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A Lissajous knot is one that can be parameterized as

K(t) = (cos(nxt + φx), cos(nyt + φy), cos(nzt + φz)) ,

where the frequencies nx, ny , and nz are relatively prime in-
tegers and the phase shifts φx, φy, and φz are real numbers.
Lissajous knots are highly symmetric, and for this reason, not all
knots are Lissajous. We prove several theorems that allow us to
place bounds on the number of Lissajous knot types with given
frequencies and to efficiently sample all possible Lissajous knots
with a given set of frequencies. In particular, we systematically
tabulate all Lissajous knots with small frequencies and as a result
substantially enlarge the tables of known Lissajous knots.

A Fourier-(i, j, k) knot is similar to a Lissajous knot except that
the x, y, and z coordinates are now each described by a sum of
i, j, and k cosine functions, respectively. According to Lamm,
every knot is a Fourier-(1, 1, k) knot for some k. By randomly
searching the set of Fourier-(1, 1, 2) knots we find that all 2-
bridge knots with up to 14 crossings are either Lissajous or
Fourier-(1, 1, 2) knots. We show that all twist knots are Fourier-
(1, 1, 2) knots and give evidence suggesting that all torus knots
are Fourier-(1, 1, 2) knots.

As a result of our computer search, several knots with relatively
small crossing numbers are identified as potential counterexam-
ples to interesting conjectures.

1. INTRODUCTION

A Lissajous knot K in R
3 is a knot that has a parame-

terization K(t) = (x(t), y(t), z(t)) given by

x(t) = cos(nxt + φx),

y(t) = cos(nyt + φy),

z(t) = cos(nzt + φz),

where 0 ≤ t ≤ 2π; nx, ny, and nz are integers; and
φx, φy, φz ∈ R.

Lissajous knots were first studied in [Bogle et al. 94],
where some of their elementary properties were estab-
lished. Most notably, Lissajous knots enjoy a high degree
of symmetry. In particular, if the three frequencies nx,
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ny, and nz (which must be pairwise relatively prime; see
[Bogle et al. 94]) are all odd, then the knot is strongly
plus amphicheiral. If one of the frequencies is even, then
the knot is 2-periodic, with the additional property that
it links its axis of rotation once. These symmetry prop-
erties imply (strictly) weaker properties such as the fact
that the Alexander polynomial of a Lissajous knot must
be a square modulo 2, which in turn implies that its
Arf invariant must be zero. See [Bogle et al. 94, Hoste
and Zirbel 07, Lamm 96] for details. Thus for example,
the trefoil and figure-eight knots are not Lissajous, since
their Arf invariants are one. In fact, “most” knots are
not Lissajous.

To date it is unknown whether every knot that is
strongly plus amphicheiral or 2-periodic (and links its
axis of rotation once) is Lissajous. Several knots with
relatively few crossings exist that meet these symmetry
requirements and for which it is unknown whether they
are Lissajous. For example, according to [Hoste et al. 98],
there are only three prime knots with 12 or fewer cross-
ings that are strongly plus amphicheiral: 10a103 (1099),
10a121 (10123), and 12a427. Here we have given knot
names in both the Dowker–Thistlethwaite ordering of the
Hoste–Thistlethwaite–Weeks table [Hoste et al. 98] and,
in parentheses, the Rolfsen ordering (for knots with ten
or fewer crossings) [Rolfsen 90]. Symmetries of the knots
in the Hoste–Thistlethwaite–Weeks table were computed
using SnapPea as described in [Hoste et al. 98]. Of these
three knots, only 10a103 (1099) was previously reported
as Lissajous. (See [Lamm 96].) However, we find 12a427
to be Lissajous. (See Section 5 of this paper.) This
leaves open the case of 10a121. As a further example,
there are exactly four 8-crossing knots that are 2-bridge,
2-periodic, and link their axis of rotation once. Despite
our extensive searching (see Section 5), only one of these
knots turned up as Lissajous (and it had already been re-
ported as such in [Lamm 96]). Whether the other three
are Lissajous remains unknown.

Lissajous knots are a subset of the more general class
of Fourier knots. A Fourier-(i, j, k) knot is one that can
be parameterized as

x(t)=Ax,1 cos(nx,1t + φx,1) + · · · + Ax,i cos(nx,it + φx,i),

y(t)=Ay,1 cos(ny,1t + φy,1) + · · · + Ay,j cos(ny,jt + φy,j),

z(t)=Az,1 cos(nz,1t + φz,1) + · · · + Az,k cos(nz,kt + φz,k).

Because any function can be closely approximated by a
sum of cosines, every knot is a Fourier knot for some
(i, j, k). But a remarkable theorem of Lamm [Lamm 99]

states that in fact, every knot is a Fourier-(1, 1, k) knot
for some k. While k cannot equal 1 for all knots (these
are the Lissajous knots, and not all knots are Lissajous),
could k possibly be less than some universal bound M for
all knots? This seems unlikely, with the more reasonable
outcome being that k depends on the specific knot K.
Yet no one has found a knot for which k must be bigger
than 2!

If K is a Fourier-(1, 1, k) knot, then its bridge num-
ber is less than or equal to the minimum of nx and ny.
(The bridge number of a knot K can be defined as the
smallest number of extrema on K with respect to a given
direction in R

3, taken over all representations of K and
with respect to all directions. See [Burde and Zieschang
03] or [Rolfsen 90] for more details.) Moreover, Lamm’s
proof is constructive and explicitly shows that if K has
bridge number b, then K is a Fourier-(1, 1, k) knot for
some k and with nx = b. This raises several interesting
questions. For any knot K, when expressed as a Fourier-
(1, 1, k) knot, can the minimum values of nx and k be
simultaneously realized? In particular, can a knot that
is Lissajous and with bridge index b be realized as a Lis-
sajous knot with nx = b?

Let L(nx, ny, nz) be the set of all Lissajous knots with
frequencies nx, ny, nz. (Throughout this paper we con-
sider a knot and its mirror image to be equivalent.) One
of the main goals of this paper is to investigate the set
L(nx, ny, nz). By a simple change of variables, t �→ t+ c,
we may alter the phase shifts. Therefore we will assume
that φx = 0 in all that follows. This leaves the pair of
parameters (φy , φz), which vary within the phase torus
[0, 2π] × [0, 2π]. In Section 2, we will examine the phase
torus and identify a finite number of regions in which the
phase shifts must lie, with each region corresponding to
a single knot type. We further show that a periodic pat-
tern of knot types is produced as one traverses the phase
torus. This allows us to prove the following theorem.

Theorem 1.1. Let |L(nx, ny, nz)| be the number of distinct
Lissajous knots with frequencies (nx, ny, nz). Then

|L(nx, ny, nz)| ≤ 2nxny.

If furthermore nx = 2, then

|L(2, ny, nz)| ≤ 2ny + 1.

There is also a periodicity that exists across frequen-
cies, and in Section 2 we also prove the following theorem.
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Theorem 1.2. L(nx, ny, nz) ⊆ L(nx, ny, nz+2nxny), with
equality if nz ≥ 2nxny − ny.

Our analysis of the phase torus together with these
theorems allows us to efficiently sample (with the aid of a
computer) all possible Lissajous knots having two of the
three frequencies bounded. Even with relatively small
frequencies, the three natural projections of a Lissajous
knot into the three coordinate planes can have a large
number of crossings. (The projection into the xy-plane
has 2nxny − nx − ny crossings.) With frequencies of 10
or more, diagrams with hundreds of crossings result and
many, if not most, knot invariants are computationally
out of reach. Thus it becomes extremely difficult to com-
pare different Lissajous knots with large frequencies, or
to try to locate them in existing knot tables. However,
if one frequency is 2, the knot is 2-bridge, and even with
hundreds of crossings it is relatively simple to compute
the identifying fraction p/q by which 2-bridge knots are
classified.

In Section 2 we recall basic facts about Lissajous knots
and prove several theorems, including the two already
mentioned, that will allow us to efficiently sample all Lis-
sajous knots with two given frequencies. In Section 4 we
then recall some basic facts about 2-bridge knots. Using
these results we then report in Section 5 on our com-
puter experiments. Theorems similar to those given in
Section 2 but for Fourier-(1, 1, k) knots would necessarily
be much more complicated, and we begin the analysis of
the phase torus for Fourier-(1, 1, 2) knots in Section 3.
Without the analogous results, we have not been able to
rigorously sample Fourier knots. Instead, we have pro-
ceeded by two methods: random sampling and a sam-
pling based on first forming a bitmap image of the phase
torus and its singular curves. However, even without ex-
haustive sampling, our data show that all 2-bridge knots
up to 14 crossings are Fourier-(1, 1, k) knots with k ≤ 2
and with nx = 2.

An early version of this paper contained 18 tables of
Lissajous and Fourier knots, which were trimmed con-
siderably for this publication. The original tables are
available in [Boocher et al. 07].

2. THE PHASE TORUS—LISSAJOUS KNOTS

Suppose K(t) is a Lissajous knot and consider its di-
agram in the xy-plane. Each crossing in this diagram
corresponds to a double point in the xy-projection given
by a pair of times (t1, t2), where x(t1) = x(t2) and
y(t1) = y(t2). It is straightforward to prove the following

lemma. Essentially equivalent formulations are given in
[Jones and Przytycki 98] and [Bogle et al. 94]. (Unfortu-
nately, [Bogle et al. 94] contains typographical errors.)

Lemma 2.1. Let K(t) be a Lissajous knot. There are two
types of time pairs (t1, t2) that give double points in the
xy-projection:
Type I:

(t1, t2) =
((

− k

nx
+

j

ny

)
π − φy

ny
,

(
k

nx
+

j

ny

)
π − φy

ny

)
,

1 ≤ k ≤ nx − 1,

1 +
⌊

ny

nx
k +

φy

π

⌋
≤ j ≤

⌊
2ny − ny

nx
k +

φy

π

⌋
.

Type II:

(t1, t2) =
((

− k

ny
+

j

nx

)
π − φx

nx
,

(
k

ny
+

j

nx

)
π − φx

nx

)
,

1 ≤ k ≤ ny − 1,

1 +
⌊

nx

ny
k +

φx

π

⌋
≤ j ≤

⌊
2nx − nx

ny
k +

φx

π

⌋
.

There are nxny − ny double points of Type I, and
nxny − nx double points of Type II.

Figure 1 shows a Lissajous knot with frequencies
(3, 5, 7) and corresponding phase shifts (0, π/4, π/12).
Since all the frequencies are odd, this knot is symmet-
ric through the origin. It is not hard to show that in
general, the Type-I crossings line up in sets of size ny on
nx − 1 horizontal lines, while the Type-II crossings line
up in sets of size nx on ny − 1 vertical lines. If nx = 2,
there is a single row of Type-I crossings, all of which lie
on the x-axis, and ny − 1 columns of Type-II crossings
with each column consisting of two crossings.

Not all phase shift pairs will generate curves that are
knots. Assuming φx = 0, the knot K(t) will intersect
itself—and thus fail to be a knot—exactly when the phase
shifts satisfy

φz =
nz

ny
φy + l

π

ny
(2–1)

or

φz = l
π

nx
(2–2)

or

φy = l
π

nx
. (2–3)

for some integer l. Crossings of Type I become singular
precisely when (2–1) holds, while crossings of Type II
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FIGURE 1. A Lissajous knot with frequencies (3, 5, 7)
and corresponding phase shifts (0, π/4, π/12). The
Type-I crossings appear in two rows with five cross-
ings each, and the Type-II crossings appear in four
columns with three crossings each.

become singular precisely when when (2–2) holds. When
(2–3) holds, the entire xy-projection degenerates to an
arc. While this alone does not imply that the knot has
points of self-intersection, this is indeed the case. See
[Jones and Przytycki 98, Bogle et al. 94, Hoste and Zirbel
07] for more details. In Proposition 2.3, we specifically
identify which crossings become singular as the phase
shifts move across these lines.

The slanted horizontal and vertical lines given in
(2–1)–(2–3) obviously divide the phase torus into regions
with each region defining one knot type. Thus there is
only a finite number of knot types possible for a given set
of frequencies. There is, however, a great deal of repeti-
tion in knot types as one traverses the phase torus due to
the periodicity of the cosine function. The following the-
orem describes a nice choice of “fundamental domain” on
the phase torus to which we may restrict our attention.

Theorem 2.2. Any knot in L(nx, ny, nz) can be repre-
sented with φx = 0 and using some phase shift pair
(φy , φz) in [0, π

nx
] × [0, π].

Proof: Define an equivalence relation ∼ on the phase
torus for L(nx, ny, nz) by (φy , φz) ∼ (φ′

y, φ′
z) if the Lis-

sajous knot with phase shifts (0, φy, φz) is the same as
the knot with phase shifts (0, φ′

y, φ′
z), or its mirror im-

age. Clearly

(φy, φz) ∼ (φy ± π, φz) ∼ (φy , φz ± π). (2–4)

If K ∈ L(nx, ny, nz), a change of variable t �→ t + π
nx

shows that K is also parameterized as

x = − cos(nxt),

y = cos
(

nyt + φy +
nyπ

nx

)
,

z = cos
(

nzt + φz +
nzπ

nx

)
.

Therefore we also have

(φy , φz) ∼
(

φy +
nyπ

nx
, φz +

nzπ

nx

)
. (2–5)

Since nx and ny are relatively prime, there are integers
k and l with

0 ≤ φy +
knyπ

nx
− lπ <

π

nx
.

Repeatedly using (2–4) and (2–5), we obtain

(φy , φz) ∼
(

φy +
knyπ

nx
− lπ, φz +

knzπ

nx

)
.

The first coordinate is already in [0, π
nx

]; we can shift the
second coordinate by multiples of π until it is in [0, π].
Thus an arbitrary point (φy , φz) is equivalent to some
point in [0, π

nx
] × [0, π], as desired.

Figure 2 shows the fundamental domain on the phase
torus for L(2, 3, 5). The singular lines divide the domain
into regions, with each region determining a single knot
type. Since these knots are all 2-bridges, we identify each
with its classifying fraction p/q.

Our next result specifically describes what happens as
we cross a singular line of the type given in (2–1) or (2–2).

Proposition 2.3. Let K and K ′ be two Lissajous knots
with frequencies (nx, ny, nz) and phase shifts (φy , φz) and
(φ′

y, φ′
z) respectively.

(i) Suppose (φy, φz) and (φ′
y , φ′

z) lie in two adjacent
regions of the phase torus separated by a diagonal
line L given by φz = nz

ny
φy + l π

ny
. Then K and K ′

differ by changing all Type-I crossings (k, j) such
that jnz + l ≡ 0 mod ny. The number of such
crossings is nx − 1.

(ii) Suppose (φy, φz) and (φ′
y , φ′

z) lie in two adjacent
regions of the phase torus separated by a horizontal
line L given by φz = l π

nx
. Then K and K ′ differ

by changing all Type-II crossings with parameters
(k, j) such that jnz + l ≡ 0 mod nx. The number
of such crossings is ny − 1.
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FIGURE 2. The fundamental domain of the phase
torus for L(2, 3, 5). Each region defines a single 2-
bridge knot that is identified by its classifying fraction
p/q. Unlabeled regions define unknots.

Proof: If (t1, t2) is a Type-I crossing with parameters
(k, j), then z(t1) = z(t2) if and only if

cos(nzt1 + φz) = cos(nzt2 + φz),

which will occur if and only if

nz(t1− t2) = 2mπ or nz(t1 + t2)+2φz = 2m′π (2–6)

for some integers m, m′. For Type-I crossings,

t1 − t2 = −2k

nx
π and t1 + t2 =

2j

ny
π − 2φy

ny
.

If (2–6) is to hold, then in the first case, we have

−2knz

nx
π = 2mπ,

which is equivalent to −knz = mnx. This is impossible,
since nx and nz are relatively prime and 1 ≤ k ≤ nx − 1.

In the second case, we have

nz

(
2

j

ny
π − 2

φy

ny

)
+ 2φz = 2m′π,

which is equivalent to

φz =
nz

ny
φy + (m′ny − jnz)

π

ny
.

Thus Type-I crossings become singular only on lines of
the form given in (2–1) with l = mny − jnz.

If φz = nz

nx
φy + l π

ny
+ ε and jnz + l = mny for some

integer m, then it is straightforward to check that

z(t1) − z(t2) = (−1)m2 sin ε sin
knzπ

nx
.

Hence, as we move across the line L by letting ε go from a
small positive value to a small negative value, the differ-
ence z(t1)−z(t2) changes sign. Thus the Type-I crossings
with parameters (k, j) actually change from over to un-
der or vice versa, rather than simply becoming singular
and then “rebounding” to their original positions.

Finally, note that once l is fixed, this does not nec-
essarily uniquely determine j and thus the correspond-
ing Type-I crossing. If both jnz + l ≡ 0 mod ny and
j′nz + l ≡ 0 mod ny, then j ≡ j′ mod ny, since ny and nz

are relatively prime. If nx = 2, then k = 1 and j lies in an
interval of length ny. Thus with nx = 2 we have that j is
uniquely determined by l, and a single crossing changes
as we move across L. But if nx > 2 and k = 1, then j

lies in an interval of length greater than ny. Hence two
admissible values, j and j + ny, are possible. Using j,

we must have 1 ≤ k ≤
⌊

nx

ny
(j − φy

π )
⌋
, while for j + ny we

must have 1 ≤ k ≤
⌊

nx

ny
(−j + ny + φy

π )
⌋
. Thus the total

number of possible points (k, j) is⌊
nx

ny
(j − φy

π
)
⌋

+
⌊

nx

ny
(−j + ny +

φy

π
)
⌋

= nx − 1.

A similar discussion handles the Type-II crossings.

Corollary 2.4. Suppose K and K ′ are Lissajous knots
with frequencies (nx, ny, nz) and phase shifts that belong
to regions separated by 2ny singular lines of the type given
in (2–1). Then all Type-I crossings are the same for both
knots.

Proof: From Proposition 2.3 we know that crossing the
line φz = nz

ny
φy + l π

ny
changes exactly those Type-I cross-

ings with parameters (k, j) for which jnz + l ≡ 0 mod ny.
Thus if we cross the singular line corresponding to l and
then later cross the line corresponding to l+ny, the same
set of Type-I crossings will first be changed and then
changed back again. Hence, after crossing over 2ny such
lines, all Type-I crossings will be restored to their origi-
nal position.
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If nx = 2, there is even more repetition due to addi-
tional symmetry, as is shown in the following result.

Proposition 2.5. Let K and K ′ be Lissajous knots
with frequencies (2, ny, nz) and phase shifts (φy , φz) and
(φ′

y , φ′
z) respectively. If (φy , φz) and (φ′

y , φ′
z) are sym-

metric with respect to the point (π/4, π/4) or the point
(π/4, 3π/4), then K and K ′ are equivalent.

Proof: Suppose (φy , φz) and (φ′
y , φ′

z) are symmetric with
respect to the point (π/4, π/4). Then φ′

y = π/2−φy and
φ′

z = π/2 − φz . Thus

K ′(−t + π/2)

=
(
cos(−2t + π), cos(−nyt + nyπ/2 + π/2 − φy),

cos(−nzt + nzπ/2 + π/2 − φz)
)

=
( − cos(2t), (−1)(ny+1)/2 cos(nyt + φy),

(−1)(nz+1)/2 cos(nzt + φz)
)
,

which is either K(t) or its mirror image K(t).
The second case follows similarly.

We may now prove Theorem 1.1.

Proof of Theorem 1.1.: The fundamental domain is di-
vided into nx “boxes” of the form [0, π

nx
]×[k π

nx
, (k+1) π

nx
]

for 0 ≤ k ≤ nx − 1. Within each box all the knots have
the same Type-II crossings, and hence by Corollary 2.4,
there are at most 2ny different knot types in that box.
Since there are nx boxes we obtain at most 2nxny differ-
ent knots.

If nx = 2, there is the additional rotational symmetry
in each box given by Proposition 2.5. The center of each
box lies either on a slanted singular line or midway be-
tween two such lines. Moreover, one of the two boxes will
satisfy the first condition and the other box will satisfy
the other. There are at most ny knot types in the box
where the center of the box lies on a singular line, and
there are at most ny +1 knot types in the box otherwise.
Thus there are at most 2ny + 1 knot types altogether.

Our results thus far allow us to efficiently sam-
ple all Lissajous knots with a given set of frequencies
(nx, ny, nz). We can easily pick one set of phase shifts
from each region on the phase torus, and Corollary 2.4,
and Proposition 2.5 in the case nx = 2, allow us to fur-
ther restrict the regions that we must sample. However,
once nx, ny, and φy are given, the xy-projection has been
fixed, and it is natural to ask whether all possible choices
for nz are necessary. Theorem 1.2, which is stated in the

introduction, shows that in fact, only a finite number of
values for nz are needed to produce all possible knots.

Proof of Theorem 1.2.: Suppose that K ∈ L(nx, ny, nz),
K ′ ∈ L(nx, ny, nz + 2nxny), and that both knots have
the same phase shifts. We will show first that each knot
has its Type-II crossings arranged the same way.

Let (t1, t2) be a Type-II crossing with parameters
(k, j) and let

ΔII(nx, ny, nz, φy , φz, k, j)

= cos(nzt1 + φz) − cos(nzt1 + φz)

= 2 sin
(

nz

(
t1 + t2

2

)
+ φz

)
sin

(
nz

(
t1 − t2

2

))

= −2 sin
(

nz
jπ

nx
+ φz

)
sin

(
nz

kπ

ny

)

be the height difference between the two points on the
knot directly above the crossing.

It is easy to verify that

ΔII(nx, ny, nz, φy , φz, k, j)

= ΔII(nx, ny, nz + 2nxny, φy , φz, k, j)

for all k, j. Thus if nz is increased by 2nxny, not only do
all Type-II crossings remain unchanged, they each main-
tain the same height difference between the upper and
lower strands.

We now shift our focus to Type-I crossings. Let
K have phase shifts (φy , nz

ny
φy − ε) and choose ε small

enough that K corresponds to the region just below
the singular line φz = nz

ny
φy . Let K ′ correspond to

the “same” region, that is, let K ′ have phase shifts
(φy,

nz+2nxny

ny
φy − ε). As before, let (t1, t2) be a Type-I

crossing with parameters (k, j) and let

ΔI(nx, ny, nz, φy, φz , k, j)

= cos(nzt1 + φz) − cos(nzt1 + φz)

= 2 sin
(

nz

(
t1 + t2

2

)
+ φz

)
sin

(
nz

(
t1 − t2

2

))

= −2 sin
(

nz
jπ

ny
− nzφy

ny
+ φz

)
sin

(
nz

kπ

nx

)

be the height difference between the two points on the
knot directly above the crossing. It is easy to check that

Δ
(

nx, ny, nz, φy,
nz

ny
φy − ε, k, j

)

= Δ
(

nx, ny, nz + 2nxny, φy,
nz + 2nxny

ny
φy − ε, k, j

)
.

Thus K and K ′ are the same knot, since both the Type-I
and Type-II crossings are arranged the same way in each.
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If the phase shifts for K are now changed by moving into
an adjacent region, and if the phase shifts for K ′ are
changed in the same way, then the same set of crossings
is changed for both K and K ′, and hence K and K ′

remain the same knot. Therefore

L(nx, ny, nz) ⊆ L(nx, ny, nz + 2nxny). (2–7)

According to Corollary 2.4, the pattern of knot types
in each square [0, π/nx]×[kπ/nx, (k+1)π/nx], as we move
from the upper left corner to the lower right corner, is
periodic with period 2ny. Thus if each box contains at
least 2ny regions, the inclusion in (2–7) is equality. Now
the distance between successive singular lines of the type
given in (2–1) is π√

n2
y+n2

z

, and the distance between lines

of slope nz

ny
containing opposite corners of the square is

(n2+n3)π

n1
√

n2
y+n2

z

. Thus there are at least
⌊

ny+nz

nx

⌋
regions in

each square. Hence the inclusion in (2–7) is equality if
2ny ≤

⌊
ny+nz

nx

⌋
. It is easy to check that this is true if

nz ≥ 2nxny − ny.

Figure 3 illustrates the periodicity in nz described in
Theorem 1.2. The phase tori for L(2, 5, 9), L(2, 5, 29),
and L(2, 5, 49) are shown. Each region of each phase
torus defines a 2-bridge knot, color-coded to its defin-
ing fraction. White regions define unknots. Notice that
L(2, 5, 29) contains one more knot type than L(2, 5, 9).

Because of Theorem 1.2, it makes sense to let
L(nx, ny) =

⋃L(nx, ny, nz), where nx and ny are rel-
atively prime integers and the union is taken over all nz

prime to both nx and ny.

Theorem 2.6. Let nx, ny be relatively prime integers.
Then

|L(nx, ny)| ≤ 4nxny(nx − 1)(ny − 1).

2, 5, 9 2, 5, 29 2, 5, 49

7

2

9

2

57

16

65

14

73

16

121

32

FIGURE 3. Fundamental domains of the phase tori for
L(2, 5, 9), L(2, 5, 29), and L(2, 5, 49). White regions
define unknots. Shaded regions define corresponding
2-bridge knots.

If furthermore nx = 2, then

|L(2, ny)| ≤ 2(ny − 1)(2ny + 1).

Proof: For fixed nx, ny we need only consider 2nxny con-
secutive values of nz. To count the number of values
that are relatively prime to both nx and ny we first sub-
tract 2ny multiples of nx that lie in that range as well
as 2nx multiples of ny and then add back in the two
multiples of nxny. Thus the number of possible values
of nz is bounded above by 2nxny − 2nx − 2ny + 2 =
2(nx − 1)(ny − 1), and applying Theorem 1.1 yields the
result.

3. THE PHASE TORUS—FOURIER-(1,1, 2) KNOTS

The phase torus of a Fourier-(1, 1, k) is, in general, (k+2)-
dimensional, although we may set any one phase shift
equal to zero and drop to a (k + 1)-dimensional space. If
k = 2, φx = 0, and we fix φy, then we may again think
of the two-dimensional phase torus associated with the
pair (φz,1, φz,2). The singular curves are now much more
complicated than in the Lissajous case, but can still be
carefully described.

Suppose K is a Fourier-(1, 1, 2) knot with parameter-
ization

x(t) = cos(nxt),

y(t) = cos(nyt + φy), (3–1)

z(t) = cos(nz,1t + φz,1) + Az,2 cos(nz,2t + φz,2).

Note that by rescaling we may assume that three of the
four amplitudes are 1.

In the Lissajous case, we require that the three fre-
quencies be pairwise relatively prime. The same proof
(see [Bogle et al. 94]) can be used now to conclude that
the three integers nx, ny, and gcd(nz,1, nz,2) must be
pairwise relatively prime. This rules out several of the
16 cases that arise by considering all possible parities for
the frequencies. Some of the remaining cases still give
rise to highly symmetric knots, such as when all the fre-
quencies are odd. In this case the knot is strongly plus
amphicheiral just as in the Lissajous setting. But some
of the parity cases produce knots with no apparent sym-
metry, suggesting that the set of Fourier-(1, 1, 2) knots is
much richer than the set of Lissajous knots.

We will not undertake an exhaustive analysis of the
phase torus of Fourier-(1, 1, 2) knots. Instead we offer
a glimpse of the situation in the following proposition,
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which could be stated much more precisely. In particu-
lar, the constants in the statement of the proposition all
depend on the pair of indices (k, j) associated with either
a Type-I or Type-II crossing. The interested reader can
easily determine the constants by going through the de-
tails of the proof. Results analogous to Propositions 2.3
and 2.5 seem much harder.

Proposition 3.1. Let K be a Fourier-(1, 1, 2) knot with
parameterization as given in (3–1). Then the singular
curves on the phase torus are of four possible types:

1. lines of the form φz,2 = c,

2. lines of the form φz,1 = c,

3. lines of the form φz,2 = ±φz,1 + c,

4. curves with the shape of sin(φz,2) = c sin(φz,1),

where c is a constant that in the last case is neither 0
nor ±1.

Proof: Suppose that (t1, t2) is a pair of times that pro-
duce a double point in the xy-projection of K. Using the
identity cosx − cos y = −2 sin(x+y

2 ) sin(x−y
2 ), we obtain

z(t1) − z(t2)

= −2 sin
(

nz,1
t1 + t2

2
+ φz,1

)
sin

(
nz,1

t1 − t2
2

)

− 2A sin
(

nz,2
t1 + t2

2
+ φz,2

)
sin

(
nz,2

t1 − t2
2

)
.

We are interested in those values of φz,1 and φz,2 that
make this difference zero.

Suppose now that (t1, t2) define a Type-II crossing
with indices (k, j). Then

t1 + t2
2

=
jπ

nx
,

t1 − t2
2

= −kπ

ny
,

and the crossing is singular if

sin
(

nz,1jπ

nx
+ φz,1

)
sin

(
nz,1kπ

ny

)
(3–2)

= −A sin
(

nz,2jπ

nx
+ φz,2

)
sin

(
nz,2kπ

ny

)
.

We are now led to several cases.

Case I: ny | nz,1k.
If ny divides nz,1, then we must have that

sin
(

nz,2jπ
nx

+ φz,2

)
= 0, since k < ny, and ny, nz,1 and

nz,2 cannot have a common factor. This means that

φz,2 = mπ − nz,2jπ

nx

for some integer m.

Case II: ny | nz,2k.
This is similar to Case I, leading to

φz,1 = mπ − nz,1jπ

nx

for some integer m.
If the first two cases do not occur, then we may rewrite

(3–2) as

sin
(

nz,1jπ

nx
+ φz,1

)
= C sin

(
nz,2jπ

nx
+ φz,2

)
,

where

C = −A sin
(

nz,2kπ

ny

)
/ sin

(
nz,1kπ

ny

)
.

Case III: |C| = 1.
In this case we must have(

nz,1jπ

nx
+ φz,1

)
±

(
nz,2jπ

nx
+ φz,2

)
= mπ (3–3)

for some integer m, where the parity of m depends on the
sign of C and whether we are forming a sum or difference
in (3–3). Thus φz,2 = ±φz,1 + c for some constant c.

Case IV: |C| �= 1.
In this case we are left with a translate of the curve

sin(φz,1) = C sin(φz,2).

0 50 100 150 200 250

0

50

100

150

200

250

FIGURE 4. The phase torus for the Fourier-(1, 1, 2)
knot with nx = 5, ny = 6, nz,1 = 1, nz,2 = 2, φx =
0, φy = π/4 and Az,1 = 1, shown for 0 ≤ φz,1 ≤ π and
0 ≤ φz,2 ≤ π.
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This is an interesting curve, which at first glance appears
much like a sine curve. It is oriented either vertically or
horizontally depending on the value of |C|.

The analysis of a Type-I crossing is similar and is left
to the reader.

In Figure 4 we give an example showing a 250 × 250
pixel bitmap image of the phase torus for a specific set of
parameters. Even with relatively small frequencies, one
can begin to appreciate the difficulty of systematically
sampling each region of the phase torus for an arbitrary
Fourier-(1, 1, 2) knot.

4. 2-BRIDGE KNOTS

Every 2-bridge knot can be classified by a pair of rela-
tively prime integers (p, q) such that p is odd and 0 <

q < p. We will often write the pair (p, q) as the fraction
p/q. If Kp/q and Kp′/q′ are two 2-bridge knots with corre-
sponding fractions p/q and p′/q′, then they are equivalent
knots if and only if p = p′ and ±q′q±1 ≡ 1 mod p. The
reader is referred to [Burde and Zieschang 03] for details.

If K is a Fourier-(1, 1, 2) knot with nx = 2, then K is
a 2-bridge knot. We may recover the fraction p/q from
the Lissajous projection in the xy-plane as follows. This
projection is a 4-plat diagram. As we move in the x-
direction from left to right we see a single Type-I crossing
on the x-axis, then a pair of Type-II crossings that are
symmetric with respect to the x-axis, then another Type-
I crossing on the x-axis, and so on. Let η1, η2, . . . be the
signs of the Type-I crossings from left to right along the
x-axis. Let {ε1

1, ε
2
1}, {ε1

2, ε
2
2}, . . . be the signs of the pairs

of Type-II crossings from left to right. Proceeding in a
fashion similar to that given in [Rolfsen 90, pp. 300–303],
we obtain that p/q is given by the continued fraction

p/q = [η1, ε
1
1 + ε2

1, η2, ε
1
2 + ε2

2, . . . , ηny ] (4–1)

= η1 +
1

ε1
1 + ε2

1 +
1

η2 + · · · + 1
ηny

Note that if K is Lissajous, then it is rotationally sym-
metric with respect to the x-axis and each pair of Type-II
crossings has the same sign. In this case each ε1

i + ε2
i can

be replaced with 2ε1
i . Using this formula, it is easy to

determine the 2-bridge knot given by a Fourier-(1, 1, 2)
representation with nx = 2. Hence, when we sample Lis-
sajous and Fourier-(1, 1, 2) knots with nx = 2, even if we
obtain knots with hundreds of crossings, it is a simple
matter to distinguish them.

Since every Lissajous knot with nx = 2 is 2-bridge, a
good question is this: What 2-bridge knots are Lissajous
with nx = 2? As mentioned in the introduction, every
Lissajous knot is either strongly plus amphicheiral, or 2-
periodic and linking its axis of rotation once. It is known
that a 2-bridge knot cannot be strongly plus amphicheiral
[Hartley and Kawauchi 79]. It is also known (and will be
shown below) that every 2-bridge knot is 2-periodic, but
may or may not link its axis of rotation once. The fol-
lowing theorem makes it easy to identify which 2-bridge
knots might be Lissajous.

Theorem 4.1. Let K be a 2-bridge knot. Then the follow-
ing are equivalent:

1. K has a symmetry of period 2 with axis A such that
A is disjoint from K and | lk(A, K)| = 1

2. ΔK(t) is a square modulo 2.

3. ΔK(t) ≡ 1 mod 2.

Proof: As already mentioned in the introduction, it fol-
lows from a result of Murasugi (see [Murasugi 71]) that
statement 1 implies statement 2, and clearly statement 3
implies statement 2.

Before proving that statement 2 implies both 1 and 3,
we make some preparatory remarks.

Suppose K is a 2-bridge knot given by the pair of
relatively prime integers (p, q) with p odd and 0 < q < p.
There is a unique continued fraction expansion of the
form

p/q = [2a1,−2a2, . . . , (−1)n+12an].

Corresponding to this expansion is a Seifert surface made
from plumbing together twisted bands as shown in Fig-
ure 5. Notice that the Seifert surface, and hence K, is
rotationally symmetric around the axis A. Thus every 2-
bridge knot has a symmetry of period 2 with axis disjoint
from the knot. However, the linking number of A and K

need not be ±1 in general. From the plumbing picture
we also see that the number of bands, n, must be even
in order to get a knot. If n is odd, we obtain a 2-bridge
link (of two components).

The axis A meets the Seifert surface S transversely in
n + 1 points, and we may compute the linking number
of A and K by counting the signed intersection points.
Let εi be the sign of the intersection point that occurs
between band i and band i + 1. Let ε0 be the sign of
the leftmost intersection point in the figure and choose
orientations so that ε0 = 1. It is easy to see that εi+1 = εi
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a1

a1

a2

a2
S

A
an

FIGURE 5. The Seifert surface S and axis A for the 2-
bridge knot Kp/q. Each ai represents ai right-handed
half-twists in the band.

if ai is odd and εi+1 = −εi if ai is even. Thus the sequence
{a1, a2, . . . , an} determines the sequence {ε0, ε1, . . . , εn},
which in turn determines the linking number Σεi between
A and K.

From the Seifert surface we may obtain the Seifert
matrix V and compute the Conway polynomial ∇(z) =
det(t−1/2V − t1/2V T ), where z = t1/2 − t−1/2. It is a
straightforward calculation to show that

∇K(z) =
(

1 0
) ( −a1z 1

1 0

)( −a2z 1
1 0

)
· · ·

×
( −anz 1

1 0

) (
1
0

)
.

(See [Cromwell 04, p. 207].)
Finally, we leave as an exercise for the reader the fact

that an Alexander polynomial of the form

Δ(t) = b0 +b1(t+ t−1)+b2(t2 + t−2)+ · · ·+bm(tm + t−m)

is a square modulo 2 if and only if b2k+1 ≡ 0 mod 2
for all k.

We now show that statement 2 implies both statement
1 and statement 3 by induction on n.

If n = 2, the Conway polynomial is

∇(z) = 1 + a1a2z
2

and the Alexander polynomial is

Δ(t) = ∇(t1/2 − t1/2) = a1a2t
−1 + (1 − 2a1a2) + a1a2t.

Assuming that Δ(t) is a square modulo 2 implies that
at least one of a1 and a2 is even. It now follows that∑

εi = ±1 and that Δ(t) ≡ 1 mod 2.
Suppose now that n > 2 and that K is a knot with

ΔK(t) a square modulo 2. We first show that ai is even
for at least one value of i. If ai were odd for every i,
then replacing each ai with −1 would not change any ai

modulo 2, and hence would not change ∇K(z) modulo 2
or ΔK(t) modulo 2. But if ai = −1 for all i, it is not
difficult to prove (by induction on n) that

Δ(t) = 1 − t + t2 − t3 + · · · + tn,

and it follows that Δ(t) is not a square modulo 2. Thus
at least one ai is even. Replacing this ai with zero
transforms K into a knot J with the same Alexander
polynomial modulo 2 but with a Seifert surface having
two fewer bands. Our inductive hypothesis now gives
that lk(J, A) = ±1 and that ΔJ (t) ≡ 1 mod 2. Thus
ΔK(t) ≡ 1 mod 2, and because ai is even, K must also
link A once.

5. SAMPLING LISSAJOUS AND FOURIER KNOTS

Using the results of Section 2 we are now in a position
to efficiently sample Lissajous knots. In the case nx = 2,
we obtain 2-bridge knots and can take advantage of this
to compare knots in our sample. For the more general
case of Fourier knots, we have not carried out a complete
analysis of the phase torus, a task that seems much more
difficult. Hence, we have not attempted to sample Fourier
knots rigorously. Instead, we have relied on two methods:
random sampling and an algorithm that first “draws” a
bitmap image of the phase torus (as in Figure 4) and then
picks one point from each “white” region. This latter
approach is fraught with difficulty, since, for example,
some white regions may be smaller than a single pixel
and be missed. Our samples naturally fall into four cases,
which we describe in turn in this section.

Finally, in Tables 6 and 7 we summarize our data for
all prime knots to nine crossings. As mentioned earlier,
these summary data were culled from a much larger set of
tables that appeared in the original version of this paper
[Boocher et al. 07]. In this section we will sometimes
refer to the tables in that work.

5.1 Lissajous Knots with 2 = nx < ny < nz

We have determined all knots in L(2, ny) for 3 ≤ ny ≤
105. For a given value of ny we let nz run from 3ny + 2
to 7ny. These values of nz are sufficient to guarantee
that we obtain all possible knots in L(2, ny). Since each
of these knots is 2-bridge, we were able to use (4–1) to
identify the associated pair (p, q) and thus compare knots
in the output.

The total number of knots in L(2, ny) is given in Ta-
ble 1 for each value of ny. It is interesting to compare
these numbers with the upper bound given by Theo-
rem 2.6. Depending on ny, the actual number of knots
found is roughly between five and ten percent of the
upper bound. The discrepancy is almost certainly due
to the presence of huge numbers of unknots. The xy-
projection of a Lissajous knot with nx = 2 and ny = 99
has (2)(2)(99) − 2 − 99 = 295 crossings, and knots in
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L(2, 99) have crossing numbers ranging from 5 to 293.
Of course, the bound of 78,008 given by Theorem 2.6
for nx = 2 and ny = 99 is well below the upper bound
of 2295 obtained by considering all possible crossing ar-
rangements!

The total number of knots in Table 1 is 135,061, far
too many to describe one by one. In Table 2 we list the
knots in L(2, 3), L(2, 5), L(2, 7), and L(2, 9). In [Boocher
et al. 07, Tables 4–7] we list all knots in L(2, ny), grouped
by crossing number, for 3 ≤ ny ≤ 15.

Several interesting things can be seen in these tables.
The same knot often appears in L(2, ny) for many dif-
ferent values of ny. For example, K7/2 (which is the
twist knot 52 in [Rolfsen 90]) is contained in L(2, ny) for
3 ≤ ny ≤ 105. This is also true for K9/2. The knot K15/4

first appears for ny = 3, misses a few values of ny, and
then is contained in L(2, ny) for 23 ≤ ny ≤ 105.

Similar patterns hold for the other small-crossing
knots, suggesting that if K ∈ L(2, ny) for some ny then
there exists N such that K ∈ L(2, ny) for all ny ≥ N .

A second observation is that several small-crossing
knots are already conspicuously absent. In particular,
there are exactly four 8-crossing knots with Alexander
polynomial congruent to 1 modulo 2 (and hence possibly
Lissajous). These are K17/4, K23/7, K25/9, and K31/12,
only one of which, K31/12, appears to be Lissajous. While
[Boocher et al. 07, Tables 4–7] display only a small frac-
tion of our total sample, it is in fact true that the other
three 8-crossing knots do not appear for any ny up to 105.

Question 5.1. Does there exist a 2-bridge knot K with
ΔK(t) ≡ 1 mod 2 that is not Lissajous (with or without
one frequency equal to 2)? In particular, are any of the 8-
crossing 2-bridge knots K17/4, K23/7, K25/9, or any of the
9-crossing 2-bridge knots K23/4, K33/10, K39/16, K41/12,
K41/16 Lissajous?

In Table 3 we list the numbers of 2-bridge knots, 2-
bridge knots with Alexander polynomial congruent to 1
mod 2, and finally, the number of these that are Lissajous
knots with nx = 2 and 3 ≤ ny ≤ 105. The table has en-
tries for each crossing number from 3 to 16. Very quickly
we see that many 2-bridge knots with the required sym-
metry are not Lissajous, at least not with nx = 2 and
3 ≤ ny ≤ 105.

It seems unlikely that choosing ny > 105 will yield
more 2-bridge knots in the 3-to-16 crossing range. On
the other hand, perhaps letting the even frequency be
more than 2 will yield more 2-bridge knots with small
crossing number. We examine this further in Section 5.2.

In [Boocher et al. 07, Tables 8 and 9] we list all 2-
bridge knots with crossings from 3 to 16 that are Lis-
sajous knots with nx = 2 and 3 ≤ ny ≤ 105. For each
knot, the given value of ny is minimal. However, since
our search let nz run from 3ny + 2 to 7ny, it might be
possible for a given knot to be represented with a smaller
value of nz. Data from [Boocher et al. 07, Tables 8 and 9],
for knots up to nine crossings, appear in Tables 6 and 7.

As a check against errors, we took all the 2-bridge
knots in the data set that have Lissajous diagrams with
fewer than 50 crossings (the built-in limit for Knotscape)
and crossing number less than 17, and looked them up
in the Knotscape table of knots in two different ways.
First we converted their Lissajous diagrams to Dowker–
Thistlethwaite code (the input format for Knotscape)
and then used the “Locate in Table” feature. Next we
converted the defining fraction p/q into DT code and
again used the “Locate in Table” routine. Happily, the
results matched.

5.2 Lissajous Knots with 2 < nx < ny < nz

Our goal in this section is simply to find as many Lis-
sajous knots in the 3-to-16 crossing range as we can. We
may still use the results of Section 2 to efficiently sample
Lissajous knots with all frequencies greater than 2, but it
is more difficult to tabulate the output. This is because
even with relatively small frequencies, knots with very
large crossing number can result, and we can no longer
use the classification of 2-bridge knots to sort them out.
Therefore, we limited ourselves to producing diagrams
with at most 49 crossings, the limit of what can be input
to Knotscape. Assuming that 2 < nx < ny, and that
gcd(nx, ny) = 1, we are left with the following (nx, ny)
pairs:

{(3, 4), (3, 5), (3, 7), (3, 8), (3, 10), (4, 5), (4, 7), (5, 6)}.
For each of these pairs we let nz run from 2nxny−nx−ny

to 4nxny − nx − ny − 1, a range sufficient to produce all
possible Lissajous knots. We obtained a total of 6352
knots, 1428 of which Knotscape identified as unknots.
The remaining 4924 knots fell into four categories:

1. knots identified as composites by Knotscape,

2. knots that Knotscape located in the Hoste–
Thistlethwaite–Weeks table,

3. knots that Knotscape simplified to alternating pro-
jections with more than 16 crossings, and

4. knots that Knotscape simplified to nonalternating
projections with more than 16 crossings.
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ny |L(2, ny)| ny |L(2, ny)| ny |L(2, ny)| ny |L(2, ny)|
3 3 29 645 55 1854 81 3761
5 11 31 737 57 1727 83 5805
7 28 33 533 59 2859 85 4654
9 37 35 684 61 3062 87 4195
11 78 37 1075 63 1946 89 6707
13 109 39 772 65 2639 91 5647
15 93 41 1339 67 3708 93 4805
17 203 43 1473 69 2593 95 5892
19 258 45 904 71 4191 97 7984
21 195 47 1782 73 4433 99 5208
23 390 49 1688 75 2584 101 8699
25 390 51 1365 77 3933 103 9036
27 387 53 2287 79 5248 105 4425

TABLE 1. The number of distinct Lissajous knots with nx = 2 as a function of ny .

Lissajous set 2-bridge knots

L(2, 3) 7/2; 9/2; 15/4

L(2, 5) 7/2; 9/2; 17/5; ; ; 17/2, 49/20, 57/16; 65/14, 73/16, 97/26; 121/32; 209/56

L(2, 7) 7/2; 9/2; 15/4, 17/5; ; 15/2, 31/7; 17/2, 49/20, 55/12, 57/16; 73/16; 169/50;
239/71; 25/2, 89/36, 289/118; 151/20, 319/144, 359/82, 463/130; 529/114,
593/130, 777/208; 975/274, 983/260, 1351/362; 1681/450; 2911/780

L(2, 9) 7/2; 9/2; 17/5; ; 31/7; 17/2, 57/16; 49/9, 65/14, 73/16; 167/46; ; 25/2, 89/36,
289/118, 409/121; 441/101, 463/130; 593/130; ; 33/2, 129/52, 529/214, 1681/696,
2321/622; 273/32, 673/78, 1961/800, 2001/898, 3329/989; 3761/1056;
4297/926, 4305/944, 4817/1056; 7921/2224, 7985/2112, 10865/2912; 18817/5042;
23409/6272; 40545/10864

TABLE 2. The sets L(2, ny) for 3 ≤ ny ≤ 9 given by 2-bridge fraction p/q. Within each set, knots are ordered by crossing
number with each semicolon indicating a crossing number increase of 1.

crossing number

3 4 5 6 7 8 9 10 11 12 13 14 15 16

2-bridge 1 1 2 3 7 12 24 45 91 176 352 693 1387 2752
Δ(t) ≡ 1 0 0 1 1 2 4 8 13 26 51 97 185 365 705
L(2, ny) 0 0 1 1 2 1 3 4 8 5 9 7 15 15

TABLE 3. The number of 2-bridge knots, 2-bridge knots with Alexander polynomial congruent to 1 modulo 2, and the
number of these that are Lissajous with nx = 2 and 3 ≤ ny ≤ 105, as a function of crossing number.

In Table 4 we list all knots in the first category. In
Tables 6 and 7 we list all knots in the second category up
to 9 crossings, and in [Boocher et al. 07, Tables 10 and
11] we continue up to 16 crossings. We note that while
Knotscape can identify a knot as a composite, it identi-
fies the summands only up to mirror image. In order to
properly identify the composites in Table 4, we compared
their Jones polynomials to the Jones polynomials of all
possible composites using the given summands or their
mirror images in all possible ways.

The third category cannot include knots in the Hoste–
Thistlethwaite–Weeks table, and we make no attempt to
list them here. The fourth category might include knots
with 16 or fewer crossings that Knotscape simply failed to

simplify correctly. To investigate this we first computed
the Jones polynomial of each knot and eliminated knots
whose Jones polynomial had a span of 17 or more. (Re-
call that the crossing number of a knot is bounded below
by the span of the Jones polynomial.) This left a total of
78 knots. Of these, only 5 shared the same Jones poly-
nomial with prime knots having fewer than 17 crossings
and furthermore having an Alexander polynomial that is
a square modulo 2. In each of these five cases either the
Alexander polynomial or the Kauffman 2-variable poly-
nomial was sufficient to show that the knots did indeed
have crossing numbers of 17 or more.

Thus, barring clerical errors, Table 4 and [Boocher et
al. 07, Tables 10 and 11] provide a complete list of all
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knot nx ny nz φx φy φz

3a1#3a1 3 4 23 0 0.25210 1.84229
3a1#3a1 3 5 29 0 0.23099 2.91059
5a1#5a1 3 7 50 0 0.50522 1.58916
5a1#5a1 3 5 29 0 0.26179 1.83259
6a1#6a1 4 5 37 0 0.18699 2.95459
6a3#6a3 3 8 47 0 0.23799 0.80919
6a3#6a3 3 5 29 0 0.29259 0.75459
3a1#3a1#5a1 4 5 39 0 0.16064 2.19554
3a1#3a1#5a1 4 7 55 0 0.13934 2.21684
3a1#3a1#8a2 5 6 59 0 0.11116 2.40211
5a1#5a1#5a1 4 7 55 0 0.15201 1.41878
6a3#6a3#6a3 4 7 55 0 0.16468 0.62071
3a1#3a1#3a1#3a1 5 6 59 0 0.10149 1.78345

TABLE 4. Small-crossing composite Lissajous knots. A bar over a knot name indicates mirror image. Knot names are as
in Knotscape.

crossing number

(nx, ny) 5 6 7 8 9 10 11 12 13 14 15 16

(3, 4) 1 1 2 2 1 2 2 1
(3, 5) 1 1 3 4 5
(3, 7) 1 2 7 8
(3, 8) 1 4 1
(3, 10) 2 1

(4, 5) 1 2 1 2 2 2
(4, 7) 1 1 1

(5, 6) 1 1

TABLE 5. Number of prime Lissajous knots with given x and y frequencies through 16 crossings. Only three of these,
5a1, 6a3, and 7a6 (which correspond to bold entries) are in fact 2-bridge knots.

Lissajous knots with x and y frequencies of (3, 4), (3, 5),
(3, 7), (3, 8), (3, 10), (4, 5), (4, 7), or (5, 6) that are either
composite, or prime with 16 or fewer crossings. Again,
Tables 6 and 7 of this paper contain data only to nine
crossings. In Table 5 we list the number of prime knots
in this set by crossing number.

As mentioned in the introduction, there are ex-
actly three prime knots with 12 or fewer crossings that
are strongly plus amphicheiral: 10a103 (1099), 10a121
(10123), and 12a427. The knots 10a103 and 12a427 are
Lissajous and are listed in [Boocher et al. 07, Table 10].
A natural question is the following.

Question 5.2. Is the strongly plus amphicheiral knot
10a121 Lissajous?

The knot 10a121 is one member of a family of knots
known as Turk’s head knots. These knots are conjectured
not to be Lissajous by Przytycki. See [Przytycki 98].

It is easy to see that every composite knot of the form
K#K is strongly plus amphicheiral, while composites of
the form K#K are 2-periodic and link their axis of rota-

tion once. Several knots of this form appear in Table 4.
Thus another good question is the following.

Question 5.3. Is every composite knot of the form K#K

or K#K Lissajous?

5.3 Fourier-(1, 1, 2) Knots with 2 = nx < ny

Rather than trying to choose one point in each region
of the phase torus for a Fourier-(1, 1, 2) knot algorithmi-
cally, we chose instead to sample points from the phase
torus randomly. Fixing nx = 2, φx = 0, and Az,1 = 1,
we then let ny take on odd values from 3 to 99. For each
value of ny the remaining parameters were then chosen
at random such that

φy =
k

7
π, k ∈ {1, 2, 3, 4, 5, 6},

0 < nz,1 < nz,2 < 301,

0 ≤ φz,1 ≤ π,

0 ≤ φz,2 ≤ 2π,

0 ≤ Az,2 ≤ 2.



494 Experimental Mathematics, Vol. 18 (2009), No. 4

knot p/q nx ny nz,1 nz,2 φx φy φz,1 φz,2

3a1t 3/1 2 3 2 1 0 π/4 π/2 π/4

4a1 5/2 2 3 1 3 0 π/4 1.62773 5.79254

5a1 7/2 2 3 11 – 0 0.56099 2.58059 –

5a2t 5/1 2 5 2 3 0 π/4 π/2 π/4

6a1 13/5 2 5 1 5 0 π/4 0.03573 2.53353

6a2 11/3 2 7 1 7 0 π/4 1.90655 5.01637

6a3 9/2 2 3 11 – 0 0.67319 0.89759 –

7a1 21/8 2 5 1 5 0 π/4 1.60021 5.52412

7a2 19/7 2 7 3 7 0 π/4 1.66835 6.11271

7a3 17/5 2 5 17 – 0 0.49979 2.64179 –

7a4 11/2 2 7 3 7 0 π/4 1.60853 6.27384

7a5 13/3 2 9 4 7 0 π/4 1.57817 4.41032

7a6 15/4 2 3 11 – 0 0.78539 2.35619 –

7a7t 7/1 2 7 2 5 0 π/4 π/2 π/4

8a1 31/12 2 11 41 – 0 0.39269 2.74889 –

8a2 – 3 4 23 – 0 0.29088 2.85070 –

8a3 – 3 5 6 13 0 π/6 0.56548 2.03575

8a4 25/9 2 7 1 5 0 π/4 2.04720 5.29197

8a5 29/12 2 5 3 5 0 π/4 1.59453 2.05821

8a6 23/5 2 9 1 9 0 π/4 0.35397 2.65710

8a7 29/8 2 9 1 5 0 π/4 1.47451 2.10447

8a8 17/3 2 11 3 10 0 π/4 0.39241 5.09182

8a9 27/8 2 9 1 5 0 π/4 2.03830 2.05668

8a10 23/7 2 7 1 9 0 π/4 0.48400 5.18915

8a11 13/2 2 5 3 5 0 π/4 1.58524 0.24531

8a12 – 3 4 3 5 0 π/6 1.04300 0.80424

8a13 – 3 4 1 9 0 π/6 0.26389 1.58336

8a14 – 3 4 7 14 0 π/6 1.28176 1.78442

8a15 – 3 7 1 10 0 π/6 1.64619 2.31221

8a16 25/7 2 7 3 7 0 π/4 0.04412 2.25248

8a17 19/4 2 9 3 7 0 π/4 1.92077 6.06457

8a18 17/4 2 7 1 5 0 π/4 1.42912 1.98797

8n1 – 3 4 1 14 0 π/6 1.94778 2.76460

8n2 – 3 4 37 – 0 0.49805 2.64353 –

8n3t – 3 4 3 1 0 π/6 π/2 5π/48

TABLE 6. Fourier and Lissajous descriptions for all prime knots to eight crossings. Knot names are as in Knotscape. The
classifying fraction p/q is given for 2-bridge knots. All amplitudes are 1. Boldface entries are Lissajous. Italic entries are
2-bridge with Δ(t) ≡ 1 mod 2, and hence might be Lissajous. The “t” superscript denotes torus knots.

For each value of ny, random sampling in batches of
10,000 took place until no new knots were found. If a
knot was produced that had already been found, the one
with the lexicographically smallest set {nx, ny, nz,1, nz,2}
was kept.

This tended to produce knots with fairly small values
of {nx, ny, nz,1} but with nz,2 often in the hundreds. Fur-
thermore, only knots with fewer than 17 crossings were
kept in the sample.

After a modest amount of searching, we turned up
all 2-bridge knots with 14 or fewer crossings, and nearly
all 15- and 16-crossing ones as well. (We found 1386

out of 1387 15-crossing knots and 2731 out of 2752 16-
crossing knots.) We believe that the following conjecture
is reasonable.

Conjecture 5.4. Every 2-bridge knot can be expressed as
a Fourier-(1, 1, k) knot with nx = 2 and k ≤ 2.

Additional evidence for this conjecture is provided by
the twist knots. The twist knot Tm, which is the 2-bridge
knot K 2m+1

2
, is shown in Figure 6. The mirror image of

Tm is the twist knot T−1−m. Thus it suffices to consider
m > 1. It is shown in [Hoste and Zirbel 07] that Tm is
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knot p/q nx ny nz,1 nz,2 φx φy φz,1 φz,2

9a1 – 3 5 7 10 0 π/6 2.29964 0.03769

9a2 – 3 7 1 6 0 π/6 0.35185 1.05557

9a3 41/16 2 7 3 5 0 π/4 1.88608 4.98854

9a4 – 3 4 1 14 0 π/6 1.33203 2.27451

9a5 – 3 8 1 8 0 π/6 0.65345 1.70902

9a6 – 3 7 1 10 0 π/6 1.88495 2.43787

9a7 – 3 4 1 14 0 π/6 2.03575 2.37504

9a8 31/11 2 11 41 – 0 0.48332 1.08747 –

9a9 – 3 7 4 15 0 π/6 1.15610 0.76654

9a10 39/16 2 5 1 7 0 π/4 2.08636 5.17367

9a11 – 3 5 9 14 0 π/6 1.04300 1.33203

9a12 49/18 2 17 1 9 0 π/4 0.60289 4.56332

9a13 55/21 2 7 1 7 0 π/4 0.00613 5.43134

9a14 39/14 2 9 1 9 0 π/4 2.13083 5.89035

9a15 47/13 2 9 1 9 0 π/4 1.74912 1.92322

9a16 45/19 2 9 1 5 0 π/4 1.93719 4.94328

9a17 37/8 2 5 2 9 0 π/4 0.19367 2.96295

9a18 – 3 4 2 7 0 π/6 2.37504 2.03575

9a19 41/11 2 15 3 10 0 π/4 2.62089 0.60844

9a20 33/7 2 17 5 7 0 π/4 0.10752 5.13086

9a21 43/12 2 5 3 9 0 π/4 2.14045 5.61205

9a22 35/8 2 5 7 9 0 π/4 1.67486 1.65979

9a23 27/5 2 13 4 5 0 π/4 1.36285 5.38881

9a24 41/12 2 11 1 7 0 π/4 0.44828 2.24339

9a25 – 3 5 28 – 0 0.26973 1.82466 –

9a26 29/9 2 11 8 9 0 π/4 1.42268 3.50098

9a27 15/2 2 7 25 – 0 0.49087 1.07992 –

9a28 – 3 7 4 5 0 π/6 1.28176 0.45238

9a29 – 4 7 2 13 0 π/8 0.26389 2.07345

9a30 – 3 7 8 9 0 π/6 0.23876 0.77911

9a31 – 3 4 10 11 0 π/6 1.38230 1.87238

9a32 – 3 7 4 13 0 π/6 0.46495 1.20637

9a33 31/7 2 7 23 – 0 0.47123 2.67035 –

9a34 37/10 2 9 3 5 0 π/4 1.98367 5.56618

9a35 21/4 2 11 9 10 0 π/4 0.35932 5.18305

9a36 23/4 2 9 3 5 0 π/4 1.65102 3.04593

9a37 – 3 4 2 11 0 π/6 1.04300 2.62637

9a38 19/3 2 13 1 7 0 π/4 1.93386 2.02910

9a39 33/10 2 11 3 7 0 π/4 2.16159 2.03213

9a40 – 3 7 4 13 0 π/6 1.06814 1.06814

9a41t 9/1 2 9 2 7 0 π/4 π/2 π/4

9n1 – 3 4 1 14 0 π/6 0.05026 0.27646

9n2 – 3 5 4 7 0 π/6 0.15079 1.99805

9n3 – 3 8 1 6 0 π/6 0.76654 0.95504

9n4 – 3 4 2 11 0 π/6 0.35185 2.51327

9n5 – 3 4 1 4 0 π/6 1.33203 2.09858

9n6 – 3 4 2 13 0 π/6 0.08796 2.48814

9n7 – 3 7 2 9 0 π/6 2.62637 1.05557

9n8 – 3 7 4 13 0 π/6 0.05026 0.18849

TABLE 7. Fourier and Lissajous descriptions for all prime knots with nine crossings. Knot names are as in Knotscape.
The classifying fraction p/q is given for 2-bridge knots. All amplitudes are 1. Boldface entries are Lissajous. Italic entries
are 2-bridge with Δ(t) ≡ 1 mod 2, and hence might be Lissajous. The “t” superscript denotes torus knots.

Lissajous if and only if m ≡ 0 mod 4 or m ≡ 3 mod 4. If
this is not the case, the knot does not have the required
symmetry to be Lissajous.

However, in these cases, the following examples show
that Km is a Fourier-(1, 1, 2) knot. Thus all twist knots
are Fourier-(1, 1, k) knots with k ≤ 2.
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FIGURE 6. The twist knot Tm.

Theorem 5.5. Twist knots that are not Lissajous may be
expressed as Fourier-(1, 1, 2) knots as follows:

1. The twist knot T4n+1 can be expressed as the Fourier-
(1, 1, 2) knot with nx = 2, φx = 0, ny = 8n + 3, φy =
1/2, nz,1 = 2, φz,1 = π/4, nz,2 = 8n + 1, φz,2 =
8n+1+(8n+5)π

2(8n+3) and Az,2 = 1 for all n ≥ 1.

2. The twist knot T2n can be expressed as the Fourier-
(1, 1, 2) knot with nx = 2, φx = 0, ny = 2n + 1, φy =
1/2, nz,1 = 2, φz,1 = π/4, nz,2 = 2n + 3, φz,2 =
2n+3−3π
2(2n+1) and Az,2 = 1 for all n ≥ 1.

The proof is similar to the proof of [Hoste and Zirbel
07, Theorem 4] and relies on very carefully determining
the sign of each crossing in the diagram. The details are
quite long and not particularly insightful. We leave this
as a rather complicated exercise for the reader.

Our sample of all 2-bridge knots to 16 crossings ex-
pressed as Fourier-(1, 1, 2) knots is too large to reproduce
here. Instead, in Tables 6 and 7, we include Fourier de-
scriptions for all 2-bridge knots to 9 crossings. Table 13
of [Boocher et al. 07] continues to 10 crossings. To gener-
ate this table we again undertook a random sample but
this time sharply reduced the range of the parameters.
In particular, we kept all amplitudes equal to one, set
φy = π/4, and allowed z-frequencies only as large as 10.
An interesting variation on Conjecture 5.4 would be to
require that all amplitudes be 1. Knots appearing in Ta-
bles 6 and 7 (and in Tables 12 and 13 of [Boocher et al.
07]) that are known to be Lissajous are shown in bold-
face, while those 2-bridge knots that have the necessary
symmetry to be Lissajous, and hence might be Lissajous,
are shown in italics.

5.4 Fourier-(1, 1, 2) Knots with 2 < nx < ny

We made only a modest attempt to sample Fourier-
(1, 1, 2) knots with x and y frequencies greater than two.
Rather than sampling at random as in Section 5.3, we
now chose one sampling point from each region of the
phase torus by first creating a bitmap image as in Fig-
ure 4 and then taking the centroid of each white re-
gion. Sometimes the centroid fell outside of the region,
and in this case an arbitrary point of the region was se-
lected. Because of the large crossing numbers that result,
and the consequent difficulty in identifying these knots,
we again restricted our sample to x and y frequencies
of (3, 4), (3, 5), (3, 7), (3, 8), (3, 10), (4, 5), (4, 7), (5, 6). We
further restricted the z-frequencies to be less than 15 and
somewhat arbitrarily fixed all amplitudes at 1.

Using Knotscape to identify the resulting knots, and
keeping only knots with 16 or fewer crossings, we found
several thousand prime knots. Tables 6 and 7 include
these knots with 9 or fewer crossings. Tables 15–17 in
[Boocher et al. 07] continue to 10 crossings.

All knots through 9 crossings were found, and all but
20 alternating 10-crossing knots were found. We suspect
that limiting the z-frequencies to fewer than 15 is a severe
restriction.

We did however, find all torus knots up to 16 crossings.
It is shown in [Kauffman 98] that every torus knot is a
Fourier-(1, 3, 3) knot. Interestingly, we found that up to
16 crossings, the torus knot Tp,q can be represented by
a Fourier-(1, 1, 2) knot with nx = p and ny = q. By
carefully analyzing these examples, the third author was
able to prove the following theorem. The proof can be
found in [Hoste 09].

Theorem 5.6. The torus knot Tp,q, with 0 < p < q and
gcd(p, q) = 1, is equivalent to the Fourier-(1, 1, 2) knot
given by

x(t) = cos(pt),

y(t) = cos (qt + π/(2p)) ,

z(t) = cos (pt + π/2) + cos ((q − p)t + π/(2p) − π/(4q))

Furthermore, if p is even, we may replace φz,2 with
π/(2p).

It would be interesting to undertake a large-scale sam-
pling of Fourier-(1, 1, 2) knots with x and y frequencies
greater than two to see whether every knot with 16 or
fewer crossings turns up. Such a study might shed light
on the following question.
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Question 5.7. Is there a knot that cannot be expressed
as a Fourier-(1, 1, k) knot for k ≤ 2?
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