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The requirement for solving a polynomial is a means of breaking

its symmetry, which in the case of the quintic, is that of the sym-

metric group S5. Induced by its five-dimensional linear permu-

tation representation is a three-dimensional projective action. A

mapping of complex projective 3-space with this S5 symmetry

can provide the requisite symmetry-breaking tool.

The article describes some of the S5 geometry in C P 3 as well

as several maps with particularly elegant geometric and dynam-

ical properties. Using a rational map in degree six, it culminates

with an explicit algorithm for solving a general quintic. In con-

trast to the Doyle-McMullen procedure, which involves three

1-dimensional iterations, the present solution employs one 3-

dimensional iteration.

1. OVERVIEWIn [Doyle and McMullen 1989], a solution to thequintic takes place in three iterative steps|a towerof algorithms each of which involves iteration in onecomplex dimension. Given almost any quintic p andalmost any initial point in C , the series of algorithmsproduces a root of p. The method is geometricallydistinguished in that the tower has the S5 symme-try of the general quintic. Its central feature is amap on the Riemann sphere with icosahedral (A5)symmetry.The present paper describes a solution to a fullmeasure's worth of quintics that runs as a singleiteration in three dimensions. That the procedureproduces a root for almost any initial point in com-plex projective 3-space (C P 3) is conjectural at themoment. At its core is a map on C P 3 with S5 sym-metry. Motivating this general project is a desireto develop solutions to equations that use geometri-cally elegant dynamical systems.The work unfolds in three stages: some back-ground geometry; special maps with S5 symmetry;and a solution to the quintic based on the precedingstages.
c
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Section 2: S5 geometry. The setting here is C P 3upon which the symmetric group S5 acts. Findinga map with special S5 geometry requires some fa-miliarity with this action. We will consider somefeatures associated with the maps that emerge inthe second stage. Indeed, the discovery of thesemaps derives from an awareness of the geometriclandscape:� coordinate systems� the structure of an S5-invariant quadric surface� the structure of certain special orbits of points,lines, planes, and conics.In addition, the system of S5-invariant polynomialsplays a fundamental role in the search for maps.
Section 3: Maps with S5 symmetry. At this stage,we exploit our geometric understanding to discoverempirically several maps with special qualities. Ap-pearing here are families of maps associated withthe icosahedron, the dodecahedron, and the com-plete graph on �ve vertices. The known features oftheir geometric and dynamical behavior come underdiscussion. However, they are not known to possessseveral desired properties. In light of signi�cant ex-perimental evidence, I leave claims concerning theseproperties as conjectures.
Section 4: Dynamical solution to the quintic. Follow-ing the Doyle-McMullen framework, a special fam-ily of quintics corresponds to a rigid family E ofS5 maps on C P 3 . `Rigidity' means that each mem-ber of E is conjugate to a single reference map fwith elegant geometry and dynamics. The solutionis general since almost any quintic p transforms intothe special family. Thus, associated with p is a mapgp = 'p f '�1p that we iterate. Using S5 tools, itsoutput|conjecturally, a single S5 orbit|providesfor an approximate solution to fp = 0g.The paper [Crass 1999b] extends the method tothe octic in a way that seems to generalize to higherdegree.

2. S5 ACTS ON CIP3The permutation action of S5 on C 5 preserves thehyperplane Hx = � 5Xk=1 xk = 0� ' C 4

and, thereby, restricts to a faithful four-dimensionalirreducible representation. (Since there will be twovariables that describe the hyperplane, the subscriptx appears here.) This induces an S5 action on C P 3 ;we denote the corresponding subgroup of PGL4C byG120.
2A. CoordinatesFor many purposes, the most perspicuous geomet-ric description of G120 employs �ve coordinates thatsum to zero. One advantage is the simple expres-sion of the G120-duality between points and planes.In general, for a �nite action G whose matrix rep-resentatives are unitary, a point a is G-dual to ahyperplane L if L = f�a � x = 0g:Consequently, a and L have the same stabilizer inG. By the orthogonal action of S5 on C 4 , a pointa = [a1; a2; a3; a4; a5]P ak=0 2 C P 3(where as usual the brackets indicate homogeneouscoordinates in projective space) corresponds to theplane fa � x = 0g = � 5Xk=1 ak xk = 0�:A system of four u-coordinates also describes thehyperplane Hu. These hyperplane coordinates arisefrom the \hermitian" change of variableu = H x; x = HTu;with

H = 1p5
0BB@ 1 !5 !25 !35 !451 !25 !45 !5 !351 !35 !5 !45 !251 !45 !35 !25 !5

1CCA ;
where !5 = e2�i=5. The choice of scalar factor gives

HHT =
0BB@ 1 0 0 00 1 0 00 0 1 00 0 0 1

1CCA ;
HTH = �

0BBBB@
�4 1 1 1 11 �4 1 1 11 1 �4 1 11 1 1 �4 11 1 1 1 �4

1CCCCA : (2–1)
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2B. Invariant PolynomialsThe fundamental result on symmetric functions saysthat the n elementary symmetric functions of de-grees 1, . . . , n generate the ring of Sn-invariant poly-nomials. Since the S5 action on C P 3 occurs wherethe degree-1 symmetric polynomial vanishes, thereare four generating G120-invariants. By Newton'sidentities, the power sums Fk(x) = P5l=1 xkl , fork = 2; : : : ; 5, also generate the G120 invariants. Inhyperplane coordinates, the power sums are�2(u) = F2(HTu) = 2�u1u4+u2u3�;�3(u) = 3p5 �u1u22+u21u3+u23u4+u2u24�;�4(u) = 25 �2u31u2+3u22u23+2u1u33+2u32u4+12u1u2u3u4+3u21u24+2u3u34�;�5(u) = 15p5 �u51+u52+20u1u32u3+30u21u2u23+u53+30u21u22u4+20u31u3u4+20u2u33u4+30u22u3u24+30u1u23u24+20u1u2u34+u54�:In classical invariant theory, relative invariantsresult from taking the determinant of, on the onehand, the hessian H(F ) of an invariant F , and, onthe other, the \bordered hessian" B(F;G) of twoinvariants F and G:
B(F;G) =

0BBBBBBBBBB@

@G@x1H(F ) ...@G@xn@G@x1 : : : @G@xn 0

1CCCCCCCCCCA
:

A polynomial F is relatively invariant ifF � T = �T F for all T 2 G;where � is a character on G.
Proposition 2.1. Given T 2 GLn(C ) and invariantsF , G, we have��H(F (Tx))�� = jT j�2 ��H(F (x))��;��B(F (Tx); G(Tx))�� = jT j�2 ��B(F (x); G(x))��;where j � j indicates the determinant .

For the permutation action of S5, the Hessian andbordered Hessian determinants give absolute invari-ants|the character is trivial. Thus, each is ex-pressible in terms of the generators �k. The fol-lowing result will serve a subsequent computationalpurpose. (Note: Many of this work's results derivefrom calculations made with Mathematica. I willrefer to such results as Facts.)
Fact 2.2. With G4 = jH(�3)j and G5 = jB(�3;�2)j,the \power-sum" invariants of degrees four and �veare given by �4 = 1324��22 � 5G4�;�5 = 1864�720�2�3 +G5�:
2C. Quadric SurfaceThe degree-2 invariant de�nes an S5-invariant sur-face in C P 3 Q = f�2 = 0g:The quadratic form associated with Q is�2 = 2 detU with U = �u1 �u2u3 u4 � :Accordingly, Q is ruled by two families of linesaT U = ( a1 a2 )�u1 �u2u3 u4� = ( 0 0 ) ;

U b = �u1 �u2u3 u4�� b1b2� = � 00� :Alternatively, the \a-ruling" is de�ned byUTa = 0:Each ruling forms a projective line C P 1a ; C P 1b re-spectively.Given a point u = [u1; u2; u3; u4] on Q, the matri-ces U and UT each have rank one. Thus, distinctlines in C P 1a (or C P 1b ) are skew while exactly onea-line and one b-line intersect at u. This gives thequadric a C P 1a � C P 1b structure. See [Hodge andPedoe 1947, Chapter XIII: Quadrics].Furthermore, as a set, each ruling has an A5 stabi-lizer G60 and, hence, C P 1a and C P 1b have icosahedralgeometry. The \odd" elements G120 � G60 exchangethe a-ruling with the b-ruling.
2D. Special OrbitsThe 3-dimensional S5 action comes in both real andcomplex versions. This means that, in the standard
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size representative descriptor stabilizer5 [�4;1;1;1;1] p51 S410 [0;0;0;1;�1] p10451 S3�Z210 [2;2;2;�3;�3] p10452 S3�Z215 [0;1;1;�1;�1] p151;23 = p151;45 D420 [0;�3;1;1;1] [�3;0;1;1;1] p201;345 p202;345 S330 [0;0;1;1;�2] p3012;34 Z2�Z2
TABLE 1. Special points on R P 3 , the set of pointswith real components.x coordinates, G120 acts on R, the R P 3 of points withreal components. Table 1 enumerates some specialorbits contained in R, while Table 2 describes ele-ments of Q that are �xed by members of G120. Forease of expression, I will refer to special points, lines,and planes in terms of the orbit size: \20-points"(10-lines, 5-planes). Also, these points get a sym-bolic description in reference to orbit size (super-script) and coordinate expression (subscript).Corresponding to each special point a is the planefa � x = 0g. In the case of the 10-points[1;�1; 0; 0; 0]; : : : ; [0; 0; 0; 1;�1];there are 10-planes fx1 = x2g, . . . , fx4 = x5g thatare pointwise �xed by the involutionsx1 $ x2; : : : ; x4 $ x5:

These ten transpositions generate G120, making itthe projective image of a real or complex re
ectiongroup [Shephard and Todd 1954].Other noteworthy orbits are that of the �ve S4-stable coordinate planesL25i = fxi = 0g; for i = 1; : : : ; 5;and that of the �ve octahedral conicsQ1i = Q \ L25i :Some data for special two-dimensional orbits appearin Table 3. I describe these sets in terms of dimen-sion (superscript), orbit-size (subscript), and coor-dinate expression (sub-subscript).Finally, a number of special lines appear as in-tersections of the 5-planes and 10-planes. Table 4summarizes the situation.
2E. ConfigurationsSome of the geometry that will have dynamical sig-ni�cance shows up in various collections of lines.First, the 10-linesM110ijk = L210ij \ L210ik \ L210jkform a complete graph on the 5-points. Figure 1 il-lustrates this in two ways. The pentagon-pentagram�gure displays a 5-fold symmetry while the doublepyramid exhibits theD3 structure of a single 10-line.(The illustration suppresses the subscript 10.)
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FIGURE 1. Con�guration of 10-lines and 5-points.
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size representative descriptor stabilizer remarks20 [0; 0; 1; !3; !23 ] q20121 Z6 antipodal pair of eight octahedral face-centerson Q11,Q12, with Q1i = L25i\Q[0; 0; 1; !23 ; !3] q2012220 [1; 1; 1; �; ��] [1; 1; 1; ��; �] q201231 q201232 S3 � = �3+p15i224 [1; !i5; !j5; !k5 ; !l5] q24ijkl Z5 !k = e2�i=k30 [0; 1; i;�1;�i] q301;241 = q301;352 Z4 antipodal pair of six octahedral vertices on Q11[0; 1;�i;�1; i] q301;242 = q301;35130 [1; 1; �; �;�2(1+�)] q3012;341 Z2�Z2 � = �2+p5i3[1; 1; ��; ��;�2(1+ ��)] q3012;34260 [0; 1; 1; 
; �
] q601;121 Z2 antipodal pair of 12 octahedraledge-midpoints on Q11; 
 = �1+p2i[0; 1; 1; �
; 
] q601;122
TABLE 2. Special points on Q = fP5k=1 x2k = 0g.

size alg. def. point desc. s.st. p.st. r.act.5 fxi = 0g p5i L25i S4 Z1 S410 fxi = xjg p10ij1 L210ij S3�Z2 Z2 S310 fxi = �xjg p10ij2 M210ij S3�Z2 Z1 S3�Z2
TABLE 3. Some fundamental C P 2 orbits. The columnsgive the size or the orbit, the algebraic de�nition, thecorresponding point, the descriptor, the setwise sta-bilizer, the pointwise stabilizer, and the restrictedaction.size alg. def. desc. s.st. p.st. r.act.10 L25i\L25j L110ij S3�Z2 Z2 S310 L210ij\L210jk\L210ik M110ijk S3�Z2 S3 Z215 L210ij\L210kl(i;j 6=k;l) L115ij;kl D4 Z2�Z2 Z215 M210ij\M210kl(i;j 6=k;l) M115ij;kl D4 Z2 Z2�Z230 L25i\L210jk(i 6=j;k) L130i;jk Z2�Z2 Z2 Z2
TABLE 4. Special C P 1 orbits. The columns have thesame meaning as in the preceding table.The intersections of \complementary" pairs of 10-planes yield an orbit of 15-linesL115ij;kl = L210ij \ L210kl ; fi; jg \ fk; lg = ?:This forms a graph on 15 vertices: the 5-points and10-points p10ij2 .� At a 5-point p5i , there are three 15-linesL115jk;lm ;L115jl;km ;L115jm;kl ; i 6= j; k; l;m:

� On a 15-line L115jk;lm , there is one 5-point p5i wherei 6= j; k; l;m.� At a 10-point p10ij2 , there are three 15-linesL115ij;kl ; L115ij;km ; L115ij;lm :� On a 15-line L115ij;kl there are two 10-points p10ij2 ,p10kl2 .Within each of the icosahedral rulings on Q thereare three special line-orbits, corresponding to the12 vertices, 20 face-centers, and 30 edge-midpointsof the icosahedron. Intersections of lines betweenrulings yield special point structures.� Two 20-line G60-orbits form ten \quadrilaterals"at two pairs of 20-points. (See Figure 2.)� Two 12-line G60-orbits form six quadrilaterals at24-points.� Two 30-line G60-orbits orbits form 15 quadrilat-erals at two pairs of 30-points.Since G120 � G60 exchanges the orbits in C P 1a withthose in C P 1b , these three types of G60 orbits giveoverall line-orbits of sizes 40, 24, and 60.
3. EQUIVARIANT MAPSThe primary tool to be used in solving the generalquintic is a rational mapf : C P 3 �! C P 3
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FIGURE 2. Con�guration of 40-lines and 20-points on Q. At a 20-point q20ij� or q20ijk� there are two 40-lines, one ineach ruling on the quadric. This pair of lines is the intersection of Q with the tangent plane to Q at the respective20-point. Also indicated are the 10-lines determined by a pair of antipodal 20-points.with S5 symmetry. In algebraic terms, this meansthat f � T = T � f for all T 2 G120:Furthermore, such an equivariant map (or simplyequivariant) should have reliable dynamics : its at-tractor
(1) is a single G120 orbit, and
(2) has a corresponding basin with full measure inC P 3 or, alternatively,
(20) has a corresponding basin that is dense in C P 3 .Recall that a periodic point a in a space X is at-tracting when, for all x in some neighborhood of a,fk(x) �! fa; f(a); : : : ; fm�1(a)g;where m is the period of a. A point s is superat-tracting in a direction L if the derivative f 0(s) has

a zero eigenvalue in the direction L. The basin ofattraction Ba of a is the set of all points attractedto the f -orbit of a;Ba = �x 2 X : fk(x) �! fa; f(a); : : : ; fm�1g	:The attractor of f is the set of all attracting points.
3A. Basic MapsA �nite group action G on C n induces an actionon the associated exterior algebra. Moreover, G-invariant (n�1)-forms correspond to G-equivariantmaps [Crass 1999c]. Brie
y, letdZI = (�1)�Idzi1 ^ � � � ^ dzin�1 ;where I is the ordered setfi1; : : : ; in�1g; i1 < � � � < in�1;
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Î is the single index in f1; : : : ; ng � I; and �I is thesign of the permutation� 1 2 � � � nÎ i1 � � � in�1� :If '(z) = nX̂I=1 fÎ(z)dzIis a G-invariant (n� 1)-form, then the mapf(z) = (f1(z); : : : ; fn(z))is relatively G-equivariant (a multiplicative charac-ter appears under the action of G on f).For a re
ection group, the number of generating0-forms (i.e., polynomials) is the dimension of theaction [Shephard and Todd 1954, p. 282]. From aresult in complex re
ection groups, this is also thenumber of generating 1-forms and (n�1)-forms [Or-lik and Terao 1992, p. 232]. Indeed, the 1-forms areexterior derivatives of the 0-forms while the (n�1)-forms are wedge products of 1-forms.
Proposition 3.1. With Xki = �4xki +Pj 6=i xkj , the fourmapsfk(x) = �Xk1 ; Xk2 ; Xk3 ; Xk4 ; Xk5 �; k = 1; : : : ; 4generate the module of G120 equivariants over thering of G120-invariants .These maps are projections onto the hyperplane Hxalong [1; 1; 1; 1; 1] of the power maps�xk1 ; xk2 ; xk3 ; xk4 ; xk5�:
Proposition 3.2. Under an orthogonal action an in-variant F (x) gives rise to an equivariant f(x) bymeans of a formal gradientf(x) = rxF (x) = � @F@x1 (x); : : : ; @F@xn (x)�:
Proof. For a homogeneous polynomial F (x) of degreem, the Euler identity givesmF (x) = rxF (x)Tx = rxF (x) � x = f(x) � x:Invariance of F yieldsmF (x) = mF (Ax) = rxF (Ax)TAx:Using an auxiliary variable y,rxF (Ax) = ATryF (y)jy=Ax = ATf(y) = ATf(Ax):

By orthogonality of A, mF (x) = A�1f(Ax) � x.Equating expressions for mF (x) reveals equivari-ance: A�1f(Ax) = f(x): �
Remark. Note that the S5-equivariant fk(x) is notequal to rxFk+1(x), but is a multiple ofrxFk+1(x)jxki=Xki :While this may be a source of confusion, it doesnot cause problems, since we are working on thehyperplane Hx. When we use hyperplane coordi-nates on Hu, the discrepancy appears as a factor of�5=(k+1). (See page 19.)A map on Hx produces'(u) = Hf(HTu)on Hu. It will be useful to express the generatingu-equivariants 'k(u) = Hfk(HTu)in terms of the basic u-invariants �k(u).
Definition. Let

R =
0BB@ 0 0 0 10 0 1 00 1 0 01 0 0 0

1CCA
represent the reversed identity andrruF (u) = RruF (u)the reversed gradient.
Proposition 3.3. In Hu coordinates , the map '(u) =Hf(HTu) is given by'(u) = rru�(u)where �(u) = F (HTu) = F (x) and f(x) = rxF (x).
Proof. For the change of variable u = Hx and x =HT u, the chain rule yieldsf(x) = rxF (x) = rx�(u) = HTru�(u):Since HHT = R,Hf(x) = HHTru�(u);H f(HT u) = Rru�(u);'(u) = rru�(u): �
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Thus, bearing in mind the remark after Proposi-tion 3.2, the basic maps in u are'k(u) = Hf(HT u) = � 5k + 1rru�k+1(u):Explicitly,'1(u) = �5�u1; u2; u3; u4�;'2(u) = �p5�u23+2u2u4; u21+2u3u4;2u1u2+u24; u22+2u1u3�;'3(u) = ��u32+6u1u2u3+3u21u4+3u3u24;3u22u3+3u1u23+6u1u2u4+u34;u31+3u2u23+3u22u4+6u1u3u4;3u21u2+u33+6u2u3u4+3u1u24�;'4(u) = � 1p5 �4u21u22 + 4u31u3 + 4u2u33 + 12u22u3u4+ 12u1u23u4 + 12u1u2u24 + u44;4u1u32 + 12u21u2u3 + u43 + 4u31u4+ 12u2u23u4 + 6u22u24 + 12u1u3u24;u42 + 12u1u22u3 + 6u21u23 + 12u21u2u4+ 4u33u4 + 12u2u3u24 + 4u1u34;u41 + 4u32u3 + 12u1u2u23 + 12u1u22u4+ 12u21u3u4 + 6u23u24 + 4u2u34�:
3B. A Fixed Point PropertyFor a G120-equivariant f and a point a that an ele-ment T 2 G120 �xes,T f(a) = f(Ta) = f(a):Hence, equivariants preserve �xed points of a groupelement.Being pointwise �xed by the involutionxi  ! xj ;a 10-plane L210ij = fxi � xj = 0geither maps to itself or collapses to its companion10-point
p10ij1 = [: : : 0 : : : ; iz}|{1 ; : : : 0 : : : ; jz}|{�1 ; : : : 0 : : :] =2 L210ij :In the former generic case, the map preserves the10-line and 15-line orbits M110ij and L115ij;kl that areintersections of 10-planes.

3C. Families of EquivariantsThe G120 equivariants form a module over the G120invariants for which degree provides a grading. Thismeans that for an invariant Fl and equivariant gmof degrees l and m, the productFl � gmis an equivariant of degree l+m. When looking fora map in a certain degree k with special geometricor dynamical properties, my approach is to expressthe entire family of \k-maps" and by manipulationof parameters, locate a subfamily with the desiredbehavior.
3D. Quadric-Preserving MapsThe rich geometry of the quadric Q provides anintriguing setting for dynamical exploration. Arethere S5-symmetric maps that send Q to itself? Ifso, how do they behave on and o� Q? I will describediscoveries of two species of such maps: one associ-ated with the icosahedron and the other with theoctahedron.
Maps that preserve icosahedral rulings. Were a G120-equi-variant to preserve the A5 rulings on Q, its restric-tion to either ruling C P 1a or C P 1b would express itselfin terms of the basic equivariants under the one-dimensional icosahedral action. Such maps occur indegrees 11, 19, and 29 [Doyle and McMullen 1989,p. 166]. Consequently, the 20-parameter family of11-maps comes under scrutiny:f11 = (�1F 52 + �2F 22 F 23 + �3F 32 F4 + �4F 23 F4+ �5F2F 24 + �6F2F3F5 + �7F 25 )f1+ (�8F 32 F3 + �9F 33 + �10F2F3F4+ �11F 22 F5 + �12F4F5)f2+ (�13F 42 + �14F2F 23 + �15F 22 F4+ �16F 24 + �17F3F5)f3+ (�18F 22 F3 + �19F3F4 + �20F2F5)f4:From the geometric description of the icosahe-dral 11-map on C P 1a or C P 1b [Doyle and McMullen1989, p. 163], a ruling-preserving 11-map would ex-change antipodal pairs of 20-lines fLa201 ;La202g orfLb201 ;Lb202g and 30-lines while �xing 12-lines. (Re-call that all these are G60 orbits.) Imposed on the
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con�gurations described in Section 2E, these condi-tions require analogous behavior at the associatedpoints: q20ij1  ! q20ij2q24ijkl �! q24ijklq30i;jk1  ! q30i;jk2
q20ijk1  ! q20ijk2
q30ij;kl1  ! q30ij;kl2 :The speci�ed action occurs automatically for q20ij� ,q24ijkl, and q30i;jk� . After solving two linear equationsassociated with the remaining two conditionsf11(q20ijk1) = q20ijk2 ; f11(q30ij;kl1) = q30ij;kl2as well as four linear equationsf11(La201) = La202that arrange for the exchange of an antipodal pairof 20-lines in either ruling we obtain a 13-parameterfamily of ruling-preserving mapsg11 = 4�16�1F 52 + 16�2F 22 F 23 + 16�3F 32 F4 + 67F 23 F4+ 16�5F2F 24 + 16�6F2F3F5 + 45F 25 �f1+ 4�16�8F 32 F3 + 16F 33 + 16�10F2F3F4+ 16�11F 22 F5 � 135F4F5�f2+ �64�13F 42 + 64�14F2F 23 + 64�15F 22 F4+ 405F 24 � 720F3F5�f3+ 4�16�18F 22 F3 � 225F3F4 + 16�20F2F5�f4:When restricted to the ruling C P 1a and expressedin the homogeneous ruling coordinates [a1; a2], themap has the elegant appearanceg11jC P1a : [a1; a2] �! �a1��a101 + 66a51a52 + 11a102 �;a2�11a101 � 66a51a52 � a102 ��:Of course, the same form appears for the b-ruling.Restricted to a ruling, the dynamics of each g11is completely understood, as far as attracting be-havior is concerned. The 20-lines are period-2 andthe only elements of the critical set. (Recall that 20-lines in Q are dodecahedral vertices in C P 1a or C P 1b .)This implies that almost every line in the ruling be-longs to the basin of one of the ten pairs of the su-perattracting set. (See [Doyle and McMullen 1989,pp. 166{167] and Figure 3 on page 20.) Thus, foralmost every point q0 on Q, there is an\antipodal"pair of intersections between 20-lines in each rulingtoward which g11 attracts the trajectory:gn11(q0)! fLa201 \Lb20i ;La202 \Lb20jg; fi; jg = f1; 2g:

As a result, the global behavior of each g11 dependson its dynamics o� Q. Should the quadric attractor repel? If Q were attracting, then the 400 inter-sections of 20-lines would attract in all directions.One way to arrange for this is to force these pointsto be critical in the o�-quadric direction. However,this situation does not conform to the model of reli-able dynamics. The attractor would not be a singleG120 orbit of points, though it might be the set ofintersections of a single line-orbit. I have not ex-plored the case of a repelling quadric. Such a sit-uation might arise if a point on Q were attractingin the two quadric directions but repelling in theo�-quadric direction.Interestingly, the quadric resists criticality. Com-putation reveals that no member of g11 is critical onall of Q. Is there a geometric reason for this? Thenext example reveals that this is not a universal traitof quadric-preserving maps.
An octahedral map. Since the orbit of �ve planes L25khas fundamental geometric signi�cance, a map thatpreserves these sets might exhibit interesting dy-namics. Arranging for this spends four of the twentyparameters of the family f11.The intersection of a 5-plane L25kand Q is a conicQ1k with S4 symmetry and, thereby, octahedral struc-ture. One of the special equivariants for the octa-hedral action on C P 1 is a 5-map that attracts al-most every point to the eight face-centers|verticesof the dual cube. Geometrically, the map stretcheseach face F of the cube symmetrically over the �vefaces in the complement of the face antipodal toF. As a face stretches, it makes a half-turn so thatthe vertices land on their antipodes. This makeseach vertex critical and period-2; locally, the mapis squaring. Since these are the only critical points,their basins have full measure. (See [Doyle and Mc-Mullen 1989, p. 156] and Figure 4 on page 20.) Un-der G120, antipodal pairs of octahedral face-centersare the 20-points q20ij1 , q20ij2 .The idea is to look for a reliable map with the 20-points as its only attractor. In degree �ve there aretoo few parameters for the purpose. However, the11-maps provide enough freedom to arrange for ele-gant geometry. The goal demands that the desiredmap h11 preserve the 5-conics Q1k and then decay tothe octahedral 5-map there. One way to realize this
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is to self-map the quadric Q. This takes six of theremaining 16 parameters the expenditure of one ofwhich assures that the 20-points do not blow up.Intriguingly, when any member g11 of the result-ing 10-parameter family restricts to Q, it decays intoa 5-map g11jQ = � 12F 23 �2F3f2 � F4f1�jQ :This decadence occurs unexpectedly, since most oc-tahedral 11-maps exchange pairs of face-centers andare nondegenerate. When restricted to an \a�ne"part of the quadricQ \ fu1 6= 0g;the maps have the simple formg11jQ\fu1 6=0g : (x; y) �!� x2 + 3y � 2xy32x+ 3x2y2 � y3 ; 3x2 + 2y + x3y21 + 2x3y � 3xy2�:Is there a geometric description of the restrictedmap?Every member of the g11 family preserves the S3-symmetric conic Q \ L210ijeach of which contains a pair of 20-points q20ij1 , q20ij2 .In coordinates where these points are 0 and 1,g11jQ\L210ij : z �! 7p5z3 + 5iz2 (5iz3 + 7p5) :Of course, the period-2 points 0 and 1 are criti-cal. By experiment, the remaining six critical pointsbelong to their superattracting basin. Such circum-stances force almost every point on a conic to belongto the basin.Octahedral 11-maps generically exchange antipo-dal pairs of vertices. Such a pair corresponds to the30-points q30i;jk1 , q30i;jk2 . As a degenerate member ofthe family, the 5-map �xes these points. These con-ditions require each g11 to blow up the 30-points.Also blowing up are the 24-points.Now the issue is behavior o� Q. Since the desiredattractor lies on Q and the dynamics there appearsto be reliable, a map for which the quadric is itselfattracting comes to mind. Because octahedral face-centers are superattracting on the respective con-ics, each g11 is critical at the associated 20-points.The maps are also critical at the blown-up points.Arranging for critical behavior at the three quadric

orbits consisting of the nonoctahedral 20-points, 30-points and the octahedral 60-points costs three pa-rameters. The result is a seven parameter family of11-maps for which the entire quadric is critical andeach octahedral 20-point is superattracting in threedirections.Each of the 10-lines L110ij contains a pair of an-tipodal 20-points. A map that preserves these lines,attracts almost every point on the line to the 20-points, and is critical in the directions o� the linewould act as a \superattracting pipe" to the quadric.Expenditure of four of the remaining seven parame-ters purchases a map with these properties. Indeed,when restricted to each L110ij , the map is
z �! � 1z2with the pair of 20-points at 0 and 1.The �nal three parameters allow for a map h11with a nonattracting pipe to Q at the 10-linesM110ijk :h11 = ��21F 52 + 56F 22 F 23 + 66F 32 F4 + 48F 23 F4� 48F2F 24 � 96F2F3F5�f1� 24�4F 33 � 9F2F3F4 + 3F 22 F5�f2+ 12�5F 42 + 8F2F 23 � 10F 22 F4�f3� 96F 22 F3f4:Such a line contains the pairs of 20-points q20ijk1 , q20ijk2 .In coordinates where these points are 0 and 1, therestriction of h11 to M110ijk is
z �! � 1z2 :On Q these 20-points are repelling. Indeed, theybelong to the conicsQ \ L210ij ; Q \ L210ik ; Q \ L210jkon which the basins of the pair of 20-points q20ij� ,q20ik� , q20jk� have full measure. Experiment revealsthat nearby points belong to the basins of the other20-point orbit.Because of its geometry, h11 preserves the variousC P 1 intersections of 5-planes and 10-planes. Thetwo such lines not yet considered are the 15-linesL115ij;kl and the 30-lines L130i;jk . In \symmetrical"
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coordinates where the intersections with Q are at 0and 1, the restricted maps areh11jL115ij;kl : z �! 19z2 � 9z2(9z2 � 19) ;h11jL130i;jk : z �! � 11z2 + 9z2(9z2 + 11) :In the former case, the map has attracting �xedpoints at the pair of 10-points p10ij2 , p10kl2 and a period-2 superattractor at q30ij;kl1 , q30ij;kl2 . Overall, these aresaddle points where the map repels o� the line. Asimilar state of a�airs occurs on the 30-lines. Here,the pair of attracting �xed points is p20i;jkl, p20i;jkmand the period-2 superattractor is at q60i;jk1 , q60i;jk2 .Once again, at these points h11 is repelling o� theline. Dynamical experiments on the respective linesshow that these points attract all six critical points.Thereby, the associated basins have full measure onthe lines. Basin portraits for these restrictions ap-pear in Figure 5 on page 20. Since almost everypoint on these lines is in the basin of an overallsaddle point, the lines themselves behave as saddlesand, thereby, are measure-zero pieces of the Juliaset Jh11 .Since the pair of 15-lines L115ij;kl and M115ij;kl arepointwise �xed by the involutionxi  ! xj ; xk  ! xl;a G120-equivariant that does not smash down L210ijpermutes these lines as sets.
Fact 3.4. Under h11, M115ij;kl maps to itself . With thepair of 30-points q30m;ij1 , q30m;ij2 at 0 and 1,h11jM115ij;kl : z �! z(z2 + 6)6z2 + 1 :This map has noncritical, attracting �xed points atp10ij1 , p10kl1 . Since the four critical points belong tothe associated basins, the dynamics on the line isreliable. Also passing through the attracting 10-point p10ij1 are three 10-lines L110kl (k; l 6= i; j) so that,at this point, h11 repels away from the line. Hence,this line also lies in the Julia set.The special geometry of h11 forces a number ofpoints to blow up:p5i ; p10ij1 ; p10ij2 ; p15i;jk; p20i;jkl; p30ij;kl; q30i;jk� ; q24ijkl:Experimental evidence suggests that neighborhoodsof these blown-up points are �lled by basins of the

octahedral 20-points. Indeed, the C P 2 of directionsthrough a 10-point p10ij1 maps to the point itself. Ly-ing at the intersection of three 10-lines L110kl (k; l 6=i; j), such a location might be called super-repelling.In contrast, the directions through a 30-point p30ij;klblow up onto the superattracting 10-line L110ij whose\basin" is that of the 20-points q20ij� .Since the coe�cients of h11 are real, the map alsopreserves R|the S5-symmetric R P 3 |as well asthe R P 2 intersections of R with L25i and L210ij . Inthe former case there are four R P 1 intersections ofthe R P 2 with the 10-lines L110ij while in the latterthere is a single such intersection. The stabilizer ofthe respective 5-plane or 10-plane �xes its residentR P 1s. Thus, each such R P 1 is an \equatorial slice"of the associated C P 1 . Being equivalent to the mapz �! � 1z2on the unit circle fjzj = 1g, h11 acts chaoticallywhen restricted to such a slice. Hence, each R P 1is a chaotic attractor on the respective R P 2 . Abasin portrait for the 5-plane reveals no basins otherthan those of the four 10-lines (see Figure 6, left, onpage 21). The R P 2 dynamics on the 10-plane shows,in addition to the chaotic line-attractor, three ad-ditional basins at the 30-points p30ij;kl (see Figure 6,right). A 30-point belongs to the 10-line L110kl , whichintersects the 10-plane L210ij transversely. Thus, in aneighborhood of the 30-point, but o� the 10-plane,there is only the \pipe-basin" of the 20-points q20ij� .Hence, the basins on the 10-plane are 2-dimensional.
Conjecture 3.5. The 20-point orbit is the attractor forh11 and the corresponding basins have full measurein C P 3 .Iteration experiments on R reveal attraction onlyto the ten chaotically attracting R P 1 intersectionsR \ L110ij .
Conjecture 3.6. The S5-invariant R P 3 is nonattract-ing (repelling?) and so belongs to h11's Julia set .
3E. What to Look For in an AttractorA pair of 20-points q20ij1 , q20ij2 associates canonicallywith an orbit of ten lines. However, there is no suchcorrespondence between a pair of 20-points and anorbit of size �ve; the 20-points do not decomposeinto �ve sets of four S4 orbits. An association of
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this kind makes for a natural solution to the quintic.What could serve the purpose better than a mapwhose attractor is the 5-point orbit?
3F. A Special Map in Degree SixIn the con�guration of 10-lines M110ijk each 5-pointlies at the intersection of four lines (see Section 2E).Moreover, these are the only intersections of 10-lines. To take advantage of this structure, a mapcould have superattracting pipes along the 10-linesand basins of attraction at the 5-points.The family of 6-maps has (homogeneous) dimen-sion six. Obtaining maps for which the 10-lines arecritical in the \o�-line" directions uses four parame-ters. For the remaining two, we get a map f6 whoserestriction to a 10-line M1ijk isz �! z4in coordinates where the 5-points p5l , p5m onM1ijk are0 and 1. In hyperplane coordinates,'6 = 2(9�2�3�10�5)'1�2(�22�5�4)'2+20�3'3+15�2'4= �2u61�4u1u52�74u21u32u3�46u31u2u23�14u22u43�2u1u53�38u31u22u4�44u41u3u4�50u32u23u4�122u1u2u33u4�14u42u24�152u1u22u3u24�u1u54�68u21u23u24�72u21u2u34�22u33u34�29u2u3u44;�2u51u2+2u62�44u1u42u3�68u21u22u23�22u31u33�u2u53�46u21u32u4�122u31u2u3u4�72u22u33u4�29u1u43u4�14u41u24�38u32u3u24�152u1u2u23u24�74u1u22u34�50u21u3u34�14u23u44�4u2u54;�14u41u22�4u51u3�u52u3�72u1u32u23�38u21u2u33+2u63�29u1u42u4�152u21u22u3u4�74u31u23u4�44u2u43u4�50u31u2u24�68u22u23u24�46u1u33u24�22u32u34�122u1u2u3u34�14u21u44�2u3u54;�22u31u32�29u41u2u3�14u42u23�50u1u22u33�14u21u43�u51u4�2u52u4�122u1u32u3u4�152u21u2u23u4�4u53u4�68u21u22u24�72u31u3u24�74u2u33u24�46u22u3u34�38u1u23u34�44u1u2u44+2u64�:By construction, f6 self-maps each S3-symmetric10-plane L210ij . The 10-point p10ij2 and 5-points p5k(k 6= i; j) form S3 orbits on L210ij of sizes one and

three. Moreover, f6 preserves R, the S5-symmetricR P 3 . We can get a picture of the map's restricteddynamics by plotting basins of attraction on theR P 2 intersection L210ij \ R:(See Figures 7 and 8 on page 22.) The plot showsattraction to the 5-points and the 10-point. How-ever, the 10-point lies on the \equator" of anM110klm(k; l;m 6= i; j) where f6 repels in the o�-plane direc-tion. Thus, the 2-dimensional basin of a 10-pointis a measure-zero part of Jf6 . No other attractingsets appear. Moreover, regions of positive measurethat do not belong to one of these four \restrictedbasins" are not evident. The plot is consistent withthe claim that the only fully 3-dimensional basinsare those of the 5-points.A 15-line L115ij;kl contains one 5-point p5m, one 15-point p15m;ij (m 6= k; l), and two 10-points p10ij2 , p10kl2 .In coordinates where the 5-point is 0, the 15-pointis 1, and the 10-points are �1 the map restricts to
z �! 48z5�3� z2 + 35z4 + 17z6 :The critical points of the restricted map are

0; �1; �s9� 4p2117 :
with 0;�1 �xed. Experiment reveals that the fournon�xed critical points belong to the basins of thethree superattracting points. Hence, these basinshave full measure on the 15-line (see Figure 9 onpage 23). As a member of three 15-lines L115ij;kl a10-point p10ij2 superattracts in these directions. How-ever, these three lines lie in the 10-plane L210ij sothat, as seen above, f6 is completely superattract-ing in the plane at p10ij2 .Another distinction for f6 is its action on a 15-lineM115ij;kl which, by equivariance, must map either toitself or L115ij;kl .
Fact 3.7. Under f6, M115ij;kl maps to L115ij;kl . E�ec-tively , this creates a second orbit of superattractingpipes to the 5-points .This is what led me to 6-maps, each of which sendthe 10-point p10ij1 to the 10-point p10ij2 .
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Finally, noting that '6 has real coe�cients, itmust preserve the R P 3 whose points have real u co-ordinates. This is not the S5-symmetric R. Ratherit seems to be associated with the S4 stabilizer of p51which is [1; 1; 1; 1] in the u space. This R P 3 inter-sects the 10-planes L21025 and L21034 in an R P 2 withZ 2 � Z 2 symmetry. In addition to p51 this R P 2 con-tains the 10-points p10251 , p10252 , p10342 as well as the R P 1through p10251 and p10252 . Since this line is an equatorialslice throughM110125, f6 attracts chaotically along theline. (See Figure 10 on page 23 for a basin portrait.)Graphical and experimental evidence supports theclaim of reliability for f6.
Conjecture 3.8. The attractor for f6 is the 5-pointorbit the basins of which �ll up C P 3 in measure.Comment : Proofs of Conjectures 3.5 and 3.8 arelikely to be di�cult. Partly, this is due to an un-derdeveloped theory of complex dynamics in severaldimensions. Also, higher dimensional dynamics dif-fers signi�cantly from that in one-dimension. Forinstance, the julia set of a map in more than one di-mension|the set on which the iterates do not forma normal family| always intersects the critical set.(See [Forn�ss and Sibony 1994] and [Forn�ss andSibony 1995].) The hope is that the algebraic andgeometric features of these special G120 equivariantswill provide a means of illumination.
4. SOLVING THE QUINTICTo compute a root of a polynomial, one must over-come the symmetry present. For a general equationof degree n the obstacle is Sn. Klein described ameans to this end: given values for an \indepen-dent" set of Sn-invariant homogeneous polynomialsa1 = G1(x); : : : ; am = Gm(x);�nd the Sn orbits of solutions x to these equations[Klein 1956, pp. 69 �.]. This task of inverting theGk is called the form problem on Sn. It also has arational manifestation: form�1 given values, invertm� 1 invariant rational functions of degree zero.An Sn equivariant with reliable dynamics breaksthe obstructing symmetry. In e�ect, this provides amechanism for solving the form problem and, hence,the nth degree equation. What follows is one way touse G120-symmetry in multiple settings to assemblea procedure that solves almost any quintic.

4A. ParametersThe G120 rational form problem is to solveK1 = �4(u)�2(u)2 ; K2 = �3(u)2�2(u)3 ; K3 = �5(u)�2(u)�3(u) :
(4–1)As functions, the Ki de�ne the G120 quotient map[K1;K2;K3; 1] = [�2�3�4; �33; �22�5; �32�3]on C P 3 n f�2 = �3 = 0g. The generic �ber overpoints in C P 3 is a G120 orbit given byf�4 = K1�22g \ f�23 = K2�32g \ f�5 = K3�2�3g:Exceptional locations are[0; 1; 0; 0] and [0; 0; 1; 0];where the respective �bers are the quadric and cubicsurfaces f�2 = 0g and f�3 = 0g.Between quintic equations and G120 actions theparameters Ki forge a link. The connection con-sists in K-parametrizations of each regime. From aparametrized family of G120 actions, we can extractparametrized families of S5 invariants and equivari-ant 6-maps. In this way, a choice of parameter Kproduces a quintic RK as well as a system of invari-ants �2K (w), . . . , �5K (w), and a 6-map 'K(w)|aconjugate of '6(u)|on a parametrized w-space.

4B. A Family of S5 QuinticsLet Gv be a G120 that acts on a v-coordinatized C P 3v .This will be a parameter space|the coordinate vmerely stands in for u. The linear polynomialsXk(x) = �4xk +Xi 6=k xiform an orbit of size �ve. In hyperplane coordinates,the Xk areL1(v) = �p5(v1 + v2 + v3 + v4);L2(v) = �p5!5 (!35 v1 + !25 v2 + !5v3 + v4);L3(v) = �p5!5 (!25 v1 + v2 + !35 v3 + !5v4);L4(v) = �p5!5 (!5v1 + !35 v2 + v3 + !25 v4);L5(v) = �p5!5 (v1 + !5v2 + !25 v3 + !35 v4):The rational functionsSk(v) = �2(v)Lk(v)�3(v)
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also give a 5-orbit. Taking the Sk as roots of a poly-nomialRv(s) = 5Yk=1�s� Sk(v)� = 5Xk=0 Ck(v)s5�kyields a family of quintics whose members gener-ically have S5 symmetry. Since Gv permutes theSk(v), each coe�cient Ck(v) is Gv-invariant, henceexpressible in terms of the basic forms �k(v) and,ultimately, in terms of the Ki. Of course, C0(v) = 1.Since there is no degree-1 G120 invariant, C1(v) = 0.Direct calculation determines the remaining coe�-cients: C2 = �125�322�23 = � 1252K2 ;C3 = 625p5�323�23 = 625p53K2 ;
C4 = 15625��62 � 2�42�4�8�43= 15625�1� 2K1�8K42 ;
C5 = �15625p5�5�62�3 � 6�52�5�6�53= �15625p5(6K3 � 5)6K22 :Members of the 3-parameter family of quintic G120resolventsRK(s) = s5 � 1252K2 s3 + 625p53K2 s2

�15625 (�1 + 2K1)8K22 s+ 15625p5 (�5 + 6K3)6K22are particularly well-suited for an iterative solutionthat employs '6. For selected values of the Ki, asolution to the resulting form problem yields a rootof RK . Use of G120 symmetry will provide a means of�nding such a solution without explicitly invertingthe Ki equations (4{1).
4C. Reduction of the General Quintic to a G120 ResolventBy means of a well-known linear Tschirnhaus trans-formation the general quintic becomes the standard4-parameter resolventq(y) = y5 + b2y3 + b3y2 + b4y + b5:

Application of another linear Tschirnhaus trans-formation s �! y�converts the 3-parameter family RK(s) into a G120resolvent�K;�(y) = �5RK�y��= y5 + �2C2y3 + �3C3y2 + �4C4y + �5C5in the four parameters K1;K2;K3, and the auxiliary�.The functions bk = �kCkrelate the coe�cients of q and �K;�. The bk invertto K1 = b22 � 2b42b22 ;
K3 = 5�b2b3 � b5�6b2 b3 ;

K2 = �9b238b32 ;
� = �3b310p5b2 :Thus, almost any quintic descends to a member ofRK . The reduction fails when�2a21 + 5a2 = 5b2 = 0or 4a31 � 15a1a2 + 25a3 = 25b3 = 0:A solution to the special resolvent RK then ascendsto a solution to the general quintic.

4D. A Family of S5 ActionsWith the basic Gv-maps, construct the parametrizedchange of coordinates
u = �vw = 4Xi=1��6�i(v)'i(v)�wi:A matrix form results from taking the 'k(v) as col-umn vectors:0BB@u1u2u3u4

1CCA=0@�5'1 ... �4'2 ... �3'3 ... �2'41A
0BB@w1w2w3w4

1CCA
(where we write �5'1 for �5(v)'1(v) and so on).For a choice of parameter v,�v : C P 3w �! C P 3u
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is linear in w and gives rise to a parametrized familyof G120 groups Gvw = ��1v Gu�v:The setup here is as follows.� Gu is a version of G120 that acts on a referencespace C P 3u .� Gv is a version of G120 that acts on a parameterspace C P 3v .� Gu and Gv have identical expressions in their re-spective coordinates.� Gvw is a version of G120 that acts on a parametrizedspace C P 3w .� The iteration that solves quintics in RK takesplace in C P 3w .Each Gvw has its system of invariants and equiv-ariants. From this point of view, we can see, inthe resolvents Rv and Gvw equivariants, a connectionbetween quintics and dynamical systems. Further-more, each Gvw invariant and equivariant is express-ible in the Ki.The �rst thing to notice is that, by construction,�vw possesses an equivariance property:�Avw = A�vw for A 2 Gv;Gu:The determinant of �v will enter into upcoming cal-culations and so, demands some attention. Sincej�Avj = jAj j�vj; (4–2)j�vj is invariant under the A5 subgroup G60 of Gvbut only relatively invariant under the full S5 groupG120. The even transformations have determinant 1while the odd elements have determinant �1. Fur-thermore,j�vj = �2�3�4�5 ��'1 ... '2 ... '3 ... '4��= �2�3�4�5	10where 	10 is a scalar multiple of the product of theten linear forms associated with the ten planes ofre
ection that generate Gv (and where again the no-tation leaves the dependence on v implicit). Re-
ection group theory tells us that this is the onlyform in degree ten that is invariant under G60 butnot G120. From (4{2), the degree-48 square of j�vj isG120-invariant. Letj�vj2 = �242 (v)tK

determine its K-expression. The explicit form of tKappears in Appendix A.
4E. A Family of S5 InvariantsThe equivariance in v of �vw implies that �2(�vw)is Gv-invariant. Thus, each w coe�cient of �2(�vw)inherits the same invariance. Since
degv �2(�vw) = degu�2(u) � degv �vw = 2 � 6 = 12;
the rational function�2(u)�2(v)6 = �2(�vw)�2(v)6is of degree zero in v and therefore expressible in theKi. Let �2(v)6�2K (w) = �2(u) (4–3)

de�ne the basic degree-2 Gvw invariant �2K (w). Solv-ing a system of linear equations whose dimensionis that of the degree-12 Gv invariants yields an ex-plicit expression in the Ki for each w-coe�cient of�2(�vw). Similar considerations apply in degree 3,where �2(v)9�3K (w) = �3(u): (4–4)

The results appear in Appendix A.By Fact 2.2, the degree-4 and degree-5 invariantsderive from those in degrees two and three. First ofall, the chain rule determines transformation formu-las for the hessian and bordered hessian.
Proposition 4.1. For y = Ax,

Hx(F (y))=ATHy(F (y))A;Bx(F (y); G(y))=�AT 00 1�By(F (y); G(y))�A 00 1�;where the subscript indicates the variable of di�er-entiation. Thus ,��Hx(F (y))�� = jAj2��Hy(F (y))��;��Bx(F (y); G(y))�� = jAj2��By(F (y); G(y))��:
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Applied to the parametrized change of variable w =��1v u, G4(u) = jHu(�3(u))j= ��Hu(�2(v)9�3K (w))��= (�2(v)9)4j�vj2 ��Hw(�3K (w))��= �2(v)12tK ��Hw(�3K (w))��= �2(v)12G4K (w)andG5(u) = jBu(�3(u);�2(u))j= ��Bu(�2(v)9�3K (w);�2(v)6�2K (w))��= (�2(v)9)3(�2(v)6)2j�vj2 ��Bw(�3K (w);�2K (w))��= �2(v)15tK ��Bw(�3K (w);�2K (w))��= �2(v)15G5K (w):We use here the obvious de�nitionsG4K (w) = ��Hw(�3K (w))��tK ;
G5K (w) = ��Bw(�3K (w);�2K (w))��tK :With natural de�nitions for �4K (w) and �5K (w),�4(u) = 1324��2(u)2 � 5G4(u)�= 1324��2(v)12�2K (w)2 � 5�2(v)12G4K (w)�= �2(v)12�4K (w)and�5(u) = 1864�720�2(u)�3(u) +G5(u)�= 1864�720�2(v)15�2K (w)�3K (w)+ �2(v)15G5K (w)�= �2(v)15�5K (w):

4F. A Family of S5 Equivariant 6-MapsEmerging from each Gvw action is a version��1v '6(�vw)of '6(u). Being Gv-invariant, these maps also admitparametrization by K. Thereby, each quintic RKenters into association with a dynamical system 'Kon C P 3w .

The reversed identity R and gradient rr = Rrappeared in the context of a change from �ve x coor-dinates to four u coordinates. In the present setting,a reversed transpose arises.
Definition. The repose Ar of an n�n matrix A is itsre
ection through the reversed diagonal |the en-tries whose subscripts sum to n+ 1. Alternatively,Ar = RAT R:
Proposition 4.2. For a change of coordinates u = Awand a polynomial �(u) = ~�(w), the reversed gradi-ent map transforms byrru�(u) = Arrrw ~�(w):
Proof. Noting that R2 = I,rru�(u) = Rru�(u) = RATrw ~�(w)= RAT RRrw ~�(w) = Arrrw ~�(w): �For the generating G120 maps,'l(u) = 5l+1rru�2(v)3(l+1)�l+1K (w)= 5l+1�2(v)3(l+1) (��1v )rrrw�l+1K (w)= 5l+1�2(v)3(l+1)�v ��1v (��1v )rrrw�l+1K (w)= 5l+1�v�2(v)3(l+1) (� rv �v)�1rrw�l+1K (w):Thus,��1v 'l(�vw) = 5l+1�2(v)3(l+1) (� rv �v)�1rrw�l+1K (w):Using the description on the left-hand side, a simplecalculation reveals this map to be invariant in v sothat the matrix � rv �v has entries that are degree-12Gv invariants. Hence, the matrix product has a K-expression:� rv �v = 5l+1�2(v)6TK or (� rv �v)�1 = 5l+1 T�1K�2(v)6 :(See sidebar on page 19 for the explicit form of TK .)Using this to express the transformation of basicequivariants yields'l(u) = 5l+1�2(v)3(l+1)�v T�1K�2(v)6rrw�l+1K (w)= 5l+1�2(v)3(l�1)�v'lK (w)where 'lK (w) = T�1K rrw�l+1K (w):
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Finally, we can identify a K-parametrized 6-map'K(w) that is conjugate to '6(u). The map's ex-pression in basic terms appears after substitutioninto the formula found in Section 3F. (See Ap-pendix A.)
4G. Root SelectionBeing conjugate to '6(u) each 'K(w) shares the for-mer's conjectured reliable dynamics. Accordingly,the attractor for each choice of Ki is the 5-pointorbit in the corresponding C P 3w so that for almostevery w0 2 C P 3w ,'nK(w0) �! ��1v p5l for some 5-point p5l 2 C P 3u :To solve the resolvent RK , the output of the iter-ation must link with the roots of RK . With this,we see that solving RK amounts to inverting �v|the form problem in yet another guise. With theassistance of a G120 tool, this is e�ectively what thedynamics of 'K accomplishes. (This clever device isdue to McMullen.)To manufacture the root-selecting tool, we beginwith an orbit of quadratic S4-invariantsX2k(x) = �4x2k +Xi 6=k x2i :These form a G120 orbit of size �ve. Their hyper-plane expressions areQ1(u) = �u21 � 2u1u2 � u22� 2u1u3 � u23 � 2u2u4 � 2u3u4 � u24;Q2(u) = �!35u21 � 2!25u1u2 � !5u22 � 2!5u1u3� !45u23 � 2!45u2u4 � 2!35u3u4 � !25u24;Q3(u) = �!5u21 � 2!45u1u2 � !25u22 � 2!25u1u3� !35u23 � 2!35u2u4 � 2!5u3u4 � !45u24;Q4(u) = �!45u21 � 2!5u1u2 � !35u22 � 2!35u1u3� !25u23 � 2!25u2u4 � 2!45u3u4 � !5u24;Q5(u) = �!25u21 � 2!35u1u2 � !45u22 � 2!45u1u3� !5u23 � 2!5u2u4 � 2!25u3u4 � !35u24:Furthermore, each of the forms�k(u) = 325Lk(u)2 �Qk(u); for k = 1; : : : ; 5;vanishes at the 5-points p5l with l 6= k but not at p5k.

Now, to draw the roots of the quintics RK(s) intothe game, consider the rational functionJv(w) = � 5Xk=1 �k(�vw)�2(�vw) �2(v)Lk(v)�3(v)= � 5Xk=1 �k(�vw)�2(�vw) Sk(v);where � is a constant to be determined. Since thev-degree of the numerator and denominator is 15 =2 � 6 + 3 while the w-degree is 2, the function isrationally degree zero in both variables. At a 5-point��1v p5l in C P 3w four of the �ve terms in Jv vanish; thisleaves � �l(p5l )�2(p5l ) Sl(v):Setting � = �2(p51)�1(p51) = � � � = �2(p55)�5(p55) = 115\selects" the root Sl(v) of RK(s). Since the iterative\output" of 'K(w) is a single 5-point in C P 3w , thedynamics produces one root.The root-selector Jv(w) has invariance propertiesthat allow it to exhibit a useful form. Let�v(w) = 5Xk=1�k(�vw)Lk(v):Since Gv permutes its terms, �v is invariant underthe action and hence, expressible in K:�v(w) = �2(v)5�3(v)�K(w):(The explicit form of �K appears in Appendix A.)Finally, application of (4{3) yieldsJv(w) = �2(v)�v(w)15�3(v)�2(�vw) ;JK(w) = �K(w)15�2K (w) :
4H. The Procedure Summarized

1. Select a general 5-parameter quintic p(x).
2. Tschirnhaus transform p(x) into a memberRK(s)of the 3-parameter family of G120 quintics| thisdetermines values for K1;K2;K3 as well as theauxiliary parameter �.
3. For the selected K values compute the invari-ants �iK (w) (i = 2; 3; 4; 5), the 6-map 'K(w),the form �K(w), and the root-selector JK(w). (In
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fact, a rather lengthy once-and-for-all expressionfor 'K(w) is easy to compute [Crass 1999a]. Sucha formula renders calculations of �2K , �3K , and�4K super
uous.)
4. From an arbitrary initial point w0 iterate 'K un-til convergence: 'nK(w0) �! w1:Conjecturally, the output w1 is a 5-point in C P 3w .
5. Compute a root S = JK(w1) of RK .
6. Transform S into a root of p(x).See [Crass 1999a] for Mathematica data �les and anotebook that implement the iterative solution tothe quintic.
APPENDIX A. PARAMETRIZED FORMSEach case discussed below requires Gv invariants tobe expressed in terms of the basic invariants �i(v).This amounts to solving a system of linear equationswhose dimension is that of the respective space of in-variants. Direct substitution into the basic-invariantexpressions then leads to the descriptions in K.
Basic InvariantsEach w-coe�cient of �l(�vw) is a degree-6l invariantin v. In terms of K, the forms in degrees two andthree are:�2K (w) = �2(�vw)�2(v)6 =548 �240K2K23w21+480K1K2K3w1w2�48K21w22+240K31w22+480K1K2K3w1w3�96K1K2w2w3+480K1K2K3w2w3�30K2w23+180K1K2w23+32K22w23+480K2K23w1w4�60K1w2w4+264K21w2w4+160K1K2w2w4�140K2w3w4+184K1K2w3w4+336K2K3w3w4�15w24+60K1w24+12K21w24+128K2K3w24��3K (w) = �3(�vw)�2(v)9 =51728 ��43200K22K33w31+25920K1K2K23w21w2�129600K21K2K23w21w2+51840K21K2K3w1w22�129600K21K2K23w1w22+1944K31w32�6480K41w32�14400K31K2w32+25920K22K23w21w3�129600K22K33w21w3+32400K1K2K3w1w2w3

�142560K21K2K3w1w2w3�34560K1K22K3w1w2w3+27432K21K2w22w3�49680K31K2w22w3�38880K21K2K3w22w3+37800K22K3w1w23�23760K1K22K3w1w23�90720K22K23w1w23+4860K1K2w2w23�12960K21K2w2w23�32400K31K2w2w23�1728K1K22w2w23�17280K1K22K3w2w23+4860K22w33+3240K1K22w33+384K32w33�9720K22K3w33�19440K1K22K3w33+16200K2K23w21w4�71280K1K2K23w21w4�43200K22K23w21w4+75600K1K2K3w1w2w4�99360K21K2K3w1w2w4�129600K1K2K23w1w2w4+1620K21w22w4�3888K31w22w4�6480K41w22w4+17280K21K2w22w4�69120K21K2K3w22w4+16200K2K3w1w3w4�64800K1K2K3w1w3w4�12960K21K2K3w1w3w4�86400K22K23w1w3w4+27000K1K2w2w3w4�48816K12K2w2w3w4�11520K1K22w2w3w4�22032K1K2K3w2w3w4�64800K21K2K3w2w3w4+2025K2w23w4�3240K1K2w23w4�21060K21K2w23w4+2880K22w23w4�7488K1K22w23w4�6912K22K3w23w4�25920K22K23w23w4+24300K2K3w1w24�48600K1K2K3w1w24�14400K22K3w1w24�29160K2K23w1w24�6480K1K2K23w1w24+405K1w2w24�5508K31w2w24+18000K1K2w2w24�18720K21K2w2w24�29376K1K2K3w2w24�25920K1K2K23w2w24+5805K2w3w24�8640K1K2w3w24�3348K21K2w3w24�34992K1K2K3w3w24�17856K22K3w3w24+405K1w34�1620K21w34+324K31w34+3600K2w34�7200K1K2w34�1600K22w34�3456K1K2K3w34�10368K2K23w34�:
Change of CoordinatesThe computation of the square of the determinantj�vj amounts to expressing the degree-20 invariant	10(v)2 in terms of the basic forms:
tK = j�vj2�2(v)24= ��2(v)�3(v)�4(v)�5(v)	10(v)�2�2(v)24
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= �3(v)4�2(v)6 �4(v)2�2(v)4 �5(v)2�2(v)2�3(v)2 	10(v)2�2(v)10= �3125K21K22K2313824 ��675+9450K1�51300K21+135000K31�172800K41+86400K51+23700K2�147600K1K2+111600K21K2+436800K31K2�271800K22+424800K1K22+7200K21K22 +25600K32�79200K2K3+535680K1K2K3�777600K21K2K3�576000K31K2K3+1552320K22K3�1238400K1K22K3�30720K32K3+68256K2K23�475200K1K2K23+864000K21K2K23�3628800K22K23+864000K1K22K23+4032000K22K33�1728000K22K43�:Each entry of � rv �v is a degree-12 invariant in v.The matrix product's expression inK is given at thebottom of the page; recall thatTK = � rv �v�2(v)6 :The inverse of TK results from an application ofCramer's rule: T�1K = T cofKjTK jwhere T cofK is the matrix of cofactors. Note thattK = jTK j.
Root-SelectorThe w-coe�cients of �v(w) are v-invariants of de-gree 13. Expressed in K,�K(w) = �v(w)�2(v)5�3(v) =�125p536 �720K2K23w21�288K1K3w1w2+1440K21K3w1w2�288K21w22+720K21K3w22�288K2K3w1w3+1440K2K23w1w3�180K1w2w3+792K21w2w3+192K1K2w2w3�210K2w23+132K1K2w23+504K2K3w23�180K3w1w4

+792K1K3w1w4+480K2K3w1w4�420K1w2w4+552K21w2w4+720K1K3w2w4�90w3w4+360K1w3w4+72K21w3w4+480K2K3w3w4�135w24+270K1w24+80K2w24+162K3w24+36K1K3w24�:
The 6-MapsFrom the expression for '6(u) in basic invariantsand equivariants, a K-parametrized 6-map 'K(w)emerges (see remark on page 7 for the factors � 52 ,� 53 , � 54 , � 55 a�ecting the second equality):'6(u) = �152 (v)�v ��2(9�2K (w)�3K (w)� 10�5K (w))'1K (w)� 2(�22K (w)� 5�4K (w))'2K (w)+ 20�3K (w)'3K (w) + 15�2K (w)'4K (w)�= �152 (v)�vT�1K ���5(9�2K (w)�3K (w)� 10�5K (w))rrw�2K (w)+ 103 (�22K (w)� 5�4K (w))rrw�3K (w)� 25�3K(w)rrw�4K(w)�15�2K(w)rrw�5K(w)�= �152 (v)�v'K(w):
APPENDIX B. BASIN PORTRAITSThe plots that follow are productions of the programDynamics 2 [Nusse and Yorke 1998] running on aDell Dimension XPS with a Pentium II processor.Its BA process produced Figure 3 and the BAS rou-tine generated the remaining plots. Each proceduredivides the screen into a grid of cells and then col-ors each cell according to which attracting point itstrajectory approaches. If it �nds no such attractorafter 60 iterates, the cell is black. The BA algorithm�nds the attractor whereas BAS requires the user tospecify a candidate attracting set of points. The res-olution of each bitmap is approximately 720 � 720.Color versions of the images appear on this journal'sweb site.0BBBB@

240K2K23 2K1��15+66K1+40K2� 2K2��35+46K1+84K3� �15+60K1+12K21+128K2K3240K1K2K3 48K1K2��1+5K3� 2K2��15+90K1+16K2� 2K2��35+46K1+84K3�240K1K2K3 48K21 ��1+5K1� 48K1K2��1+5K3� 2K1��15+66K1+40K2�240K2K23 240K1K2K3 240K1K2K3 240K2K23
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The matrix product TK .
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FIGURE 3. Dynamics of a ruling-preserving 11-mapon the quadric's rulings.Figure 3 shows the dodecahedral 11-map. Eachof the ten pairs of antipodal dodecahedral vertices(seen inside the light-colored regions as tiny blackdots) is a period-2 superattractor. Their basins �llup C P 1 in measure. (Recall that points in the spaceof this plot correspond to lines on the quadric Q.)

FIGURE 4. Four basins of attraction for the octahe-dral 5-map.Figure 4 indicates the behavior of h11 restricted toan S4-symmetric conic Q1i . The 4 pairs of antipodalvertices of the cube are period-2 superattracting 20-points whose basins have full measure on the conic.Figure 5 shows the behavior of the octahedral maph11 on a 15-line and on a 30-line. In the former case,

FIGURE 5. Three basins of attraction for h11 restricted to a 15-line L115ij;kl (left) and to a 30-line L130i;jk (right).
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FIGURE 6. Chaotic attractors for h11 on an R P 2 with S4 symmetry (left) and with S3 symmetry (right).the critical points at 0 and1 are a pair of 30-pointson Q that h11 exchanges. A pair of �xed 10-pointsaccounts for the remaining two basins. At each ofthese attracting points, the map repels in at leastone direction away from the line. Although the linehas Z2 symmetry under G120, the plot displays thatof Z 2 � Z 2 . This is a manifestation of an additionalantiholomorphic symmetryx �! �xthat extends G120 by degree two.On the 30-line, the critical points at 0 and1 are apair of octahedral 60-points on Q that h11 exchanges.The remaining two basins belong to a pair of 20-points on R. At each of these attracting points, themap repels in at least one direction away from theline. Again, Z 2 � Z2 symmetry appears.In Figure 6 we see the restriction of h11 to anR P 2 with S4 symmetry and an R P 2 with S3 symme-try. Each case involves a chaotic attractor. In theformer, the attractor consists of the four R P 1 inter-sections of R, L25i , and the 10-lines L110ij . The sixintersections occur at 10-points p10kl1 , with k; l 6= i.(In the picture, two of these intersections occur onthe line at in�nity.) The pictured \lines" are theimages of small circles centered along the edges ofthe inner square. The graphical technique we have

used here speci�cally relies on the chaotic behaviorof h11 along each R P 1 .In the S3 plane, the attracting line is the R P 1intersection of R, L210ij and the 10-line L110ij at in-�nity|the light gray basin. The three \attracting"30-points|they are blowing up|are the vertices(1; 0);��12 ;�p32 �
of an equilateral triangle about (0; 0).The remaining images illustrate the dynamics ofthe quintic-solving 6-map f6. Figures 7 and 8 showthe restriction to the R P 2 determined byL210ij \ R:Since this plane is S3-symmetric, the a�ne coordi-nates here are chosen with the three 5-points at(1; 0);��12 ;�p32 �:Three of the superattracting pipes form a triangleon these points. Indeed, the image in Figure 7 (left)of the circle �x2 + y2 = 14	is nearly this triangle. The attractor at (0; 0) isthe 1-point orbit in the 10-plane|overall, the 10-point p10ij2 . In the direction away from the plane,f6 repels at this site along the superattracting pipe
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FIGURE 7. Left: Four basins of attraction for f6 restricted to an R P 2 . Right: Critical set of f6 restricted to anR P 2 .M110klm , with k; l;m 6= i; j. The three spokes atbasin boundaries are pieces of 15-lines L115ij;kl eachof which passes through a secondary basin that con-tains a preimage of the central 10-point. The regionbounded by the tiny rectangle in Figure 7 (left) is
magni�ed twice in succession to give the plots inFigure 8.Figure 7 (right) shows h11's critical set (minusthe three \doubly-critical" 10-lines) superimposedon the blurry basin portrait. The critical contour

FIGURE 8. Successive enlargements of Figure 7. The left panel shows a detail of the left cusp of the central basin,bounded in Figure 7 (left) by a small box; the small box in this image, in turn, is magni�ed on the right.
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FIGURE 9. Left: Three basins of attraction for f6 restricted to a 15-line L115ij;kl . Right: Enlargement of the boxedarea.is a Mathematica plot. Of course, the higher orderintersections occur at the 5-points. All but six crit-ical points appear to belong to the basin of either a5-point or the central 10-point p10ij2 . The six excep-tions lie on the 15-lines at basin boundaries. If this

FIGURE 10. Chaotic attractor for f6 on an R P 2 withZ2 � Z2 symmetry.

is so, then there is no other attracting site|pro-vided that a basin always contains critical points.In Figure 9 we see the map restricted to a 15-line. The coordinates of this image place the single5-point at 0 and the two �xed superattracting 10-points at �1. At the latter points, the map repelsin all directions o� the line.In Figure 10, the space is the R P 2 intersectionof an S4-invariant R P 3 and a 10-plane L210ij . TheR P 1 intersection of the R P 2 and the 10-line L110ij isfx = 0g. By plotting the trajectory of one of itsgeneric points, this line reveals itself as a chaoticattractor; the plot shows roughly 20; 000 iterates.The map attracts at (1; 0), (�1; 0)|the 5-point p5k(k 6= i; j) and 10-point p10ij2 respectively.
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