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We give new examples of noncongruence subgroups Γ ⊂
SL2(Z) whose space of weight-3 cusp forms S3(Γ) admits a ba-
sis satisfying the Atkin–Swinnerton-Dyer congruence relations
with respect to a weight-3 newform for a certain congruence
subgroup.

1. INTRODUCTION

A finite-index subgroup of SL2(Z) is a noncongruence
subgroup if it does not contain Γ(N) for any N ≥ 1.
The study of modular forms on such subgroups was ini-
tiated by Atkin and Swinnerton-Dyer, who discovered
experimentally the congruences now bearing their names
[Atkin et al. 71]. Subsequently, Scholl proved congru-
ences satisfied by the coefficients of modular forms on
noncongruence subgroups [Scholl 85a, Scholl 85b, Scholl
87, Scholl 88, Scholl 93]. A refined conjecture has re-
cently been put forward by Atkin, Li, Long, and Yang
[Li et al. 05a, Atkin et al. 08, Long 08]. See [Li et al.
05b] for a general survey.

In this paper we give new examples of noncongruence
subgroups having a basis of cuspidal modular forms satis-
fying the Atkin–Swinnerton-Dyer (ASwD) congruences.
We give only experimental evidence of our results, ob-
tained using Magma, Mathematica, and Pari. In a later
publication, we will give a detailed treatment of one of
our examples.

1.1 Notation

We assume familiarity with the action of SL2(R) on the
upper half complex plane H, with congruence subgroups
such as Γ0(N), Γ1(N), Γ0(N), Γ1(N), and with Mk(Γ)
and Sk(Γ) the finite-dimensional vector spaces of mod-
ular forms and cusp forms for Γ, and Sk(Γ0(N), χ) the
space of cusp forms with character χ : (Z/N)∗ → C∗.
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It is well known (see [Shimura 71] for details) that
Sk(Γ0(N), χ) has a basis of Hecke eigenforms, which have
q-expansions

f(z) =
∑
n≥1

an(f)qn, where q = exp(2πiz),

with an satisfying the relations

anp − apan + χ(p)pk−1an/p = 0, an = an(f), (1–1)

for all positive integers n and primes p � N , taking an/p =
0 if p � n.

1.2 Atkin–Swinnerton-Dyer Congruences

If Γ is a noncongruence subgroup, then in general Sk(Γ)
has no basis of forms satisfying (1–1). Instead, it is con-
jectured that certain congruences hold, as in the following
definition.

Definition 1.1. [Li et al. 05a] Suppose that the non-
congruence subgroup Γ has cusp width μ at infinity,
and that h ∈ Sk(Γ) has an M -integral q1/μ-expansion
h =

∑
an(h)qn/μ for some M ∈ Z. (cf. [Scholl 85a,

Proposition 5.2]). Let f =
∑

cn(f)qn be a normalized
newform of weight k, level N , character χ. The forms
h and f are said to satisfy the Atkin–Swinnerton-Dyer
congruence relation if for all primes p not dividing MN

and for all n ≥ 1,

(anp(h) − cp(f)an(h) + χ(p)pk−1an/p(h))/(np)k−1

(1–2)

is integral at some place dividing p.

Definition 1.2. We say that Sk(Γ) has an ASwD basis
if there exist a basis h1, . . . , hn of Sk(Γ) and normalized
newforms f1, . . . , fn such that each pair (hi, fi) satisfies
the ASwD congruence relation in Definition 1.1.

Note that in the above definition, the choices of
h1, . . . , hn and f1, . . . , fn may depend on the prime num-
ber p. There are examples known for which the same hi

and fj work for every prime p (actually all but a finite
number of exceptional primes). On the other hand, there
are examples known for which the choice of the ASwD
basis depends on the value of p modulo some modulus N

(see the examples in Tables 2 and 3).

2. STATEMENT OF RESULTS

2.1 Tables

For the noncongruence subgroups Γ considered, there are
two main issues addressed:

1. Modularity of the l-adic Scholl’s representation
S3(Γ) attached to the cusp forms of weight 3.

2. Giving a basis of S3(Γ) that satisfies ASwD congru-
ences.

In our cases the dimension of S3(Γ) is 2, so the l-adic
representation of Gal(Q/Q) is 4-dimensional. We find
that this 4-dimensional representation breaks up into
two 2-dimensional λ-adic representations, each of which
is isomorphic to the 2-dimensional representations that
Deligne constructed for Hecke eigenforms f on congru-
ence subgroups. Thus, each S3(Γ) should be associated
to a pair f1, f2 of Hecke eigenforms on congruence sub-
groups. In the examples, these are one and the same
form, or conjugate forms or base extensions of one form
to a quadratic extension of Q.

There are four main cases that we study. The data
on these is summarized in Tables 1 2, 4, and 5. These
cases are further divided into subcases labeled 1a, 1b, 2a,
2b, 2c, 2d, 3a, 3b, 4a, and 4b. In those tables we define
modular forms h1, h2, and f , where h1 and h2 span S3(Γ)
for the noncongruence subgroup Γ given in Definition 3.1,
and f is a weight-3 Hecke eigenform for some congruence
subgroup. For each group we give a basis (h1, h2) of
S3(Γ), in some cases depending on the prime p, and a
newform f with (hi, f) satisfying the ASwD congruence
relation. Most forms are given in terms of the Dedekind
eta function,

η(z) = q1/24
∞∏

n=1

(1 − qn), where q = e2πiz. (2–1)

Our experiments support the following theorem:

Theorem 2.1. Let ρ be the l-adic representation con-
structed by Scholl for S3(Γ) for an appropriate choice
of Q-model of the curve XΓ. For the L-function of the
corresponding representations we have

L(s, ρ) = L(s, f)L(s, f) for 1a, 1b,

L(s, ρ) = L(s, f)L(s, f) for 3a, 3b, 4a, 4b.

A complete proof for cases 1a and 1b exists. We do not
reproduce it here, since it is very similar to other pub-
lished examples. The L-function for examples 2a, 2b ex-
hibits new and interesting features and will be discussed
in a future work.

2.2 The Examples

All the noncongruence subgroups Γ discussed in this pa-
per are of index three inside a congruence subgroup G
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that itself is one of the index-12 genus-0 subgroups con-
sidered by Beauville. Each of these gives rise to a family
of elliptic curves EG → XG = (G \ H)∗ ∼= P1(C) with
ramification over the four cusps of G. For each of these,
we select two of the cusps of G to construct a subgroup
Γ such that the corresponding covering

XΓ
∼= P1(C) −→ XG

∼= P1(C)

branches only over the two chosen cusps. We de-
scribe these coverings in the form r3 = m(t), where r

(respectively t) is a generator of the function field of
XΓ (respectively XG), i.e., a Hauptmodul, which exists
since these curves have genus 0. See Table 12. We have
also considered arithmetic twists of a given covering ob-
tained by varying some of the constants in the expression
of m(t). This leads to different models of Scholl’s
l-adic representation attached to S3(Γ), i.e., representa-
tions of Gal(Q/Q) that become isomorphic as represen-
tations of Gal(Q/K) for a finite extension K/Q. It is an
important point that in contrast to the case of classical
modular curves for congruence subgroups, there are no
canonical models defined over a number field. Scholl’s
construction of his l-adic representations depends on a
choice of a model. Moreover, this choice is subject to a
number of hypotheses: generally that there should be a
model defined over Q, and a cusp that is Q-rational. This
cusp is used for the expansions of modular forms whose
coefficients satisfy ASwD congruences.

The l-adic representations that Scholl constructs that
are associated to Sk(Γ) for noncongruence subgroups Γ
have very different properties from the corresponding
representations constructed by Deligne for congruence Γ.
The main point is that in the congruence case, the Hecke
algebra acts and commutes with the Galois action so that
the 2d-dimensional representation (d = dim Sk(Γ)) splits
into 2-dimensional λ-adic representations. This is no
longer the case in general for noncongruence subgroups.
It is the case in our examples that the 4-dimensional rep-
resentations attached to S3(Γ) factor into 2-dimensional
pieces. Geometrically this is due to the presence of extra
symmetries given by involutions and/or isogenies of our
elliptic surfaces.

2.3 Outline

In Section 3 we define the congruence and noncongruence
subgroups we will be working with. Section 4 gives the
method we use to construct the noncongruence forms h1,
h2. Section 5 explains how we computed the traces of
Frobenius elements in the l-adic Scholl’s representation
attached to our group Γ. The main point is to count

the number of rational points over Fp and Fp2 of the
elliptic modular surface EΓ. In Section 6 we discuss in-
volutions and isogenies of these elliptic surfaces. Finally,
in Section 7 we provide the experimental evidence for the
ASwD congruences.

3. DESCRIPTION OF THE NONCONGRUENCE
SUBGROUPS

3.1 Beauville’s Families

We start with certain index-12 genus-0 torsion-free
congruence subgroups of PSL2(Z), listed in Table 6
[Sebbar 01]. Figure 1 shows corresponding fundamen-
tal domains and generating matrices. Note that these
matrices generate index-24 subgroups of SL2(Z), though
the projectivizations have index 12 in PSL2(Z).

Table 6 gives equations for the associated families of
elliptic curves [Beauville 82]. Table 7 gives the a1, . . . , a6

of the Weierstrass form y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6. The Hauptmodul t(z) listed in Table 6 is such
that j(Et(z)) = j(z).

3.2 The Noncongruence Subgroups

We will work with certain index-3 normal subgroups of
Γ1(6) and Γ0(8) ∩ Γ1(4). The case Γ1(5) has been stud-
ied in [Li et al. 05a]. The fundamental domain of Γ is
a union of three copies of a fundamental domain for G,
corresponding to the three cosets of Γ in G. The cover-
ings are completely determined by the choice of two of
the four cusps, taken to be points of ramification of the
cubic cover. This choice determines the cusp widths for
the index-3 subgroups. These data are given in Table 8.

Since
(
4
2

)
= 6, there are six index-3 subgroups in each

case; however, for Γ1(6), the subgroup ramified at 0, 1
2

is Γ1(6) ∩ Γ0(18), and the subgroup ramified at ∞, 1
3 is

Γ1(6) ∩ Γ0(3), which are congruence subgroups, so only
four subgroups are listed in this case.

From the fundamental domains, shown in Figures 1,
2, 3, and 4, we obtain generators and cusp widths [Kulka-
rni 91], allowing us to make the following definition.

Definition 3.1. We let Γ24.6.16 , Γ83.6.3.13 , Γ24.3.23.13 ,
Γ83.23.32 , Γ24.3.23.13B, Γ83.23.32B be index-3 genus-0 sub-
groups of Γ0(8)∩Γ1(4), and Γ18.6.33.13 , Γ9.64.13 , Γ9.63.3.23 ,
Γ18.34.23 index-3 genus-0 subgroups of Γ1(6), defined by
their generators as given in Table 9.

By comparing cusp widths in Tables 14 and 16 with
possible cusp widths of congruence subgroups in Ta-
ble 10, we obtain the following result.
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1a. Basis of S3(Γ24.6.16 ):

h1(z) = 3

√
η(z)4η(4z)20

η(2z)6
= q − 4

3
q2 +

8

9
q3 − 176

81
q4 + · · ·

h2(z) = 3

√
η(4z)16η(2z)6

η(z)4
= q +

4

3
q2 +

8

9
q3 +

176

81
q4 + · · ·

Associated newform in S3(Γ0(48), χ), where χ(Frobp) =
(

−3
p

) (
−4
p

)
:

f(z) =
η(4z)9η(12z)9

η(2z)3η(6z)3η(8z)3η(24z)3
= q + 3q3 − 2q7 + 9q9 − 22q13 + · · ·

The ASwD basis is h1, h2.

1b. Basis of S3(Γ83.23.32):

h1(z) = 3

√
η(2z)20η(8z)4

η(4z)6
= q1/3 − 20

3
q4/3 +

128

9
q7/3 − 400

81
q10/3 + · · ·

h2(z) = 3

√
η(2z)16η(4z)6

η(8z)4
= q2/3 − 16

3
q14/3 +

38

9
q26/3 +

1696

81
q38/3 + · · ·

The associated newform is a twist f ⊗ χ of the f in case 1a.
The ASwD basis is h1, h2.

TABLE 1. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

2a. Basis of S3(Γ83.6.3.13 ):

h1(z) = 3

√
η(z)4η(2z)10η(8z)8

η(4z)4
= q − 4

3
q2 − 40

9
q3 +

400

81
q4 +

1454

243
q5 + · · ·

h2(z) = 3

√
η(z)8η(4z)10η(8z)4

η(2z)4
= q − 8

3
q2 +

8

9
q3 +

32

81
q4 − 82

243
q5 + · · ·

Associated newform in S3(Γ0(432), χ), where χ(Frobp) =
(

−4
p

)
:

f(z) = f1(12z) + 6
√

2f5(12z) +
√−3f7(12z) + 6

√−6f11(12z),
where

f1(z) = η(2z)3η(3z)
η(6z)η(z)

E6(z) f5(z) = η(z)η(2z)3η(3z)3

η(6z)

f7(z) = η(6z)3η(z)
η(2z)η(3z)

E6(z) f11(z) = η(3z)η(z)3η(6z)3

η(2z)

and E6(z) = 1 + 12
∑

n≥1(σ(3n) − 3σ(n))qn, where σ(n) =
∑

d|n d.

Atkin–Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2

if p ≡ 2 mod 3 basis is h1 ± αh2, α12 = 4.

2b. Basis of S3(Γ24.3.23.13):

h1(z) = 3

√
η(2z)22η(8z)8

η(z)4η(4z)8
= q +

4

3
q2 − 40

9
q3 − 400

81
q4 +

1454

243
q5 + · · ·

h2(z) = 3

√
η(2z)20η(4z)2η(8z)4

η(z)8
= q +

8

3
q2 +

8

9
q3 − 32

81
q4 − 82

243
q5 + · · ·

The associated newform and the ASwD basis
are given in exactly the same way as in case 2a.

TABLE 2. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

Theorem 3.2. The groups in Definition 3.1 are noncon-
gruence subgroups.

3.3 Hauptmoduls and Covering Maps

Throughout this paper we fix our choice of identification
of X(Γ0(8)∩Γ1(4)) and X(Γ1(6)) with the projective line

P1, with parameters t8 and t6 respectively. As functions
of z in the upper half complex plane, t8(z) and t6(z) are
given in terms of the Dedekind eta function, as listed in
the last column of Table 7:

t8(z) =
η(z)8η(4z)4

η(2z)12
and t6(z) =

1
9

η(6z)4η(z)8

η(3z)8η(2z)4
.
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2c. Basis of S3(Γ83.6.3.13B); r = q1/3:

h1(z) = 3

√
η(z)8η(4z)22

η(8z)4η(8z)8
= r2 − 8

3
r5 +

20

9
r8 − 256

81
r11 − 64

243
r14 + · · ·

h2(z) = 3

√
η(z)4η(2z)2η(4z)20

η(8z)8
= r − 4

3
r4 − 16

9
r7 +

112

81
r10 + · · ·

The associated newform is as in case 2a. The ASwD basis is:
if p ≡ 1 mod 3 basis is h1, h2

if p ≡ 5 mod 12 basis is h1 ±
√

2
3√2

h2

if p ≡ 11 mod 12 basis is h1 ±
√−2
3√2

h2

2d. Basis of S3(Γ24.3.23 .13B):

h1(z) = 3

√
η(2z)14η(4z)16

η(z)4η(8z)8
= q1/3 +

4

3
q4/3 − 16

9
q7/3 − 112

81
q10/3 − 1534

243
q13/3 + · · ·

h2(z) = 3

√
η(2z)16η(4z)14

η(z)8η(8z)4
= q2/3 +

8

3
q5/3 +

20

9
q8/3 +

256

81
q11/3 − 64

243
q14/3 + · · ·

The associated newform is as in case 2a, and the ASwD basis is as in case 2c.

TABLE 3. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

3a. Basis of S3(Γ18.6.33 .13)

h1(z) = 3

√
η(z)4η(2z)7η(6z)11

η(3z)4
= q − 4

3
q2 − 31

9
q3 +

400

81
q4 +

104

243
q5 + · · ·

h2(z) = 3

√
η(3z)4η(6z)7η(2z)11

η(z)4
= q +

4

3
q2 − 7

9
q3 − 112

81
q4 − 616

243
q5 + · · ·

Newform in S3(Γ0(243), χ), where χ(Frobp) =
(

−3
p

)
.

f(z) = q + 3iq2 − 5q4 + 6iq5 + 11q7 − 3iq8 − 18q10 + · · ·
Atkin–Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2

if p ≡ 2 mod 3 basis is h1 ± i 3
√

3h2

3b. Basis of S3(Γ9.63 .3.23); r = q1/3.

h1(z) = 3

√
η(z)7η(2z)4η(3z)11

η(6z)4
= r − 7

3
r4 − 19

9
r7 +

193

81
r10 +

2306

243
r13 + · · ·

h2(z) = 3

√
η(z)11η(3z)7η(6z)4

η(2z)4
= r2 − 11

3
r5 +

23

9
r8 − 13

81
r11 + · · ·

The associated newform and the ASwD basis are given in
exactly the same way as in case 3a.

TABLE 4. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

The values of these functions at the cusps are as in
Table 11.

Since the ramification points of the covering maps Γ \
H → G \H are at cusps as in Table 8, the covering maps
are given in each case by a map

r �→ r3 = m(t),

where the maps m corresponding to each of our sub-
groups are as in Table 12.

4. CONSTRUCTING ELEMENTS OF S3(Γ)

4.1 Dimension

For odd k, [Shimura 71, Theorem 2.25] gives the following
formula for dim Sk(Γ) for a genus-g subgroup −I /∈ Γ of
SL2(Z):

dimSk(Γ) = (k − 1)(g − 1) +
1
2
(k − 2)u +

1
2
(k − 1)u′

+
r∑

i=1

k
ei − 1
2ei

.
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4a. Basis of S3(Γ9.64.13)

h1(z) = 3

√
η(z)13η(6z)14

η(2z)2η(3z)7
= q − 13

3
q2 +

32

9
q3 +

670

81
q4 − 3577

243
q5 + · · ·

h2(z) = 3

√
η(z)14η(6z)13

η(2z)7η(3z)2
= q − 14

3
q2 +

56

9
q3 − 58

81
q4 +

266

243
q5 + · · ·

Associated newform in S3(Γ0(486), χ), where χ(Frobp) =
(

−3
p

)
.

f(z) = q −√−2q2 − 2q4 + 3
√−2q5 − 7q7 + 2

√−2q8 + 6q10 − 3
√−2q11 + 5q13

Atkin–Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2

if p ≡ 2 mod 3 basis is ?

4b. Basis of S3(Γ18.34.23); r = q1/3:

h1(z) = 3

√
η(2z)13η(3z)14

η(6z)7η(z)2
= r +

2

3
r4 − 28

9
r7 − 482

81
r10 − 736

243
r13 + · · ·

h2(z) = 3

√
η(2z)14η(3z)13

η(6z)2η(z)7
= r2 +

7

3
r5 +

14

9
r8 − 148

81
r11 − 1708

243
r14 + · · ·

The associated newform is the same as in case 4a. The ASwD basis is:
if p ≡ 1 mod 3 basis is h1, h2

if p ≡ 2 mod 3 basis is h1 ±√−2 3
√

3h2

TABLE 5. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

Group Elliptic Family j-Invariant

Γ(3) (x3 + y3 + z3) = txyz t3(t3+216)3

(t3−27)3

Γ(2) ∩ Γ1(4) x(x2 + z2 + 2zy) = tz(x2 − y2) (t4−t2+1)3

t4(t−1)2(t+1)2

Γ1(5) x(x − z)(y − z)t = y(y − x)z − (t4+12t3+14t2−12t+1)3

t5(t2+11t−1)

Γ1(6) (xy + yx + zx)(x + y + z) = txyz (3t−1)3(3t3−3t2+9t−1)3

(t−1)3t6(9t−1)

Γ0(8) ∩ Γ1(4) (x + y)(xy + z2)t = 4xyz −16 (t4−16t2+16)3

t8(t+1)(t−1)

Γ0(9) ∩ Γ1(3) (x2y + y2z + z2x) = txyz t3(t3−24)3

t3−27

TABLE 6. Data for Beauville’s elliptic surfaces.

Level Coefficients of Weierstrass Form t as a

a1 a2 a3 a4 a6 Hauptmodul

3 0 t2 0 −72t −8(4t2 + 27)
η( 1

3 z)3

η(3z)3
+ 3

4 0 4 + 4t2 0 16t2 0 1
2

η(z)12

η(2z)8η( 1
2 z)4

5 t + 1 t t 0 0 q
1
5

∞∏
n=0

e=1,−1

((
1−q

n+e 1
5

)
(

1−q
n+e 2

5

)
)5

6 t + 1 t − t2 t − t2 0 0 1
9

η(6z)4η(z)8

η(3z)8η(2z)4

8 4 t2 4t2 0 0 η(z)8η(4z)4

η(2z)12

9 0 t2 0 8t 16 27η(9z)3

η(z)3
+ 3

TABLE 7. Weierstrass equations for Beauville’s elliptic families.
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Γ1(4) ∩ Γ0(8)( 1 1
0 1

)
( 1 0

8 1

) (
5 −2
8 −3

)

3
4

( 1 1
0 1

)

1
4

1
2

28

0 2
3

1
3

1
6− 1

3

1

Γ0(9) ∩ Γ1(3)

( 1 0
9 1

) (
−2 1
−9 4

)
9

Γ(3)

Γ1(5)
Γ1(6)

Γ(2) ∩ Γ0(4) ( 1 2
0 1

)
( 1 0

4 1

) (
5 −4
4 −3

)

( 1 0
5 1

)
(

11 −5
20 −9

)

( 1 1
0 1

)

( 1 0
6 1

)

3
2

1
2 1− 1

2

2
3− 1

3 0 1
2

1
3 − 2

5
2
5

3
5

1
2

( 1 1
0 1

)

(
7 −3
12 −5

)

( 1 0
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) (
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)

0−1 1
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0
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3 3
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1
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1 1
4

2
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1
10

1
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1
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2
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FIGURE 1. Fundamental domains for torsion-free index-24 congruence subgroups in SL2(Z).

cusps and subgroups of Γ0(8) ∩ Γ1(4)

cusp z ∞ 0 1
2

1
4

width 1 8 2 1

subgroup ramified cusps
indicated by �

Γ24.6.16 � �
Γ83.23.32 � �
Γ83.6.3.13 � �
Γ24.3.23 .13 � �
Γ83.6.3.13B � �
Γ24.3.23 .13B � �

cusps and subgroups of Γ1(6)

cusp z ∞ 0 1
2

1
3

width 1 6 3 2

subgroup ramified cusps
indicated by �

Γ18.6.33 .13 � �
Γ9.63.3.23 � �
Γ9.64.13 � �
Γ18.34 .23 � �

TABLE 8. Ramification points for triple covers ofX(Γ0(8) ∩ Γ1(4)) and X(Γ1(6)), with corresponding subgroups.

The ei are orders of elliptic points, u is the number of reg-
ular cusps, and u′ the number of irregular cusps. Using
this formula, we find that

dimS3(Γ) = 2,

for Γ equal to any of the groups in Definition 3.1.

4.2 Method of Constructing Elements of S3(Γ)

Suppose that Γ has index 3 in G, one of the groups in
Table 6, and that the corresponding covering is ramified
at cusps c1 and c2.

Let t be a Hauptmodul for G, e.g., as in [Conway and
Norton 79]. By a transformation, take t with t(c1) = 0
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−10

g3tg−3

0

t = ( 1 0
1 1 )

−2−4 2 4 6 8 10 14−6−8

t

g6

g = ( 1 4
0 1 )

g−1tg g2tg−2g−2tg2
(

5 −16
1 −3

)
= gtg−1

s =
(

0 1−1 0

) Fundamental domain for

1 1
1
2

sΓ24.6.16s−1

−10 12

t = ( 1 1
0 1 )

g = ( 1 0
8 1 )

t6

− 3
2

1
2

g

0

t2gt−2
t2st−1s−1t−2

Fundamental domain for

1
8

t−2st−1s−1t2
t−2gt2

− 1
6− 1

2
−2− 5

2
− 7

2

st−1s−1

5
2

s =
(

1 0−2 1

)

3
2 2

sΓ836.3.13s−1

1

Γ832332

g = ( 1 0
8 1 )

g

− 1
4

0 1
4

1
2

3
4

1 5
4

− 1
2

− 3
4

−1− 5
4

t−2gt2 t−1gt t3gt−3
(

5 −2
8 −3

)
= tgt−1

t2gt−2

t6

t =
(

1 1/2
0 1

)
Fundamental domain for

8 21
2

−4 40

s =
(

0 1−1 0

)
t = ( 1 0

1 1 )

128−12 −8

t

− 4
3

Fundamental domain for

sΓ24.3.23 .13s−1g = ( 1 2
0 1 ) g12

g−4tg4 g4tg−4

g−1t2gg−5t2g5 g3t2g−3

6−2

1
2

FIGURE 2. Fundamental domains for conjugates of some index-3 subgroups of Γ0(8) ∩ Γ1(4).

and t(c2) = ∞. Then 3
√

t is a Hauptmodul for Γ. Let f ∈
M3(G). Then 3

√
tf ∈ A3(Γ), the space of automorphic

modular forms of weight 3 for Γ. If f has zeros of high
enough order where t has poles, then 3

√
tf and 3

√
t2f are

in S3(Γ).

We give modular forms in terms of the Dedekind eta
function, using the data given in [Martin 96]. Explicit
details of the forms and their poles and zeros at all cusps
are given in Tables 13, 14, 15, and 16. Note that since
the f and t in all cases are eta products, the only possible
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tgt−1

− 3
4

1
4

1
2

g = ( 1 0
8 1 )

h =
(

5 −1
16 −3

) Fundamental domain for

g =
(

5 −2
8 −3

)
Fundamental domain for

Γ24.3.23 .13B

− 3
2

3
2

1

Γ83.6.3.13B

1
6

0− 1
2−1 5

4
7
6

t3

t = ( 1 1
0 1 )

g h tht−1
tgt−1t−1gt t−1ht

t = ( 1 1
0 1 )

h =
(

5 −1
16 −3

)

10−1 2

t3

3
2

g

1
2

− 5
6

− 1
2

− 2
3

− 3
4

1
3

1
4

5
4

4
3

t−1ht t−1gt
h tht−1

FIGURE 3. Fundamental domains for conjugates of some index-3 subgroups of Γ0(8) ∩ Γ1(4).

Γ Generators

Γ24.6.16 ( 1 0
24 1 ) ,

(
9 −1
64 −7

)
,
(

5 −1
16 −3

)
, ( 1 1

0 1 ) , ( −3 −1
16 5 ) , (−7 −1

64 9 ) , ( −11 −1
144 13 ) .

Γ83.23.32 ( 1 3
0 1 ) , ( −7 −8

8 9 ) , (−3 −2
8 5 ) , ( 1 0

8 1 ) ,
(

5 −2
8 −3

)
,
(

9 −8
8 −7

)
,
(

13 −18
8 −11

)
.

Γ83.6.3.13
(−11 6
−24 13

)
,
(

41 −25
64 −39

)
,
(

49 −32
72 −47

)
, ( 1 1

0 1 ) , ( 1 0
8 1 ) ,

(
25 −9
64 −23

)
,
(

81 −32
200 −79

)
.

Γ24.3.23 .13 ( 1 0
24 1 ) ,

(
21 −2
200 −19

)
,
(

9 −1
64 −7

)
,
(

5 −2
8 −3

)
, ( 1 1

0 1 ) , ( −11 −2
72 13 ) , ( −7 −1

64 9 ) .

Γ83.6.3.13B ( 1 3
0 1 ) , ( 1 0

8 1 ) ,
(

5 −1
16 −3

)
, ( −7 −8

8 9 ) , (−11 −9
16 13 ) ,

(
9 −8
8 −7

)
,
(

53 −4
40 −3

)
.

Γ24.3.23 .13B ( 1 3
0 1 ) , ( 1 0

8 1 ) ,
(

5 −2
8 −3

)
, (−7 −8

8 9 ) , ( −3 −2
8 5 ) ,

(
9 −8
8 −7

)
,
(

53 −5
32 −3

)
.

Γ18.6.33 .13 ( 1 0
18 1 ) ,

(
25 −3
192 −23

)
,
(

7 −1
36 −5

)
,
(

7 −3
12 −5

)
, ( 1 1

0 1 ) , (−11 −3
48 13 ) , ( −5 −1

36 7 ) .

Γ9.63.3.23 ( 1 3
0 1 ) , ( −5 −6

6 7 ) , (−11 −8
18 13 ) , ( 1 0

6 1 ) ,
(

7 −2
18 −5

)
,
(

7 −6
6 −5

)
,
(

25 −32
18 −23

)
.

Γ9.64.13
(−17 6
−54 19

)
,
(

127 −49
324 −125

)
,
(

61 −24
150 −59

)
, ( 1 1

0 1 ) , ( 1 0
6 1 ) ,

(
91 −25
324 −89

)
,
(

85 −24
294 −83

)
.

Γ18.34 .23 ( 1 3
0 1 ) , ( −11 −8

18 13 ) , ( −5 −3
12 7 ) ,

(
7 −2
18 −5

)
,
(

7 −3
12 −5

)
,
(

25 −32
18 −23

)
,
(

19 −27
12 −17

)
.

TABLE 9. Generators for Table 3.1.

6 − 6 − 6 − 6 − 3 − 3 − 3 − 3
9 − 9 − 9 − 3 − 3 − 1 − 1 − 1
9 − 9 − 3 − 3 − 3 − 3 − 3 − 3
10 − 10 − 5 − 5 − 2 − 2 − 1 − 1
18 − 9 − 2 − 2 − 2 − 1 − 1 − 1
27 − 3 − 1 − 1 − 1 − 1 − 1 − 1

TABLE 10. Possible cusp widths of index-36 genus-zero torsion-free subgroups of PSL2(Z), taken from [Sebbar 01,
Section 7, Table 2].

Values of t8
cusp c ∞ 0 1

2
1
4

t8(c) 1 0 ∞ −1

Values of t6
cusp c ∞ 0 1

2
1
3

t8(c)
1
9

0 1 ∞

TABLE 11. Values of Hauptmoduls at cusps.
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2
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( 1 0
1 1
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t
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3
1

g6tg−1
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(
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t =
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0 1

)
g6 =

( 1 0
6 1

)
g2 =

(
7 −2
18 −5

)

0 1−1 2
5

1
2

− 1
2

2
3

21
3

g2

g3

3

t−1g2t

4
3

tg2t−1

tg3t−1
t−1g3t

2

Fundamental domain for Γ18.34.23

t3

g6

g6 =
( 1 0
6 1

)

10−1

s =
(

1 0
−3 1

)

1
5− 1

3
−3 −2 5

3
9
5 32

6

g2 =
( 1 2
0 1

)
g3
2

g1g−1
2 g1g2

g−1
2 g6g2 g−1

2 g6g2
g−1
2 g1g2

Fundamental domain for sΓ9.64.13 s−1

1

FIGURE 4. Fundamental domains for conjugates of some index-3 subgroups of Γ1(6).

zeros and poles are at the cusps, so no other points need
be considered.

In each case of the subgroups given in Tables 14
and 16, we list the forms 3

√
t, f , h1 = 3

√
tf , h2 = 3

√
t2f .

In each case, the basis of the space of weight-3 forms
is given by the forms denoted by h1 and h2. The q-
expansions of the forms h1 and h2 are given in Tables 17
and 18.

5. TRACES AND POINT COUNTING

As described by Scholl, corresponding to each of these
families, we have a representation on parabolic cohomol-
ogy:

ρ = ρl : Gal(Q/Q) → H1(X(Γ), j∗R1f∗Ql). (5–1)

Here E◦(Γ) is a family of elliptic curves over Y (Γ), with

Y (Γ) = Γ \ H, X(Γ) = (Γ \ H)∗

and with natural maps

E◦(Γ)
f−→ Y (Γ)

j
↪→ X(Γ).

We let F = j∗R1f∗Ql, an l-adic sheaf for the étale topol-
ogy on X(Γ). We computed the traces of the Frobenius
elements of this representation via point counting, as in
[Li et al. 05a] and [Atkin et al. 08].

5.1 Equations for Elliptic Surfaces Associated with the
Noncongruence Subgroups

As in Section 3.1, associated to Γ0(8)∩ Γ1(4) and Γ1(6),
we have families of elliptic curves E8(t) and E6(t) as given
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subgroup m(t) m−1(r3)

Γ24.6.16 t r3

Γ83.23.32
1+t
1−t

r3−1
r3+1

Γ83.6.3.13
t+1
4

4r3 − 1

Γ24.3.23 .13
2(1+t)

t
2

r3−2

Γ83.6.3.13B
t−1
4

4r3 + 1

Γ24.3.23 .13B
2(1−t)

t
2

r3+2

subgroup m(t) m−1(r3)

Γ18.6.33 .13 t/9 9r3

Γ9.63.3.23
1−9t
3−3t

1−3r3

9−3r3

Γ9.64.13
8

3−3t
1 − 8

3r3

Γ18.34 .23
1−9t
24t

1
24r3+9

TABLE 12. Covering maps corresponding to subgroups of Γ0(8) ∩ Γ1(4) and Γ1(6).

cusps (and widths) 1
2
(2) 0(8) ∞(1) 1

4
(1)

forms for Γ0(8) ∩ Γ1(4) weight order of vanishing

t = η(z)8η(4z)4

η(2z)12
= 1 − 8q + 32q2 + · · · 0 −1 1 0 0

t+1
2

= η(z)4η(4z)14

η(8z)4η(2z)14
= 1 − 4q + 16q2 + · · · 0 −1 0 0 1

t+1
2t

= η(4z)10

η(8z)4η(2z)2η(z)4
= 1 + 4q + 16q2 + · · · 0 0 −1 0 1

4(t+1)
(1−t)

= η(4z)12

η(8z)8η(2z)4
= q−1 + 4q + 2q3 + · · · 0 0 0 −1 1

1−t
8

= η(z)4η(4z)2η(8z)4

η(2z)10
= q − 4q2 + 12q3 + · · · 0 −1 0 1 0

Ea = η(4z)4η(2z)6

η(z)4
3 1 0 1 1

Eb =
(

2t
t+1

)
Ea = η(2z)8η(8z)4

η(4z)6
3 1 1 1 0

Ec =
(

4(t+1)
1−t

)
Eb = η(4z)6η(2z)4

η(8z)4
3 1 1 0 1

TABLE 13. Orders of vanishing at cusps for forms for Γ0(8) ∩ Γ1(4).

in Table 7:

E8(t) : y2 + 4xy + 4t2y = x3 + t2x2, (5–2)

E6(t) : y2 + (t + 1)xy + (t − t2)y = x3 + (t − t2)x2.
(5–3)

Thus we have elliptic surfaces E8 and E6, with fibrations

f8 : E8 → X(Γ0(8) ∩ Γ1(4))

and

f6 : E6 → X(Γ1(6)),

with fibers given by f−1
8 (t) = E8(t) and f−1

6 (t) = E6(t).
By composing each of the covering maps given in Ta-

ble 12 with the fibration f8 or f6, associated with our
noncongruence subgroups we have the families of elliptic
curves given in Table 19. Our notation is explained by
example: The elliptic surface E(Γ83.23.32) corresponding
to Γ83.23.32 has a fibration

f : E(Γ83.23.32) → X(Γ83.23.32),

with fiber f−1(r) having equation

y2 + 4xy + 4
(

r3 − 1
r3 + 1

)2

y = x3 + 4
(

r3 − 1
r3 + 1

)2

x2,

i.e., the t in (5–2) is replaced by m−1(r3) = r3−1
r3+1 , where

m(t) = 1+t
1−t . This family of elliptic curves is denoted

by E8

(
r3−1
r3+1

)
. The other families are constructed and

denoted in a similar way.
We computed the traces of the Frobenius by summing

local terms using the following theorem:

Theorem 5.1.

Tr(Frobq |H1(X(Γ), F)) = −
∑

x∈X(Fq)

Tr(Frobq |Fx).

Proof: This follows from the Grothendieck–Lefschetz
trace formula because the other terms Hi(X(Γ), F), i 
=
1, are zero.

The following theorem is also well known:
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cusps 1/2 0 − 1
8

∞ 1
8

−1
4

1
4

1
12

forms for width 6 24 1 1 1 1 1 1
Γ24.6.16 weight order of vanishing of form at cusps
3
√

t 0 −1 1 0 0 0 0 0 0
Ea 3 3 0 1 1 1 1 1 1

h1 = t1/3Ea 3 2 1 1 1 1 1 1 1

h2 = t2/3Ea 3 1 2 1 1 1 1 1 1

cusps 1/2 2
5

0 2
3

3
8

∞ 5
8

1/4
forms for width 6 8 8 8 1 1 1 3
Γ83.6.3.13 weight order of vanishing of form at cusps

r1 = 3
√

t+1
2

0 −1 0 0 0 0 0 0 1

Eb 3 3 1 1 1 1 1 1 0
h1 = r1Eb 3 2 1 1 1 1 1 1 1
h2 = r2

1Eb 3 1 1 1 1 1 1 1 2

cusps − 1
6

1
2

1
10

0 − 1
8

∞ 1
8

1/4
forms for width 2 2 2 24 1 1 1 3
Γ24.3.23 .13 weight order of vanishing of form at cusps

r2 = 3
√

(t+1)
2t

0 0 0 0 −1 0 0 0 1

Eb 3 1 1 1 3 1 1 1 0
h1 = r2Eb 3 1 1 1 2 1 1 1 1
h2 = r2

2Eb 3 1 1 1 1 1 1 1 2

cusps − 1
2

1
2

3
2

−1 0 1 ∞ 1
4

forms for width 2 2 2 8 8 8 3 3
Γ83.23.32 weight order of vanishing of form at cusps

r3 = 3
√

4(t+1)
(t−1)

0 0 0 0 0 0 0 −1 1

Eb 3 1 1 1 1 1 1 3 0
h1 = r3Eb 3 1 1 1 1 1 1 2 1
h2 = r2

3Eb 3 1 1 1 1 1 1 1 2

cusps 1/2 −1 0 1 ∞ −3
4

1
4

5
4

forms for width 6 8 8 8 3 1 1 1
Γ83.6.3.13B weight order of vanishing of form at cusps

r4 = 3
√

1−t
8

0 −1 0 0 0 1 0 0 0

Ec 3 3 1 1 1 0 1 1 1
h1 = r4Ec 3 2 1 1 1 1 1 1 1
h2 = r2

4Ec 3 1 1 1 1 1 1 1 2

cusps − 1
2

1
2

3
2

0 ∞ − 3
4

1
4

5
4

forms for width 2 2 2 24 1 1 1 3
Γ24.3.23 .13B weight order of vanishing of form at cusps

r5 = 3
√

(1−t)
8t

0 0 0 0 −1 1 0 0 0

Ec 3 1 1 1 3 0 1 1 1
h1 = r5Ec 3 1 1 1 2 1 1 1 1
h2 = r2

5Ec 3 1 1 1 1 2 1 1 1

TABLE 14. Orders of vanishing at cusps for forms for subgroups of Γ0(8) ∩ Γ1(4). The form t is as in Table 13. In each
case, h1, h2 form a basis for the space of weight-3 cusp forms.

Theorem 5.2. Tr(Frobq |Fx) may be computed according
to the following:

1. If the fiber Ex is smooth, then

Tr(Frobq|Fx) = Tr(Frobq|H1(Ex, Ql))

= q + 1 − #Ex(Fq).

2. If the fiber Ex is singular, then Tate’s algorithm tells
us that

Tr(Frobq|Fx) =

⎧⎪⎨⎪⎩
1 if the fiber is split multiplicative,
−1 if the fiber is nonsplit multiplicative,
0 if the fiber is additive.
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cusps (and widths) ∞(1) 0(6) 1
2
(3) 1

3
(2)

forms for Γ1(6) weight order of vanishing

a = η(z)η(6z)6

η(2z)2η(3z)3
= q − q2 + q3 + q4 + · · · 1 1 0 0 0

b = η(2z)η(3z)6

η(z)2η(6z)3
= 1 + 2q + 4q2 + 2q3 + · · · 1 0 0 0 1

c = η(3z)η(2z)6

η(6z)2η(z)3
= 1 + 3q + 3q2 + 3q3 + · · · 1 0 0 1 0

d = η(6z)η(z)6

η(3z)2η(2z)3
= 1 − 6q + 12q2 − 6q3 · · · 1 0 1 0 0

r0 = b/d = 1 + 8q + 40q2 + 152q3 + · · · 0 0 −1 0 1
r1 = b/c = 8 r0

(9r0−1)
= 1 − q + 4q2 + · · · 0 0 0 −1 1

r2 = a/c = (r0−1)
(9r0−1)

= q − 4q2 + 10q3 · · · 0 1 0 −1 0

r3 = a/d = 1
8
(r0 − 1) = q + 5q2 + 19q3 · · · 0 1 −1 0 0

acd = q − 4q2 + q3 + 16q4 + · · · 3 1 1 1 0
bcd = 1 − q − 5q2 − q3 + 11q4 + · · · 3 0 1 1 1

TABLE 15. Orders of vanishing at cusps for forms for Γ1(6).

cusps 1
6

∞ − 1
6

0 1
8

1
2

− 1
4

1
3

forms for width 1 1 1 18 3 3 3 6
Γ18.6.33 .13 weight order of vanishing of form at cusps
3
√

b/d 0 0 0 0 −1 0 0 0 1
acd 3 1 1 1 3 1 1 1 0

h1 = ( 3
√

b/d)acd 3 1 1 1 2 1 1 1 1

h2 = ( 3
√

b/d)2acd 3 1 1 1 1 1 1 1 2

cusps 5
18

∞ 7
18

2
5

0 2
7

1
2

1
3

forms for width 1 1 1 6 6 6 9 6
Γ9.64.13 weight order of vanishing of form at cusps
3
√

b/c 0 0 0 0 0 0 0 −1 1
acd 3 1 1 1 1 1 1 3 0

h1 = ( 3
√

b/c)acd 3 1 1 1 1 1 1 2 1

h2 = ( 3
√

b/c)2acd 3 1 1 1 1 1 1 1 2

cusps ∞ −1 0 1 1
2

− 2
3

1
3

4
3

forms for width 3 6 6 6 9 2 2 2
Γ9.63.3.23 weight order of vanishing of form at cusps
3
√

a/c 0 1 0 0 0 −1 0 0 0
bcd 3 0 1 1 1 3 1 1 1

h1 = ( 3
√

a/c)bcd 3 1 1 1 1 2 1 1 1

h2 = ( 3
√

a/c)2bcd 3 2 1 1 1 1 1 1 1

cusps ∞ 0 − 1
2

1
2

3
2

− 2
3

1
3

4
3

forms for width 3 18 3 3 3 2 2 2
Γ18.34.23 weight order of vanishing of form at cusps
3
√

a/d 0 1 −1 0 0 0 0 0 0
bcd 3 0 3 1 1 1 1 1 1

h1 = ( 3
√

a/d)bcd 3 1 2 1 1 1 1 1 1

h2 = ( 3
√

a/d)2bcd 3 2 1 1 1 1 1 1 1

TABLE 16. Orders of vanishing at cusps for forms for subgroups of Γ1(6). The forms a, b, c, d are as in Table 15. In each
case, h1, h2 form a basis for the space of weight-3 cusp forms.

3. If E is a singular curve over a field with characteristic
not 2 or 3, given by an equation E : y2 = x3 + ax + b,
then the reduction type of E is determined as follows:

additive if −2ab is 0 in k,
split multiplicative if −2ab is a nonzero
square in k,

nonsplit multiplicative if −2ab is not a
square in k.

In order to apply part (3) of the above result, we need
to transform E8(t) and E6(t) into the simplified Weier-
strass form y2 = x3 + ax + b. We obtain the following
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Γ24.6.16

3
√

η(z)−4η(2z)6η(4z)16 = q + 4
3
q2 + 8

9
q3 + 176

81
q4 − 850

243
q5 − 3488

729
q6 − 5968

6561
q7 + · · ·

3
√

η(z)4η(2z)−6η(4z)20 = q − 4
3
q2 + 8

9
q3 − 176

81
q4 − 850

243
q5 + 3488

729
q6 − 5968

6561
q7 + · · ·

Γ83.6.3.13

3
√

η(z)4η(2z)10η(4z)−4η(8z)8 = q − 4
3
q2 − 40

9
q3 + 400

81
q4 + 1454

243
q5 − 1888

729
q6 − 13168

6561
q7 + · · ·

3
√

η(z)8η(2z)−4η(4z)10η(8z)4 = q − 8
3
q2 + 8

9
q3 + 32

81
q4 − 82

243
q5 + 5440

729
q6 − 24400

6561
q7 + · · ·

Γ24.3.23 .13

3
√

η(z)−4η(2z)22η(4z)−8η(8z)8 = q + 4
3
q2 − 40

9
q3 − 400

81
q4 + 1454

243
q5 + 1888

729
q6 − 13168

6561
q7 + · · ·

3
√

η(z)−8η(2z)20η(4z)2η(8z)4 = q + 8
3
q2 + 8

9
q3 − 32

81
q4 − 82

243
q5 − 5440

729
q6 − 24400

6561
q7 + · · ·

Γ83.23.32

3
√

η(2z)20η(4z)−6η(8z)4 = q2/3 − 20
3

q8/3 + 128
9

q14/3 − 400
81

q20/3 + · · ·
3
√

η(2z)16η(4z)6η(8z)−4 = q1/3 − 16
3

q7/3 + 38
9

q13/3 + 1696
81

q19/3 + · · ·
Γ83.6.3.13B
3
√

η(z)8η(4z)22η(8z)−4η(2z)−8 = q2/3 − 8
3
q5/3 + 20

9
q8/3 − 256

81
q11/3 − 64

243
q14/3 + · · ·

3
√

η(z)4η(2z)2η(4z)20η(8z)−8 = q1/3 − 4
3
q4/3 − 16

9
q7/3 + 112

81
q10/3 + · · ·

Γ24.3.23 .13B
3
√

η(z)−4η(2z)14η(4z)16η(8z)−8 = q1/3 + 4
3
q4/3 − 16

9
q7/3 − 112

81
q10/3 − 1534

243
q13/3 + · · ·

3
√

η(z)−8η(2z)16η(4z)14η(8z)−4 = q2/3 + 8
3
q5/3 + 20

9
q8/3 + 256

81
q11/3 − 64

243
q14/3 + · · ·

TABLE 17. q-expansions of basis of forms for S3(Γ) for six subgroups of Γ0(8) ∩ Γ1(4).

Γ18.6.33 .13

ab1/3cd2/3 = 3
√

η(z)4η(2z)7η(3z)−4η(6z)11 = q − 4
3
q2 − 31

9
q3 + 400

81
q4 + 104

243
q5 + · · ·

ab2/3cd1/3 = 3
√

η(z)−4η(2z)11η(3z)4η(6z)7 = q + 4
3
q2 − 7

9
q3 − 112

81
q4 − 616

243
q5 + · · ·

Γ9.64.13

ab1/3c2/3d = 3
√

η(z)13η(2z)−2η(3z)−7η(6z)14 = q − 13
3

q2 + 32
9

q3 + 670
81

q4 − 3577
243

q5 + · · ·
ab2/3c1/3d = 3

√
η(z)14η(2z)−7η(3z)−2η(6z)13 = q − 14

3
q2 + 56

9
q3 − 58

81
q4 + 266

243
q5 + · · ·

Γ9.63.3.23

a1/3bc2/3d = 3
√

η(z)7η(2z)4η(3z)11η(6z)−4 = q
1
3 − 7

3
q

4
3 − 19

9
q

7
3 + 193

81
q

10
3 + 2306

243
q

13
3 + · · ·

a2/3bc1/3d = 3
√

η(z)11η(2z)−4η(3z)7η(6z)4 = q
2
3 − 11

3
q

5
3 + 23

9
q

8
3 − 13

81
q

11
3 + 2495

243
q

14
3 + · · ·

Γ18.34 .23

a1/3bcd2/3 = 3
√

η(z)−2η(2z)13η(3z)14η(6z)−7 = q
1
3 + 2

3
q

4
3 − 28

9
q

7
3 − 482

81
q

10
3 − 736

243
q

13
3 + · · ·

a2/3bcd1/3 = 3
√

η(z)−7η(2z)14η(3z)13η(6z)−2 = q
2
3 + 7

3
q

5
3 + 14

9
q

8
3 − 148

81
q

11
3 − 1708

243
q

14
3 + · · ·

TABLE 18. Basis of weight-3 cusp forms for some index-3 subgroups of Γ1(6). Here a, b, c, d are eta products as in Table 15.

Group Family of Curves Group Family of Curves

Γ24.6.16 E8(r
3) Γ18.6.33 .13 E6(9r3)

Γ83.23.32 E8

(
r3−1
r3+1

)
Γ9.63.3.23 E6

(
1−3r3

9−3r3

)
Γ83.6.3.13 E8(4r3 − 1) Γ9.64.13 E6

(
1 − 8

9r3

)
Γ24.3.23 .13 E8

(
2

r3−2

)
Γ18.34 .23 E6

(
1

9(8r3+1)

)
TABLE 19. Families of elliptic curves En(m−1(r3)) corresponding to certain noncongruence subgroups.
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curves, isomorphic to the originals, over any field of char-
acteristic not 2 or 3:

Ẽ8 : y2 = x3 − 27(t4 − 16t2 + 16)x

+ 54(t2 − 2)(t4 + 32t2 − 32)

Ẽ6 : y3 = x3 − 2433(3t − 1)(3t3 − 3t2 + 9t − 1)x

− 2733(3t2 + 6t − 1)

× (9t4 − 36t3 + 30t2 − 12t + 1).

Thus one may compute values of the trace using the
above result, for example with Magma. The results for
a range of values of p and various covers of E8 and E6

are given in Table 20.

6. INVOLUTIONS AND ISOGENIES

6.1 Involutions

The four-dimensional representations on H1(X(Γ), FΓ)
in fact split into two 2-dimensional Galois representa-
tions. We can achieve this splitting using an involution
on Γ \ H that extends to either an automorphism or an
isogeny on the elliptic surface.

For each family given in Table 19 by an equation En(r)
corresponding to a covering r3 = m(t), we have involu-
tions i and ι of t and r, given in Table 21, such that the
following diagram commutes:

P1
r 
→ι(r)��

r 
→r3=m(t)

��

P1

r 
→r3=m(t)

��
P1

t
→i(t)
�� P1

Furthermore, if c1, c2 are the ramified cusps of the map
r �→ r3 = m(t), and c3, c4 are the unramified cusps, then
i fixes the sets {c1, c2} and {c3, c4}. This means that the
involution i lifts to an involution ι of r, as indicated in
Table 21. To check that these are the correct maps, one
just needs to verify that (ι( 3

√
m(t)))3 = m(i(t)), which

is simple algebra.

6.2 Isogenies

The involutions i of modular curves given in Table 21 lift
to maps

ĩ : En → En,

ĩ : (t, x, y) ∈ En(t) �→ (i(t), ix(t, x, y), iy(t, x, y)),

where n = 8 or 6, which restrict to isogenies between
the fibers of the corresponding family of elliptic curves

(given by (5–2) and (5–3)). From the isogenies of the
families E6(t) and E8(t), one can obtain the isogenies on
the families E6(m−1(r3)) and E8(m−1(r3)) lifting ι to ι̃.
These isogenies will give rise to involutions on the level
of cohomology.

To show that two curves E(t) and E(i(t)) are isoge-
nous by an isogeny of degree d, it suffices to show that

Φd(j(E(t)), j(E(i(t)))) = 0,

where Φd is the dth modular polynomial. The isogeny
can be explicitly determined by Velu’s method from a
subgroup of order d in E(t). Although the algorithms
involved are well known and not difficult theoretically,
in practice they should be carried out with the help of
a computer program, such as Magma, because of the
large number of terms in the polynomials involved. For
example, Φ8 is a polynomial in two variables of degree 20
with 141 terms; Φn can be found in a Magma database
using the command ClassicalModularPolynomial(n)

for 1 ≤ n ≤ 17.
Although it is not important to know the isogeny ex-

actly, we do need to know the field over which the map
is defined. This information was computed with the as-
sistance of Magma, and is given in Table 22. The poly-
nomials given in this table are such that their roots are
the x-coordinates of points in the kernel of the isogeny.

6.3 Isogenous Relationships between Families

In the previous section we showed how involutions give
rise to isogenies on the fibers, which will result in in-
volutions on the cohomology of each family. There are
also isogenous maps between families, which explain our
grouping into pairs of cases, which was originally based
on the relationships between traces seen in Table 20.

Combining the relations between curves we already
have, we find that

Φ8

(
j

(
E6

(
t − 1
t + 1

))
, j (E8 (φ1(t)))

)
= 0,

Φ8

(
j(E8(4t − 1)), j

(
E8

(
2

φ2(t) − 2

)))
= 0,

Φ6

(
j

(
E6

(
1 − 3t

9 − 3t

))
, j (E6 (9φ3(t)))

)
= 0,

Φ3

(
j

(
E6

(
1 − 8

3t

))
, j

(
E6

(
1

9 − 24φ4(t)

)))
= 0,

where φ1(t) = φ(t) = 1/t, φ3(t) = t/3, φ4(t) = −1/t.
This may also be checked directly with Magma. Thus
the maps φi between the bases lift to isogenies on the
fibers between families. Replacing t by r3 in these equa-
tions does not change the relationships, so this also holds
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Group Equation p 5 7 11 13 17 19 23 73

Γ24.6.16 E8(r
3) Trp 0 4 0 −44 0 52 0 −92

Trp2 100 −188 484 292 1156 −92 2116 −17084

Γ83.23.32 E8

(
r3−1
r3+1

)
Trp 0 −4 0 −44 0 −52 0 −92

Trp2 100 −188 484 292 1156 −92 2116 −17084

Γ83.6.3.13 E8(r
3 − 1) Trp 0 −3 0 13 0 33 0 −71

Trp2 −44 −95 52 169 1012 −359 −1772 5617

E8(2r3 − 1) Trp 0 3 0 13 0 −33 0 −71

Trp2 −44 −95 52 169 1012 −359 −1772 5617

E8(4r3 − 1) Trp 0 0 0 −26 0 0 0 142

Trp2 −44 190 52 −338 1012 718 −1772 −11234

Γ24.3.23 .13 E8

(
2

r3−2

)
Trp 0 0 0 −26 0 0 0 142

Trp2 −44 190 52 −338 1012 718 −1772 −11234

Γ18.6.33 .13 E6(3r3) Trp 0 −11 0 −5 0 19 0 76

Trp2 28 −23 196 313 508 361 316 −18428

Γ18.6.33 .13 E6(9r3) Trp 0 22 0 10 0 −38 0 76

Trp2 28 46 196 −626 508 −722 316 −18428

Γ9.63.3.23 E6

(
1−3r3

9−3r3

)
Trp 0 22 0 10 0 −38 0 76

Trp2 28 46 196 −626 508 −722 316 −18428

Γ9.64.13 E6

(
1 − 24

r3

)
Trp 0 7 0 −5 0 −17 0 −248

Trp2 64 49 448 313 −140 433 1972 9436

E6

(
1 − 8

3r3

)
Trp 0 −14 0 10 0 34 0 −248

Trp2 64 −98 448 −626 −140 −866 1972 9436

Γ18.34.23 E6

(
1

24r3+9

)
Trp 0 −14 0 10 0 34 0 −248

Trp2 64 −98 448 −626 −140 −866 1972 9436

TABLE 20. Table of Tr ρ∗(Frobp).

for the covers, and these maps induce isomorphisms on
the level of cohomology. Refer to Table 19 for which cover
corresponds to which group.

7. EXPERIMENTAL DATA FOR THE
ATKIN–SWINNERTON-DYER CONGRUENCES

The strategy for finding an ASwD basis is the following:
For our noncongruence subgroup Γ, we have found a basis
h1, h2 for S3(Γ). We have also found a Hecke eigenform
f ∈ S3(Γ0, χ) for some congruence subgroup Γ0. Let an

and bn respectively be the expansion coefficients of h1

and h2. Let An be the expansion coefficients of f . We
consider two possible situations.

7.1 Case 1

In the simplest case, h1, h2 is already an ASwD basis.
This case occurs in Section 7.3. So for good primes p

and integers n with p � n,

apn ≡ Apan mod p2 and bpn ≡ Apbn mod p2,

which implies, for p fixed and n varying with an 
= 0 and
bn 
= 0,

apn

an
≡ constant mod p2 and

bpn

bn
≡ constant mod p2.

(7–1)

So, our test for whether h1, h2 is an ASwD basis is to
check whether apn/an and bpn/bn take constant values
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Involutions i of X(Γ0(8) ∩ Γ1(4)), and ι of X(Γ), for Γ ⊂ Γ0(8) ∩ Γ1(4)

subgroup values of z and t where r3 = involutions of t and r
Γ cover ramifies m(t) i : t �→ ι : r �→

z t(z)

Γ24.6.16 1/2, 0 ∞, 0 t −t −r

Γ82.23.32 ∞, 1/4 1,−1 t+1
1−t

1/t −r

Γ83.6.3.13 1/2, 1/4 ∞,−1 t+1
4

1−t
1+t

1
2r

Γ24.3.23 .13 0, 1/4 0,−1 2(1+t)
t

t+1
t−1

2
r

Involutions i of X(Γ1(6)), and ι of X(Γ) for Γ ⊂ Γ1(6)

subgroup values of z and t where r3 = involutions of t and r
Γ cover ramifies m(t) i : t �→ ι : r �→

z t(z)

Γ18.6.33 .13 1/3, 0 ∞, 0 t/9 1
9t

1
9r

Γ9.63.3.23 ∞, 1/2 1
9
, 1 1−9t

3(1−t)
1
9t

1
r

Γ9.64.13 1/2, 1/3 1,∞ 8
3(1−t)

1−9t
9−9t

2
r

Γ18.34.23 ∞, 0 1
9
, 0 1−9t

24t
1−9t
9−9t

1
2r

TABLE 21. Involutions of modular curves Γ \ H. For Γ0(8) ∩ Γ1(4), t(z) = η(z)8η(4z)4

η(2z)12
, and for Γ1(6), t(z) = 1

9
η(6z)4η(z)8

η(3z)8η(2z)4
,

as in Tables 7, 13, and 15.

subgroup i(t) d polynomial defining ι̃’s field of
kernel of isogeny definition

Level-8 cases

Γ24.6.16 −t 1 − Q

Γ82.23.32 1/t 4 (x + t2)x Q

Γ83.6.3.13
1−t
1+t

8 (x2 − 4tx − 4t3)(x + t2)x Q[
√−1]

Γ24.3.23 .13
t+1
t−1

8 (x2 + 4tx + 4t3)(x + t2)x Q[
√−1]

Level-6 cases

Γ18.6.33 .13 , Γ9.64.13
1
9t

3 x − t2 + t Q[
√−3]

Γ9.63.13 , Γ18.34 .23
1−9t
9−9t

6 (x − t2 + t)x(x + t) Q[
√−3]

TABLE 22. Data concerning involutions i and ι of Table 21, lifted to maps ι̃ of families of curves, defining isogenies of
degree d on fibers. In particular, Φd(j(En(i(t))), j(En(t))) = 0, where n is the level and Φd is the dth modular polynomial.

for fixed p and varying n, with np less than some fixed
bound. If this holds, then we also consider this to be
evidence that h1, h2 is an ASwD basis. We can draw this
conclusion regardless of whether f is known.

In the case n = 1, since a1 = b1 = 1, (7–1) implies
that

ap ≡ Ap mod p2 and bp ≡ Ap mod p2. (7–2)

In order to determine the associated congruence mod-
ular form, we test whether (7–2) holds for small primes
for the candidate form f . This is what is done in Sec-
tion 7.3.1.

In some cases, to obtain congruences, f needs to be
replaced by f ⊗ χ for some character χ. Then Ap will
be replaced by Apχ(p) in (7–2), so this phenomenon can
be recognized by checking whether Ap/ap and Ap/bp are
roots of unity. This is done in Section 7.3.2. However,
we have not worked out what the character χ is.

7.2 Case 2

In most of our examples, it turns out that the ASwD basis
depends on the congruence class of the prime p modulo
some small integer. For some primes, (7–1) holds for the



18 Experimental Mathematics, Vol. 19 (2010), No. 1

values tested, in which case h1, h2 is assumed to be the
ASwD basis, but for other primes, this does not hold.

If (7–1) does not hold for some prime p, then we will
assume that for this prime, an ASwD basis consists of
linear combinations of the form h1 + αh2, where α is an
algebraic number of small degree, such that for integers
n with p � n, the expansion coefficients satisfy

apn + αbpn ≡ Ap(an + αbn) mod p2. (7–3)

A priori, α depends on p, though we will see that in
the examples we are considering, evidence suggests that
it depends only on the congruence class of p modulo a
small integer.

For (7–3) to hold, it is sufficient, but not necessary,
that

apn ≡ Apαbn mod p2 and αbpn ≡ Apan mod p2,
(7–4)

which, assuming that all the terms are nonzero, implies
that apn/bn = Apαp and bpn/an = Ap/αp.

So if (7–1) does not hold as n varies, we test whether

anp

bn
≡ constant mod p2 and

bnp

an
≡ constant mod p2.

(7–5)

If this holds, the values of α and Ap modulo p2, up to
sign, are determined by

α2 ≡ anp

bn

/bnp

an
mod p2 and A2

p ≡ anp

bn

bnp

an
mod p2.

(7–6)

For p for which (7–5) holds, there are two solutions to
(7–6) for α, and the ASwD basis has the form h1 +
αh2, h1 − αh2.

We expect that α depends only on p modulo some
small integer. Since α is expected to be an algebraic
integer, but not an integer, it may be difficult to guess the
value of α from α mod p2. So we also look at powers of
α mod p2, and if for some small power these are constant
as p varies, then we deduce a value of α.

Once α is determined, Ap mod p2 is determined, and if
this agrees with the coefficients of our congruence modu-
lar form, then we take this as evidence that h1+αh2, h1−
αh2 is an ASwD basis with f the associated newform. As
for Case 1, we will also test whether the Ap must be mul-
tiplied by some root of unity, presumably the value χ(p)
for some character χ, though again, we have not deter-
mined the character in question.

7.3 Examples Associated with a Newform in
S3(Γ0(48), χ)

For Γ24.6.16 and Γ83.23.32 , evidence suggests that the as-
sociated congruence form is as follows, with the first few
Ap as in Table 23:

f(z) =
η(4z)9η(12z)9

η(2z)3η(6z)3η(8z)3η(24z)3
(7–7)

= q + 3q3 − 2q7 + 9q9 − 22q13 − 26q19 − 6q21

+ 25q25 + · · · .

7.3.1 ASwD Congruences for Γ24.6.16 . We have
shown previously that S3(Γ24.6.16) has a basis

h1(z) = 3

√
η(z)4η(4z)20

η(2z)6
= q − 4

3
q2 +

8
9
q3 − 176

81
q4

− 850
243

q5 + . . . , (7–8)

h2(z) = 3

√
η(4z)16η(2z)6

η(z)4
= q +

4
3
q2 +

8
9
q3 +

176
81

q4

− 850
243

q5 + · · · . (7–9)

The first few prime coefficients of these forms are as
given in Table 24.

Since the ratios anp/an and bnp/bn, given in Table 25,
appear to be constant, and the numbers in Tables 23 and
25 agree modulo p2, we conclude that the ASwD basis of
S3(Γ24.6.16) is h1, h2, as given by (7–8) and (7–9) for all
primes, with f in (7–7) being the associated congruence
form.

7.3.2 ASwD Congruences for Γ83.23.32 . A basis of
S3(Γ83.23.32), written in terms of r = q1/3 and s = q2/3,
is

h1(z) = 3

√
η(2z)20η(8z)4

η(4z)6
=
∑
n≥1

ansn

= s − 20
3

s4 +
128
9

s7 − 400
81

s10 + · · · ,

h2(z) = 3

√
η(2z)16η(4z)6

η(8z)4
=
∑
n≥1

bnrn

= r − 16
3

r7 +
38
9

r13 +
1696
81

r19 + · · · .

The first few prime coefficients are

p 2 3 5 7 11 13 17 19

ap 0 0 0 128
9 0 − 3454

243 0 − 38656
6561

bp 0 0 0 − 16
3 0 38

9 0 1696
81
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p 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

ap 0 −2 0 −22 0 −26 0 0 46 26 0 22 0 0 0 74 −122

TABLE 23. The first few coefficients Ap for the newform for S3(Γ0(48), χ).

p 2 3 5 7 11 13 17 19

ap − 4
3

8
9

− 850
243

− 5968
6561

− 35104520
4782969

952141694
129140163

− 206256733102
31381059609

60201506159720
2541865828329

bp
4
3

8
9

− 850
243

− 5968
6561

− 35104520
4782969

952141694
129140163

− 206256733102
31381059609

60201506159720
2541865828329

TABLE 24. First few prime coefficients of basis for S3(Γ24.6.16 ).

p 5 7 11 13 17 19 23 29 31 37 41 43 47

anp/an mod p2 0 47 0 147 0 335 0 0 46 26 0 22 0
bnp/bn mod p2 0 47 0 147 0 335 0 0 46 26 0 22 0

TABLE 25. Values of
anp

an
and

bnp

bn
for primes p ≥ 5 and integers n, with pn ≤ 500. These agree modulo p2 with values in

Table 23.

Our computations show that the ratios anp

an
and bnp

bn

remain constant for fixed p, for values of pn up to 500.
We can write these ratios in terms of ω, a sixth root of 1
modulo p2, as in Table 26. In this table we also tabulate
ω and the order of ω as an element of (Z/p2Z)×.

Since the values of anp/an and bnp/bn are constant
over the ranges computed, we conjecture that h1, h2 is an
ASwD basis for all primes. Comparing these values with
the coefficients of f , we conjecture that the associated
congruence form is f ⊗ χ, where χ is a certain Hecke
character.

7.4 Examples Associated with a Newform in
S3(Γ0(432), χ)

For Γ83.6.3.13 and Γ24.3.23.13 , evidence suggests that the
associated congruence form is

f(z) = q + 6
√

2q5 +
√−3q7 + 6

√−6q11 + 13q13

− 6
√

2q17 + 11
√−3q19 − 18

√−6q23 (7–10)

+ 47q25 − 24
√

2q29 + · · · .

The first few Ap are given in Table 27, where they
are divided by one of 1,

√
2,

√
3, and

√−6 for easy
readability.

The form f can be given in terms of eta products and
an Eisenstein series as follows:

f(z) = f1(12z) + 6
√

2f5(12z) +
√−3f7(12z)

+ 6
√−6f11(12z), (7–11)

where

f1(z) =
η(2z)3η(3z)
η(6z)η(z)

E6(z),

f5(z) =
η(z)η(2z)3η(3z)3

η(6z)
,

f7(z) =
η(6z)3η(z)
η(2z)η(3z)

E6(z),

f11(z) =
η(3z)η(z)3η(6z)3

η(2z)
,

where

E6(z) = 1 + 12
∑
n≥1

(σ(3n) − 3σ(n))qn

and σ(n) =
∑

d|n d.

7.4.1 ASwD Congruences for Γ83.6.3.13 . We have seen
that a basis of S3(Γ83.6.3.13) can be given by

h1(z) = 3

√
η(z)4η(2z)10η(8z)8

η(4z)4
=
∑
n≥1

anqn

= q − 4
3
q2 − 40

9
q3 +

400
81

q4 +
1454
243

q5 + · · · ,

h2(z) = 3

√
η(z)8η(4z)10η(8z)4

η(2z)4
=
∑
n≥1

bnqn

= q − 8
3
q2 +

8
9
q3 +

32
81

q4 − 82
243

q5 + · · · .

The first few prime coefficients of h1 and h2 are given
in Table 28.

For p ≡ 1 mod 3, our data suggest that apn/ap and
bpn/bn remain constant as n varies, with values as in
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p
anp

an
mod p2 bnp

bn
mod p2 ω o(ω)

7 36 = −2ω 11 = −2ω−1 31 6
11 0 0
13 168 = −22ω 23 = −22ω−1 146 3
17 0 0
19 11 = −26ω 324 = −26ω−1 69 6
23 0 0
29 0 0
31 915 = 46ω 915 = 46ω−1 −1 2
37 47 = 26ω 1296 = 26ω−1 581 3
41 0 0
43 1827 = 22ω 1827 = 22ω−1 −1 2
47 0 0

TABLE 26. Values of
anp

an
and

bnp

bn
for Γ83.23.32 , for primes p ≥ 5 and integers n, with pn ≤ 500, in terms of a sixth root

of unity ω of order o(ω). Compare with values in Table 23.

p 5 7 11 13 17 19 23 29 31 37 41 43 47

Ap 13 35

Ap/
√

2 6 −6 −24 0
Ap/

√−3 1 11 24 −24
Ap/

√−6 6 −18 6

TABLE 27. Coefficients of f in (7–10) and (7–11).

.

p 2 3 5 7 11 13 17 19

ap − 4
3

− 40
9

1454
243

− 13168
6561

38671144
4782969

− 2230795138
129140163

− 418720079278
31381059609

30660416258552
2541865828329

bp − 8
3

8
9

− 82
243

− 24400
6561

16345336
4782969

1236747902
129140163

842483994194
31381059609

− 34758650729368
2541865828329

TABLE 28. First few prime coefficients of basis for S3(Γ83.6.3.13 ).

Table 29. This means we are in Case 1, described in
Section 7.1. Experimentally, we noted that for these p

we always have
(

apn

ap

/ bpn

bn

)6

≡ 1 mod p2 (excluding the
case p = 13, when apn ≡ bpn ≡ 0 mod 13). We also
checked that apn

ap
× bpn

bn
≡ A2

p mod p2, where the Ap are
as in Table 27.

The first observation indicates that these two forms
correspond to congruence forms that are twists of each
other by a character of order 6, and the second observa-
tion indicates that the congruence form is the f given by
(7–10). Using these two observations, we write the ra-
tios anp/an and bnp/bn in the factored forms in Table 29.
The values of ω, a sixth root of 1, and the values used
for

√
3 mod p2 are also tabulated.

Based on these experiments, we conjecture that the
Atkin–Swinnerton-Dyer basis of S3(Γ83.6.3.13) when p ≡
1 mod 3 is h1, h2, and the associated congruence forms
are f ⊗ χ and f ⊗ χ−1 for a certain Hecke character.

From the data in Table 30, following the explana-
tion of Section 7.2, the Atkin–Swinnerton-Dyer basis of
S3(Γ83.6.3.13) when p ≡ 1 mod 3 should be h1, h2, and

when p ≡ 2 mod 3, it should consist of forms of the form
h1 + αh2 with α12 = 4.

7.4.2 ASwD Congruences for Γ24.3.23.13 . A basis of
S3(Γ24.3.23.13) is

h1(z) = 3

√
η(2z)22η(8z)8

η(z)4η(4z)8
= q +

4
3
q2 − 40

9
q3 − 400

81
q4

+
1454
243

q5 +
1888
729

q6 − 13168
6561

q7 + · · · ,

h2(z) = 3

√
η(2z)20η(4z)2η(8z)4

η(z)8
= q +

8
3
q2 +

8
9
q3 − 32

81
q4

− 82
243

q5 − 5440
729

q6 − 24400
6561

q7 + · · · .

The first few prime coefficients are given in Table 31.
Note that up to sign these are identical to the coeffi-
cients of the forms given for the Γ83.6.3.13 case, and so the
ASwD basis is expected to be the same as in the Γ83.6.3.13

case, namely h1, h2 when p ≡ 1 mod 3 and h1 +αh2 with
α12 = 4 when p ≡ 2 mod 3. See Tables 38 and 32.
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p
anp

an
mod p2 bnp

bn
mod p2

√−3 ω

7 17 = ω−4
√−3 29 = ω−2

√−3 37 4
√−18

13 52 = ω−213 130 = ω213
√

23

19 48 = ω−211
√−3 346 = ω−411

√−3 137
√

69
31 915 = ω624

√−3 46 = 24
√−3 82 6

√−1

37 165 = ω−435 1169 = ω435 4
√

581
43 11 = −ω624

√−3 1838 = −24
√−3 1002 6

√−1

TABLE 29. Values of anp/an and bnp/bn for p ≡ 1 mod 3, for h1 and h2, for Γ83.6.3.13 , in terms of Ap in Table 27.

p
anp

bn

bnp

an
mod p2 (

anp

bn
/

bnp

an
)6 ≡ α12 anp

bn

bnp

an
≡ A2

p

5 3 1 4 −2 · 62

11 84 32 4 −6 · 62

17 278 243 4 −2 · 62

23 335 130 4 −6 · 182

29 272 441 4 −2 · 242

41 0 0
47 302 760 4 −6 · 62

TABLE 30. Values of anp/bn and bnp/an for p ≡ 2 mod 3, for h1 and h2, for Γ83.6.3.13 , with α as in (7–6), and Ap as in
Table 27.

p 2 3 5 7 11 13 17 19

ap
4
3

− 40
9

1454
243

− 13168
6561

38671144
4782969

− 2230795138
129140163

− 418720079278
31381059609

30660416258552
2541865828329

bp
8
3

8
9

− 82
243

− 24400
6561

16345336
4782969

1236747902
129140163

842483994194
31381059609

− 34758650729368
2541865828329

TABLE 31. First few prime coefficients and basis for S.3(Γ24.3.23 .13).

p
anp

bn

bnp

an
mod p2

5 3 1
11 84 32
17 278 243
23 335 130
29 272 441
41 0 0
47 302 760

TABLE 32. Values of anp/bn and bnp/an for p ≡ 2 mod 3, for h1 and h2 for S3(Γ24.3.23 .13). These values are the same as
those in Table 30.

p 2 3 5 7 11 13 17 19 23 29 31

ap 1 0 8
3

0 256
81

0 − 7984
729

0 − 172544
19683

18907736
1594323

0

bp 0 0 0 − 16
9

0 − 1534
243

0 78560
6561

0 0 − 126424784
4782969

TABLE 33. First few prime coefficients and basis for S.3(Γ24.3.23 .13).

p anp/an bnp/bn ω
√−3

7 32 = −√−3 · ω2 20 =
√−3 · ω 18 12

13 52 = −13 · ω 130 = −13 · ω2 22 45
19 313 = 11

√−3 · ω 15 = −11
√−3 · ω2 68 137

31 46 = 24
√−3 915 = −24

√−3 439 82
37 165 = 35 · ω2 1169 = 35 · ω 581
43 1838 = 24

√−3 11 = −24
√−3 423 847

TABLE 34. Values of anp/an and bnp/bn for p ≡ 1 mod 3, for h1 and h2 for S3(Γ24.3.23 .13B), written in terms of the
coefficients in Table 27.
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p anp/bn bnp/an i or
√

3 3
√

2

5 14 = 6
√−2 ·

√
2

2
3√

2
2 = 6

√−2 · 2 3√2√
2

i = 7 3

11 79 = 6
√−6 ·

√−2

2 3√2
57 = 6

√−6 · 2
3√

2√−2

√
3 = 27 73

17 139 = 6
√−2 ·

√
2

2 3√2
197 = 6

√−2 · 2 3√2√
2

i = 38 195

23 97 = −18
√−6 ·

√−2

2 3√2
269 = −18

√−6 · 2 3√2√−2

√
3 = 223 384

29 136 = −24
√−2 ·

√
2

2 3√2
41 = −24

√−2 · 2
3√

2√
2

i = 800 403

41 0 0

47 2058 = 6
√−6 ·

√−2

2 3√2
689 6

√−6 · 2 3√2√−2

√
3 = 270 1854

TABLE 35. Values of anp/bn and bnp/an for p ≡ 2 mod 3, for h1 and h2 for S3(Γ24.3.23 .13B), written in terms of the

coefficients in Table 27. Note that the terms
√−6 ·

√−2

2 3√2
and

√−2 ·
√

2

2 3√2
can be rewritten as 2i/ 3

√
2 and 2

√
3/ 3

√
2, hence

the tabulation of i,
√

3, and 3
√

2.

p 5 7 11 13 17 19 23 29 31 37

Ãp 6i 11 12i 5 −18i −19 −30i 48i −13 17

TABLE 36. Coefficients of f ∈ S3(Γ0(243), χ).

p 2 3 5 7 11 13 17 19

ap − 4
3

− 31
9

104
243

44018
6561

− 38654696
4782969

− 1857609346
129140163

362933655200
31381059609

− 33243449873158
2541865828329

bp
4
3

− 7
9

− 616
243

− 15886
6561

43656424
4782969

− 343807618
129140163

− 100695940768
31381059609

19258418018042
2541865828329

TABLE 37. First few prime coefficients and basis for S.3(Γ18.6.33 .13).

7.4.3 ASwD Congruences for Γ24.3.23.13B. This is a
conjugate of the S3(Γ24.3.23.13) example by the involution

W8 =
(

0 −1
8 0

)
.

A basis of S3(Γ24.3.23.13B) in terms of r = q1/3 is

h1(z) = 3

√
η(2z)14η(4z)16

η(z)4η(8z)8

=
∑
n≥1

anrn = r1 +
4
3
r4 − 16

9
r7 − 112

81
r10

− 1534
243

r13 + · · · ,

h2(z) = 3

√
η(2z)16η(4z)14

η(z)8η(8z)4

=
∑
n≥1

bnrn = r2 +
8
3
r5 +

20
9

r8 +
256
81

r11

− 64
243

r14 + · · · .

The first few prime coefficients are given in Table 33.
The ratios when terms are nonzero are given in Ta-

bles 34 and 35.
An Atkin–Swinnerton-Dyer basis is

h1, h2 if p ≡ 1 mod 3,

h1 ±
√

2
2 3
√

2
h2 if p ≡ 5 mod 12,

h1 ±
√−2
2 3
√

2
h2 if p ≡ 11 mod 12.
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p
anp

an

bnp

bn

7 17 29
13 52 130
19 48 346
31 915 46
37 165 1169
43 11 1838

TABLE 38. Values of anp/an and bnp/bn for p ≡ 1 mod 3, for h1 and h2 for S3(Γ24.3.23 .13). These values are the same as
those in Table 29.

7.5 Examples Associated with a Newform in
S3(Γ0(243), χ)

We consider

f(z) = q + 3iq2 − 5q4 + 6iq5 + 11q7 − 3iq8 − 18q10

+ 12iq11 + · · · ,

where i is a root of x2 +1 = 0. Note that the correspond-
ing Galois representation is a twist of the representation
corresponding to E6(3r3).

The first few prime coefficients Ãp of this form are as
in Table 36.

7.5.1 ASwD Congruences for Γ18.6.33.13 . A basis of
S3(Γ18.6.33.13) is

h1(z) = 3

√
η(z)4η(2z)7η(6z)11

η(3z)4
=
∑
n≥1

anqn

= q − 4
3
q2 − 31

9
q3 +

400
81

q4 +
104
243

q5 + · · · ,

h2(z) = 3

√
η(3z)4η(6z)7η(2z)11

η(z)4
=
∑
n≥1

bnqn

= q +
4
3
q2 − 7

9
q3 − 112

81
q4 − 616

243
q5 + · · · ,

with an and bn the coefficients of the noncongruence
forms given above.

The first few prime coefficients are given in Table 37.
The ratios in Table 39, all computed modulo p2, ap-

pear to be constant as n varies, for the given p’s. The ta-
ble shows the constants; if no entry is shown, this means
that the ratio is not constant in this case.

Case I: p ≡ 1 mod 3. These ratios are a special case of a
relation of Atkin–Swinnerton-Dyer type, e.g., a7n/an ≡
36 mod 72 can be written as

a7n − 36an + 72an/p ≡ 0 mod 72.

So, for p ≡ 1 mod 3, it looks as though h1 and h2 form
an Atkin–Swinnerton-Dyer basis.

Note that for p in Table 39 with p ≡ 1 mod p, except
for the case p = 19, we have

(
anp

an
/
bnp

bn
)3 ≡ 1 mod p2.

It is not surprising that this relation holds, since the
ratios ought to be the values of Ap in Table 36, which,
as we can see, should always be ω or ω2 in these cases,
including for p = 19.

The reason the congruence does not hold for p = 19
is that in this case we have ω, ω2 ≡ 68 and 292 mod 192,
and α1 = −19ω, α2 = −19ω2 ≡ 152 and 228 mod 192, so
we have only that α1/19 ≡ ω mod 19, α2/19 ≡ ω2 mod
19, i.e., the ratio satisfies (a19n

an
/ b19n

bn
)3 ≡ 1 mod 19, which

we can check is true.

Case II: p ≡ 2 mod 3. We observe that when p ≡ 2 mod
3, we always have (anp

bn
/

bnp

an
)3 ≡ −9 mod p2.

Suppose that the Atkin–Swinnerton-Dyer basis is h1+
αh2. Then (writing αp = α mod p2) we would have

apn + αpbpn ≡ Ap(an + αpbn) mod p2.

And suppose that we in fact have

apn ≡ Apαpbn mod p2 and αpbpn ≡ Apan mod p2.

Then this implies that apn/bn = Apαp and bpn/an =
Ap/αp, so α2

p ≡ anp

bn
/

bnp

an
, so from the above observation

we expect α6 ≡ −9 mod p2, i.e., α ≡ 3
√

3i mod p2, so it
seems that for p ≡ 2 mod 3 we should have an Atkin–
Swinnerton-Dyer basis consisting of forms of the form
h1 + αh2, where α6 = −9.

The value of Ap is given by Ap ≡ ±
√

anp

bn

bnp

an
mod p2,

whereas the values for p ≡ 1 mod 3 are those already in
Table 36. From the values in Table 37, we obtain the
values of Ap in Table 40, with no particular order given
to the two possible values. In this table, we write, e.g.,
Ap ≡ 6i mod 25 to mean that A2

p ≡ −36 mod 25, etc.,
and ω means ω2 + ω + 1 ≡ 0 mod p2.
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p
anp

an

bnp

bn

anp

bn

bnp

an
mod p2

5 3 13

7 36 2

11 13 82

13 54 110

17 279 148

19 228 152

23 130 400

29 296 515

31 915 59

37 1058 294

TABLE 39. Values of anp/bn and bnp/an mod p2 for h1 and h2 for S3(Γ18.6.33.13).

p 5 7 11 13 17 19 23 29 31 37

Ap 6i 11ω 12i 5ω 18i −19ω 30i 48i −13ω 17ω

modp2 −6i 11ω2 −12i 5ω2 −18i −19ω2 −30i −48i −13ω2 17ω2

TABLE 40. Coefficients of congruence forms associated to S3(Γ18.6.33 .13).

7.5.2 ASwD Congruences for Γ9.63.3.23 . A basis of
S3(Γ9.63.3.23) in terms of r = q1/3 is

h1(z) = 3

√
η(z)7η(2z)4η(3z)11

η(6z)4
=
∑
n≥1

anrn

= r − 7
3
r4 − 19

9
r7 +

193
81

r10 +
2306
243

r13 + · · · ,

h2(z) = 3

√
η(z)11η(3z)7η(6z)4

η(2z)4
=
∑
n≥1

bnrn

= r2 − 11
3

r5 +
23
9

r8 − 13
81

r11 + · · · .

The first few prime coefficients are

p 2 3 5 7 11 13 17 19

ap 0 0 0 − 19
9

0 2306
243

0 − 151696
6561

bp 1 0 − 11
3

0 − 13
81

0 − 7130
729

0

Notice that these are either zero or the same as in the
Γ18.6.33.13 case. Table 41 shows the ratios of coefficients
(when all terms are nonzero), all numbers given modulo
p2. When p ≡ 2 mod 3, there is a unique cube root mod-
ulo p2 of any integer, so the given value of 3

√
3 is unique.

Here i means the square root of −1.
Table 41 indicates that when p ≡ 1 mod 3, we have

anp − Apω
2an ≡ 0 mod p2 and bnp − Apωbn ≡ 0 mod p2

for certain Ap, indicating that h1, h2 is an ASwD basis
in this case.

Note that this relation holds only when terms are
nonzero, e.g., b1 = 0, so we cannot have bp + Apb1 ≡
0 mod p for any p with bp 
= 0.

For p ≡ 2 mod 3, Table ?? indicates that we have(
anp + i

3
√

3bnp

)
+ iAp

(
an + i

3
√

3bn

)
≡ 0 mod p2,(

anp − i
3
√

3bnp

)
− iAp

(
an − i

3
√

3bn

)
≡ 0 mod p2,

so h1 + i 3
√

3h2, h1 − i 3
√

3h2 should be the ASwD basis in
this case.

7.6 Examples Associated with a Newform in
S3(Γ0(486), χ)

We consider

f(z) = q −√−2q2 − 2q4 + 3
√−2q5 − 7q7 + 2

√−2q8

+ 6q10 − 3
√−2q11 + 5q13 + 7

√−2q14 + 4q16

− 18
√−2q17 + 17q19 − 6

√−2q20 − 6q22

− 6
√−2q23 + 7q25 − 5

√−2q26 + 14q28

− 39
√−2q29 + 59q31 − 4

√−2q32 − 36q34 + · · · .

The first few coefficients Ap appear in Table 42, di-
vided by either 1 or 3

√−2 for easy readability.
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p anp/an bnp/bn anp/bn bnp/an ω ω2 3
√

3

5 3 = 6i · i 3
√

3 13 = 6i/i 3
√

3 12
7 36 = 11 · ω2 2 = 11 · ω 18 30

11 13 = 12i · i 3
√

3 82 = 12i/i 3
√

3 9
13 54 = 5 · ω2 110 = 5 · ω 22 146

17 279 = −18i · i 3
√

3 148 = −18i/i 3
√

3 160
19 228 = −19 · ω2 152 = −19 · ω 68 292

23 130 = −30i · i 3
√

3 400 = −30i/i 3
√

3 357

29 296 = 48i · 3
√

3 515 = 48i/i 3
√

3 134
31 915 = −13 · ω2 59 = −13 · ω 439 521
37 1058 = 17 · ω2 294 = 17 · ω 581 787

41 1384 = −30i · i 3
√

3 869 = −30i/i 3
√

3 1503
43 1173 = 29 · ω2 647 = 29 · ω 1425 423

47 155 = −24i · i 3
√

3 1906 = −24i/i 3
√

3 1203

TABLE 41. Values of anp/bn and bnp/an mod p2for h1 and h2 for S3(Γ9.63.3.23).

p 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

Ap −7 5 17 59 −19 47 −4 −46
Ap

3
√−2

1 −1 −6 −2 −13 13 −19 9 −5

TABLE 42. Coefficients of f ∈ S3(Γ0(486), χ).

p 2 3 5 7 11 13 17 19

ap − 13
3

32
9

− 3577
243

38780
6561

97488844
4782969

− 198000616
129140163

1030071452831
31381059609

− 91038813695632
2541865828329

bp − 14
3

56
9

266
243

− 1036
6561

24235144
4782969

− 2216727472
129140163

− 894269035558
31381059609

97467805305080
2541865828329

TABLE 43. First few prime coefficients of basis for S3(Γ9.64.13).

p
anp

an

bnp

bn

anp

bn

bnp

an
mod p2 (

anp

an
/

bnp

bn
)3

anp

an

bnp

bn

7 35 21 1 0
13 54 110 1 52

19 271 73 1 172

31 948 915 1 592

37 106 1282 1 192

43 1391 411 1 472

TABLE 44. Ratios of coefficients modulo p2 for h1 and h2 for S3(Γ9.64.13).

p
anp

bn

bnp

an
mod p2 anp

bn
/

bnp

an

anp

bn

bnp

an

5 11 12 3 −18
11 94 41 20 −18
17 10 282 205 −18 · 62

23 503 369 20 −18 · 22

29 661 101 273 −18 · 132

41 1463 1587 968 −18 · 132

47 2117 887 2052 −18 · 192

TABLE 45. Ratios of coefficients modulo p2 for h1 and h2 for S3(Γ9.64.13).
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p anp/an bnp/bn anp/bn bnp/an ω ω2 3
√

3

5 3 = −1 · 6 3
√

3 19 = 1 · 3/ 3
√

3 12

7 35 = −7 · ω2 21 = −7 · ω 18 30

11 54 = 1 · 6 3
√

3 40 = −1 · 3/ 3
√

3 9

13 54 = 5 · ω2 110 = 5 · ω 22 146

17 269 = 6 · 6 3
√

3 148 = −6 · 3/ 3
√

3 160

19 271 = 17 · ω2 73 = 17 · ω 68 292

23 52 = 2 · 6 3
√

3 80 = −2 · 3/ 3
√

3 357

29 360 = 13 · 6 3
√

3 370 = −13 · 3/ 3
√

3 134

31 948 = 59 · ω2 915 = 59 · ω 439 521

37 106 = −19 · ω2 1282 = −19 · ω 581 787

41 436 = −13 · 6 3
√

3 47 = 13 · 3/ 3
√

3 1503

43 1391 = 47 · ω2 411 = 47 · ω 1425 423

47 184 = 19 · 6 3
√

3 661 = −19 · 3/ 3
√

3 1203

TABLE 46. Ratios of coefficients mod p2 for h1 and h2 for S3(Γ18.34.23).

7.6.1 ASwD Congruences for Γ9.64.13 . A basis of
S3(Γ9.64.13) is

h1(z) = 3

√
η(z)13η(6z)14

η(2z)2η(3z)7
=
∑
n≥1

anqn

= q − 13
3

q2 +
32
9

q3 +
670
81

q4 − 3577
243

q5 + · · · ,

h2(z) = 3

√
η(z)14η(6z)13

η(2z)7η(3z)2
=
∑
n≥1

bnqn

= q − 14
3

q2 +
56
9

q3 − 58
81

q4 +
266
243

q5 + · · · .

The first few prime coefficients are given in Table 43.
Tables 44 and 45 show the ratios of coefficients of h1

and h2 modulo p2. From this table we see that the ASwD
basis has the following form (for p ≥ 5):

if p ≡ 1 mod 3 then ASwD basis is h1, h2,

if p ≡ 2 mod 3 then ASwD basis is h1 ± αph2.

However, although the value of αp ≡ anpan/bnbnp re-
mains constant as p is fixed and n varies, we could not
find a pattern allowing us to be more specific about the
value of αp for p ≡ 2 mod 3.

7.6.2 ASwD Congruences for Γ18.34.23 . A basis of
S3(Γ18.34.23) in terms of r = q1/3 is

h1(z) = 3

√
η(2z)13η(3z)14

η(6z)7η(z)2
=
∑
n≥1

anrn

= r +
2
3
r4 − 28

9
r7 − 482

81
r10 − 736

243
r13 + · · · ,

h2(z) = 3

√
η(2z)14η(3z)13

η(6z)2η(z)7
=
∑
n≥1

bnqn

= r2 +
7
3
r5 +

14
9

r8 − 148
81

r11 − 1708
243

r14 + · · · .

The first few prime coefficients are

p 2 3 5 7 11 13 17 19

ap 0 0 0 − 28
9

0 − 736
243

0 120680
6561

bp 1 0 7
3

0 − 148
81

0 − 4529
729

0

From Table 46 we can see that when p ≡ 1 mod 3, the
ASwD basis should be h1, h2.

For p ≡ 2 mod 3, the congruences (which hold only
when all terms are nonzero)

anp/bp ≡ −αp · 6 3
√

3 and bnp/ap ≡ αp · 3/
3
√

3

should be rewritten in terms of u, where u2 = −2, writing
−6 = 3u · u, so we have

anp/bp ≡ αp3u · u 3
√

3 and bnp/ap ≡ αp3u/u
3
√

3.

These imply that

anp ≡ αp3u · u 3
√

3bp
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and
u

3
√

3bnp ≡ αp3uap,

so
anp + u

3
√

3bnp ≡ αp3u · (u 3
√

3bp + ap

)
,

which holds for u replaced with −u, so the ASwD basis
should be h1 ±

√−2 3
√

3h2.
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