-map would ex-
change antipodal pairs of 20-lines {Lg, ,L%, } or

{L8,, L5, } and 30-lines while fixing 12-lines. (Re-
call that all these are Ggo orbits.) Imposed on the



configurations described in Section 2E, these condi-
tions require analogous behavior at the associated
points:
20 20 20 20
Qij, < Qijy Qijky < Qijk,
24 24
ikl > ik
30 30 30 30
Qi jky < i jks Qijkty < Qij,kls
The specified action occurs automatically for ¢} ,
Q> and 7%, . After solving two linear equations
associated with the remaining two conditions

20 y _ 20 30 _ 30
fll(qijk1> = Qijkys fll(qij,kll) = 4y ki,
as well as four linear equations

fin (ngl) = Lgoz
that arrange for the exchange of an antipodal pair
of 20-lines in either ruling we obtain a 13-parameter
family of ruling-preserving maps
911 =4 (1601 F§ + 162 F5 F + 163 F Fy + 67F; Fy
+ 1605 F2 F} + 1606 F, F3 F5 + 45F7) f1
+4(16ag 3 F5 + 16 Fy + 1619 F F3 Fy
+ 1611 F3 F5 — 135F4 F) fo
+ (64013 Fy + 64014 Fo F§ + 64015 F3 Fy
+405Ff — 720 F3 F5) f3
+ 4 (16015 F5 F5 — 225 F3 Fy + 160130 F» Fi) fs.

When restricted to the ruling CP. and expressed
in the homogeneous ruling coordinates [a;,as], the
map has the elegant appearance

gitlcer : [a1, 2] — [a1 (a7’ + 66afa) + 11a)°),
as (11(1}0 —66a%a5 — a%o)].

Of course, the same form appears for the b-ruling.

Restricted to a ruling, the dynamics of each gi;
is completely understood, as far as attracting be-
havior is concerned. The 20-lines are period-2 and
the only elements of the critical set. (Recall that 20-
lines in Q are dodecahedral vertices in CP! or CP}.)
This implies that almost every line in the ruling be-
longs to the basin of one of the ten pairs of the su-
perattracting set. (See [Doyle and McMullen 1989,
pp. 166-167] and Figure 3 on page 20.) Thus, for
almost every point gy on Q, there is an“antipodal”
pair of intersections between 20-lines in each ruling
toward which g;; attracts the trajectory:

911(q0) — {£5%, mﬁgoiaﬁgoz ﬁﬁ’goj}a {i,5} = {1,2}.
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As a result, the global behavior of each g;; depends
on its dynamics off Q. Should the quadric attract
or repel? If ) were attracting, then the 400 inter-
sections of 20-lines would attract in all directions.
One way to arrange for this is to force these points
to be critical in the off-quadric direction. However,
this situation does not conform to the model of reli-
able dynamics. The attractor would not be a single
G120 orbit of points, though it might be the set of
intersections of a single line-orbit. I have not ex-
plored the case of a repelling quadric. Such a sit-
uation might arise if a point on Q were attracting
in the two quadric directions but repelling in the
off-quadric direction.

Interestingly, the quadric resists criticality. Com-
putation reveals that no member of g,; is critical on
all of Q. Is there a geometric reason for this? The
next example reveals that this is not a universal trait
of quadric-preserving maps.

An octahedral map. Since the orbit of five planes Lgk
has fundamental geometric significance, a map that
preserves these sets might exhibit interesting dy-
namics. Arranging for this spends four of the twenty
parameters of the family fy;.

The intersection of a 5-plane L3 and Q is a conic
Q; with 8, symmetry and, thereby, octahedral struc-
ture. One of the special equivariants for the octa-
hedral action on CP! is a 5-map that attracts al-
most every point to the eight face-centers — vertices
of the dual cube. Geometrically, the map stretches
each face F of the cube symmetrically over the five
faces in the complement of the face antipodal to
F. As a face stretches, it makes a half-turn so that
the vertices land on their antipodes. This makes
each vertex critical and period-2; locally, the map
is squaring. Since these are the only critical points,
their basins have full measure. (See [Doyle and Mc-
Mullen 1989, p. 156] and Figure 4 on page 20.) Un-
der G0, antipodal pairs of octahedral face-centers
are the 20-points ¢;}, q;}..

The idea is to look for a reliable map with the 20-
points as its only attractor. In degree five there are
too few parameters for the purpose. However, the
11-maps provide enough freedom to arrange for ele-
gant geometry. The goal demands that the desired
map hy; preserve the 5-conics Qi and then decay to
the octahedral 5-map there. One way to realize this
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is to self-map the quadric Q. This takes six of the
remaining 16 parameters the expenditure of one of
which assures that the 20-points do not blow up.

Intriguingly, when any member g;; of the result-
ing 10-parameter family restricts to Q, it decays into
a 5-map

Giilo = _%Fe? (2F3f2 _F4f1)|Q-

This decadence occurs unexpectedly, since most oc-
tahedral 11-maps exchange pairs of face-centers and
are nondegenerate. When restricted to an “affine”
part of the quadric

Qn {ul 7é O}a
the maps have the simple form

911|Qﬂ{u1750} : (‘Tvy) —
( 2+ 3y —2xy® 32+ 2y+x3y2)

2z +3x2y2 — 13" 1+ 223y — 3xy?
Is there a geometric description of the restricted
map?
Every member of the g,; family preserves the 8s-
symmetric conic
QnL,

each of which contains a pair of 20-points ¢}, ¢} .

In coordinates where these points are 0 and oo,

7V52° + 5i

22(5iz3 +7/5)
Of course, the period-2 points 0 and oo are criti-
cal. By experiment, the remaining six critical points
belong to their superattracting basin. Such circum-
stances force almost every point on a conic to belong
to the basin.

Octahedral 11-maps generically exchange antipo-
dal pairs of vertices. Such a pair corresponds to the
30-points ¢;%, , 4%, As a degenerate member of
the family, the 5-map fixes these points. These con-
ditions require each g;; to blow up the 30-points.
Also blowing up are the 24-points.

Now the issue is behavior off Q. Since the desired
attractor lies on Q and the dynamics there appears
to be reliable, a map for which the quadric is itself
attracting comes to mind. Because octahedral face-
centers are superattracting on the respective con-
ics, each g;; is critical at the associated 20-points.
The maps are also critical at the blown-up points.
Arranging for critical behavior at the three quadric

911|Qm’;‘0i]_ FZ

orbits consisting of the nonoctahedral 20-points, 30-
points and the octahedral 60-points costs three pa-
rameters. The result is a seven parameter family of
11-maps for which the entire quadric is critical and
each octahedral 20-point is superattracting in three
directions.

Each of the 10-lines Ly, contains a pair of an-
tipodal 20-points. A map that preserves these lines,
attracts almost every point on the line to the 20-
points, and is critical in the directions off the line
would act as a “superattracting pipe” to the quadric.
Expenditure of four of the remaining seven parame-
ters purchases a map with these properties. Indeed,
when restricted to each L], , the map is

1
i
with the pair of 20-points at 0 and oo.
The final three parameters allow for a map hq;
with a nonattracting pipe to Q at the 10-lines My,

hiy = (—21F) + 56 F2 F? + 66 F2 Fy + 48 F2 F,
— 48F, F} — 96 F, F3 Fy) fu
—24(4F} — 9F, FyFy + 3F2F) f
+12(5F; + 8F, Fy — 10F; Fy) fs
— 96 F2F f.

. . . . 20 20
Such a line contains the pairs of 20-points q;j, , g;ji, -
In coordinates where these points are 0 and oo, the
restriction of h;; to M}Oiik is

1
z— —=.
4

On Q these 20-points are repelling. Indeed, they

belong to the conics
QNnLiy,,

QN L, QN L,

on which the basins of the pair of 20-points ¢} ,
4, ¢ have full measure. Experiment reveals
that nearby points belong to the basins of the other
20-point orbit.

Because of its geometry, h,; preserves the various
CP' intersections of 5-planes and 10-planes. The
two such lines not yet considered are the 15-lines

Lis,, ., and the 30-lines L3, . In “symmetrical”



coordinates where the intersections with Q are at 0
and oo, the restricted maps are

1922 -9
h11|£}5ij y — 722(922 19y’
) 1122 +9
hll|£é0i,jk P2 7722(922 1)

In the former case, the map has attracting fixed
points at the pair of 10- p01nts pw , pkl and a period-
2 superattractor at ¢y, , ¢;y,- Overall, these are
saddle points where the map repels off the line. A
similar state of affairs occurs on the 30- lines Here
the pair of attracting fixed points is p° Lk p?°
and the period-2 superattractor is at q”kl, quz
Once again, at these points h;; is repelling off the
line. Dynamical experiments on the respective lines
show that these points attract all six critical points.
Thereby, the associated basins have full measure on
the lines. Basin portraits for these restrictions ap-
pear in Figure 5 on page 20. Since almost every
point on these lines is in the basin of an overall
saddle point, the lines themselves behave as saddles
and, thereby, are measure-zero pieces of the Julia
set Jp,,-

Since the pair of 15-lines Li;
pointwise fixed by the involution

7]Icm

1
and My;, ., are

Ti < Tj, Ty < Ty,

a Gigo-equivariant that does not smash down L2,
permutes these lines as sets.

Fact 3.4. Under hn, M15 5 maps to itself. With the
pair of 30-points ¢>° i1 qm i7» 0t 0 and oo,

z(2% + 6)

Skt 622+1
This map has noncritical, attracting fixed points at
pijs Piy,- Since the four critical points belong to
the associated basins, the dynamics on the line is
reliable. Also passing through the attracting 10-
point p;7, are three 10-lines L}, (k,1 # i, j) so that,
at this point, hy; repels away from the line. Hence,
this line also lies in the Julia set.

The special geometry of h;; forces a number of
points to blow up:

h11|M}

D7y Pigs Piger Picjir Piktr Pigkts Gogi s Qigh-
Experimental evidence suggests that neighborhoods
of these blown-up points are filled by basins of the
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octahedral 20-points. Indeed, the CP? of directions
through a 10-point p;;, maps to the point itself. Ly-
ing at the intersection of three 10-lines L, (K, #
i,7), such a location might be called super-repelling.
In contrast, the directions through a 30-point p7),,
blow up onto the superattracting 10-line L}OM whose
“basin” is that of the 20-points ¢;}

Since the coefficients of h;; are real, the map also
preserves R—the S;-symmetric RP? —as well as
the RP? intersections of R with L3, and L}, . In
the former case there are four RP! intersections of
the RP? with the 10-lines £}, while in the latter
there is a single such intersection. The stabilizer of
the respective 5-plane or 10-plane fixes its resident
RP!s. Thus, each such RP! is an “equatorial slice”
of the associated CP!. Being equivalent to the map

z2— ==
z

on the unit circle {|z| = 1}, hy; acts chaotically
when restricted to such a slice. Hence, each RP!
is a chaotic attractor on the respective RP?. A
basin portrait for the 5-plane reveals no basins other
than those of the four 10-lines (see Figure 6, left, on
page 21). The RP? dynamics on the 10-plane shows,
in addition to the chaotic line- attractor three ad-
ditional basins at the 30-points p7;,, (see Figure 6,
right). A 30-point belongs to the 10 line L1, , which
intersects the 10-plane Lfoij transversely. Thus, in a
neighborhood of the 30-point, but off the 10-plane,
there is only the “pipe-basin” of the 20-points ¢;} .
Hence, the basins on the 10-plane are 2-dimensional.

Conjecture 3.5. The 20-point orbit is the attractor for
hi1 and the corresponding basins have full measure
in CP3.

Tteration experiments on R reveal attraction only
to the ten chaotically attracting RP! intersections
RN L,

Conjecture 3.6. The Ss-invariant RP? is nonattract-
ing (repelling?) and so belongs to hq1’s Julia set.

3E. What to Look For in an Attractor

A pair of 20-points qu , qw associates canonically
with an orbit of ten lines. However, there is no such
correspondence between a pair of 20-points and an
orbit of size five; the 20-points do not decompose
into five sets of four 8, orbits. An association of
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this kind makes for a natural solution to the quintic.
What could serve the purpose better than a map
whose attractor is the 5-point orbit?

3F. A Special Map in Degree Six

In the configuration of 10-lines My, . €ach 5-point
lies at the intersection of four lines (see Section 2E).
Moreover, these are the only intersections of 10-
lines. To take advantage of this structure, a map
could have superattracting pipes along the 10-lines
and basins of attraction at the 5-points.

The family of 6-maps has (homogeneous) dimen-
sion six. Obtaining maps for which the 10-lines are
critical in the “off-line” directions uses four parame-
ters. For the remaining two, we get a map fg whose
restriction to a 10-line M}, is

z —> 2t

in coordinates where the 5-points p}, pj, on M, are
0 and oo. In hyperplane coordinates,

Y6 = 2(9@2(1)3 - 10(135)501 - 2((133 - 5(I>4)(p2
+20(I)3(p3 + 15@2()04
[2u1 —dugul — Tdududus — 46udugul — 14ulu;g

— 2u1u3 — 38u1u2u4 — 44UIU3’LL4 — 50u2u3U4

5

—122u  upuug — 14ugu? — 152u uduzul — uyu

2,2 2
—68uluiul — T2udusul — 22udul — 29ususuy,

— 2uSugp + 2uS — 44uy ujus — 68uduiul — 22udud

—uguj — 46ududuy —122udusuzuy — 7T2ududuy

—29u ujug — ldujus —38uduszus — 152u usuiul

— Tduyuiul — 50uiuzul — 14u3u4 dugyusl,

— 1dujul — dufus — ujuz — T2uruius — 38utuqusj

+ 2u3 — 29u1u2u4 — 152u1u§u3u4 — 74u§u§U4

— ddupuzug — 50udugu; — 68ususu’; — 46u usus

—22uiud — 122ujuguzu’ — 14uiuf — 2uzul,

—22u3ud — 29utugus — 14ujul — 50uiuiud — 1duiug

— u‘;’u4 — 2u21L4 — 122u1u21L3U4 — 152U1U2U3U4

—dujuy — 68uiudu? — T2uduzu? — Tdugudu?l

—46uduzul — 38u1u3u4—44u1uzu4+2u4]
By construction, fs self-maps each 83-symmetric
10-plane L3, . The 10-point p;; and 5-points p}
(k # i,7) form 83 orbits on L3,

of sizes one and

three. Moreover, fg preserves R, the Ss-symmetric
RP3. We can get a picture of the map’s restricted
dynamics by plotting basins of attraction on the
RP? intersection

2
L3 NR.

(See Figures 7 and 8 on page 22.) The plot shows
attraction to the 5-points and the 10-point. How-
ever, the 10-point lies on the “equator” of an M%Oklm
(k,l,m # i,7) where fg repels in the off-plane direc-
tion. Thus, the 2-dimensional basin of a 10-point
is a measure-zero part of Jy,. No other attracting
sets appear. Moreover, regions of positive measure
that do not belong to one of these four “restricted
basins” are not evident. The plot is consistent with
the claim that the only fully 3-dimensional basins
are those of the 5-points.

A 15-line L};  contains one 5-point p;,, one 15-
point p,”.. (m # k,1), and two 10-points p;7, piy,-
In coordinates where the 5-point is 0, the 15-point
is 00, and the 10-points are +1 the map restricts to

48 2°

— .
T 3 2+ 3524+ 1745

The critical points of the restricted map are

o, 41, AV

with 0, +1 fixed. Experiment reveals that the four
nonfixed critical points belong to the basins of the
three superattracting points. Hence, these basins
have full measure on the 15-line (see Figure 9 on
page 23). As a member of three 15-lines L}SU’M a
10-point p;;, superattracts in these directions. How-
ever, these three lines lie in the 10-plane Lfou S0
that, as seen above, fﬁ is completely superattract-
ing in the plane at p”2

Another distinction for fg is its action on a 15-line
M}%’M which, by equivariance, must map either to
itself or L5, .

Fact 3.7. Under fs, Mis,,,, maps to Li; . Effec-
tively, this creates a second orbit of superattracting
pipes to the 5-points.

This is what led me to 6-maps, each of which send
the 10-point p;? to the 10-point p}? .



Finally, noting that ¢g has real coeflicients, it
must preserve the RP? whose points have real u co-
ordinates. This is not the 85-symmetric R. Rather
it seems to be associated with the 8, stabilizer of p}
which is [1,1,1,1] in the u space. This RP? inter-
sects the 10-planes L}, and L},  in an RP? with
Zy X Zy symmetry. In addition to p} this RP? con-
tains the 10-points p251, P39, Dy, as well as the RP!
through ])251 and p3? 5,+ Since this line is an equatorial
slice through M%Om, fe attracts chaotically along the
line. (See Figure 10 on page 23 for a basin portrait.)

Graphical and experimental evidence supports the
claim of reliability for fs.

Conjecture 3.8. The attractor for fg is the 5-point
orbit the basins of which fill up CP? in measure.

Comment: Proofs of Conjectures 3.5 and 3.8 are
likely to be difficult. Partly, this is due to an un-
derdeveloped theory of complex dynamics in several
dimensions. Also, higher dimensional dynamics dif-
fers significantly from that in one-dimension. For
instance, the julia set of a map in more than one di-
mension — the set on which the iterates do not form
a normal family — always intersects the critical set.
(See [Forneess and Sibony 1994] and [Fornaess and
Sibony 1995].) The hope is that the algebraic and
geometric features of these special G99 equivariants
will provide a means of illumination.

4. SOLVING THE QUINTIC

To compute a root of a polynomial, one must over-
come the symmetry present. For a general equation
of degree n the obstacle is §,. Klein described a
means to this end: given values for an “indepen-
dent” set of §,-invariant homogeneous polynomials

ay :Gl(m)7 sy am:Gm(x)v

find the §,, orbits of solutions x to these equations
[Klein 1956, pp. 69 ff.]. This task of inverting the
Gy, is called the form problem on §,. It also has a
rational manifestation: for m—1 given values, invert
m — 1 invariant rational functions of degree zero.

An 8, equivariant with reliable dynamics breaks
the obstructing symmetry. In effect, this provides a
mechanism for solving the form problem and, hence,
the nth degree equation. What follows is one way to
use Gi90-symmetry in multiple settings to assemble
a procedure that solves almost any quintic.
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4A. Parameters

The G159 rational form problem is to solve

Py (u) _ P3(u)? _ Ps5(w)

B, (u)?’ T By(u)? T Bay(u) Bs(u)
(4-1)

As functions, the K; define the G5y quotient map

Ky, Ky, K3, 1] = [8, 83D, B3, 32D, B3Py

on CP? \ {®; = &3 = 0}. The generic fiber over
points in CP? is a Gya9 orbit given by

K1:

- K3 (I)Q @3}
Exceptional locations are

[0,1,0,0] and [0,0,1,0],

where the respective fibers are the quadric and cubic
surfaces {®, = 0} and {®; = 0}.

Between quintic equations and G,y actions the
parameters K; forge a link. The connection con-
sists in K-parametrizations of each regime. From a
parametrized family of G5y actions, we can extract
parametrized families of 85 invariants and equivari-
ant 6-maps. In this way, a choice of parameter K
produces a quintic Rx as well as a system of invari-
ants @y, (w), ..., @5, (w), and a 6-map pg(w)—a
conjugate of pg(u) —on a parametrized w-space.

4B. A Family of S5 Quintics

Let G, be a Gz that acts on a v-coordinatized CP3.
This will be a parameter space—the coordinate v
merely stands in for u. The linear polynomials

Xk(ZL‘) = —4iL'k + Zmi
ik
form an orbit of size five. In hyperplane coordinates,
the X, are

Li(v) = —V/5 (v + vs + v3 + v4),
Ly(v) = —Vbws (wi
Ls(v) = \/5W5(
Ly(v) = —Vbws (w5 vy + wivy + v3 + wivy),
Ls(v) =

The rational functions

Sk (U) =

(o +w5vz + wsv3 + v4),

)
s U1 + Vg +w5v3 + wsvy),
g)
\/gws (v1 + wsvg + w5 U3 + Wy U4)-

Dy (v) Li(v)
D3(v)
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also give a 5-orbit. Taking the Sy as roots of a poly-
nomial
5

R,(s) = H(s - Sk(v)) = ZCk(v)s‘r’*k

yields a family of quintics whose members gener-
ically have 85 symmetry. Since G, permutes the
Sk(v), each coefficient Cj(v) is G,-invariant, hence
expressible in terms of the basic forms ®;(v) and,
ultimately, in terms of the K;. Of course, Cy(v) = 1.
Since there is no degree-1 G4 invariant, Cy(v) = 0.
Direct calculation determines the remaining coeffi-
cients:

125®@3 125
202 2K,’
o 625v5®5 6255
5T 392 3K,
15625 (B5 — 205®,)
8P4
15625 (1 — 2K;)
8K} ’
—15625v/5 (505 ®; — 65 P5)
6®3
—15625+/5(6 K5 — 5)
6 K2 ‘

Cz -

04:

05 -

Members of the 3-parameter family of quintic Gia
resolvents

125 5, 625\/582

RK(S):85—2K28 3K,
15625 (—1 +2K;)  15625+/5 (=5 + 6 K3)
8K?2 6 K2

are particularly well-suited for an iterative solution
that employs @g. For selected values of the K;, a
solution to the resulting form problem yields a root
of Ryx. Use of G159 symmetry will provide a means of
finding such a solution without explicitly inverting
the K; equations (4-1).

4C. Reduction of the General Quintic to a G;,, Resolvent

By means of a well-known linear Tschirnhaus trans-
formation the general quintic becomes the standard
4-parameter resolvent

q(y) = y5 + b2y3 +b3y2 + byy + bs.

Application of another linear Tschirnhaus trans-

formation

)
s — =
A

converts the 3-parameter family Ry (s) into a Giag
resolvent

St = (2

="+ N2Chy° + N2 Cs0? + N Cyy + N Cs
in the four parameters K, K,, K3, and the auziliary
A
The functions
by = A Oy

relate the coefficients of ¢ and Y ». The by, invert
to

b2 — 2b, —9p2

K, =2 =7 — 3

! 202 Ky 83
K. — 5(b2b3—b5) \ = _3b3 ]
ST 6byby 101/5b,

Thus, almost any quintic descends to a member of
Rg. The reduction fails when

—2a3 +5ay = 5by = 0

or
4(]/? — 15@1@2 + 25(13 — 25b3 = 0.

A solution to the special resolvent Ry then ascends
to a solution to the general quintic.

4D. A Family of S5 Actions

With the basic G,-maps, construct the parametrized
change of coordinates

4

u=T,W = Z(@G,i(v)cpi(v))wi.

i=1

A matrix form results from taking the @ (v) as col-
umn vectors:

(751 w1y
Uo . . . Wao
s = Pspr ¢ Papr - Paps 1 Doy w4
Uy Wy

(where we write ®5¢; for ®5(v)p;(v) and so on).
For a choice of parameter v,

7, : CP3 — CP?



is linear in w and gives rise to a parametrized family
of G120 groups

va = Ty_lgu”—v-
The setup here is as follows.

e G, is a version of G5y that acts on a reference
space CP3.

e G, is a version of G5 that acts on a parameter
space CP3.

e G, and G, have identical expressions in their re-
spective coordinates.

e GV is a version of G99 that acts on a parametrized
space CP? .

e The iteration that solves quintics in Ry takes
place in CP3.

Each G! has its system of invariants and equiv-
ariants. From this point of view, we can see, in
the resolvents R, and G! equivariants, a connection
between quintics and dynamical systems. Further-
more, each G! invariant and equivariant is express-
ible in the K;.

The first thing to notice is that, by construction,
T,W POSSesses an equivariance property:

Taow = ATyw  for A € G, G,.

The determinant of 7,, will enter into upcoming cal-
culations and so, demands some attention. Since

|TAU‘ = |A| |TU|7 (4-2)

|7, is invariant under the Ajs subgroup Seo of G,
but only relatively invariant under the full 85 group
Gi20. The even transformations have determinant 1
while the odd elements have determinant —1. Fur-
thermore,

|Tu| =Py P3P, D5 |1 1 2 ;3 904‘
=Py P3D,P5 0

where ¥y, is a scalar multiple of the product of the
ten linear forms associated with the ten planes of
reflection that generate G, (and where again the no-
tation leaves the dependence on v implicit). Re-
flection group theory tells us that this is the only
form in degree ten that is invariant under Gg9 but
not Gya0. From (4-2), the degree-48 square of |7,| is
Gigo-invariant. Let

|m[? = ®3%(v)tk
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determine its K-expression. The explicit form of tx
appears in Appendix A.

4E. A Family of S5 Invariants

The equivariance in v of 7,w implies that ®,(7,w)
is G,-invariant. Thus, each w coefficient of ®,(7,w)
inherits the same invariance. Since

deg, 5 (7, w) = deg, Po(u) - deg, T,w =2 -6 = 12,

the rational function

Dy (u) _ Dy (T,w)
Dy (v)6 Dy (v)8

is of degree zero in v and therefore expressible in the
Ki- Let

D2 (0)° @y, (w) = Py(u) (4-3)
define the basic degree-2 G invariant ®,, (w). Solv-
ing a system of linear equations whose dimension
is that of the degree-12 G, invariants yields an ex-
plicit expression in the K, for each w-coeflicient of
®,(7,w). Similar considerations apply in degree 3,
where

@2(U)Q¢3K (w) = @3(’11/) (4—4)
The results appear in Appendix A.

By Fact 2.2, the degree-4 and degree-5 invariants
derive from those in degrees two and three. First of
all, the chain rule determines transformation formu-
las for the hessian and bordered hessian.

Proposition 4.1. For y = Az,

H,(F(y))=A"H,(F(y))A,

5.6 = (5 1) Bre.con( g | )

where the subscript indicates the variable of differ-
entiation. Thus,

| Ho(F(y)| = |AP|H,(F(y))],
| B=(F(y), G(v))| = |AF| By(F(y), G(v))].
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Applied to the parametrized change of variable w =
T, tu,
Ga(u) = [Hy(®3(u))]
= [Hy(P2(v)" sy (w))]

= 2007 g (@, (w), @ay (w)

= @2(@)15 G5K (w)
We use here the obvious definitions
H,(®;5,
G () = e(Zax ()]

tx

G () = [Ze(Bax): Bu0))]

With natural definitions for &4, (w) and @5, (w),

)

Py (u) = 555 (P2(u)?® — 5G4(u))
= 3571 (P2(v) 2 By (w)* = 5B (v) 2 Gy (w))
= &, (v)"? Py, (w)

and

P5(u) = 557 (720 Pa(u) B3(u) + Gs(u))

720 D5 (v) ' @y, (w) 3, (w)

+ ®5(v)° Gs . (w))
= Dy(v)"* B5, (w).

g~ &
g

4F. A Family of S5 Equivariant 6-Maps

Emerging from each G action is a version

7, po(Tow)

of pe(u). Being G,-invariant, these maps also admit
parametrization by K. Thereby, each quintic Rg
enters into association with a dynamical system ¢y
on CP3.

The reversed identity R and gradient V" = RV
appeared in the context of a change from five x coor-
dinates to four u coordinates. In the present setting,
a reversed transpose arises.

Definition. The repose A" of an n x n matrix A is its
reflection through the reversed diagonal —the en-
tries whose subscripts sum to n + 1. Alternatively,

A" = RATR.

Proposition 4.2. For a change of coordinates u = Aw
and a polynomial ®(u) = ®(w), the reversed gradi-
ent map transforms by

VId(u) = A"V (w).
Proof. Noting that R? = I,
V'®(u) = RV,®(u) = RATV,®(w)
= RATRRV,®(w) = A"V, ®(w). O
For the genera’cing G120 maps,
ei(u) = H—lvﬁb 2 (0)*V B, (w)
5 _ T T
= B0 () VB, ()
5
= l_l_—lq’z(v)?’(m)TvTJl(TJl)TVfu‘I’mK(w)
5
=T Oy (v)* Y (77 7,) T VB, (w).
Thus,
5
7. Y ol(T,w) = H_—1<I>2(U)3(l“) (77 7,) VI (w).

Using the description on the left-hand side, a simple
calculation reveals this map to be invariant in v so
that the matrix 7 7, has entries that are degree-12
G, invariants. Hence, the matrix product has a K-
expression:

TTT_—(I)()T or 1—iTl§1
LA R o T 1 @y(0)8

(See sidebar on page 19 for the explicit form of Tk.)
Using this to express the transformation of basic
equivariants yields

5

(75 70)"

T

Y 3(14+1) )
oi(u) 1 2(v) Ty Y By (0)0 V@i, (w)
5 _
= H_—lq’z(v)g(l V1, o1, (w)
where
Py (w) = lelv';)@lJrlK(w)‘



Finally, we can identify a K-parametrized 6-map
v (w) that is conjugate to y¢(u). The map’s ex-
pression in basic terms appears after substitution
into the formula found in Section 3F. (See Ap-
pendix A.)

4G. Root Selection

Being conjugate to pg(u) each @ (w) shares the for-
mer’s conjectured reliable dynamics. Accordingly,
the attractor for each choice of K; is the 5-point
orbit in the corresponding CP3 so that for almost
every wy € CP3 |

o (wo) — 7, 'p}  for some 5-point p; € CP?.
To solve the resolvent R, the output of the iter-
ation must link with the roots of Rx. With this,
we see that solving Ry amounts to inverting 7, —
the form problem in yet another guise. With the
assistance of a Gy, tool, this is effectively what the
dynamics of ¢ accomplishes. (This clever device is
due to McMullen.)

To manufacture the root-selecting tool, we begin
with an orbit of quadratic 84-invariants

X7 (z) = —4x; + Za:f
ik

These form a G99 orbit of size five. Their hyper-

plane expressions are

Qi(u) = —uf — 2u uy — uj

— 2u;uz — ug — 2UgUg — 2U3 U4 — ui,

3,2 2 2
Q:2(u) = —wsu] — 2wg ujus — wsuy — 2ws Uy Ug
— wius — 2ws U Uy — 2WE Uz UL — WEUT,
2 4 2.2 2
Qs(u) = —wsui — 2wy Uy Uy — Wi Uy — 2ws Uy Us
—wiul — 2wiuyuy — 2wsuzuy — wiul,
4. 2 3,,2 3
Qs(u) = —wsu] — 2wsuy Uy — ws u; — 2w; Uy Uz
— wgug — 2w§u2u4 — 2wg‘u3u4 — wsui,
2,2 3 4 2 4
Qs(u) = —wiu] — 2w; Uy Uy — W5 Uy — 2wy Uy Uz
— w5u§ — 2WsUg Uy — 2w§u3u4 — wgui.
Furthermore, each of the forms
_ 3 2 _
(_)k(u)_ %Lk(u) 7Qk(u)7 fOI'k—]_,,E),

vanishes at the 5-points p? with [ # k but not at pj.
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Now, to draw the roots of the quintics Rk (s) into
the game, consider the rational function

Ok (row) Po(v) L (v)
Z Dy (T,w) <I'3( )

where « is a constant to be determined. Since the
v-degree of the numerator and denominator is 15 =
2 - 6 + 3 while the w-degree is 2, the function is
rationally degree zero in both variables. At a 5-point
7,7 'p} in CP3 four of the five terms in J, vanish; this

leaves o 5)
1\Py
a———==5;(v).
&, (pp) ')
Setting
oo 2o00) _ Oy(p5) _ 1
©4(p?) Os(p2) 15

“selects” the root S;(v) of Rk(s). Since the iterative
“output” of ¢x(w) is a single 5-point in CP? | the
dynamics produces one root.

The root-selector J,(w) has invariance properties
that allow it to exhibit a useful form. Let

= Z Oy (T,w) L (v).

Since G, permutes its terms, I', is invariant under
the action and hence, expressible in K:

ry(w) = <I>2(v)5 D3 () g (w).

(The explicit form of I'x appears in Appendix A.)
Finally, application of (4-3) yields

(v (w)
To(w) = 1534 (v) Ba(r,w)’
~ Tg(w)

4H. The Procedure Summarized
1. Select a general 5-parameter quintic p(z).

2. Tschirnhaus transform p(x) into a member Ry (s)
of the 3-parameter family of G50 quintics — this
determines values for K, K,, K3 as well as the
auxiliary parameter \.

3. For the selected K values compute the invari-
ants @, (w) (i = 2,3,4,5), the 6-map @x(w),
the form I' (w), and the root-selector Jx (w). (In
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fact, a rather lengthy once-and-for-all expression
for px (w) is easy to compute [Crass 1999a]. Such
a formula renders calculations of ®,,., ®;,, and
®,,. superfluous.)

4. From an arbitrary initial point w, iterate px un-
til convergence:
O (wy) — Weo.-
Conjecturally, the output w,, is a 5-point in CP3 .
5. Compute a root S = Jx(ws ) of Ry.
6. Transform S into a root of p(z).
See [Crass 1999a] for Mathematica data files and a

notebook that implement the iterative solution to
the quintic.

APPENDIX A. PARAMETRIZED FORMS

Each case discussed below requires G, invariants to
be expressed in terms of the basic invariants ®;(v).
This amounts to solving a system of linear equations
whose dimension is that of the respective space of in-
variants. Direct substitution into the basic-invariant
expressions then leads to the descriptions in K.

Basic Invariants

Each w-coefficient of ®,(7,w) is a degree-61 invariant
in v. In terms of K, the forms in degrees two and
three are:

B () = 7‘1’52(?;;‘;) _

2 (240 K2 K5 wi +480 K1 Ko Kzwy we — 48 K7 w}
+240 K3 w3 +480 Ky Ko K3 w; ws — 96 Ky Ky wpws
+480 K1 Ko K3 wo w3 — 30 Ky w3 + 180 K1 Ko w3
+32 K3 w3 +480 Ko K3 wy wy — 60 K wowy
+264 K2 wows + 160 K1 Kowywy — 140 Ko wz wy
+184 K Kywswy +336 Ky Kswzwy — 15w
+60 K1 wj + 12 K wi + 128 K5 K3 wj)

D3(T,w)
¢ w)= —— =
3K( ) @2( )9
55 (43200 K3 K3 wi +25920 Ky Ko K3 wiws

— 129600 K2 Ky K2 w?wy + 51840 K2 Ky K 3w, w2

— 129600 K Ko K3 wy w3 + 1944 K3 w3 — 6480 K w}
— 14400 K3 Ko w3 + 25920 K2 K2 w? ws

— 129600K2 K3 wl wz + 32400 K1 Ko K3wq wowg

— 142560 K7 Ko K3w; wo w3z — 34560 K1 K3 K3w; waws
+27432 K7 Ko w3 wz — 49680 K Ko w3 ws

— 38880 K7 Ko K3 w3 w3 +37800 K3 K3w; w3

—23760 K1 K3 K3 w; w3 —90720 K3 K3 wy w3

44860 K1 Ko wo w3 — 12960 K7 Ko wo wi
—32400K1K2w2w3 1728K1K2w2w3

— 17280 K K3 K3wo w3 +4860 K3 wi + 3240 K1 K3 w3
+384 K3w3 — 9720 K2 K3 w3 — 19440 K1 K2 K3 w3
—|—16200K2K3w1w4—71280K1K2K3w1w4

— 43200 K3 K3 wiwy + 75600 K1 Ko K3w; wawy
—99360 K7 Ko K3w wows — 129600 K1 Ko K3 wy wawy
+1620 K7 w3 wy — 3888 K3 w3 wy — 6480 K} wi wy
+17280 KZ Ky w2 wy — 69120 K7 Ky K3 w3 wy
+16200 K5 K3w; wzwyg — 64800 K1 Ko K3wi w3 wy
—12960K12K2K3w1w3w4—86400K22K§w1w3w4
+27000 K1 Kowowzwy — 48816 K12 Ko wo w3 1w,y

— 11520 K K2 wowzwy — 22032 K Ky K3 wowzwy

— 64800 K7 Ky K3wo w3 wy + 2025 Kyw3 w,y

—3240 K1 Kowiwy — 21060 K7 Ko w3 wy

+ 2880 K3 w3 wy — 7488 Ky K3 w3 wy — 6912 K3 K3 w3 w,y
—25920 K3 K3 w3 wy + 24300 Ky K3 w; w}
—48600K1K2K3w1w4 14400K2K3w1w4
—29160 Ko K2w; w2 — 6480 K Ko K2 wy w?
—|—405K1w2w4 5508K1w2w4+18000K1K2w2w4
— 18720 K? Ky wpw? — 29376 Ky Ko K3 wayw?
—25920K1K2K3w2w4—|—5805K2w3w4

— 8640 K Kywsw? — 3348 K Ky ws w?
—34992K1K2K3w3w4 17856K2K3w3w4
+405 K, w3 — 1620 K2 w3 + 324 K3 w3

+3600 Ky w? — 7200 Ky Ky wi — 1600 K2 w3

— 3456 K1 Ko K3wj — 10368 Ko K3 w}).

Change of Coordinates

The computation of the square of the determinant
|T,| amounts to expressing the degree-20 invariant
U10(v)? in terms of the basic forms:

|Tv|2
B, (v)?*

(@2(v) B3 (v) D4 () B5(v) Uro(v))”
(1)2 (,U)24

tg =




_ @3(1})4 @4(1))2 @5(1))2 \1110(7})2
By (v)6 Po(v)? Py(v)2 ®3(v)2 Bo(v)10

_ —3125K{ K3 K3

B 13824
+135000 K3 — 172800 K} 486400 K7 423700 K

— 147600 K1 K5 + 111600 K2 Ky +436800 K Ko

— 271800 K3 4424800 Ky K3 4+ 7200 K; K3 +25600 K3
— 79200 Ko K3+ 535680 K1 Ko K3 — 777600 K7 Ko K3
— 576000 K3 Ky K3+ 1552320 K3 K3

— 1238400 K, K3 K3 — 30720 K} K3 + 68256 K> K3

— 475200 K1 Ko K3 + 864000 K7 Ko K3

— 3628800 K3 K3 +864000 K, K3 K3

+4032000K3 K3 — 1728000 K3 K3).

(—675+9450 K1 — 51300 K7

Each entry of 7] 7, is a degree-12 invariant in v.
The matrix product’s expression in K is given at the
bottom of the page; recall that

Ty Ty
Dy ()8
The inverse of Tk results from an application of
Cramer’s rule:

TK:

Tcof
T71 — K
Tk
where T5°" is the matrix of cofactors. Note that

Root-Selector

The w-coefficients of I',(w) are v-invariants of de-
gree 13. Expressed in K,

L'y (w)
F = V=
) = 5y
-125
26 \/_(720K2K32w1 288 Ky K3w; wo

+ 1440 K? K3wy wy — 288 K2 w3 + 720 K2 K3 w3

— 288 Ky K3w; w3 + 1440 Ko K2 wy w3 — 180 K wa w3
+ 792 K wo w3z +192 K1 Ko wyws — 210 Kows

+132 K1 Kow? 4504 Ko Kzw? — 180 K3w; wy

240K, K2 2K, (—15466K,+40K,) 2K,(—35+46K;+84K3)
240K, Ky K 48 K1 K> (—1+5K3)
240K, K> K3 48K7 (—1+5K,)

240 K K2 240K, Ky K3

2K (—15+90 K1 +16 K5)
48K, K (—1+5Ks3)
240K, K> K3
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+ 792 K1 Kzwywys +480 Ko K3 wiwgs —420 K1 wawy
+552K12w2w4+720K1K3w2w4—90w3w4

+360 Ky w3 ws +72 K7 wzws+480 Ko Kzwzwy —135w3
+270 Ky w} + 80 Ko w} + 162 Kswj +36 Ky Kzw} ).

The 6-Maps

From the expression for ¢g(u) in basic invariants

and equivariants, a K-parametrized 6-map ¢y (w)

emerges (see remark on page 7 for the factors —g,

—g, —%, —2 affectlng the second equality):
we(u) = B35 (v) T, ¥

(2 (9P2, (W) @3, (w) — 105, (w)) @1, (W)
—2(®3,, (w) = 54, (w)) P2, (w)
+ 20D, (w) p3,c (w) + 15Dy (W) Pa,c (w))
= 313 (v) 7, Tt x
(=5 (9P, (w) B3, (w) — 10D5, (w)) V,; Doy (w)
+5(D5, (w) = 5Py, (0)) VB3 ()
—25®3, (w)V,, @4, (w)—15P2, (W) V], P, (w))
— () g (w).

APPENDIX B. BASIN PORTRAITS

The plots that follow are productions of the program
Dynamics 2 [Nusse and Yorke 1998] running on a
Dell Dimension XPS with a Pentium II processor.
Its BA process produced Figure 3 and the BAS rou-
tine generated the remaining plots. Each procedure
divides the screen into a grid of cells and then col-
ors each cell according to which attracting point its
trajectory approaches. If it finds no such attractor
after 60 iterates, the cell is black. The BA algorithm
finds the attractor whereas BAS requires the user to
specify a candidate attracting set of points. The res-
olution of each bitmap is approximately 720 x 720.
Color versions of the images appear on this journal’s
web site.

—154+60K;+12K2+128 K5 K3
2K, (—35+46 K1 +84K3)
2K, (—15+66 K1 +40K>)

240 K> K3

The matrix product Tk.
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FIGURE 3. Dynamics of a ruling-preserving 11-map
on the quadric’s rulings.

Figure 3 shows the dodecahedral 11-map. Each
of the ten pairs of antipodal dodecahedral vertices
(seen inside the light-colored regions as tiny black
dots) is a period-2 superattractor. Their basins fill
up CP! in measure. (Recall that points in the space
of this plot correspond to lines on the quadric Q.)

FIGURE 4. Four basins of attraction for the octahe-
dral 5-map.

Figure 4 indicates the behavior of hy; restricted to
an 8,-symmetric conic Q. The 4 pairs of antipodal
vertices of the cube are period-2 superattracting 20-
points whose basins have full measure on the conic.

Figure 5 shows the behavior of the octahedral map
hq1 on a 15-line and on a 30-line. In the former case,

FIGURE 5. Three basins of attraction for hi; restricted to a 15-line L%% o

(left) and to a 30-line L3, . (right).



FIGURE 6. Chaotic attractors for k11 on an RP? with 84 symmetry (left) and with 83 symmetry (right).

the critical points at 0 and oo are a pair of 30-points
on Q that h;; exchanges. A pair of fixed 10-points
accounts for the remaining two basins. At each of
these attracting points, the map repels in at least
one direction away from the line. Although the line
has Z, symmetry under Gi,q, the plot displays that
of Zy X Z4. This is a manifestation of an additional
antiholomorphic symmetry

r— T

that extends G99 by degree two.

On the 30-line, the critical points at 0 and co are a
pair of octahedral 60-points on Q that h;; exchanges.
The remaining two basins belong to a pair of 20-
points on R. At each of these attracting points, the
map repels in at least one direction away from the
line. Again, Z, X Z, symmetry appears.

In Figure 6 we see the restriction of h;; to an
RP? with 8, symmetry and an RP? with 83 symme-
try. Each case involves a chaotic attractor. In the
former, the attractor consists of the four RP! inter-
sections of R, L3, and the 10-lines L1, . The six
intersections occur at 10-points p;? , with k,1 # 4.
(In the picture, two of these intersections occur on
the line at infinity.) The pictured “lines” are the
images of small circles centered along the edges of
the inner square. The graphical technique we have
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used here specifically relies on the chaotic behavior
of hy; along each RP.

In the 8; plane, the attracting line is the RP!
intersection of R, L3, ~and the 10-line L, = at in-
finity — the light gray basin. The three “attracting”
30-points — they are blowing up — are the vertices

(1,0), (—%i*/;)

of an equilateral triangle about (0, 0).

The remaining images illustrate the dynamics of
the quintic-solving 6-map f¢. Figures 7 and 8 show
the restriction to the RP? determined by

2
L3, NR.

Since this plane is 83-symmetric, the affine coordi-
nates here are chosen with the three 5-points at

(1,0), (-%i‘?)

Three of the superattracting pipes form a triangle
on these points. Indeed, the image in Figure 7 (left)

of the circle
{e* +y' =1}

is nearly this triangle. The attractor at (0,0) is
the 1-point orbit in the 10-plane —overall, the 10-
point pi?. In the direction away from the plane,
fs repels at this site along the superattracting pipe
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FIGURE 7. Left: Four basins of attraction for fg restricted to an RP2. Right: Critical set of fg restricted to an

RP2.

Mio,,.» with k,I,m # 4,j. The three spokes at
basin boundaries are pieces of 15-lines L};  each
of which passes through a secondary basin that con-
tains a preimage of the central 10-point. The region

bounded by the tiny rectangle in Figure 7 (left) is

magnified twice in succession to give the plots in
Figure 8.

Figure 7 (right) shows hi;’s critical set (minus
the three “doubly-critical” 10-lines) superimposed
on the blurry basin portrait. The critical contour

FIGURE 8. Successive enlargements of Figure 7. The left panel shows a detail of the left cusp of the central basin,
bounded in Figure 7 (left) by a small box; the small box in this image, in turn, is magnified on the right.
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~

FIGURE9. Left: Three basins of attraction for fg restricted to a 15-line L%SU .- Right: Enlargement of the boxed

area.

is a Mathematica plot. Of course, the higher order
intersections occur at the 5-points. All but six crit-
ical points appear to belong to the basin of either a
5-point or the central 10-point p;) . The six excep-
tions lie on the 15-lines at basin boundaries. If this

FIGURE 10. Chaotic attractor for fg on an RP? with
Zo X Zo symmetry.

is so, then there is no other attracting site — pro-
vided that a basin always contains critical points.

In Figure 9 we see the map restricted to a 15-
line. The coordinates of this image place the single
5-point at 0 and the two fixed superattracting 10-
points at £1. At the latter points, the map repels
in all directions off the line.

In Figure 10, the space is the RP? intersection
of an 8,-invariant RP® and a 10-plane L3, . The
RP! intersection of the RP? and the 10-line L1, is
{z = 0}. By plotting the trajectory of one of its
generic points, this line reveals itself as a chaotic
attractor; the plot shows roughly 20,000 iterates.
The map attracts at (1,0), (—1,0) — the 5-point pj
(k #1,j) and 10-point p;) respectively.
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ELECTRONIC AVAILABILITY

A Mathematica program implementing the iterative
solution to the quintic discussed in the article can
be found at http://www.buffalostate.edu/~crass.
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