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We prove weak forms of Kato’s K1-congruences for elliptic
curves with complex multiplication, subject to two technical
hypotheses. We next use Magma to calculate the µ-invariant
measuring the discrepancy between the “motivic” and “auto-
morphic” p-adic L-functions. Via the two-variable main con-
jecture, one can then estimate growth in this µ-invariant using
arithmetic of the Z2

p-extension.

1. INTRODUCTION

Over the last decade or so, the generalization of K. Iwa-
sawa’s ideas to nonabelian extensions of number fields has
yielded a host of conjectures in mathematics. Thanks
to the recent efforts of Kato, Ritter-Weiss, Hara, and
Kakde, many of the “main conjectures” in this burgeon-
ing subject have been converted into theorems. A key
feature common to all the methods of these researchers
is the fact that Artin L-values occur as constant terms
in the q-expansion of Λ-adic Eisenstein series (therefore,
to find congruences among L-values, it is enough to find
congruences within the q-expansions).

It is natural to ask what happens if we replace Tate
motives by elliptic curves. In [Delbourgo and Ward 08],
we established certain K1-congruences between critical
values of the Hasse–Weil L-function over the finite lay-
ers in a false Tate extension. We were forced to assume
that the elliptic curve in question was semistable, due to
technical difficulties on the automorphic side. At that
time, we were on the lookout for new elliptic curves that
might yield to complementary methods; an appropriate
place to search for specimens is the theory of complex
multiplication.

Currently, there are two approaches to proving non-
abelian congruences: the Rankin–Selberg method and
Λ-adic Eisenstein series on unitary groups.

Thanasis Bouganis has made considerable progress
employing the second approach; he aims to realize the
Hasse–Weil L-value as the constant term in an Eisen-
stein series on GU(n, n) and hopes that the appropriate
q-expansions will yield congruences.
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In this article we will study the first approach, namely
the Rankin–Selberg method. While it appears (superfi-
cially) more tractable, one soon encounters an annoying
error term measuring the failure of the Petersson inner
product to coincide with the Néron period. This period
ratio grows as we climb the tower of totally real fields,
and one of the major tasks (in this paper) is to compute
the growth rate precisely.

Let E be an elliptic curve defined over Q admitting
complex multiplication by an order in the ring OK , where
K = Q

(√
−D

)
denotes an imaginary quadratic field.

Fix a prime number p 6= 2 that splits into (p) = p × p∗

inside OK , so that E possesses good ordinary reduction
over Qp. We also pick an auxiliary p-power-free integer
∆ > 1 that is coprime to p and to the conductor NE of
the elliptic curve.

If one considers the false Tate extension KFT =⋃
n≥1Q

(√
−D,µpn , p

n√
∆
)

, elementary Galois theory
tells us that

G∞ := Gal(KFT /K) ∼=
(
Z×p Zp
0 1

)

is a noncommutative p-adic Lie group of dimension 2.
Writing Kn = Q

(√
−D,µpn

)
, then ρn = IndKKn

(
χn
)

will
denote the unique symplectic representation of G∞ of
degree pn − pn−1. The irreducible Artin representations
of G∞ are all of the form ρn⊗ψ for some n ≥ 0 and some
finite-order character ψ : Gal

(
K(µp∞)/K

)
→ C×.

Finally, the Galois group of K(µp∞) over Kn will be
abbreviated by U (n).

Definition 1.1. The motivic p-adic L-function L(E, ρn)
of E/K twisted by ρn is the unique element of Zp[[U (n)]]⊗
Q satisfying

ψ
(
L(E, ρn)

)
=
ε(ρn ⊗ ψ)p

α
fψ
p

×
{

Euler factor at p
}

× L{p∆}
(
E/K, ρn ⊗ ψ−1, 1

)
(
Ω+
EΩ−E

)[Kn:K]

at all Dirichlet characters ψ : U (n) → Q
×
p of conduc-

tor fψ.

The existence itself follows from interpolation proper-
ties of the Katz–Eisenstein measure, which is discussed
in the next section. We simply point out that ε(ρn⊗ψ)p
is the p-part of the ε-factor suitably normalized as in
[Coates et al. 05] (the modification of the p-Euler factor
is also described later on).

To make further progress, we must now make two as-
sumptions.

Hypothesis 1.2. For each integer j ∈ {0, . . . , n},
[Stevens 89, Conjecture IV, Section 4] holds at all ρj⊗ψ-
twists of the fE-isotypic component in H1

(
X1(NE),Z

)
.

Hypothesis 1.3. Each analytic µ-invariant associated
to the (p − 1)-branches of the Mazur–Tate–Teitelbaum
p-adic L-function for E/K vanishes.

Hypothesis 1.2 implies p-integrality of the motivic
p-adic L-functions L(E, ρ0), L(E, ρ1), . . . ,L(E, ρn) from
Definition 1.1. For instance, if the ρj-twisted main con-
jectures hold for j ∈ {0, . . . , n}, then every L(E, ρj) is
the characteristic power series of a corresponding Selmer
group, in which case Hypothesis 1.2 follows.

The second condition is basically equivalent to
Norm0,1

(
L(E, ρ0)

)
exhibiting a trivial µ-invariant (note

that for all positive integers j ≤ n, the norm map induces
a homomorphism Normj,n : Zp[[U (j)]]→ Zp[[U (n)]] on the
completed group rings). This triviality condition can al-
ways be checked numerically by computing L-values; it
is true, for example, whenever the leading term of this
norm power series is a p-adic unit.

Theorem 1.4. Assume that Hypothesis 1.2 holds for a
given n ∈ N and also that Hypothesis 1.3 is true. Then
there is a family of congruences

L(E, ρn) ≡ Normn−1,n

(
L(E, ρn−1)

)
≡ · · ·

≡ Norm0,n

(
L(E, ρ0)

)
mod p.

In particular, if ωi
(
L(E, ρ0)

)
∈ Z×p for all i ∈

{0, . . . , p − 2}, then by Definition 1.1, clearly one has
L(E/K1, 1) 6= 0. Moreover, from Theorem 1.4 it follows
directly that

L(E/K, ρj , 1) 6= 0 at every 1 ≤ j ≤ n.

The observation that the analytic rank of these twists is
even can also be deduced from a nice formula in [Coates
et al. 10]. However, this nonvanishing result is a bit
stronger.

Let ϕ : Zp[[U (j−1)]]→ Zp[[U (j)]] be the homomorphism
induced by the p-power map on U (0) ∼= Z×p . Setting
aj = L(E, ρj), one may then define

cj :=
aj × ϕ ◦Norm0,j−1(a0)
Norm0,j(a0)× ϕ(aj−1)

,
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which belongs to the field of quotients Frac
(
Zp[[U (j)]]

)
.

Theorem 1.5. Under the same conditions as the previous
result,

n∏

j=1

Normj,n(cj)p
j ≡ 1 mod pn+1 · Zp

[[
U (n)

]]
.

In fact, were these congruences to hold modulo p2n

rather than modulo pn+1, then one would establish
the existence of a nonabelian p-adic L-function inside
K1

(
Zp
[[
G∞

]]
S

)
, as explained in [Kato 05, Section 1].

Using different techniques, we obtained analogous con-
gruences in [Delbourgo and Ward 08] for semistable el-
liptic curves. The advantage of working in the CM case
is that verification of Hypotheses 1.2 and 1.3 reduces to
calculating Hecke L-series over Q, while over K+

n , con-
ductors of the l-adic representations become gigantic.

Remark 1.6. It should be noted that Theorem 1.5 is a
rather straightforward consequence of Theorem 1.4, cour-
tesy of a strong mathematical induction argument. The
full details are identical to [Delbourgo and Ward 08, Sec-
tion 3.3], and we shall not reproduce them here. This
leaves us with the task of proving Theorem 1.4 in the
next section.

Let us now consider Hida’s automorphic p-adic L-
function (see Theorem 2.3). This object LHida(E, ρn)
interpolates exactly the same data as L(E, ρn), except
that the period in its denominator is the Petersson self-
product for the base-change of fE to K+

n , and there is an
extra fudge-factor arising from the congruence module.

If
Ωmot
K+
n

(E) =
(
Ω+
EΩ−E

)[K+
n :Q]

and

Ωaut
K+
n

(E) = π[Kn:Q]
〈
BCK+

n
(fE),BCK+

n
(fE)

〉
,

then one has the relationship

L(E, ρn) =
Ωaut
K+
n

(E)

Ωmot
K+
n

(E)
×Hλ(2)−1 × LHida(E, ρn),

(up to a p-adic unit), where Hλ(2) denotes the value of
the characteristic power series for the associated congru-
ence module “C0(λE,K+

n
),” evaluated at parallel weight

two (see Section 2 for details). The p-adic L-function
LHida(E, ρn) arises from the Rankin convolution ap-
proach, and is heavily p-integral. However, it is indis-
putably the natural object to work with from an auto-
morphic point of view.

Remark 1.7. In order to prove the full K1-congruences of
Kato, we first need to understand the analytic invariants

pµ
Per
p,n(E) :=

∣∣∣∣
Ωmot
K+
n

(E)

Ωaut
K+
n

(E)

∣∣∣∣
−1

p

and
pµ

anti
p,n (E) :=

∣∣∣Hλ

(
2, . . . , 2

)∣∣∣
−1

p

and their rate of growth as the fields K+
n climb up the cy-

clotomic Zp-extension. Henceforth we shall assume that

p > 3 does not divide the degree of X0(NE)
ϕE
� E.

One should now consider the two-variable Iwasawa
module Gal

(
M∞

/
K(E[p∞])

)
with M∞ the maximal

abelian pro-p-extension of K
(
E[p∞]

)
unramified outside

p. Let us define nonnegative integers

µcy
E :=

p−2∑

j=0

µωj
(
Z∞,+

)
and λcy

E :=
p−2∑

j=0

λωj
(
Z∞,+

)
,

where
(
µωj , λωj

)
refer to the “µ-” and “λ-invariants” for

the ωjK-eigenspace inside

Z∞,+

:= H0

(
K
(
E[p]

)/
K1,

(
Gal

(
M∞

/
K(E[p∞])

)
⊗ Φ⊗−2

E,p

)
Γ−

)
.

Theorem 1.8. Assume that the µωj
(
Z∞,+

)
-invariants

vanish at all j ∈
{

0, . . . , p−2
}

. For those integers n� 1,
the p-adic valuation of the ratio of motivic to automor-
phic periods over K+

n is given by

µPer
p,n(E) = n

(
(p− 1) · pn−1 − λcy

E + 1
)

−
(
pn−1 +∇Sym2E

K+
n

+ ordp
(
h−(Kn)

))
+O(1),

where ∇Sym2E

K+
n

denotes the p-adic order of

∏

places ν|NE
of K+

n

det
(

1−
(
NK+

n /Q
(ν)
)−s

× Frobν
∣∣∣
(
Sym2H1

p (E)
)Iν )∣∣∣

s=2
.

It was rather surprising to see these bad Euler factors
for the symmetric square L-function playing such a cru-
cial role in the final formula (an algorithm outlining how
to compute these error terms ∇Sym2E

K+
n

is supplied as an
appendix to this paper; see Section 6). The demonstra-
tion of this result uses a version of the two-variable main
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conjecture proven by Karl Rubin in the case of complex
multiplication.

Lastly let us recall from [Hida and Tilouine 93, Sec-
tion 0] that the anticyclotomic main conjecture over K+

n

affirms that Hλ = (a unit) × h−(Kn) × L−(Kn,λ), where
L−(Kn,λ) denotes the branch of the Katz p-adic L-function

projected along
(
K+
n

)anti. We therefore have the follow-
ing consequence.

Corollary 1.9. For all integers n� 1,

ordp

(LHida(E, ρn)
L(E, ρn)

)

= n
(
(p− 1) · pn−1 − λcy

E + 1
)
−
(
pn−1 +∇Sym2E

K+
n

)

+ ordp
(
L−(Kn,λ)

(
2, . . . , 2

))
+ a fixed constant.

2. THETA LIFTS AND THE KATZ MEASURE

Let M be a CM field, and M+ its maximal real sub-
field. As usual, one fixes embeddings ι∞ : Q ↪→ C and
ιp : Q ↪→ Cp, and writes c ∈ Aut(Q) for complex con-
jugation. We shall also assume that every prime of M+

above p splits inside M .
In particular, this permits us to pick a p-ordinary CM

type for M , i.e., one can choose a set Σ of embeddings of
M into Q such that

(i) Σ∩Σ◦c = ∅, and Σ∪Σ◦c is the set of all embeddings
of M into Q;

(ii) the p-adic place induced by σ ∈ Σ composed with
ιp is distinct from that induced by an element σ′ ∈
Σ ◦ c.

A good reference for the theory of theta lifts is con-
tained in the article [Hida and Tilouine 93, Sections 6–
8]. Following that exposition, G∞(C) indicates the Galois
group of M(Cp∞) over M , where M(Cp∞) is the maximal
ray class field modulo Cp∞. There is a decomposition

G∞(C) = G∞(C)tors ×W, ζ.w ↔ (ζ, w),

and the free part W = WM is determined independently
of the tame conductor C.

Put N = C × Cc × DM/M+ , with DM/M+ indicating
the relative discriminant. The theta measure [Hida and
Tilouine 93, Section 6] is a canonical morphism

θ∗N : hn.ord(N ;OCp) −→ OCp
[[

G∞(C)
]]

of the nearly ordinary Hecke algebra of level N into the
completed group ring. Furthermore, given a multiplica-
tive character η : G∞(C)tors → O×Cp , there is an obvious
projection η∗ : OCp [[G∞(C)]] � Λ0 := OCp [[W]].

Notation 2.1. Write C0(λ) for the congruence mod-
ule associated to the composition λ = η∗ ◦ θ∗N :
hn.ord(N ;OCp) → Λ0; in the terminology of [Hida and
Tilouine 93, Section 6.9],

C0(λ) :=
(
R(K)⊕R(B)

)/
R ∼= R(K)

/
{R∩(R(K)⊕0)},

where h(η+, η′) = K⊕B with K = Frac(Λ0), and (η′, η+)
is the character of λ.

Let Hλ ∈ OCp [[W]] denote the characteristic power
series of C0(λ); in other words, the element Hλ generates
the smallest principal ideal containing R ∩ (R(K) ⊕ 0).
The following is quite deep.

Theorem 2.2. [Mazur and Tilouine 90, Tilouine 89, Hida
and Tilouine 93] Under the condition C + Cc = OM , up
to units,

Hλ =
#Pic(OM )

#Pic(OM+)
× L−(M,λ),

where the branch L−(M,λ) = π−η
(
µKatz

)
is projected along

π−η : OCp [[G∞(C−)]] � Λ0 via (ζ, w) 7→ η−1(η ◦ c)(ζ) ×
w−1wc.

This result forms a significant component of the “an-
ticyclotomic main conjecture.” In the context of this pa-
per, the above provides us with a computational method
of determining the valuation of Hλ at weight two (i.e.,
for CM elliptic curves).

We now outline the precise role C0(λ) plays in
the nonabelian Iwasawa theory. Recall that λ :
hn.ord(N ;OCp) −→ Λ0 was the mapping induced at level
N by η. We now consider a secondary mapping

ν = γ∗ ◦ θ∗N ′ : hn.ord(N ′;OCp) −→ Λ0

defined in an analogous fashion (note that the levels N
and N ′ need not be coprime).

Theorem 2.3. [Hida 91] There exists an element Dλ,ν ∈
Frac

(
Λ0⊗̂OCpΛ0

)
satisfying:

(a) (Hλ ⊗ 1) ·Dλ,ν ∈ Λ0⊗̂OCpΛ0.

(b) For all critical motivic points

(P,Q) ∈ Spec
(
Λ0⊗̂OCpΛ0

)
(Qp),
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we have

Dλ,ν(P,Q) =
C(P,Q)W (P,Q)E(P,Q)

S(P)

× Lp
(
θ(λP)⊗ θ(νQ)∨, 0

)
〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉 ,

where λP = P ◦ λ and νQ = Q ◦ ν.

We need to explain some of the notation used here.
The primitive Hilbert modular forms θ(λP) and θ(νQ)
over M+ are theta lifts, corresponding to the Hecke char-
acters λP = P ◦ λ and νQ = Q ◦ ν respectively. The
L-function itself is the Rankin convolution of θ(λP) with
the dual of θ(νQ). Denoting by −u the unitarization,
then on the level of formal Dirichlet series,

Lp

(
θ(λP)⊗ θ(νQ)∨, s− 1 +

(
m(P)−m(Q)

)/
2
)

equals Lp
(
(λuPν

cu
Q )prim, s

)
· Lp

(
(λuPνQ(−c)cu)prim, s

)
, up

to some bad Euler factors.
Lastly, the denominator in Theorem 2.3(b) is the auto-

morphic period associated to the Petersson self-product
of θ(λP)⊗ η′P .

Remark 2.4. The interpolation factors are quite ugly, and
are given in [Hida 91, p. 317]. Suffice to say that for a
motivic pair (λP , νQ) as above, all the ε-factors W (P,Q),
the Γ-factors C(P,Q), and Euler factors E(P,Q)S(P)−1

coincide exactly with those in the general recipe of
[Coates and Perrin-Riou 89, Section 4.14] (this is checked
meticulously by Hida in the preamble to his article).

2.1 A Special Case: CM Elliptic Curves

Henceforth we shall confine ourselves exclusively to the
situation of the introduction. We take

M = Kn = Q
(√
−D,µpn

)

as our CM field, and consider the setup of Figure 1. The
trick now is to make a judicious choice of λP and νQ.

Let C = condKn(E) ⊂ OKn , and choose λ :
hn.ord(N ;OCp)→ Λ0 to be the homomorphism that cor-
responds (by duality) to the p-ordinary Hida family, lift-
ing the base-change of fE ∈ S2

(
Γ0(NE)

)
over K+

n . Fur-
ther, let us take P : Λ0 → Cp to be the specialization at
weight k = (2, . . . , 2).

Then the Hilbert modular form θ(λP) is tautologi-
cally the base-change of fE , and its complex L-series co-
incides with L

(
(ΦE/Kn)u, s − 1/2

)
, where ΦE/K is the

Grössencharakter attached to E.

On the other hand, initially we fix a character ψ :
U (n) → Q

×
p of finite order. For j in the range {0, . . . , n},

one recalls that

χj : Gal
(
Kj

(
pj
√

∆
)
/Kj

)
−→ µpj

was the anticyclotomic character inducing the Artin rep-
resentation “ρj” over the CM field K; in particular,
χj : σ 7→ σ

(
pj
√

∆
)/

pj
√

∆.

Remark 2.5. Suppose that C′ is divisible by the conductor
of ResKn(χj) ⊗ ψ. Then there is a unique map at level
N ′ = C′C′cDKn/K

+
n

lifting this character, i.e.,

νQ = νQ(j, n, ψ) : hn.ord(N ′;OCp)
γ∗◦θ∗N′−→ Λ0

Q−→ Cp,

where γ = ResKn(χj) ⊗ ψ
∣∣
G∞(C′)tors

, and Q denotes the
arithmetic specialization to weight k′ = (1, . . . , 1) with
character ResKn(χj)⊗ ψ

∣∣
W

.

Clearly νQ
∣∣
G∞(C′)

gives rise to a unitary Hecke

character. Moreover, θ
(
νQ(j, n, ψ)

)
is the primitive

Hilbert modular form associated to the Gal
(
Q/K+

n

)
-

representation

IndK
+
n

Kn

(
ResKn(χj)

)
⊗ ψ

via the fundamental work of Serre.

Question 2.6. What L-value data does this pair (λP , νQ)
interpolate?

Applying standard properties of the theta lift men-
tioned earlier,

Lp
(
θ(λP)⊗ θ(νQ)∨, 0

)

= Lp
(
(λuPν

cu
Q )prim, 1/2

)
· Lp

(
(λuPνQ(−c)cu)prim, 1/2

)

= Lp

(
(ΦE/Kn)uνcQ, s− 1/2

)

× Lp
(

(ΦE/Kn)uνQ(−c)c, s− 1/2
)∣∣∣
s=1

.

After unraveling the unitarization, then removing the Eu-
ler factor contribution coming from the E(P,Q)-term,
one obtains the special value

L{p∆}
(
E/Kn,ResKn(χj)c ⊗ ψ−1, 1

)

=
∏

β:G(Kn/Kj)→C×
L{p∆}

(
E/K, ρj ⊗ βψ−1, 1

)
.
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KFT

Z×p nZp

IndQ
Kn
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K
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∆
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K(µpn)
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K

2

K(µpn)+
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Q

Figure 1: Fields in the false Tate tower.

1

FIGURE 1. Fields in the false Tate tower.

Comparing Definition 1.1 with Theorem 2.3, it can read-
ily be seen that (Hλ(P)⊗ 1) ·Dλ,ν(P,Q) equals

(
π−2Ω+

E Ω−E
)[K+

n :Q]

〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉 ×Hλ(P)

× ψ
(

Normj,n

(
L(E, ρj)

))
.

The first two terms in the product are nonzero scalars; in
particular, they do not depend on how the character ψ is
chosen, nor on the Artin representation ρj . Estimating
the powers of p occurring in these scalars will occupy a
substantial portion of the remainder of this article.

Definition 2.7. One denotes the automorphy defect at
weight (2, . . . , 2) by

ErrK+
n

(E) :=

(
π−2Ω+

EΩ−E
)[K+

n :Q]

〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉 ×
∣∣∣Hλ(P)

∣∣∣
−1

p
,

which is a well-defined scalar, depending on both E and
the field K+

n = Kn ∩ R.

Essentially, this error term measures the ratio of the
“automorphic” p-adic L-function

(Hλ(P)⊗ 1) ·Dλ,ν(P,−)
∣∣∣
OCp [[U(n)]]

to its motivic counterpart Normj,n

(
L(E, ρj)

)
. If Hy-

pothesis 1.2 holds for the given n, then the norm of the
motivic p-adic L-function is p-integral.

We should point out that the family of automorphic
L-functions

Dλ,ν(P,−)
∣∣∣
OCp [[U(n)]]

associated to

γ = ResKn(χj)⊗ ψ
∣∣∣
G∞(C′)tors

share a common µ-invariant, for all j ∈ {0, . . . , n}
and fixed character ψ

∣∣
G∞(C′)tors

(since switching γ’s
does not change the branch of the underlying ray class
measure).

Moreover, under Hypothesis 1.3, the µ-invariant of
Norm0,1

(
L(E, ρ0)

)
is trivial; hence the µ-invariant of

Norm0,n

(
L(E, ρ0)

)
must also vanish for every n ≥ 1.

It follows that the quantity ordp
(
ErrK+

n
(E)
)

coincides

with the µ-invariant of Dλ,ν(P,−)
∣∣
OCp [[U(n)]]

for the par-

ticular character choice γ = ResKn(1) ⊗ ψ
∣∣
G∞(C′)tors

.
Finally (cf. the previous paragraph), this quantity will
be the common µ-invariant shared by the family of
automorphic p-adic L-functions that we have been
considering.

Key Fact 2.8. Because ResKn(χj) takes values in µp∞ ,
such characters are congruent to 1 modulo “ MCp ,” the
maximal ideal of OCp . Thus each residual specialization
as in Figure 2, while dependent on n and ψ, is indepen-
dent of the choice of j ∈ {0, . . . , n}.
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(
λP , νQ(j, n, ψ)

)
: hn.ord(N ;OCp) ⊗̂OCp hn.ord(N ′;OCp) //

,,XXXXXXXXXXXX
OCp

proj

��
OCp

/
ErrK+

n
(E) ·MCp

FIGURE 2. Residual specialization of the Hecke algebras.

As a corollary, clearly (Hλ(P)⊗1)·Dλ,ν(P,Q) modulo
ErrK+

n
(E) ·MCp must also be independent of the choice

of j ∈ {0, . . . , n}. Allowing ψ to range over all finite-order
characters of U (n), equivalently (Hλ(P)⊗ 1) ·Dλ,ν(P,−)
mod ErrK+

n
(E) ·MCp [[U (n)]] is independent of j, whence

L(E, ρn) ≡ Normn−1,n

(
L(E, ρn−1)

)
≡ · · ·

≡ Norm0,n

(
L(E, ρ0)

)
mod MCp [[U (n)]],

which is very close to what is actually required.

Remark 2.9. It is shown in [Bouganis and Dokchitser 07,
Theorem 4.2] that the algebraic part of the L-value of E,
twisted by the Artin representation ρ, lies in the field of
definition of E and ρ. Given that the self-dual represen-
tations IndQK(ρn) are all realizable over the rational num-
bers (as is the curve E), the above strengthens to yield
a congruence modulo MCp [[U (n)]] ∩Qp[[U (n)]]. However,
this latter ring is none other than p · Zp[[U (n)]], which
completes the proof of Theorem 1.4.

3. CALCULATING MOTIVIC VERSUS
AUTOMORPHIC PERIODS

We will now describe the numerical ratio of L(E, ρn) to
its automorphic counterpart. Under the conditions of
Theorem 1.4, this ratio corresponds to the µ-invariant of
(Hλ(P)⊗ 1) ·Dλ,ν(P,−) precisely. From Definition 2.7,
it can be written as

ordp
(
ErrK+

n
(E)
)

= µanti
p,n (E) + µPer

p,n(E),

where

µanti
p,n (E) = ordp

(
h(Kn)

)
− ordp

(
h(K+

n )
)

+ ordp
(
L−(Kn,λ)(P)

)

by Theorem 2.2, and secondly,

µPer
p,n(E) = ordp

( (
π−2Ω+

EΩ−E
)[K+

n :Q]

×
〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉−1
)
.

Theorem 3.1. (Katz.) In the notation of [Katz 78, Sec-
tions 5.7.8–5.7.9], L−(Kn,λ)(P) equals

Ωm0Σ+2d
p ×

[
O×Kn : O×

K+
n

]
·Wp

(
(λ ◦ c) · λ−1

)

× (−1)m0Σ

√
Disc(K+

n )
×
LB,B∗

((
λ ◦ c

)
P · λ

−1
P , 0

)

π−d × Ωm0Σ+2d
∞

,

where λP = (ΦE/Kn)u, Wp is a root number, and
(Ω∞,Ωp) denote the Katz periods.

From a computational perspective, these terms are
straightforward to work out. For example, the index[
O×Kn : O×

K+
n

]
is just a power of p, while the pe-

riod Ωp is always a p-adic unit. Finally, the ratio
LB,B∗(−)

/
Ωm0Σ+2d
∞ can be calculated as the quotient of

a Hecke L-series and the value of an Eisenstein–Damerell
series at 0.

Question 3.2. How does one calculate the quantity
µPer
p,n(E) numerically?

For any Dirichlet character ψ whose conductor is co-
prime to that of E, we will write Limp(Sym2E,ψ, s)
for the imprimitive ψ-twisted symmetric square L-
series. Normalizing the choice of Gauss sum by τ(ψ) =∑fψ
a=1 ψ(a)e2πia/fψ , one may define

ξ(E/K+
n ) :=

∏

ψ:G(K+
n /Q)→C×

τ(ψ−2)Limp(Sym2E,ψ, 2)
π3〈fE , fE〉NE

,

which is Aut(C)-invariant (and hence rational) due to
results in [Sturm 80, Sturm 89].

Proposition 3.3. If the prime p 6= 2 does not divide

deg
(
X0(NE)

ϕE
� E

)
, then

〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉
(
π−2 Ω+

EΩ−E
)[K+

n :Q]

=
(
p-adic unit

)
×

∣∣Disc(K+
n )
∣∣
∞∣∣Disc(Q(µpn)+)
∣∣
∞
× ξ(E/K+

n ).
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The demonstration of this result is given at the end of
this section.

It is a basic exercise in the arithmetic of cyclotomic
fields to show that

∣∣Disc(K+
n )
∣∣−1

p
= pp

n−1(pn−n−1)

and also
∣∣Disc(Q(µpn)+)

∣∣−1

p
= p(pn−1(pn−n−1)−1)/2.

The calculation of the period ratio therefore reduces to
a computation of ψ-twisted symmetric square L-series at
s = 2. Using the computer package Magma and the sub-
routine LSeries, we computed the L-values to very high
precision and obtained ξ(E/K+

n ) as a rational number.
Due to irksome computational issues, from now on we

restrict ourselves to the layer n = 1 exclusively. Let
us focus on just the first few CM elliptic curves over Q
of rank zero and minimal conductor, namely the curves
27A(1), 32A(1), and 49A(1).

Remark 3.4. We also (temporarily) suppose that the ana-
lytic rank of E/K(µp) is zero. For any discrete p-primary
G∞-module S, one may define

EC (G∞,S) :=
∞∏

j=0

#
(
Hj
(
G∞,S

))(−1)j

,

assuming that these cohomologies are finite.

It is shown in [Hachimori and Venjakob 03, Propo-
sition 4.12] that the classical p-primary Selmer group
of E over the p-adic Lie extension KFT is triv-
ial if and only if one has the numerical condition
EC

(
G∞,SelKFT(E)p∞

)
= 1. Moreover, the latter Eu-

ler characteristic will coincide with the leading term of
Lp(E, ρ0) (up to a unit), provided that the full Birch–
Swinnerton-Dyer conjecture holds for E over K(µp).

To compute 1
(
Lp(E, ρ0)

)
and check whether it is

a p-adic unit, it is enough to calculate the quantity
XE
(

RegQ(µp)/Q

)
. Note that here for a general Artin

representation ρ : G∞ → GL(V ), we write

XE(ρ) := εp(ρ)× Pp(ρ∨, α−1
p )

Pp(ρ, p−1αp)
× α−fp(ρ)

p

× L{p∆}(E, ρ, 1)
(Ω+

E)dim+ρ(Ω−E)dim−ρ
.

This follows because

1
(
Lp(E, ρ0)

)
= XE

(
RegQ(

√
−D,µp)/Q

)

= XE
(

RegQ(µp)/Q

)2

,

since the quadratic twist E⊗
(−D ) is alwaysQ-isogenous

to the original elliptic curve.
Bearing in mind our formula for µPer

p,n(E) given in The-
orem 1.8 when n� 1, we make the following definition.

Definition 3.5. For each triple (E, p,∆), as before, we
introduce the quantity

µnaive
p,1 (E) := (p− 1)−∇Sym2E

K+
1

− ordp
(
h−(K1)

)
,

which is a naive estimate (guess!) of the value µPer
p,n(E) at

the bottom layer n = 1.

In Tables 1, 2, and 3 we have tabulated values of µp,1
for our three sample elliptic curves. Whenever µPer

p,1 and
µnaive
p,1 differ in value, we have highlighted the latter in

boldface. After considerable head-scratching, we verified
numerically that in all cases our naive guess coincides
with the true value if and only if the Katz–Yager L-values

LKatz
p,K

(
Φ2
E,p × ωjK

)

are simultaneously p-units for all j ∈ {0, . . . , p − 2}. Of
course, if this condition does not hold, then one expects
nontriviality of either the µcy

E - or λcy
E -invariants, which is

bound to alter the final formula somewhat.

Conjecture 3.6. Under this p-unit condition on the con-
stant terms of LKatz

p,K ,

µPer
p,1 (E) ??= µnaive

p,1 (E) := (p−1)−∇Sym2E

K+
1
−ordp

(
h−(K1)

)
;

otherwise, without this condition the equal sign becomes
instead a strict less-than inequality.

Certainly this prediction is true in all the examples we
have calculated, and we are optimistic that it holds more
generally. If it does indeed hold, then it is tantamount
to saying that the O(1)-term occurring in Theorem 1.8
is precisely the constant zero.

of Proposition 3.3. Our starting point is the beautiful
formula [Hida and Tilouine 93, Section 7]:

〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉
N

=
∣∣Disc(K+

n )
∣∣
∞ ×NormK+

n /Q
(N)× 2−2{2}+1

× π−[K+
n :Q]−{2} × Limp

(
Ad(θ(λP)⊗ η′P), 1

)
,

where N = C × Cc × DKn/K
+
n

was the level of θ(λP) ⊗
η′P . The adjoint L-function can be identified with that
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p ∆ XE(RegQ(µp)/Q) SelKF T (E)p∞ = 0? µPer
p,1 µnaive

p,1

7 2 1.70 + 3.71 + 1.72 +O(73) Yes 4 5

13 2 7.130 + 5.131 + 9.132 +O(133) Yes 10 10

19 - 0 No 17 17

31 - 0 No 29 29

37 - 0 No 33 33

43 7 24.430 + 20.431 + 1.432 +O(433) Yes 41 41

61 2 16.610 + 50.611 + 46.612 +O(613) Yes 53 54

67 17 53.670 + 21.671 + 52.672 +O(673) Yes 61 61

73 2 13.732 + 13.734 + 20.735 +O(736) No 64 66

79 2 50.790 + 77.791 + 55.792 +O(793) Yes 75 77

97 2 87.972 + 88.973 + 29.974 +O(975) No 94 94

TABLE 1. The elliptic curve E = 27A(1) : y2 + y = x3.

p ∆ XE(RegQ(µp)/Q) SelKF T (E)p∞ = 0? µPer
p,1 µnaive

p,1

5 - 0 No 3 3

13 - 0 No 11 11

17 - 0 No 14 14

29 - 0 No 27 27

37 - 0 No 34 34

41 - 0 No 38 38

53 - 0 No 51 51

61 - 0 No 56 58

73 3 35.730 + 26.731 + 61.732 +O(733) Yes 68 68

89 3 67.890 + 13.891 + 59.892 +O(893) Yes 82 84

97 3 9.970 + 2.971 + 29.972 +O(973) Yes 94 94

TABLE 2. The elliptic curve E = 32A(1) : y2 = x3 + 4x.

p ∆ XE(RegQ(µp)/Q) SelKF T (E)p∞ = 0? µPer
p,1 µnaive

p,1

11 - 0 No 6 8

23 - 0 No 20 20

29 3 18.290 + 2.291 + 10.292 +O(293) Yes 25 25

37 5 32.370 + 10.371 + 22.373 +O(374) Yes 33 33

43 - 0 No 24 28

53 - 0 No 44 46

67 - 0 No 61 63

71 - 0 No 66 68

79 - 0 No 76 76

107 - 0 No 104 104

109 2 39.1092 + 34.1093 +O(1094) No 105 105

TABLE 3. The elliptic curve E = 49A(1) : y2 + xy = x3 − x2 − 2x− 1.
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of the symmetric square for the base-change of fE/K+
n .

Following renormalization, one deduces that

〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉
N

is equal to
∣∣Disc(K+

n )
∣∣
∞π
−[K+

n :Q]−{2} × Limp
(
Sym2E/K+

n , 2
)

up to a p-adic unit.
Fortunately, K+

n is an abelian extension of Q, and so
the L-function decomposes as a product over the charac-
ters of G = Gal(K+

n /Q). As an immediate consequence,

〈
θ(λP)⊗ η′P , θ(λP)⊗ η′P

〉
N

≈
∣∣Disc(K+

n )
∣∣
∞ ×

∏

ψ:G→C×
π−3Limp(Sym2E,ψ, 2)

≈
∣∣Disc(K+

n )
∣∣
∞ × ξ(E/K

+
n )×

∏

ψ:G→C×

〈fE , fE〉NE
τ(ψ−2)

,

again up to p-adic units.

Remark 3.7. The proof will be finished if we can establish
the following:

(a)
∏
ψ:G→C× τ(ψ−2) =

∣∣∣Disc
(
Q(µpn)+

)∣∣∣
∞

;

(b) 〈fE , fE〉NE =
(
p-adic unit

)
×
(
π−2 Ω+

EΩ−E
)
.

On observing that both the degree of ϕE : X0(NE) �
E and its Manin constant cMan are integers coprime to p,
we find that (b) follows from the well-known identity

8π3

NE
〈fE , fE〉NE = Limp(Sym2E, 2)

=
deg(ϕE)
NE · c2

Man

× πi
∫

E(C)

ωE ∧ ωE .

To establish claim (a), clearly we must have

∏

ψ:G→C×
τ(ψ−2) =

( ∏

ψ:G2→C×
τ(ψ)

)2

.

If the automorphism σ ∈ Gal
(
Kn/Q(µpn)

)
sends

√
−D

to −
√
−D, then

Gal(Kn/Q) ∼= 〈σ〉 × F×p × Cpn−1 ,

whence

G ∼=
〈σ〉 × F×p〈
(σ,−1)

〉 × Cpn−1 .

Because p is odd, the field cut out by G2 ∼=
(
F×p
)2×Cpn−1

has to be Q(µpn) ∩R. Via standard properties of Gauss
sums and the conductor–discriminant formula,

∏

ψ:G2→C×
τ(ψ)2 =

∏

ψ:G(Q(µpn )+/Q)→C×
ψ(c) · fψ

=
∣∣Disc

(
Q(µpn)+

)∣∣
∞,

and the result follows.

4. THE CONNECTION WITH Λ-MODULES

Since p ·OK = p ·p∗ splits over K, we choose ιp such that
ΦE/K

(
p∗
)

becomes the unit. The Tate module Tp(E) of
the curve breaks up into Tp⊕Tp∗ over the CM field, with
summands Tp = lim←−nE[pn] and Tp∗ = lim←−nE[p∗n]. It is
well known that

Gal
(
K
(
E[p∞]

)
/K
)

= ∆(2) × Γ(2),

where

#∆(2) = (p− 1)2 and Γ(2)
∼= Zp × Zp.

One can pick a decomposition Γ(2) = Γ+ × Γ− such
that the action of complex conjugation on Γ+ is trivial
and its action on Γ− is through inversion instead. The
Iwasawa algebra Zp

[[
Γ+ × Γ−

]]
is (noncanonically) iso-

morphic to Zp[[S, T ]]; here one distinguishes the variables
S and T by a choice of topological generators γ+ ∈ Γ+

and γ− ∈ Γ− respectively.
Finally, let us writeM∞ for the maximal abelian pro-

p-extension of K
(
E[p∞]

)
unramified outside the places

lying over p, and set X∞ := Gal
(
M∞

/
K(E[p∞])

)
.

Proposition 4.1. For all integers n ≥ 1, we have

µPer
p,n(E) = pn−1 ×

(
pn− n− 1

)
+ n− ordp

(
h−(Kn)

)

−∇Sym2E

K+
n

+ ordp

(
#H0

(
Γp

n−1

+ ,Z∞,+
)

#H1
(
Γp

n−1

+ ,Z∞,+
)
)

+ k(E, p),

where k = k(E, p) is a constant independent of n, and
the compact Zp

[[
Γ+

]]
-module Z∞,+ is defined as follows:

Z∞,+ :=
p−2⊕

j=0

H1
(

Γ−,X∞ ⊗Zp T⊗−2
p

)∆(2)=ω
j
K

.

The reader will notice the appearance of the
(
Γ+

)pn−1

-
Euler characteristic for the Φ⊗−2

E,p -twisted coinvariants
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Z∞,+. The long-term growth in this error function is
controlled by its (µ, λ)-invariants (discussed in Section 5
at some length).

Henceforth, let us use ε to denote the real quadratic

character
((−D ) · ω

) p−1
2 . We now claim that Proposi-

tion 4.1 is a direct consequence of the following two re-
sults.

Lemma 4.2. Up to an element of O×Cp , the quantity
ξ(E/K+

n ) equals

p
k′+∇Sym2E

K
+
n ×

∣∣Disc(Q(µpn)+)
∣∣
∞∣∣Disc(K+

n )
∣∣2
∞

×
∏

ψ:Gal(K+
n /Q)→C×

ψ 6=1,ψ 6=ε

τ(ψ)Lprim
(
Sym2E ⊗ ψ−1, 1

)

π × 〈fE , fE〉NE

for some constant k′ independent of n.

Lemma 4.3. There exists another constant k′′, indepen-
dent of n, such that

∏

ψ 6=1,ε

τ(ψ)Lprim
(
Sym2E ⊗ ψ−1, 1

)

π × 〈fE , fE〉NE

≈ pk
′′ × h−(Kn)

#Gm(Kn)tors
× XΦ−2

E

(
Γp

n−1

+

)−1

where we write XΦ−2
E

(
Γp

n−1

+

)
for the ratio

#H0
(
Γp

n−1

+ ,Z∞,+
)

#H1
(
Γp

n−1

+ ,Z∞,+
) .

To see why these two lemmas imply our principal re-
sult, one simply observes that by Proposition 3.3,

pµ
Per
p,n(E) =

(
a p-adic unit

)
×
∣∣Disc(Q(µpn)+)

∣∣
∞∣∣Disc(K+

n )
∣∣
∞

× ξ(E/K+
n )−1.

Because the field K+
n has discriminant equal

to pp
n−1(pn−n−1) × Disc(K)φ(pn)/2, and further

#Gm(Kn)tors = unit × pn, we see that Proposition 4.1
follows on taking k = −(k′ + k′′).

of Lemma 4.2. Let us begin with the trivial comment

ξ(E/K+
n ) =

Limp
(
Sym2E/K+

n , 2
)

Lprim
(
Sym2E/K+

n , 2
)

×
∏

ψ:G(K+
n /Q)→C×

τ(ψ−2)Lprim(Sym2E ⊗ ψ, 2)
π3〈fE , fE〉NE

and that the first factor Limp(... )
Lprim(... ) has p-adic order equal

to ∇Sym2E

K+
n

by its definition. If we fix a character ψ of

Gal(K+
n /Q), the functional equation for Sym2E ⊗ψ im-

plies

τ(ψ−2)Lprim(Sym2E ⊗ ψ, 2)
π3〈fE , fE〉NE

=
τ(ψ−2) · τ(ψ)2

u(ψ) × f3ψ
× τ(ψ)Lprim

(
Sym2E ⊗ ψ−1, 1

)

π × 〈fE , fE〉NE
,

where the algebraic number

u(ψ) =
1
2
× ψ

(
fSym2E

)√
fSym2E

is a p-adic unit.
A straightforward exercise (cf. the proof of Proposi-

tion 3.3) shows that

∏

ψ:G(K+
n /Q)→C×

τ(ψ−2) · τ(ψ)2

uψ × f3ψ
≈
∣∣Disc(Q(µpn)+)

∣∣
∞∣∣Disc(K+

n )
∣∣2
∞

,

so putting

k′ =
∑

ψ=1,ε

ordp

(
τ(ψ)Lprim(Sym2E ⊗ ψ−1, 1)

π × 〈fE , fE〉NE

)
,

the result follows.

of Lemma 4.3. The statement of this lemma is much
deeper. The key point is that for ψ 6= 1, ε one has

ΦE/K
(
p∗
)−2fψp × τ(ψ)Lprim

(
Sym2E ⊗ ψ−1, 1

)

π × 〈fE , fE〉NE
=
∫

g∈G(K+
∞/Q)

ψ(g) · dτSym2E(g),

where τSym2E denotes the measure attached to the sym-
metric square of E at s = 1. Moreover, the formal iden-
tity

Lprim
(
Sym2E ⊗ ψ−1, s

)

= L

(
ψ−1 ·

(−D)
, s− 1

)

× L
(

Φ2
E/K ·

(
ψ−1 ◦NK/Q

)
, s
)

forces the distribution τSym2E to fracture into the convo-
lution of a 1-dimensional and a 2-dimensional component.
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Remark 4.4. It was shown in [Coates and Schmidt 87,
Propositions 5.7 and 5.13] that
∫

G(K+
∞/Q)

ψ · dτSym2E

= Iϑ × uϑ
(
Res(ψ)(γ+)− 1

)
× Ω−2

p × L
(
ψ ·
(−D)

, 0
)

× charZp[[S]]

((
X∞,ϑ ⊗Zp T⊗−2

p

)
Γ−

)∣∣∣
S=Res(ψ)(γ+)−1

,

where ϑ = Φ2
E,p ·Res(ψ)

∣∣
∆(2) , the series uϑ(S) belongs to

Zp[[S]]×, and the algebraic number Iϑ is equal to

(
π−1 × Ω

)2

〈fE , fE〉NE
×

√
Disc(K) ·NormK/Q(fΦ2

E/K
)

24×W
(
Φ

2

E/K

) .

In fact, Coates and Schmidt consider the Lie group
Gal

(
Q(µp∞)/Q

)
instead of Gal

(
K(µp∞)+/Q

)
, but the

details are otherwise identical. Of course, at the time
their article was published, the two-variable main con-
jecture had not yet been proven; however, thanks to the
fundamental work of [Rubin 99], this formula is now un-
conditional.

Without bothering to explain the various terms con-
stituting Iϑ, we point out that it is a unit whenever p > 3
does not divide the degree of the modular parameteriza-
tion. By the same token, the p-adic period Ωp always
belongs to O×Cp in the CM scenario.

Consider the module

X′′∞ := H0
(

∆(2),
(
X∞ ⊕

(
X∞ ⊗ ω(p−1)/2

K

))
⊗Zp T⊗−2

p

)
.

The proof of Lemma 4.3 reduces to proving the following
two statements:

Fact 4.5.

∏

ψ 6=1,ε

L

(
ψ ·
(−D)

, 0
)

≈ h−(Kn)
#Gm(Kn)tors

× 1

L
((
−D
)
, 0
)
.L
(
ε ·
(
−D
)
, 0
) .

Fact 4.6.

XΦ−2
E

(
Γp

n−1

+

)

×
∏

ψ 6=1,ε

charZp[[S]]

((
X∞,ϑ ⊗Zp T⊗−2

p

)
Γ−

)∣∣∣
S=ψK(γ+)−1

≈ #H0
(

Γ+,
(
X′′∞
)

Γ−

)/
#H1

(
Γ+,

(
X′′∞
)

Γ−

)
.

If we can prove these statements, Lemma 4.3 will hold
for the constant

k′′ = ordp

(
#H0

(
Γ+,

(
X′′∞
)

Γ−

)

#H1
(
Γ+,

(
X′′∞
)

Γ−

)
)

− ordp

(
L

((−D)
, 0
)
· L
(
ε ·
(−D)

, 0
))

.

To prove Fact 4.5, we use (the odd part of) the analytic
class number formula

∏

ψ:G(K+
n /Q)→C×

L

(
ψ ·
(−D)

, 1
)

=
(2π)[K+

n :Q] × h−(Kn)×
√∣∣Disc(K+

n )
∣∣
∞

QKn/K
+
n
×#Gm(Kn)tors ×

√∣∣Disc(Kn)
∣∣
∞

and then apply the ψ ·
(−D )-twisted functional equation

(e.g., see [Washington 96, Theorem 4.17]). Note that the
index QKn/K

+
n

is either 1 or 2; hence it plays no role in
the calculation.

Remark 4.7. To establish that Fact 4.6 is true, let us
assume that W denotes some compact finitely generated
Zp
[[

Γ+ ×∆(2)

]]
-torsion module. We shall write ω̃ to de-

note the mapping

∆(2) = Gal
(
K
(
E[p]

)
/K
)

� Gal
(
K(µp)/K

) ∼−→ F×p
induced by the pth cyclotomic character. Then

∏

η=Res(ψ),

ψ:G(K+
n /Q)→C×p

charZp[[S]]

(
Wϑ′

)∣∣∣
S=η(γ+)−1

=
p−2∏

j=0

∏

η′:Γ+/Γ
pn−1
+ →C×p

charZp[[S]]

(
Wω̃j

)∣∣∣
S=η′(γ+)−1

≈
p−2∏

j=0

#H1
(

Γp
n−1

+ ,Wω̃j

)

#H0
(

Γp
n−1

+ ,Wω̃j

) ,

provided that each characteristic power series does not
vanish at the points η(γ+)− 1. In the previous product,
the η’s are the restrictions to GK of all even characters

ψ : GQ � Gal(Kn/Q) −→ C×p ,

and the finite character ϑ′ = η
∣∣
∆(2)

again means
the “restriction of η” to the torsion subgroup in
Gal

(
K(E[p∞])/K

)
.

If we now choose W =
(
X∞ ⊗Zp T⊗−2

p

)
Γ−

, then it is
well known to the experts that

charZp[[S]]

(
Wϑ′

)(
ψK(γ+)− 1

)
6= 0
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for every ψK-twist, since all the special values L
(
Φ2
E/K ·

ψ−1
K , 1

)
are nonvanishing (see [Coates and Schmidt 87,

p. 147] for an explanation). Consequently, the (full)
product becomes
∏

ψ

charZp[[S]]

((
X∞,ϑ ⊗Zp T⊗−2

p

)
Γ−

)∣∣∣
S=Res(ψ)(γ+)−1

=
∏

η=Res(ψ)

charZp[[S]]

(
Wϑ′

)∣∣∣
S=η(γ+)−1

by Remark 4.7≈
p−2∏

j=0

#H1
(

Γp
n−1

+ ,Wω̃j

)

#H0
(

Γp
n−1

+ ,Wω̃j

) ,

(where the first product is over all ψ : G(K+
n /Q)→ C×p ),

which is none other than the inverse of XΦ−2
E

(
Γp

n−1

+

)
.

Lastly, it is an easy exercise to verify that when we
omit the exceptional characters ψ = 1 and ψ = ε from
the product above, one must adjust by the same factor
as in the statement of Fact 4.6.

5. ASYMPTOTIC GROWTH IN THE CM PERIODS

Recall that we are trying to derive a formula for the ratio
of Ωmot

K+
n

(E) to Ωaut
K+
n

(E). Using Proposition 4.1, one knows
that its p-adic order µPer

p,n(E) is equal to

pn−1 ×
(
pn− n− 1

)
+ n− ordp

(
h−(Kn)

)
−∇Sym2E

K+
n

+ ordp
(
XΦ−2

E

(
Γp

n−1

+

))

up to some fixed constant k = k(E, p).
Therefore, to complete the proof of Theorem 1.8, we

must prove the following result.

Proposition 5.1. If the µωj (Z∞,+)-invariants simultane-
ously vanish at every j, one has the growth estimate

XΦ−2
E

(
Γp

n−1

+

)
=
(
a constant

)
×
p−2∏

j=0

p−n ×λωj (Z∞,+)

for integers n� 1.

Proof. Again we set W =
(
X∞ ⊗Zp T⊗−2

p

)
Γ−

, so from
the precise definition of Z∞,+,

XΦ−2
E

(
Γp

n−1

+

)
=

#H0
(

Γp
n−1

+ ,
⊕p−2

j=0Wω̃j

)

#H1
(

Γp
n−1

+ ,
⊕p−2

j=0Wω̃j

)

=
p−2∏

j=0

#H0
(

Γp
n−1

+ ,Wω̃j

)

#H1
(

Γp
n−1

+ ,Wω̃j

) .

Focusing first on the H1-term, for a given value j ∈{
0, . . . , p− 2

}
, we have

#H1
(

Γp
n−1

+ ,Wω̃j

)
= #

(
Wω̃j

)
Γp
n−1

+

= pλωj×n+pn×µωj+k′′′j

with n � 1, where the nonnegative integer k′′′j is inde-
pendent of n.

Remark 5.2. We now exploit two important facts:

(i) The Iwasawa µ-invariants of the Zp[[Γ+]]-modules
Wω̃j are assumed trivial.

(ii) All finite Zp[[Γ+]]-submodules of Wω̃j have univer-
sally bounded size.

We note that the first statement clearly implies the
vanishing of the total µcy

E -invariant of W. To see why (i)
implies (ii), there is an exact sequence of finitely gener-
ated compact Zp[[Γ+]]-modules

0 −→ finite −→Wω̃j
hj−→

tj⊕

m=1

Zp[[Γ+]]
/

(Fj,m)ej,m

−→ finite −→ 0,

where the Fj,m’s map to irreducible distinguished poly-
nomials via Zp[[Γ+]] ∼−→ Zp[[S]]. As a corollary, the size
of any pseudonull Zp[[Γ+]]-submodule inside Wω̃j must
be bounded above independently by #Ker(hj), since the
summands Zp[[Γ+]]

/
(Fj,m)ej,m are easily seen to be free

of any p∞-torsion (which establishes the second fact).

A nice consequence of (ii) is the boundedness of
H0
(
Γp

n−1

+ ,Wω̃j
)

for n ≥ 1, since this module is con-
tained within its Gal

(
K+
n /K

+
1

)
-orbit (which is then

a finite Zp[[Γ+]]-submodule of Wω̃j ). It follows that
#H0

(
Γp

n−1

+ ,Wω̃j
)

= pk
′′′′
j (say) for n sufficiently large,

in which case

XΦ−2
E

(
Γp

n−1

+

)
=
(
p
∑
j k
′′′′
j −k

′′′
j

)
×
p−2∏

j=0

p−n×λωj (Z∞,+),

as predicted by Proposition 5.1. The proof is complete.

Question 5.3. Does the vanishing of the total µcy
E -

invariant occur very frequently?

As Ralph Greenberg pointed out to one of us, if we
take a two-variable power series (with trivial µ-invariant)
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and consider all of its one-variable specializations, then
the subset of specializations with positive µ-invariant
should have density zero. Therefore, intuitively we would
expect the answer to be yes.

The vanishing of the cyclotomic µ-invariant inside a
two-variable deformation, but without the extra twisting
by the Grössencharakter Φ−2

E , was shown in [Gillard 85,
Theorem 3.4]. Similarly, some recent work of Hida con-
firms the vanishing of the µ-invariant for many anticy-
clotomic branches of the Katz p-adic L-function (which,
unfortunately, is of no use here).

Table 1 presents a few numerical calculations of
the µcy

E -invariant for our three specimen elliptic curves:
27A(1), 32A(1), and 49A(1). Briefly, an upper bound
on µωj (Z∞,+) is given by the p-adic order at any special
value of the ω̃j-branch for the Φ2

E,p-twisted Katz–Yager
L-function (which, one may hope, might often be zero).

5.1 Computational Difficulties at the Second Layer

Let us now outline several problems arising in the search
for congruences at the higher layer n = 2. Shifting nota-
tion slightly, let Fn denote the extension Q(µpn). Kato’s
predicted congruence [Kato 05, Section 3.10] over the
field Q

(
µp2 ,

p2
√

∆
)

is precisely

Norm1,2

(
a1

Norm0,1(a0)

)p
×
(
a2 × ϕ ◦Norm0,1(a0)
Norm0,2(a0)× ϕ(a1)

)p2

??≡ 1 mod p4 · Zp
[[
U (2)

]]
,

where the aj ’s denote the motivic p-adic L-functions
L(E, ρj) for j = 0, 1, 2.

Remark 5.4. Evaluating the above at the trivial character
ψ = 1, then exploiting the basic identity 1 ◦ϕ = 1p = 1,
Kato’s prediction simplifies to become

(
XE
(
ResF2(ρ1)

)

XE
(
ResF2

(
ρ0)
)1+p ×

(
XE(ρ2)× XE

(
ResF1(ρ0)

)

XE(ρ1)

)p)p

??≡ 1 mod p4.

Motivated by numerical work in [Dokchitser and Dok-
chitser 07], we pick our favorite non-CM elliptic curve

E = X0(11) : y2 + y = x3 − x2 − 10x− 20,

making a choice of the good ordinary prime p = 3 and
also the auxiliary integer ∆ = 2. Pushing our computer

to its limits, we painstakingly calculated the tableau

XE(ResF2(ρ1)) = 1.30+2.31+2.32+1.33+2.34+O(35),

XE(ResF2(ρ0)) = 1.30+2.31+1.32 +O(35),

XE(ResF1(ρ0)) = 1.30 +2.32+2.33+1.34+O(35),

XE(ρ1) = 1.30 +1.32+1.33+1.34+O(35).

However the computer failed to work out XE
(
ρ2

)
due

to lack of available memory. This is surprising, given that
X0(11) has least conductor among elliptic curves, and
likewise (p,∆) = (3, 2) is pretty much the smallest choice
available to us! Nevertheless, if the K1-congruence holds
over Q

(
µ9,

9
√

2
)
, then one can make an educated guess

at the value of XE
(
ρ2

)9 modulo 81 from the tabulated
L-values.

Conjecture 5.5. For the elliptic curve E = X0(11), the
prime p = 3, and ∆ = 2,

XE
(
ρ2

)32 ??≡ 28 mod 34.

This is equivalent to Kato’s second-layer K1-
congruence (at the trivial character), and it is easily con-
firmed that 28 is a ninth power modulo 34, e.g., 49 ≡ 28
mod 34. We leave this difficult computation for those
more versed in experimental work.

6. APPENDIX: EVALUATING THE ∇Sym2E

K
+
n

FACTORS

We end by describing an algorithm to compute the er-
ror ∇Sym2E

K+
n

in the CM case, which by definition is the

p-adic order of the factor
∏
q|NE Lq

(
Sym2E/K+

n , q
−2
)
.

The method generalizes well to adjoint lifts of other non-
spherical representations. However, we care only about
the weight (2, . . . , 2) scenario here.

Proposition 6.1. For each rational prime q | NE, one has
the formula

Lq
(
Sym2E/K+

n , q
−2
)

=

{(
1−$q−m

)φ(pn)/m(1− q−m
)φ(pn)/2m

m odd,(
1− |$|q−m

)φ(pn)/m(1 + q−m/2
)φ(pn)/m

m even,

where m denotes the multiplicative order of q ∈
(Z/pnZ)×, and $ ∈ {−1, 0, 1} satisfies Lq(Sym2E,X) =(
1−$qX

)
.

The proof of this result is written up in the doc-
toral dissertation [Ward 09]. Briefly, one partitions the
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E = 27A(1) p 7 13 19 31 37 43 61 67 73 79 97
µcy

E ≤ 2 0 0 0 0 0 ≤ 2 0 ≤ 2 ≤ 2 0

E = 32A(1) p 5 13 17 29 37 41 53 61 73 89 97
µcy

E 0 0 0 0 0 0 0 ≤ 2 0 ≤ 2 0

E = 49A(1) p 11 23 29 37 43 53 67 71 79 107 109
µcy

E ≤ 2 0 0 0 ≤ 4 ≤ 2 ≤ 2 ≤ 2 0 0 0

TABLE 4. Some numerical bounds of µcy
E .

character group of Gal
(
K+
n /Q

)
into even characters

ψ : Gal
(
Q(µpn)/Q

)
→ C×, and into the family of twists

ψ ⊗
(−D ) with ψ odd. Decomposing the L-factor above

q into these two distinct pieces, the ψ-twists yield

Lq
(
Sym2E/Q(µpn)+, X

)

= Lq
(
Sym2H1

p (E)⊗ RegQ(µpn )+/Q, X
)
,

and similarly, the ψ ⊗
(−D )-twists contribute

Lq
(
Sym2E ⊗

(−D )/Q(µpn), X
)

Lq
(
Sym2E ⊗

(−D )/Q(µpn)+, X
)

=
Lq
(
Sym2H1

p (E)⊗
(−D )⊗ RegQ(µpn )/Q, X

)

Lq
(
Sym2H1

p (E)⊗
(−D )⊗ RegQ(µpn )+/Q, X

) .

The proof of our proposition reduces to the following
little bit of linear algebra.

Lemma 6.2. Let V be a p-adic representation, and M/Q

a finite Galois extension. Provided the prime q 6= p is
unramified in M/Q, we obtain

Lq
(
V ⊗ RegM/Q, X

)
=
∏

i

(
1− (λiX)f

)r
,

where Lq(V,X) =
∏
i

(
1 − λiX

)
, the quantity f is the

residue degree of q in M/Q, and r denotes the number of
primes of M lying over q.

Observe that the residue class degree of q in the ex-
tension Q(µpn)/Q is exactly m, while the residue class
degree of q inside Q(µpn)+/Q is m if m is odd, and m/2
if m is even.

Taking V = Sym2H1
p (E), M = Q(µpn)+, then

Lemma 6.2 disposes of the even ψ-twists. On the other
hand, let us take V = Sym2H1

p (E)⊗
(−D ) and consider

M firstly as the CM field Q(µpn), and secondly as its
subfield Q(µpn)+; the ψ⊗

(−D )-twists’ contribution can
be dealt with (using Lemma 6.2 again), because

Lq

(
Sym2H1

p (E)⊗
(−D)

, X

)
=
(
1−$qX

)
×
(
1−qX

)
.

On remarking that $m = $ when m is odd and $m =∣∣$
∣∣
∞ when m is even, the truth of Proposition 6.1 follows

after some easy algebraic manipulations.
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