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We determine the smallest possible regulator R(P, Q) for a rank-
2 subgroup ZP ⊕ZQ of an elliptic curve E over C(t) of discrim-
inant degree 12n for n = 1 (a rational elliptic surface) and n = 2

(a K3 elliptic surface), exhibiting equations for all (E, P, Q) at-
taining the minimum. The minimum R(P, Q) = 1/36 for a ra-
tional elliptic surface was known [Oguiso and Shioda 91], but
a formula for (E,P, Q) was not, nor was the fact that this is the
minimum for an elliptic curve of discriminant degree 12 over a
function field of any genus. For a K3 surface, both the minimal
regulator R(P, Q) = 1/100 and the explicit equations are new.
We also prove that 1/100 is the minimum for an elliptic curve of
discriminant degree 24 over a function field of any genus. The
optimal (E,P, Q) are uniquely characterized by having mP and
m′Q integral for m ≤ M and m′ ≤ M ′, where (M, M ′) = (3, 3)

for n = 1 and (M, M ′) = (6, 3) for n = 2. In each case MM ′ is
maximal. We use the connection with integral points to find ex-
plicit equations for the curves. As an application we use the K3

surface to produce, in a new way, the elliptic curves E/Q with
nontorsion points of smallest known canonical height. These
examples appeared previously in [Elkies 02].

1. INTRODUCTION

Let K be a function field of genus g over a field k of
characteristic 0. Let E be a nonconstant elliptic curve
over K of discriminant degree d = 12n (or equivalently
an elliptic surface of arithmetic genus n). When g = 0
and n = 1, E is a rational elliptic surface; when g = 0 and
n = 2, E is a K3 elliptic surface. Let

ĥ : E(K) −→ [0,∞) ∩ Q

be the canonical height function. The canonical height
is a quadratic form on the group E(K) and gives
E(K)/E(K)tors the structure of a lattice in a Euclidean
space. If one fixes the discriminant degree d, the set
of numbers that can occur as the canonical height of a
point is discrete, because the bound on d imposes an up-
per bound on the denominator. One may ask, what is
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the smallest positive height of a nontorsion point on an
elliptic curve over K of discriminant degree d? More gen-
erally, one can ask, what is the smallest possible regulator
for a rank-r sublattice of the lattice E(K)/E(K)tors?

Let Rr
min(g, 12n) denote the minimal regulator for a

rank-r subgroup of an elliptic curve of discriminant de-
gree 12n over a function field of genus g. Let Rr

min(12n)
denote the minimal regulator for a rank-r subgroup of an
elliptic curve of discriminant degree 12n. In the case of
r = 1, these values denote the smallest positive height of
a nontorsion point. The value R1

min(0, 12) = 1/30 was de-
termined in [Oguiso and Shioda 91], and R1

min(0, 24) =
11/420 was determined in [Nishiyama 96]. Nishiyama
used arguments specific to K3 surfaces, and was un-
able to write down any examples of curves attaining the
minima. Explicit methods were used in [Elkies 06a] to
determine R1

min(0, 12n) for n = 1, 2, 3 and R1
min(12n)

for n = 1, 2. In each case Elkies exhibited equations
for all (E, P ) attaining the minima. He also proved
that the (E, P ) attaining the minima have the property
that mP is an integral point for each m = 1, . . . , M ,
where M = 6, 8, 9 for n = 1, 2, 3, and that this M is
maximal in each case. In this paper we generalize Elkies’
results to sublattices of rank 2.

1.1 Results

We determine R2
min(0, 12n) and R2

min(12n) for n = 1, 2.
Let 〈·, ·〉 denote the bilinear form on E(K) induced by ĥ.
By a reduced basis for a rank-2 sublattice ZP ⊕ ZQ ⊂
E(K), we mean a basis (P, Q) such that 0 ≤ 2|〈P, Q〉| ≤
ĥ(P ) and 0 < ĥ(P ) ≤ ĥ(Q). We write (E, P, Q) for
a triple consisting of an elliptic curve E/K and points
P, Q ∈ E(K) that form a reduced basis for a rank-2 sub-
lattice. Let R(P, Q) denote the volume of the sublattice.
We obtain the following results:

Theorem 1.1.

(i) [Oguiso and Shioda 91] R2
min(0, 12) = 1/36.

(ii) R2
min(12) = 1/36.

Furthermore, let E be an elliptic curve of discriminant
degree d = 12 over a complex function field K, and let
(P, Q) be a reduced basis for a rank-two subgroup of the
lattice E(K). The the following are equivalent:

(a) R(P, Q) = 1/36;

(b) Each of P , 2P , 3P , Q, 2Q, 3Q is an integral point
on E;

(c) K ∼= C(t), and (E, P, Q) is equivalent to the curve
y2 + a1xy + a3y = x3 + a2x

2, where

a1 = (2q − q′ + 2)s + (q′ + 1)s′,

a2 = q(q′ − q − 1)s2 − qq′ss′,

a3 = −s′
(
(q′ − q − 1)s2 − q′s′s

)
,

over the (s : s′) line with the independent rational
points P : (x, y) = (0, 0) and Q : (x, y), where

x = (q′ − q − 1)s2 − q′ss′,

y = s((q′ − q − 1)s − q′s′)2,

for some q, q′ ∈ C other than 0 or 1.

The Mordell–Weil lattice of a rational elliptic surface
in the family above is rectangular, i.e., 〈P, Q〉 = 0, with
ĥ(P ) = ĥ(Q) = 1/6. The surface has the symmetry s ↔
s′, which corresponds to interchanging Q and −P − Q

on E. This symmetry is inherited by the symmetry of
the moduli space in which we recover the family (see
Section 5). The surface has multiplicative fibers of type
I3 at (1 : 0) and (q : q′ − q − 1), and type I2 at (1 : 1)
and (0 : 1).

The existence of this surface was known [Shioda 92a],
and the lattice structure of the surface is number 40 on
the list of [Oguiso and Shioda 91]. However, the formulas,
the result over higher-genus curves, and the connection
with integral multiples are new. Any surface in the above
family has 28 integral points in the rank-2 subgroup ZP⊕
ZQ. No rational elliptic surface outside of this family
has a rank-2 subgroup with as many integral points (see
Section 4.2).

The minimum for d = 24 is attained by a single K3
surface (E, P, Q) with regulator R(P, Q) = 1/100:

Theorem 1.2.

(i) R2
min(0, 24) = 1/100.

(ii) R2
min(24) = 1/100.

Furthermore, let E be an elliptic curve of discriminant
degree d = 24 over a complex function field K, and let
(P, Q) be a reduced basis for a rank-two subgroup of the
lattice E(K). Then the following are equivalent:

(a) R(P, Q) = 1/100.

(b) Each of P, . . . , 6P, Q, 2Q, 3Q is integral.
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(c) K ∼= C(t), and (E, P, Q) is equivalent to the curve
y2 + a1xy + a3y = x3 + a2x

2, where

a1 = 3
(
4ss′ − s2 − s′2

)
,

a2 = 3ss′
(
5ss′ − 2s′2 − 2s2

)
,

a3 = 3ss′
(
10ss′ − 3s2 − 3s′2

) (
5ss′ − 2s′2 − 2s2

)
,

over the (s : s′) line with the independent rational
points P : (x, y) = (0, 0) and Q : (x, y), where

x = 3ss′(2s − s′)(s − 3s′),

y = 9s2s′2(s′ − 2s)(s − 3s′).

The optimal K3 elliptic surface is defined over Q and
has semirectangular Mordell–Weil lattice, with ĥ(P ) =
1/15 and ĥ(Q) = 1/6 and 〈P, Q〉 = −1/30. The surface
has the symmetry s ↔ s′, which corresponds to inter-
changing Q and −P − Q on E. Again this symmetry is
inherited by the symmetry of the moduli space in which
we recover the curve (Section 5). The surface has mul-
tiplicative fibers of type I5 at (0 : 1) and (1 : 0), I3 at
(2 : 1) and (1 : 2), and I2 at (3 : 1) and (1 : 3).

At (1 : −1) the surface has a fiber of type IV. The
discriminant group of the Néron–Severi lattice of E is
cyclic of order 27, and its Picard number is ρ = 20.1

Among elliptic surfaces of discriminant degree 24, the
above surface has a rank-2 subgroup with the greatest
possible number of integral points. It has a total of 52
integral points in the subgroup ZP⊕ZQ (see Section 4.2).

Finally, the elliptic surfaces in Theorems 1.1 and 1.2
have the following maximality property with regard to
consecutive integral multiples: The points mP and m′Q
are integral for m ≤ M and m′ ≤ M ′, where (M, M ′) =
(3, 3) for n = 1 and (M, M ′) = (6, 3) for n = 2. In each
case the product MM ′ is maximal.

1.2 Methods

If the discriminant degree d = 12n of E is fixed, the
condition

d =
∑

υ

dυ

on the Kodaira types of singular fibers (see Section 2.5)
implies that there will be only finitely many possible
collections of fibers. A small section can meet each

1Such K3 surfaces are called singular. Elkies points out that the
surface in Theorem 1.2 is another elliptic model for the CM(−27)
surface, i.e., the K3 surface obtained by starting with an elliptic
E/Q with complex multiplication by the imaginary quadratic order
of discriminant −27, and applying the Shioda–Inose construction
[Shioda and Inose 77] to the Kummer surface E × E/{−1, 1}.

collection in only finitely many ways, and thus deter-
mining Rr

min(g, 12n) or Rr
min(12n) of a rank-r subgroup

is a finite problem. The difficulty lies in eliminating those
collections of fibers and components that will not corre-
spond to an elliptic surface E and sections on it.

We place several conditions on the collections of fibers
and sections (Section 4.1), and compute lower bounds for
R2

min(0, 12n) in the cases n = 1 and n = 2. The lower
bound for R2

min(0, 12) is attained by the two-parameter
family of rational elliptic surfaces in Theorem 1.1. The
lower bound for R2

min(0, 24) is attained only by the single
K3 elliptic surface in Theorem 1.2.

In Section 5, we find equations for the surfaces in The-
orems 1.1 and 1.2. We use an adaptation of Tate’s trick
[Tate 74] for computing the generic elliptic curve with an
N -torsion point. This adaptation is due to Elkies, who
parameterizes the moduli space of elliptic curves with a
point (E, P ) such that P, . . . , 4P are integral by an open
subset of P2 and recovers the equations for the elliptic
surfaces attaining R1

min(12n) as curves of degree n in this
P2 [Elkies 06b].

We use the technique to parameterize the moduli space
of elliptic curves with two independent points (E, P, Q)
such that P , 2P , Q, P + Q, P − Q, and 2P + Q are
all integral by an open subset of P3. We then recover
the optimal elliptic surfaces in Theorems 1.1 and 1.2 as
curves in this P3. The symmetries exhibited by these
surfaces are a consequence of the fact that they can be
recovered in this way. There is a linear involution of this
P3 that corresponds to interchanging the point Q with
the point −Q − P , and all elliptic surfaces recovered as
curves in this moduli space exhibit this symmetry.

Note that the equations could have been found in other
ways. The K3 surface in Theorem 1.2 could have been
obtained by Elkies’ equations for the one-parameter fam-
ily of rational elliptic surfaces attaining R1

min(12) = 1/30:
Changing base gives a two-parameter family of K3 ellip-
tic surfaces with a section of height 1/15. We can use one
free parameter to force ramification over (1 : −1), and
another parameter to impose another section of height
1/6. However, the methods in Section 5 are general, and
can be used to find explicit equations for elliptic surfaces
with various patterns of integral points.

In Section 6 we prove that R2
min(12n) = R2

min(0, 12n).
We analyze configurations over higher-genus curves,
where the Euler characteristic χ = 2−2g can be negative.
In this case we must use different techniques to eliminate
several configurations of small conductor degree.

The approach in this paper generalizes to any rank-r
subgroup, though most likely the techniques in Section 5
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would have to be modified. We do not expect the curves
attaining Rr

min(0, 12n) for r ≥ 3 to have rank-2 subgroups
with the pattern of integral points of the curves in our
P3 model, and hence most likely it will be necessary to
construct other models to find explicit equations in this
manner.

The approach in this paper also generalizes, in theory,
to any discriminant degree 12n. Heuristics show, how-
ever, that the lower bounds we obtain by this approach
will most likely not be attained for n > 2 (Section 4.4).
For n = 1, one can deduce from the theory of rational
elliptic surfaces [Shioda 92a] that any configuration of
fibers and sections satisfying the conditions in Section 4.1
will be realized by a rational elliptic surface. For n = 2,
our heuristics tell us that any configuration of fibers and
sections that satisfy the conditions listed in Section 4.1
should be realized by a K3 elliptic surface. In Section
7 we give a counterexample to these heuristics, exhibit-
ing a local obstruction to the realization of a particular
configuration.

In Section 8 we illustrate, as an application, how to
use the equations for the K3 elliptic surface in Theo-
rem 1.2 to produce elliptic curves over Q with a nontor-
sion point of small canonical height. In fact, specializa-
tions of this K3 elliptic fibration yield the elliptic curves
with points whose canonical heights are the five smallest
known over Q. These curves were constructed earlier in
different ways in [Elkies 02] and by others.

1.3 Further Directions

One can use similar techniques to compute the minimum
regulator for a rank-r subgroup for r > 2, or in some re-
stricted class of elliptic surfaces. Elsewhere we determine
the smallest possible canonical height R1

min(g, 12n, G) for
a nontorsion point on an elliptic surface with torsion sub-
group G = Z/2Z or Z/3Z for n = 1, 2, 3. The optimal
surfaces are again characterized by their patterns of inte-
gral points. For each torsion subgroup G we construct a
suitable moduli space of elliptic curves (E, P, G) with a
nontorsion point P and a torsion point of order |G| such
that some Z-linear combinations of P and the torsion
point are integral. We again recover the optimal elliptic
surfaces as curves in the moduli space, proving results
analogous to Theorems 1.1 and 1.2.

One may also explore the asymptotic behavior of
Rr

min(g, d) for fixed g as d → ∞. In [Hindry and Silver-
man 88] it is proved that there exists a constant C > 0
such that

R1
min(g, 12n) ≥ Cn − Og(1),

proving effectively a conjecture from [Lang 78] in the
function-field case. The error terms Og(1) vanish for
g = 0, 1. Hindry and Silverman computed an explicit
C ≈ 7 · 10−10. Elkies improved the value to C ≈ 5 · 10−4,
and conjectured what the best possible value for C should
be [Elkies 01]. In a future paper, we examine the asymp-
totic behavior of R2

min(g, d) as d → ∞. More generally,
we describe the region in the three-dimensional space
of reduced binary forms that is asymptotically obtain-
able by Mordell–Weil lattices in rank 2, proving that the
boundary of the region is cut out by algebraic equations.

2. BACKGROUND

In this section we review the necessary background from
the theory of elliptic surfaces. In the first section we
state basic facts about lattices. In Section 2.2, we de-
fine an elliptic surface and recall the connection between
the Néron–Severi group of an elliptic surface and the
Mordell–Weil group of the corresponding elliptic curve.
We recall the definitions of the naive height and integral
points on elliptic surfaces in Section 2.3, and we state
some useful inequalities involving the naive height. In
Section 2.4 we state the definition of the canonical height
pairing. In Section 2.5 we discuss the special fibers of a
minimal elliptic fibration. In Section 2.6 we discuss local
height corrections, stating explicit formulas depending
only on the fiber type and the component of the fiber
meeting the section. We follow [Elkies 06a, Shioda 90]
and [Silverman 94, Chapter 3] closely.

2.1 Lattices

In this section we list some of the basic facts we will need
about lattices. By a lattice we mean a finitely generated
free abelian group L, equipped with a bilinear pairing

B : L −→ Q.

The lattice L is said to be integral if B takes its values in
Z, and even if B takes its values in 2Z. The signature of
the lattice is the real signature (r+, r , r0) of the pairing
B, where r+, r−, and r0 denote the numbers of positive,
negative, and zero eigenvalues of B. The lattice L is said
to be nondegenerate if r0 = 0. The discriminant of L is
| detB|. The lattice is called unimodular if | detB| = 1.

Suppose that L is an integral lattice. The dual lattice
of L is the group L∗ = Hom(L, Z), equipped with the
pairing induced by B. There is a natural embedding of
L ↪→ L∗ given by v �→ 〈·, v〉. We call the quotient L∗/L

the discriminant group of the lattice. The discriminant
| detB| of L is equal to |L∗/L|. We write L(α) for the
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lattice with the same underlying group as L and bilinear
form αB.

2.2 Elliptic Surfaces

Let C be a curve of genus g over a field k of characteristic
0. By an elliptic surface E over C we mean the following:
E is a smooth projective surface over k with a relatively
minimal elliptic fibration π : E → C such that:

(i) The generic fiber is an elliptic curve.

(ii) No fibers contain exceptional curves of the first
kind.

(iii) The surface E is not constant, i.e., E �= E × C for
an elliptic curve E over k.

Let E be a nonconstant elliptic curve over the function
field K = k(C). We write π : E → C for the Kodaira–
Néron model of E/K. This is the associated minimal
elliptic surface whose generic fiber is E. The Kodaira–
Néron model exists and is unique up to isomorphism [Ko-
daira 63a, Kodaira 63b, Néron 64]. The global sections
of π : E → C are in one-to-one correspondence with the
K-rational points of E, and we use the notation E(K)
to denote both the Mordell–Weil group of E/K and the
group of sections of π defined over k. The Mordell–Weil
theorem holds in this setting, and thus E(K) is a finitely
generated abelian group. We let r denote the Mordell–
Weil rank of E(K).

The Néron–Severi group NS(E) of an algebraic sur-
face E is defined as the group of divisors modulo alge-
braic equivalence. This group has a symmetric bilinear
pairing induced by the intersection pairing on the second
cohomology:

H2(E , Z) × H2(E , Z) −→ Z.

The Néron–Severi group embeds into H2(E , Z), and this
embedding gives NS(E) the structure of an integral lat-
tice, which we call the Néron–Severi lattice of E . We
define the Picard number ρ of E to be the rank of this
lattice. For an elliptic surface, NS(E) embeds into the
cohomology group H1,1(E , Z), and hence2

ρ ≤ 10n + 2g = rkH1,1(E , Z).

Given E/K and the associated elliptic surface π : E →
C, we write Eυ = π−1(υ) for the fiber over υ ∈ C. Each

2Without the hypothesis that k is of characteristic zero, NS(E)
will in general not embed into H1,1(E, Z). If k has positive charac-
teristic, we have the weaker bound on the rank of the Néron–Severi
group, ρ ≤ 10n + 4g + 2(n − 1).

reducible fiber can be decomposed as a sum

Eυ = cυ,0 +
mυ−1∑
i=1

aυ,icυ,i,

where the cυ,i are the irreducible components of the fiber
Eυ, and cυ,0 is the component of Eυ that meets the iden-
tity section of E. The Picard number ρ is given by

ρ = r + 2 +
∑

υ

(mυ − 1).

In addition, we have the following theorem:

Theorem (Hodge index theorem.) The Néron–Severi lat-
tice of an algebraic surface is an indefinite lattice of sig-
nature (1, ρ − 1).

For an elliptic surface, the Néron–Severi group is
finitely generated and torsion-free, and is very closely re-
lated to the group E(K). Let T ⊂ NS(E) be the subgroup
generated by the zero section s0, a generic fiber, and the
irreducible components {cυ,i} of the reducible fibers Eυ.
We call T the trivial sublattice of NS(E). There is a nat-
ural isomorphism of groups [Shioda 90]

E(K) ∼= NS(E)/T,

P �−→ sP mod T.

The intersection pairing allows us to define a naive
height, which we discuss in the following section.

2.3 The Naive Height and Integral Points

Let C = P1, and let E/k(C) be an elliptic curve given by
a minimal Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

and let P ∈ E(K). Each ai is a homogeneous polynomial
in two variables of degree i ·n. If P = (X, Y ) is a rational
point, then X and Y are homogeneous rational functions
of degree 2n and 3n. We write X and Y in lowest terms so
that the numerators and denominators have no common
factors. The denominators will then, up to some scalar,
be the square and cube of some polynomial δ. We define
the naive height of the point P by h(P ) := deg(δ). We
say that P is an integral point on E if h(P ) = 0, i.e., if
the coordinates of P are homogeneous polynomials.

If one changes coordinates

(x, y) �−→ (
u2(y + α2), u3(y + α1x + α3)

)
(u �= 0),

then the Weierstrass equation above changes but the new
curve is isomorphic to the original one. If u ∈ k∗ and αi
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is a homogeneous polynomial of degree i·n, then both the
discriminant degree of E and the set of integral points of
E are preserved. We write s0 and sP for the zero section
and the section corresponding to P of the Néron model
E → P1 of E.

Since the roots of δ are the images on P1 of the inter-
section points of s0 and sP (counted with multiplicity),
we see that h(P ) = 2s0 · sP .

Now let C be a curve of genus possibly bigger than
zero, and let K = C(C). Then ai is a global section
of O(iL), where L is a divisor on C of degree n. The
coordinates X and Y of P are meromorphic sections of
O(2L) and O(3L). The pole divisors of X and Y are
2Z and 3Z for some effective divisor Z on C. We define
the naive height of a point P as the degree of the pole
divisor 2Z. So P is integral if and only if X and Y are
holomorphic sections of 2L and 3L. A linear change of
coordinates with αi ∈ Γ(iL) for i = 1, 2, 3 and δ ∈ K∗

will yield a curve with the same integral points.
Over a more general function field K = k(C), the de-

gree of Z is s0 ·sP , and one can define the naive height via
intersection theory. If s0 is the zero section of E , and sP is
the section corresponding to P , then these s0 and sP are
distinct curves on E . Their intersection number sP · s0 is
a nonnegative integer, and we define the naive height of
the point P by h(P ) := 2s0 · sP . If the sections sP and
s0 are disjoint, then h(P ) = 0, and we say that P is an
integral point.

The important fact that we will need about the naive
height is the following:

Proposition 2.1. Let P be a point on an elliptic curve
E/k(C), and suppose m ∈ Z such that mP �= 0. Then
we have the naive height inequality h(P ) ≤ h(mP ).

Proof: If sP intersects the zero section s0 at a point, then
smP will also meet the zero section at that point. This
shows that s0 · sP ≤ s0 · smP .

2.4 The Canonical Height

We know from Section 2.2 that the Mordell–Weil group
E(K) is canonically isomorphic to the quotient group
NS(E)/T . Ideally, one would like the intersection pairing
(·, ·) on NS(E) to induce a canonical pairing on E(K),
giving E(K) the structure of a lattice. Modulo a small
“correction,” the quotient map on NS(E) can be split. If
P ∈ E(K), one defines a divisor DP by

DP = sP − s0 + ΦP ,

where ΦP is a certain vertical divisor in NS(E) ⊗ Q [Sil-
verman 94]. The pairing on E(K) defined by

E(K) × E(K) −→ Q, 〈P, Q〉 = −DP · DQ,

gives E(K)/E(K)tors the structure of a lattice in Eu-
clidean space. We define the canonical height ĥ by

ĥ(P ) =
1
2
〈P, P 〉.

The canonical height ĥ is a quadratic form that is
positive definite on E(K)/E(K)tors. It can be described
as a sum

ĥ(P ) = h(P ) +
∑

υ

λυ(P )

of the naive height h(P ) and local correction terms
λυ(P ), where we sum over the singular fibers υ. Each
local correction term depends only on the type of singu-
lar fiber Eυ and the component at which P meets the
fiber. Explicit formulas for λυ are known, and given in
Section 2.6. In the next section we list all possible sin-
gular fibers.

2.5 Kodaira Fiber Types

Set d equal to the degree of the discriminant of E/K,
considered as a divisor on C. It is known that d = 12n,
where n is the arithmetic genus of the corresponding sur-
face E/k fibered over C. We let N denote the degree of
the conductor of E/K, also considered as a divisor on C.
The conductor degree can be defined, equivalently, as the
number of multiplicative fibers plus twice the number of
additive fibers. We may write the discriminant degree d

and the conductor N as sums of local terms:

12n = d =
∑

υ

dυ, N =
∑

υ

Nυ,

where the sum is taken over singular fibers. The possible
singular fibers were first classified by Kodaira in [Kodaira
63a, Kodaira 63b]. Table 1, copied from [Elkies 06a],
gives the local data for each possible Kodaira type Eυ.

The following inequality from [Shioda 72] will be es-
sential to the proofs of Theorems 1.1 and 1.2, where it will
be used to eliminate configurations with too few fibers
(Section 4.1).

Proposition 2.2. (Shioda’s inequality.) Let E/k be an
elliptic surface fibered over a curve C/k of genus g, and
let E/K be the corresponding elliptic curve over K =
k(C). Let d = 12n be the discriminant degree and N the
conductor degree. Then

N ≥ 2n + χ(C) + r, (2–1)

where r is the Mordell–Weil rank of the group E(K).
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Kodaira Type Iν (ν > 0) II III IV I∗
ν IV∗ III∗ II∗

dν ν 2 3 4 6 + ν 8 9 10
Nν 1 2 2 2 2 2 2 2
Eν/(Eν)0 Z/νZ {0} Z/2Z Z/3Z D∗

4+ν/D4+ν Z/3Z Z/2Z {0}
root lattice Aν−1 A0 A1 A2 D4+ν E6 E7 E8

TABLE 1. Kodaira fiber types.

Proof: Let T ⊂ NS(E) be the trivial sublattice (Section
2.2). By taking the sum on the generic fiber E of E → C,
we have an exact sequence of abelian groups

0 −→ T −→ NS(E) −→ E(K) −→ 0.

Taking ranks, we find that ρ = rkT + r, and since
rkNS(E) ≤ 10n + 2g (Section 2.2), we obtain Shioda’s
inequality:

N ≥ (d + 2 + r) − (10n + 2g) = 2n + (2 − 2g) + r.

2.6 Local Height Corrections

Let P be a point on an elliptic curve E over k(C). The
canonical height ĥ(P ) can be written as a sum of the
naive height h(P ) and some local correction terms:

ĥ(P ) = h(P ) +
∑

υ

λυ(P ),

where the sum is taken over singular fibers υ. The local
correction term λυ(P ) depends only on the type of the
singular fiber Eυ at υ and the component cυ of Eυ that
meets the section sP corresponding to P . We list explicit
formulas for the local correction terms for each possible
singular fiber and component listed in Table 1. These
formulas have been worked out in [Cox and Zucker 79].

• If the section sP intersects the identity component
of Eυ, then

λυ(P ) = dυ/6.

• If Eυ is an additive fiber of type III, IV, I∗0, III∗, or
IV∗, and sP intersects a nonidentity component of
Eυ, then λυ(P ) = 0.

• Suppose Eυ is an additive fiber of type I∗ν (ν > 0)
and sP passes through a nonidentity component. If
ν is odd and sP meets the distinguished 2-torsion
component, then λυ(P ) = ν/6. Otherwise, we have
λυ = −ν/12.

• Finally, if Eυ is a multiplicative fiber of type Iν and
sP passes through component a, then

λυ(P ) = νB(a/ν),

where B(x) = 〈x〉2−〈x〉+1/6 is the second Bernoulli
function of x. The quantity 〈x〉 denotes the frac-
tional part of x.

From the formulas above one sees that the local cor-
rection terms are bounded above and below:

−dυ/12 ≤ λυ(P ) ≤ dυ/6.

If E has discriminant degree 12n, then summing over the
reducible fibers, one immediately obtains the following
bound on the difference between the naive height and
the canonical height:

−n ≤ ĥ(P ) − h(P ) ≤ 2n. (2–2)

If for some integer m the point mP is an integral point
on E, i.e., h(mP ) = 0, then we have

m2ĥ(P ) = ĥ(mP ) = h(mP ) +
∑

υ

λυ(mP )

=
∑

υ

λυ(mP ) ≤ d

6
= 2n,

and we find that m2ĥ(P ) ≤ 2n. This implies that

ĥ(P ) ≤ 2n/m2

if mP is an integral point.

3. REDUCTION TO THE SEMISTABLE CASE

To the elliptic curve E/K we may associate a relatively
minimal elliptic surface E/k fibered over C whose generic
fiber is E, i.e., the Kodaira–Néron model of E. The
global sections of the Kodaira–Néron model are in one-
to-one correspondence with the K-rational points of E.
Thus there is no ambiguity when we refer to E/K as
an elliptic surface, and P, Q ∈ E(K) as sections of E.
We reduce the problem of finding lower bounds for the
regulator R(P, Q) to the case in which the elliptic curve
has everywhere semistable reduction.
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3.1 Notation

Define the following equivalence relation on Z3: set
(x, y | z) ∼ (u, v | w) when xw = uz and yw = vz. Each
equivalence class has a unique representative [x, y | z]
with gcd(x, y, z) = 1 and z ≥ 0. Let A denote the quo-
tient of Z3 by this equivalence relation. The infinite dihe-
dral group D∞ acts on A by [x, y | z] �→ [z − x, z − y | z]
and [x, y | z] ↔ [x + z, y + z | z]. Let G be the group
of formal Z-linear combinations of orbits of A under the
action of D∞.

We will associate to each triple (E, P, Q) of a curve
E/K and points P, Q ∈ E(K) an element γ ∈ G. From
this γ one can calculate the discriminant degree d of E,
an upper bound for the conductor degree N of E, and
the local height corrections for mP + m′Q. Conversely,
for any γ ∈ G, we can compute quantities that in the case
that γ is associated to some (E, P, Q), coincide with the
local height correction terms, discriminant degree, and
conductor bound for (E, P, Q).

3.2 Curves with Semistable Reduction

Suppose that E/K is semistable, i.e., all of its singular
fibers are of type Iν (Section 2.5), and that P and Q are
in E(K). Suppose that Eυ is a fiber of E of type Iν lying
over υ. Then the group of multiplicity-one components
Eυ/(Eυ)0 is isomorphic to Z/ν(υ)Z.

Suppose that P and Q intersect the fiber at the com-
ponents a(υ), b(υ) ∈ Z/ν(υ)Z respectively. Set γ ∈ G
equal to

γ =
∑

υ

γυ =
∑

υ

gcd(a(υ), b(υ), ν(υ)) · [a(υ), b(υ) | ν(υ)].

Suppose that [a, b | ν] ∈ A with ν > 0 and
gcd(a, b, ν) = 1. We define homomorphisms λ(m,m′) :
G −→ Q and d,N : G −→ Z on the generators of G and
extend linearly:

λ(m,m′)([a, b | ν]) := νB2((ma + m′b)/ν),

d([a, b | ν]) := ν, N([a, b | ν]) := 1.

The height corrections ĥ(mP + m′Q) − h(mP + m′Q)
and the discriminant degree are the images of γ under
the homomorphisms λ(m,m′) and d. Each υ contributes
1 to the conductor N . Since gcd(a(υ), b(υ), ν(υ)) = 1,
the conductor degree N is less than or equal to N(γ).

We obtain formula (3–1) easily from the formulas for
the height correction terms λυ(P ) in Section 2.6. For
the conductor inequality, we assume that the rank r is
greater than or equal to 2. We then have

ĥ(mP + m′Q) = h(mP + m′Q) + λ(m,m′)(γ) (3–1)

for (m, m′) ∈ Z2 \ (0, 0) and

12n = d = d(γ).

N(γ) ≥ N ≥ d/6 + (2 − 2g) + r ≥ 1
6
d(γ) + 4 − 2g.

If g = gcd(a(υ), b(υ), ν(υ)) > 1, then we are replacing
the Iν fiber at υ with g fibers of type Iν/g, and the values
of λ(m,m′), d, and N do not change.

3.3 A Replacement Table

Suppose that E is not necessarily semistable, and that Eυ

is an additive fiber. Suppose that a(υ), b(υ) ∈ Eυ/(Eυ)0
are the components of the fiber that contain P and Q,
respectively. To each triple (Eυ , a(υ), b(υ)) we may as-
sociate an element γυ of G whose images under λ(m,m′)

and d are the same as λυ(mP + m′Q) and dυ .
The following proposition describes this replacement.

In the case that Eυ is a I∗ν fiber, we let t denote the
distinguished component of Eυ/(Eυ)0 that is adjacent
to the identity component. We write s and s′ for the
two “far” components on Eυ/(Eυ)0. In the case that
both P and Q meet the identity component of Eυ, we
set γυ = dυ[0, 0 | 1] = dυ[0].

Proposition 3.1. Let E be an elliptic curve over a function
field K of genus g and P, Q ∈ E(K). For each singular
fiber Eυ define an element γυ ∈ G according to Table 2.
Then

(i) λυ(mP + m′Q) = λ(m,m′)(γυ) for each (m, m′) ∈
Z2 \ (0, 0),

(ii) dυ = d(γυ),

(iii) Nυ ≤ N(γυ).

Proof: The first statement can be verified by comparing
the values arrived at in Table 2 to the values arrived at
using the formulas in Section 2.6. The other two state-
ments are immediate.

3.4 Remark

Note that this “replacement” table does not ensure that
Rr

min(12n) will be attained by an elliptic surface with
only semistable reduction. In fact, this is not the case.
For example, the elliptic surface attaining R2

min(24) =
1/100 has a fiber of type IV. In this case, the point P

meets the identity component of the type-IV fiber and Q

meets a nonidentity component of this fiber. However,
all of the local data for P and Q that are important to us
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Eυ Eυ/(Eυ)0 (a(υ), b(υ)) dυ γυ

III Z/2Z (0, 1) 3 [0, 1 | 2] + [0, 0 | 1]

Z/2Z (1, 1) 3 [1, 1 | 2] + [0, 0 | 1]

IV Z/3Z (0, 1) 4 [0, 1 | 3] + [0, 0 | 1]

Z/3Z (1, 1) 4 [1, 1 | 3] + [0, 0 | 1]

Z/3Z (1, 2) 4 [1, 2 | 3] + [0, 0 | 1]

IV∗ Z/3Z (0, 1) 8 2[0, 1 | 3] + 2[0, 0 | 1]

Z/3Z (1, 1) 8 2[1, 1 | 3] + 2[0, 0 | 1]

Z/3Z (1, 2) 8 2[1, 2 | 3] + 2[0, 0 | 1]

III∗ Z/2Z (0, 1) 9 3[0, 1 | 2] + 3[0, 0 | 1]

Z/2Z (1, 1) 9 3[1, 1 | 2] + 3[0, 0 | 1]

I∗ν D∗
4+ν/D4+ν (0, t) 6 + ν 2[0, 1 | 2] + (ν + 2)[0, 0 | 1]

D∗
4+ν/D4+ν (t, t) 6 + ν 2[1, 1 | 2] + (ν + 2)[0, 0 | 1]

I∗2μ D∗
4+ν/D4+ν (0, s) 6 + ν (μ + 2)[0, 1 | 2] + 2[0, 0 | 1]

D∗
4+ν/D4+ν (t, s) 6 + ν (μ + 1)[0, 1 | 2] + [1, 1 | 2] + [1, 0 | 2]

D∗
4+ν/D4+ν (s, s) 6 + ν (μ + 2)[1, 1 | 2] + 2[0, 0 | 1]

D∗
4+ν/D4+ν (s, s′) 6 + ν [1, 0 | 2] + (μ + 1)[1, 1 | 2] + [0, 1 | 2]

I∗2μ+1 D∗
4+ν/D4+ν (0, s) 6 + ν [0, 1 | 4] + (μ + 1)[0, 1 | 2] + [0, 0 | 1]

D∗
4+ν/D4+ν (t, s) 6 + ν [2, 1 | 4] + (μ + 1)[1, 1 | 2] + [0, 0 | 1]

D∗
4+ν/D4+ν (s, s) 6 + ν [1, 1 | 4] + (μ + 1)[1, 1 | 2] + [0, 0 | 1]

D∗
4+ν/D4+ν (s, s′) 6 + ν [1, 3 | 4] + (μ + 1)[1, 1 | 2] + [0, 0 | 1]

TABLE 2. Replacement table.

are the same as the local data we would have in the case
that E had a type-I3 and type-I1 fiber instead of the fiber
of type IV, with P meeting the identity component of the
type-I3 fiber and Q meeting the nonidentity component
of the I3 fiber. The element γ ∈ G corresponding to E

does not tell us whether E will have a type-IV fiber or
fibers of types I3 and I1. However, when we recover E

in our moduli space (Section 5.3), we see that symmetry
forces a fiber of type IV.

4. THE SEARCH

In the previous section, we assigned to each elliptic sur-
face and pair of independent sections (E, P, Q) an ele-
ment γ of the free abelian group G from which we could
compute the local height correction terms for mP +m′Q,
as well as the discriminant degree and an upper bound
for the conductor. We first defined this assignment for E

with semistable reduction, and then defined the assign-
ment for E with additive fibers in Proposition 3.1.

In this section we compute lower bounds for the reg-
ulator over all γ ∈ G of fixed discriminant degree d(γ) =
12n, which in turn gives us lower bounds for the regu-
lator R(P, Q) over all E of discriminant degree 12n. In
Section 4.1 we place several conditions on the elements

γ ∈ G to eliminate those configurations that cannot be
attained by elliptic surfaces.

In the case n = 1, the lower bound is attained by the
two-parameter family of rational elliptic surfaces listed
in Theorem 1.1. In the case n = 2, the lower bound is
attained by the single K3 surface in Theorem 1.2.

4.1 The Combinatorial Conditions

To eliminate several configurations that cannot be at-
tained by elliptic surfaces, we generalize the approach of
[Elkies 06a]. Let (E, P, Q) be an elliptic surface with two
independent sections P and Q forming a reduced basis.
Let S ∈ ZP ⊕ ZQ. We observe that the following condi-
tions hold:

(1) ĥ(mS) = m2ĥ(S) for all m ∈ Z.

(2) The naive height h(mS) takes values in
{0, 2, 4, 6, . . .}.

(3) If mS �= 0 then

ĥ(mS) = h(mS) +
∑

υ

λυ(mS),

where the sum is taken over places υ ∈ C(C) at
which the fiber Eυ is reducible.
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(4) The local correction λυ(mS) depends only on the
Kodaira type of fiber Eυ, and the component cυ of
Eυ meeting S.

(5) ĥ(mP + m′Q) > 0 for (m, m′) ∈ Z2 \ {(0, 0)}.
(6) The pair (P, Q) forms a reduced basis: 2|〈P, Q〉| ≤

ĥ(P ) ≤ ĥ(Q).

(7) If mS �= 0, then h(m′S) ≤ h(mS) for m′ | m.

(8) (Shioda’s inequality.) The conductor degree N of E

is at least
N ≥ (d/6) + χ(C) + r,

where r is the Mordell–Weil rank of E(K).

Each of the conditions above is explained in Section 2.
For curves with small discriminant degree d over C = P1,
conditions (1)–(8) will suffice in eliminating almost all
configurations that cannot be realized. Over curves of
higher genus, the Euler characteristic χ(C) in (8) could
be negative, and Shioda’s inequality does not give a lower
bound for the conductor degree of an attainable configu-
ration.

To eliminate configurations with small conductor de-
gree, and hence prove that R2

min(12n) = R2
min(0, 12n) for

n = 1, 2, we must use a different approach (see Section 6).
In Algorithm 4.1 we write down precisely how the condi-
tions above translate into eliminating elements of G that
will not correspond to elliptic surfaces. We implement
the algorithm in GP [PARI 08].

Algorithm 4.1. (Eliminating elements of G.)

1. Choose a partition {νi}N
i=1 of 12n of length N ≥ 2n+4.

2. Choose 0 ≤ ai ≤ νi/2 and bi ≤ ν such that∑N
i=1[ai, bi | νi] ∈ G.

3. Compute correction terms λ(m,n)(γ).

4. Select naive heights h(1,0), h(0,1), h(1,1) in
{0, 2, 4, 6, . . .} for P , Q, P + Q less than some
bound.

5. Set ĥ(1,0)(γ) = h(1,0) + λ(1,0)(γ).

6. Set ĥ(0,1)(γ) = h(0,1) + λ(0,1)(γ).

7. Set ĥ(1,1)(γ) = h(1,1) + λ(1,1)(γ).

8. Calculate inner product 〈γ〉 = 1
2 (ĥ(1,1)−ĥ(1,0)−ĥ(1,0)).

9. Check condition for reduced basis, i.e., 2|〈γ〉| ≤
ĥ(1,0)(γ) ≤ ĥ(0,1)(γ) and ĥ(1,0)(γ) > 0.

10. Compute height matrix: ĥ(m,m′)(γ) = m2ĥ(1,0)(γ) +
m′2ĥ(0,1)(γ) + 2mm′〈γ〉.

11. Check that height matrix has no nonzero entries.

12. Calculate naive height matrix h: h(m,n)(γ) =
ĥ(m,n)(γ) − λ(m,n)(γ).

13. Check that entries of h satisfy the naive height in-
equality h(m,m′)(γ) ≤ h(km,km′)(γ).

14. Compute the regulator R(γ) = ĥ(1,0)(γ)ĥ(0,1)(γ) −
〈γ〉2.

4.2 Rational Elliptic Surfaces

Let E be an elliptic curve of discriminant degree 12 over
K = C(t), i.e., E is a rational elliptic surface. Suppose
(P, Q) is a reduced basis for a rank-2 subgroup of E. If
h(P ) ≥ 2, then by (2–2), ĥ(P ) ≥ 1. In this case the
regulator satisfies

R(P, Q) = ĥ(P )ĥ(Q) − 〈P, Q〉2 ≥ 3
4
ĥ(P )2 ≥ 3

4
.

Hence we assume that the naive height of P is zero.
If h(Q) ≥ 4, then again from (2–2) we have that

ĥ(Q) ≥ 3. Because we know from [Oguiso and Shioda
91] that the minimal height of a nontorsion point on a
rational elliptic surface is 1/30, we have a lower bound
ĥ(P ) ≥ 1/30. Then

R(P, Q) = ĥ(P )ĥ(Q) − 〈P, Q〉2 ≥ ĥ(P )ĥ(Q) − 1
4
ĥ(P )2

≥ 1
30

(
ĥ(Q) − 1

120

)
.

If ĥ(Q) ≥ 3 then R(P, Q) ≥ 359/3600. Hence if we bound
ĥ(Q) < 3, then we search through at least all configura-
tions that could correspond to a triple (E, P, Q) with
R(P, Q) < 359/3600. Hence we assume that the naive
height of Q is either 0 or 2, which includes all cases in
which h(Q) < 3.

The bounds h(P ) = 0 and h(Q) ≤ 2 give us a bound
on h(P + Q). Since

−1 ≤ ĥ(P + Q) − h(P + Q) ≤ 2

by (2–2), and

ĥ(P + Q) = ĥ(P ) + ĥ(Q) + 2〈P, Q〉
≤ 2ĥ(P ) + ĥ(Q) ≤ 6,

it follows that h(P + Q) ≤ 7 also. Since the naive height
is even, it follows that h(P + Q) ≤ 6.
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We program all of the conditions listed in Section
4.1, allowing the naive heights in our algorithm to be
h(1,0) = 0, h(0,1) = 0, 2, and h(1,1) = 0, 2, 4, 6. From this
we generate a list of configurations γ.

We find that a lower bound for the regulator R(P, Q)
occurs for the unique configuration

γ = [1, 1 | 3]+ [1, 2 | 3]+ [0, 1 | 2]+ [1, 0 | 2]+2[0], (4–1)

with R(γ) = 1/36, ĥ(1,0)(γ) = ĥ(0,1)(γ) = 1/6, and 〈γ〉 =
0. There are no other configurations with R(γ) = 1/36.

The naive height matrix has h(m,m′)(γ) = 0 for
m, m′ = 0, 1, 2, and for (3, 0), (0, 3). Since N(γ) = 6,
we expect this configuration to be attained by a two-
parameter family (E, P, Q) of rational elliptic surfaces
(see Section 4.4, where we discuss parameter-counting
heuristics). We search through our list of configurations
for other γ that could correspond to (E, P, Q) with mP

and m′Q integral for m ≤ M = 3 and m′ ≤ M ′ = 3.
We find that (4–1) is the unique configuration over P1

that could give rise to a curve with these integral multi-
ples. We also find that the value MM ′ = 9 is maximal,
i.e., any other configuration that could correspond to an
(E, P, Q) with mP and m′Q integral for m ≤ N and
m′ ≤ N ′ has NN ′ < 9.

Examining the two-parameter family of curves in part
(c) of Theorem 1.1, we find that it has the fiber con-
figuration γ and this exact pattern of integral points.
This proves all parts of Theorem 1.1 except implications
(a), (b) =⇒ (c) of part (ii). In Section 5.2, we prove
that the configuration γ uniquely determines the equa-
tions for this curve. Since γ is the only configuration
with that pattern of integral points, this will prove the
implications (a), (b) =⇒ (c).

The rank-2 subgroup ZP⊕ZQ has a total of 28 integral
points. The list of configurations that we generated must
include any γ corresponding to an (E, P, Q) with P and
Q integral. Because of the naive height inequality, we
know then that this list will contain all configurations
corresponding to rational elliptic surfaces (E, P, Q) that
contain rank-2 subgroups ZP⊕ZQ with P and Q integral.
Examining our list, we also find that this configuration
yields the greatest number of integral points within a
rank-2 subgroup of a rational elliptic surface.

4.3 K3 Elliptic Surfaces

Let E be an elliptic surface of discriminant degree 24 over
K = C(t), i.e., a K3 elliptic surface. Let (P, Q) form
a reduced basis for E(K). If the naive height h(P ) is
greater than or equal to 4, then it follows that ĥ(P ) ≥ 2.

In this case we can bound the regulator:

R(P, Q) = ĥ(P )ĥ(Q) − 〈P, Q〉2 ≥ 3
4
ĥ(P )2 ≥ 3

2
.

Hence we assume that the naive height of P is 0 or 2.
Suppose that the naive height h(Q) is greater than or

equal to 4. Then again by (2–2) we know that ĥ(Q) ≥ 2.
We know from [Nishiyama 96] that the minimal height
of a nontorsion point on a K3 elliptic surface is 11/420,
so we bound ĥ(P ) ≥ 11/420. It follows that

R(P, Q) = ĥ(P )ĥ(Q) − 〈P, Q〉2

≥ ĥ(P )ĥ(Q) − 1
4
ĥ(P )2

≥ 11
420

(
ĥ(Q) − 11

1680

)
.

Thus if h(Q) ≥ 4, it follows that R(P, Q) ≥
36839/705600. Thus if we bound h(Q) ≤ 2, we search
through at least all configurations γ that could corre-
spond to a triple (E, P, Q) with R(P, Q) < 36839/705600.

As in the previous section, the bounds h(P ) ≤ 2 and
h(Q) ≤ 2 automatically give us the bound h(P + Q) ≤
20. We program all of the conditions listed in Section
4.1, allowing the naive heights in our algorithm to be
h(1,0) = 0, 2, h(0,1) = 0, 2, and h(1,1) = 0, 2, . . . , 20. From
this we generate a list of configurations γ.

We find that a lower bound for R(P, Q) occurs for the
configuration

γ = [1, 1 | 5] + [1, 3 | 5] + [0, 1 | 3] + [1, 0 | 3] + [1, 2 | 3]

+ [1, 0 | 2] + [1, 1 | 2] + [0],

with R(γ) = 1/100, ĥ(1,0)(γ) = 1/15, ĥ(0,1)(γ) =
1/6, and 〈γ〉 = −1/30. There are no other configu-
rations with R(γ) = 1/100. The naive height matrix
has h(m,0)(γ) = h(0,m′)(γ) = 0 for m ≤ M = 6 and
m′ ≤ M ′ = 3, as well as h(m,±m)(γ) = 0 for m ≤ 3,
and h(m,m′)(γ) = 0 for (m, m′) = (2,±1), (3,±1), (1, 3),
(2, 3), (3, 2),(4, 1),(4, 2), (6, 3), (1,−2).

We search through our list for other γ that could corre-
spond to (E, P, Q) with P, . . . , 6P and Q, . . . , 3Q integral,
and find none. We again find that the value MM ′ = 18
is maximal among rank-two subgroups of K3 elliptic sur-
faces: any other configuration that could correspond to
an (E, P, Q) with mP and m′Q integral for m ≤ N and
m′ ≤ N ′ has NN ′ < 18.

Examining the K3 elliptic surface in part (c) of The-
orem 1.2, we find that the surface has the fiber con-
figuration γ above, and the same pattern of integral
points. This proves all parts of Theorem 1.2, except that
Rmin(24, 2) = 1/100 and (a), (b) =⇒ (c) of part (ii).
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The rank-2 subgroup ZP ⊕ ZQ has a total of 52 inte-
gral points. Again, because of the naive height inequality,
we know that our list will contain all configurations cor-
responding to K3 elliptic surfaces (E, P, Q) that contain
a rank-2 subgroup ZP +ZQ with P and Q integral. This
K3 elliptic surface has the greatest number of integral
points within a rank-2 subgroup.

4.4 Parameter-Counting Heuristics

Let E be an elliptic curve over C(t) of discriminant degree
12n, with minimal Weierstrass equation

y2 = x3 + a4(t)x + a6(t).

Here a4(t) and a6(t) are coprime polynomials of respec-
tive degrees 4n and 6n. The discriminant Δ(t) is given
by

Δ(t) = a4(t)3 − 27a6(t)2,

and is a polynomial of degree 12n. Varying a4(t) and
a6(t), we have 10n + 2 − 4 = 10n − 2 free parameters,
where we subtract 4 to account for the four dimensions
of symmetry.

Suppose now that E has a nontorsion section P =
(X(t), Y (t)), so X(t) and Y (t) are polynomials of respec-
tive degrees 2n and 3n. Varying the coefficients of X(t)
and Y (t), we have (2n + 1) + (3n + 1) = 5n + 2 free
parameters. The minimal Weierstrass equation, however,
is of degree 6n and hence imposes 6n + 1 conditions on
the section P . So in order that E have an integral non-
torsion section P , we should have to impose n − 1 con-
ditions on a4(t) and a6(t). So in this case, varying a4(t)
and a6(t), we have (10n− 2) − (n − 1) = 9n− 1 free pa-
rameters. Imposing the condition that E have another
section Q brings us down to 8n free parameters. Hence
we expect to be able to force Δ(t) to have 12n−8n = 4n

distinct roots, but no fewer.
This gives a heuristic improvement of Shioda’s in-

equality (2–1) in the case that E has two independent
sections and n > 2:

N ≥ 4n.

For n = 1 this inequality is weaker than Shioda’s in-
equality, and for n = 2 it has the same strength. More
importantly, however, these heuristics tell us that for con-
figurations γ with d(γ) = 12n and N(γ) ≥ 4n, we expect
to be able to find an (N(γ) − 4n)-parameter family of
elliptic surfaces corresponding to γ. For the optimal ra-
tional and K3 surfaces, our heuristic is correct. In Sec-
tion 7, we give an example of a γ with D(γ) = 24 and
N(γ) = 8 that satisfies all of the conditions in Section
4.1, but cannot be realized by a K3 elliptic surface.

For the case that n > 2, these heuristics explain the
breakdown of the methods of this paper. As n grows,
there will be several configurations of conductor degree
smaller than 4n that probably will not be realized. Shi-
oda’s inequality, however, will not be enough to eliminate
these configurations.

5. INTEGRAL POINTS AND MODULAR
PARAMETERIZATIONS

In this section we discuss how we found the equations in
Theorems 1.1 and 1.2. We begin by parameterizing the
set of elliptic curves E with independent rational points
P and Q such that P , 2P , Q, P +Q, P −Q, and 2P +Q

are all integral by an open subset in P3. A curve of
degree n in this P3 corresponds to an elliptic surface of
discriminant degree 12n with sections P and Q satisfying
these integrality conditions. We recover the equations in
Theorems 1.1 and 1.2 by finding the curves of degree 1
and 2 in this moduli space that correspond to the optimal
configurations.

5.1 Parameterization of Moduli Space

We begin with an elliptic curve E with a rational point
P = (0, 0) placed at the origin:

y2 + a1xy + a3y = x3 + a2x
2 + a4x.

The point 2P is integral precisely when the slope of the
tangent to E at P is integral. The slope of this line is
a4/a3, and if this slope is integral we may translate y by
(a4/a3)x to make the slope of this line zero. This gives
an equivalent condition for 2P being integral, namely
a4 = 0. Our curve is now of the form

y2 + a1xy + a3y = x3 + a2x
2.

Let Q = (X, Y ) be another integral point of E that
is independent of P . The point P + Q is integral when
the slope of the secant line through P and Q has integral
slope. This slope is Y/X , and we write Y = cX for a
constant c.

Next we impose the condition that 2P +Q be integral,
forcing the slope of the secant line through P and P +Q

to be integral. This line has slope

(−a1 − c) +
a3

X − c2 + a2 − ca1
,

and we write a3 = a(X − ca1 + a2 − c2). Writing the
Weierstrass equation that the coordinates of Q must sat-
isfy, we obtain

X(X − ac)(X − c2 − a1c + a2) = 0.
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If X = 0, then Q = P . If X = c2 +a1c−a2, then a3 = 0,
and E is a singular curve. This forces X = ac.

Finally, we impose the condition that P − Q be inte-
gral, or that the line through P and −Q have integral
slope. This line has slope −a2/c + a, and we set a2 = cd.
Changing variables a1 = a + b + d − c gives us

y2 + (a + b + d − c)xy − abcy = x3 + cdx2,

P = (0, 0), Q = (ac, ac2),

with discriminant Δ = a2b2c3f(a, b, c), where f is a ho-
mogeneous quintic polynomial. This parameterizes the
set of elliptic curves E with rational points P and Q such
that P , 2P ,Q, P + Q, P − Q, 2P + Q are all integral.

Changing (a, b, c, d) to (λa, λb, λc, λd) yields an iso-
morphic curve, and we have a parameterization of the
(E, P, Q) moduli space by an open subset in P3. There is
an automorphism sending Q to −P −Q that arises from
the linear involution of P3 that interchanges a and b.

A generic curve C of degree n in this moduli space
corresponds to an elliptic surface E/k fibered over C of
discriminant degree 12n. The surface will have a config-
uration γ of fibers and sections P, Q given by

γ = n[1, 1 | 2]︸ ︷︷ ︸
a=0

+ n[1, 0 | 2]︸ ︷︷ ︸
b=0

+ n[1, 1 | 3]︸ ︷︷ ︸
c=0

+ 5n[0]︸ ︷︷ ︸
f=0

,

corresponding to the n points at which C meets each
plane a = 0, b = 0, and c = 0, as well as the 5n points at
which C meets the surface f(a, b, c) = 0.

We recover equations for the optimal rank-2 surfaces
from this P3 model. All surfaces recovered as curves in
this P3 exhibit the symmetry corresponding to switch-
ing a and b. This is where the symmetries described in
Section 1.1 come from.

5.2 The Optimal Rational Elliptic Surface

We saw in Section 4.2 that the optimal n = 1 configura-
tion is

γ = [1, 1 | 3] + [1, 2 | 3] + [0, 1 | 2] + [1, 0 | 2] + 2[0],

with R(P, Q) = 1/36, ĥ(P ) = 1/6, ĥ(Q) = 1/6, and
〈P, Q〉 = 0. This configuration has h(mP ) = 0 and
h(mQ) = 0 for m = 1, . . . , 3, h(mP ± m′Q) = 0 for
m = 1, 2 and m′ = ±1,±2, and the negatives of these
points. The configuration has conductor N(γ) = 6, and
hence should be attained by a two-parameter family of
lines in our P3 model.

Suppose that

λ : P1 −→ P3,

(s : s′) �−→ (A : B : C : D),

denotes a line in P3 that gives rise to such a rational el-
liptic surface E. Each A, B, C, D is a homogeneous linear
form in s, s′. Without loss of generality, we may assume
that A = s and B = s′. The point 3P is integral on
E if and only if the slope of the line through −P and
−2P is integral. This slope is −AB/D, and hence either
D = qA or D = qB. Switching A and B corresponds to
the symmetry interchanging Q and −P − Q; hence we
may assume that D = qA.

The condition that 2Q is integral says that the slope
of the tangent to E at Q is integral. This slope is

C((q + 2)A + C − B)
(q + 1)A + C

,

which implies that (q + 1)s + C | s − s′. Thus we may
set C = q′(s− s′)− (q + 1)s. We obtain a two-parameter
family of lines

λ(q, q′) : P1 −→ P3,

(s : s′) �−→ (s : s′ : (q′ − q − 1)s − q′s′ : qs).

Each line in this family gives rise to a rational elliptic
surface E with sections P and Q such that ĥ(P ) = 1/6,
ĥ(Q) = 1/6, and 〈P, Q〉 = 0, except when q = 0 or q′ = 0.
This gives us the equations in Theorem 1.1.

5.3 The Optimal K3 Elliptic Surface

We find equations for the single K3 surface yielding the
minimum regulator R(P, Q) = 1/100. The optimal con-
figuration is

γ = [1, 1 | 5] + [1, 3 | 5] + [0, 1 | 3] + [1, 0 | 3] + [1, 2 | 3]

+ [1, 0 | 2] + [1, 1 | 2] + [0],

with R(P, Q) = 1/100, ĥ(P ) = 1/15, ĥ(Q) = 1/6, and
〈P, Q〉 = −1/30. The naive height is zero for

P, . . . , 6P, Q, 2Q, 3Q, P + Q, P + 3Q,

2P + Q, 2P + 2Q, 2P + 3Q, 3P + Q, 3P + 2Q,

3P + 3Q, 4P + Q, 4P + 2Q, 6P + 3Q, P − Q,

P − 2Q, 2P − Q, 2P − 2Q, 3P − Q, 3P − 3Q,

and the negatives of these points. We recover the config-
uration above as a conic in the P3 model.

Let

λ : P1 −→ P3,

(s : s′) �−→ (A : B : C : D),

denote a curve of degree 2 in P3 that gives rise to such
a K3 elliptic surface. Each A, B, C, D is a homogeneous
form of degree 2 in s, s′.
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A generic curve C of degree 2 in this moduli space will
give rise to a surface having configuration γ of fibers and
sections P , Q given by

γ = 2[1, 1 | 2] + 2[1, 0 | 2] + 2[1, 1 | 3] + 10[0].

We will arrive at this family by forcing the curve λ to go
through some specific points in the P3 model.

We first use the condition that 3P is integral, which
says that D | AB. We set A = (s′ − u)v, B = u(s − v),
and D = uv. Next we use the condition that 3P + Q

is integral, which says that the slope of the line between
2P + Q and P + Q is integral. This slope is

−A − B − D + CD/(B + D),

which implies that (B + D) | CD. Because 2P − Q is
also integral, and the symmetry of the moduli space in-
terchanging a and b corresponds to P ↔ −P − Q, this
implies that (A + D) | CD as well. We set C = qs′s.
This brings our configuration down to

γ = [1, 1 | 4]︸ ︷︷ ︸
s=0

+ [1, 2 | 4]︸ ︷︷ ︸
s′=0

+ [1, 1 | 3]︸ ︷︷ ︸
v=0

+ [1, 0 | 3]︸ ︷︷ ︸
u=0

+ [0, 1 | 2]︸ ︷︷ ︸
s′=u

+ [1, 0 | 2]︸ ︷︷ ︸
s=v

+6[0],

and the discriminant ΔE of the elliptic curve to

ΔE = s4s′4u3v3(s′ − u)2(s − v)2F (u, v, s, s′),

where F is a homogeneous polynomial of degree 6 in four
variables. Since we want a fiber of type I5 at s = 0
and s′ = 0, we force the polynomial F to meet s = 0 and
s′ = 0 to order one.

We write F (u, v, s, s′) as a polynomial in s′ and com-
pute its degree-zero term:

F (u, v, s, s′)|s′=0 = q3u3v3 +
(
sq4 − 3sq3

)
u3v2

+
(−2s2q4 + 3s2q3

)
u3v

+
(
s3q4 − s3q3

)
u3

= q3u3(s − v)2((q − 1)s + v).

This must divisible by s′. Clearly s′ � u, for otherwise, at
u = s′ = 0 we would have a fiber of type I6. Similarly, s′ |
(s−v); otherwise, we would have a fiber of type I6. Hence
it must be the case that s′ | (q − 1)s + v. A symmetric
argument shows that s | (q − 1)s′ + u. Thus we may set
v = (1 − q)s + q′s′ for some q′, and u = (1 − q)s′ + q′′s
for some q′′.

Next we write the condition that 2P + 2Q is integral,
which says that B + C + D | C(A − B), or that

q
q′′s′3 − q′s′s2

q′′s + s′

is integral. This implies that q′s+s′ | s+q′′s′, and hence
q′′ = 1/q′. Up to this point we have

A = −ss′q2 +
(

q′s2 + ss′ +
1
q′

s′2
)

q +
(−q′s2 − s′s

)
,

B = −s′sq2 +
(

q′s2 + s′s +
1
q′

s′2
)

q +
(
−s′s − −1

q′
s′2

)
,

C = qs′s,

D = s′sq2 +
(
−q′s2 − 2s′s − −1

q′
s′2

)
q

+
(

q′s2 + 2s′s +
1
q′

s′2
)

.

Examining the above equations, we see that we can re-
place s′ by q′s′ and eliminate q′. We are left with a
one-parameter family of K3 elliptic surfaces, with fiber
configuration

γ = [1, 1 | 5] + [1, 3 | 5] + [0, 1 | 2] + [1, 0 | 3] + [1, 2 | 3]

+ [1, 0 | 2] + [1, 1 | 2] + 2[0].

Generically, a K3 surface in this family has regulator
R(P, Q) = 19/900, with ĥ(P ) = 1/15, ĥ(Q) = 1/3, and
〈P, Q〉 = −1/30.

Finally, we attempt to collide the I2 fiber at s′ = −s

with a fiber of type I1, forcing u+v to divide the remain-
ing quadratic factor of the discriminant. This quadratic
factor is

s′sq3 +
(−s2 − 11s′s − s′2

)
q2 +

(
2s2 + 31s′s + 2s′2

)
q

− 27s′s.

At s′ = −s this becomes (3−q)3s3, and forces q = 3. This
brings us down to the desired configuration, and yields
the equations in Theorem 1.2. Note that at s′ = −s we
end up with a fiber of type IV instead of a multiplicative
fiber of type I3. This is forced by the symmetry s ↔ s′

of the K3 surface, of which s = −s′ is a fixed point.
This symmetry comes from interchanging a and b in the
moduli space. This gives us the equations for the K3
elliptic surface in Theorem 1.2.

6. ELLIPTIC SURFACES OVER
HIGHER-GENUS CURVES

If C is a curve of genus g > 0, then the Euler character-
istic χ(C) can be negative. In this case, the lower bound
on the conductor obtained from Shioda’s inequality is
trivial, and we must search through all configurations γ

with N(γ) ≥ 1. In the case n = 1, no new configurations
arise. Hence we automatically get that R2

min(12) = 1/36.
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Configuration R(P, Q)

[2, 4 | 7] + [3, 2 | 7] + [0, 1 | 5] + [1, 0 | 5] 4/1225

[3, 1 | 7] + [1, 1 | 6] + [1, 3 | 4] + [0, 1 | 4] + [1, 2, | 3] 5/1008

[1, 2 | 5] + [2, 1 | 5] + [0, 1 | 4] + [1, 0 | 4] + [1, 2, | 3] + [1, 1 | 2] + [0] 7/1200

[2, 3 | 7] + [3, 5 | 7] + [1, 0 | 5] + [0, 1 | 4] + [0] 3/490

[1, 2 | 8] + [1, 6 | 7] + [2, 1 | 5] + [2, 3 | 4] 1/160

[3, 3 | 8] + [1, 5 | 6] + [0, 2 | 5] + [2, 0 | 5] 1/150

[2, 3 | 7] + [0, 1 | 5] + [1, 0 | 5] + [1, 2 | 4] + [1, 2, | 3] 1/150

[1, 0 | 5] + [0, 3 | 5] + [2, 4 | 5] + [1, 1 | 4] + [1, 2, | 3] + [1, 1 | 2] 1/150

[2, 2 | 7] + [1, 5 | 6] + [2, 4 | 5] + [0, 1 | 4] + [1, 0, | 2] 1/140

[3, 1 | 7] + [1, 1 | 6] + [1, 3 | 4] + [0, 1 | 3] + [1, 2, | 3] + [0] 1/126

[1, 0 | 8] + [1, 2 | 5] + [1, 3 | 5] + [2, 1 | 4] + [1, 1 | 2] 7/800

[1, 5 | 6] + [0, 2 | 5] + [2, 0 | 5] + [2, 2 | 5] + [1, 1, | 3] 2/225

[1, 4 | 7] + [2, 5 | 7] + [2, 1 | 4] + [0, 2 | 3] + [1, 0 | 3] 4/441

[4, 2 | 9] + [1, 2 | 7] + [1, 6 | 7] + [0] 4/441

[1, 0 | 5] + [2, 1 | 5] + [1, 3 | 4] + [0, 2 | 3] + [1, 1, | 3] + [0, 1 | 2] + [1, 1 | 2] 17/1800

[2, 1 | 7] + [1, 5 | 6] + [2, 1 | 5] + [0, 1 | 4] + [1, 1, | 2] 1/105

[1, 1 | 6] + [2, 1 | 5] + [0, 1 | 4] + [1, 3 | 4] + [1, 2, | 3] + [1, 0 | 2] 7/720

[3, 3 | 8] + [1, 5 | 6] + [2, 0 | 5] + [0, 2 | 3] + [0, 1 | 2] 7/720

[2, 3 | 8] + [0, 1 | 5] + [2, 3 | 5] + [2, 0 | 5] + [0] 1/100

TABLE 3. Configurations with small N.

In the case n = 2, however, several new configura-
tions satisfy all combinatorial conditions. We first use a
strong naive height inequality to eliminate several con-
figurations. The inequality (2.1) can be strengthened:

Proposition 6.1. [Elkies 06a] Let P be a point on
E/k(C), and suppose m ∈ Z such that mP �= 0. Then∑

m′|m
μ(m/m′)h(m′P ) ≥ 0.

Proof: The sum can be interpreted as twice the number of
points of C, counted with multiplicity, for which mP = 0
but m′P �= 0 for each proper factor m′ of m.

We add this inequality to the list of conditions in Sec-
tion 4.1 and run our search again. We find twenty con-
figurations γ with N(γ) < 8 that if realizable, would
yield elliptic surfaces (E, P, Q) of discriminant degree
24, with regulator R(P, Q) ≤ 1/100. These configu-
rations are listed in Table 3. All configurations have
h(1,0)(γ) = h(0,1)(γ) = h(1,1)(γ) = 0.

Consider the configuration

γ = [2, 4 | 7] + [3, 2 | 7] + [0, 1 | 5] + [1, 0 | 5].

This configuration has N(γ) = 4, satisfies all of the com-
binatorial conditions, and gives a regulator R(P, Q) =

4/1225. If realized, γ would yield an (E, P, Q) with
many integral points, including P , 2P , Q, P ± Q, and
2P + Q. However, if such an (E, P, Q) existed, it could
be recovered by a curve of degree 2 in the P3 model
we constructed. Since a curve of degree 2 in P3 is ra-
tional, one could fiber this surface over P1 to obtain a
K3 elliptic surface (E′, P ′, Q′) with R(P ′, Q′) = 4/1225.
This contradicts part (i) of Theorem 1.2, which says
that R2

min(0, 24) = 1/100, and which was proven in Sec-
tion 4.3.

We conduct a similar analysis of each of the config-
urations in Table 3. We find that each configuration, if
realized, would give rise to an elliptic surface with P , 2P ,
Q, P ±Q, and 2P +Q all integral. This would imply that
they are K3 surfaces, violating part (i) of Theorem 1.2.
This proves that R2

min(24) = 1/100.

7. AN EXAMPLE OF A K3 OBSTRUCTION

In both the case of a rational elliptic surface and the
case of a K3 elliptic surface, the lower bound for R(P, Q)
computed in Section 4 is attained. From a configuration
γ satisfying the conditions in Section 4.1, we can write
down the Néron–Severi lattice of the elliptic surface that
should correspond to γ. For a rational elliptic surface, if
the configuration satisfies the combinatorial conditions,
then it must exist. For a K3 elliptic surface, however,
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there are examples of configurations that satisfy all of
the combinatorial conditions but cannot be realized.

In this section we show an obstruction to the existence
of a K3 elliptic surface with the fiber configuration listed
below:

γ = [3, 4 | 8]+ [1, 0 | 6]+ [1, 2 | 4]+ [1, 0 | 2]+4[0]. (7–1)

This configuration satisfies all of the combinatorial con-
ditions listed in Section 4.1, and by our heuristics in Sec-
tion 4.4 we expect γ to be attained by a K3 elliptic sur-
face (E, P, Q), with R(P, Q) = 1/24, and ĥ(P ) = 1/24,
ĥ(Q) = 1.

7.1 K3 Lattices

Let U denote the hyperbolic plane, i.e., the rank-2 lattice
with bilinear form (

0 1
1 0

)
,

and let E8 denote the unique positive definite unimodular
lattice of rank 8:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For a K3 surface E , the second cohomology group
H2(E , Z) equipped with the cup product pairing is the
unique unimodular lattice of signature (3, 19), and is iso-
metric to H⊕3⊕E8(−1)⊕2 (see [Barth et al. 04, Chapter
7]). We call this lattice the K3 lattice. The Néron–Severi
lattice NS(E) is a primitive sublattice of the K3 lattice,
i.e., H2(E , Z)/ NS(E) is a free abelian group.3

The precise conditions for a lattice to have a primitive
embedding into the K3 lattice are worked out in [Nikulin
79]. Below we write one of those conditions, which we
use to show a local obstruction to the existence of a K3
surface corresponding to the configuration (7–1).

Theorem (Nikulin.) The discriminant group of the
Néron–Severi lattice of a K3 surface contains at most
p factors of Z/pZ.

3For elliptic surfaces that are not K3 or rational, we know the
structure of the lattice H2(E, Z), since it is unimodular of known
signature and parity. Very little, however, is known about NS(E)
in this case.

7.2 Lattice Computation

Suppose that the configuration γ in (7–1) is realized by a
K3 elliptic surface E/k fibered over P1, and let E/K be
the corresponding elliptic curve. Then the surface E has
one Iν fiber for each of ν = 8, 6, 4, 2 and four I1 fibers.
We write a matrix M whose rows generate the essential
sublattice T of the Néron–Severi lattice NS(E) (Section
2.2). For each reducible Iν fiber, we write the ν − 1
rows of M corresponding to the irreducible nonidentity
components of the fiber. This gives us the first 7+5+3+
1 = 16 rows of M . The last two rows correspond to the
Mordell–Weil generators of E(K) of height 1/24 and 1.
We write the coordinates of the last two rows RP and RQ

so that the intersection of P and Q is as in (7–1). We need
three extra columns, since we cannot write 1/24 as the
sum of two squares. The rows of this matrix, along with
the standard dot product, give us a rank-18 sublattice of
the Néron–Severi lattice of E/k. This sublattice M is the
orthogonal complement in NS(E) of the rank-2 sublattice
generated by a generic fiber and the zero section. This
matrix M appears as Figure 1.

We let G = M · M t be the Gram matrix of M . We
compute the Smith normal form of G, which gives us the
discriminant group of the Néron-Severi lattice:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0 0 0
0 1 . . . 0 0 0 0 0
...

...
. . .

...
...

...
...

...
0 0 . . . 1 0 0 0 0
0 0 . . . 0 2 0 0 0
0 0 . . . 0 0 2 0 0
0 0 . . . 0 0 0 2 0
0 0 . . . 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence the discriminant group is

NS(E)∗/ NS(E) ∼= (Z/2Z)4.

However, for a K3 surface the discriminant group
NS(E)∗/ NS(E) can contain at most p factors of Z/pZ.
Otherwise, the Néron–Severi lattice will not admit a
primitive embedding into the K3 lattice. It follows that
the configuration (7–1) cannot be realized.

Remark 7.1. It would be interesting to examine whether
adding the condition that there be no “local obstruction”
(i.e., that L∗/L not contain too many factors of Z/pZ)
to the set of conditions in Section 4.1 would eliminate
all configurations that do not correspond to K3 elliptic
surfaces. We believe that the addition of this condition
will guarantee the existence of a K3 with the given con-
figurations. If this is the case, then one might be able



Jain: Minimal Regulators for Rank-2 Subgroups of Rational and K3 Elliptic Surfaces 445

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

1
2

1
2

1
2

1
2 − 1

2 − 1
2 − 1

2 − 1
2 0 0 0 0 0 0 1

2
1
2 − 1

2 − 1
2 0 0 1 0 0 0

5
8

5
8

5
8 − 3
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FIGURE 1. The matrix M defined in Section 7.2.

to use the techniques in this paper to write down (with-
out equations) all K3 elliptic surfaces with sections of
naive height less than some fixed bound. This is essen-
tially what Nishiyama did in [Nishiyama 96] for the case
in which the Mordell–Weil rank is 1.

8. POINTS OF LOW CANONICAL HEIGHT OVER Q

In this section we search through specializations of the
K3 surface in Theorem 1.2 to find elliptic curves over
Q with a point of low canonical height. We write the
equations over the t line, where t = s/s′. The points
P and Q have integral multiples, and hence we expect
the corresponding specializations Pt and Qt to have low
canonical height on the elliptic curve Et over Q.

There are 28 pairs of points on E with naive height
2 that have the form mP + m′Q, with m and m′ both
nonzero. In this case the x-coordinate of mP + m′Q will
have a double pole for some values of t, i.e., the denomi-
nator of x(mP +m′Q) is the square of a linear polynomial
in t. We find the values of t that force this denominator
to be zero, which in turn forces mPt + m′Qt = 0 on the
curve Et. This will yield a point Pg generating ZPt⊕ZQt

of potentially small canonical height on Et:

ĥ(Pg) =
gcd(m′, m)2

m2
ĥ(Pt).

We expect this height to be small, both because several
multiples of the point Pg will be integral on Et, and also
because of various specialization theorems of Silverman
and Tate (cf. [Silverman 94, Chapter III, Section 11]).

For example, the point 7P +Q has naive height 2, and
we find that

x(7P + Q)

=
72t6 + 426t5 − 501t4 − 1233t3 − 198t2 + 216t

49t2 + 84t + 36
,

which has denominator (7t+6)2. Specializing the elliptic
curve E to t = −6/7 then gives us an elliptic curve Et

over Q and a nontorsion point Pt, which we write in
minimal Weierstrass form:

y2 + xy + y = x3 − 125615x + 61201397,

Pt = (7107,−602054).

This is, in fact, the elliptic curve over Q of conductor
3990 with the point of smallest known canonical height,
ĥ(Pt) ≈ 0.00445716.

In fact, specializing this K3 elliptic fibration at such
values of t yields the five smallest known canonical
heights. The data from our search is compiled in Ta-
ble 4. We let NE denote the conductor of E, and Pg a
generator for the subgroup ZP ⊕ZQ. A much more com-
prehensive list including these curves was written down
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t E : (a1, a2, a3) NE ĥ(Pg)

−6/7 (−759/49, 6840/343, −4617000/16807) 3990 0.00445716

2/9 (−13/27,−160/243, 4000/6561) 3630 0.00451934

−3/4 (−219/16, 495/32, −96525/512) 1430 0.00486993

3/4 (69/16, 45/32, 2025/512) 1470 0.00498205

−1/3 (−22/3, 35/9,−700/27) 280 0.00563876

−1/2 (−39/4, 15/2,−525/8) 1890 0.00603439

2/3 (11/3, 8/9, 56/27) 350 0.00642340

1 (6, 3, 12) 216 0.01562106

−8/9 (−433/27, 5200/243, −2002000/6561) 30030 0.01722760

−2/3 (−37/3, 112/9,−1232/9) 462 0.01970553

TABLE 4. Specializations yielding small heights over Q.

by Elkies in 2002, and can be found in [Elkies 02]. We
use the implementation of Silverman’s algorithm [Silver-
man 88] in GP to compute approximate values for the
canonical heights listed in Table 4.
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