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We study several families of planar quadratic diffeomorphisms
near a Bogdanov–Takens bifurcation. For each family, the skele-
ton of the associated bifurcation diagram can be deduced from
the interpolating flow. However, a zone of chaos confined be-
tween two lines of homoclinic bifurcation that are exponentially
close to one another is observed. The goal of this paper is to test
numerically an accurate asymptotic expansion for the width of
this chaotic zone for different families.

1. INTRODUCTION

In this paper we study homoclinic bifurcations in the
unfolding of a diffeomorphism near a fixed point of
Bogdanov–Takens type. To begin with, we consider a
planar diffeomorphism F : R2 → R2 with the origin as a
fixed point and where

dF (0, 0) = Id + N,

where N �≡ 0 is nilpotent. The origin is said to be a
fixed point of Bogdanov–Takens type. This latter termi-
nology is better known for a singularity of a vector field
X with linear part having double zero eigenvalues and a
nonvanishing nilpotent part. Since this singularity is of
codimension 2, i.e., is twice degenerate, a generic unfold-
ing will depend on two parameters, say (μ, ν).

In the case of a vector field, such unfolding has been
studied in [Arnol’d 83, Takens 74], and for maps it has
been studied in [Broer et al. 96, Broer et al. 92]. For
completeness, the corresponding bifurcation diagram is
revisited in Figure 1 (left): a curve of homoclinic bifur-
cation emanates from the origin, below a curve of Hopf
bifurcation; see [Broer et al. 91] for the terminology and
more details.

For parameters located between these two curves, the
corresponding dynamics possess a stable limit cycle. Fi-
nally, for the parameter {μ = 0} on the ordinate, a saddle
node occurs; see also [Broer et al. 91] for more details.
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FIGURE 1. The Bogdanov–Takens bifurcation for a flow (left) and for a diffeomorphism (right).

The Bogdanov–Takens bifurcation plays an impor-
tant role in dynamical systems, for instance from the
bifurcation-theoretic point of view. Given any dynami-
cal system depending on a parameter, the structure of the
bifurcation set can often be understood by the presence
of several high-codimension points that act as organiz-
ing centers. Starting from the presence of (degenerate or
nondegenerate) Bogdanov–Takens points, we can initiate
the search for subordinate bifurcation sets such as Hopf
bifurcation sets or homoclinic bifurcation sets. In this
paper, we consider a nondegenerate Bogdanov–Takens
point.

For the map F , an unfolding theory is developed in
[Broer et al. 96, Broer et al. 92]. It is very similar to the
case of a flow. To be more precise, any unfolding

Fμ,ν : R
2 → R

2, (x, y) �→ (x1, y1),

of the map F (where (μ, ν) ∈ R
2 and F = F0,0) can

be embedded in a nonautonomous and periodic family
of vector fields Xμ,ν . The diffeomorphism coincides with
the time-1 map of that vector field; see also [Takens 74].

Using an averaging theorem [Neishtadt 84], the depen-
dence on time is removed to exponentially small terms.
Moreover, one can show that Fμ,ν is formally interpo-
lated by an autonomous vector field X̃μ,ν ; see [Gelfreich
03]. This latter can be used to study the bifurcations of
fixed points of Fμ,ν . Both approaches move the differ-
ence between these two types of bifurcations beyond all
algebraic order.

Although all the Taylor coefficients of X̃μ,ν can be
written, there is no reason to expect convergence of the
corresponding series, since the dynamics for a planar dif-
feomorphism can be much richer than the dynamics of a

planar vector field. In the real analytic theory, this differ-
ence is exponentially small [Broer and Roussarie 01, Gelf-
reich 03].

As stated above, for diffeomorphisms, the bifurcation
diagram (Figure 1, right) is essentially the same. How-
ever, there is no reason to expect a single homoclinic
curve, since a homoclinic orbit may be transverse and
therefore persists. We observe a separatrices splitting,
and instead of a single homoclinic curve, one observes
two curves ν+(μ) and ν−(μ) respectively corresponding
to the first and last homoclinic tangencies. If a parame-
ter (μ, ν) is (strictly) located in the region between those
two curves, then the map Fμ,ν possesses transverse homo-
clinic trajectories. On the lower and upper boundaries,
the homoclinic connection becomes nontransverse. Un-
derstanding the width of this region is the main goal of
this paper.

Before going any further, we set the following prelim-
inaries. Without loss of generality and up to an analytic
change of coordinates, one has

x1 = x+ y, y1 = y + fμ,ν(x, y), (1–1)

where

f0,0(0) = 0 =
∂f0,0

∂x
(0, 0) =

∂f0,0

∂y
(0, 0).

We shall assume that

∂2f0,0

∂x2
(0, 0) �= 0. (1–2)

By the implicit function theorem, there exists x̃(μ, ν)
such that

∂fμ,ν

∂x
(x̃(μ, ν), 0) ≡ 0.



Gelfreich and Naudot: Width of the Homoclinic Zone in the Parameter Space for Quadratic Maps 411

Applying a conjugacy of the form x = x̄ + x̃μ,ν , y = ȳ

(and after removing the bars) amounts to writing

fμ,ν(x, y) = −b00(μ, ν) + b20(μ, ν)x2 + b01(μ, ν)y

+ b11(μ, ν)xy + h.o.t.(x, y), (1–3)

h.o.t.(x, y) stands for the higher-order terms in x and y.
From (1–2), we have b20(0, 0) �= 0.

By a linear rescaling in the variables (x, y), we can fix
b20(μ, ν) ≡ 1. Furthermore, we put b11(0, 0) = γ and
assume that the map

(μ, ν) �→ (−fμ,ν(0, 0),
∂fμ,ν

∂y
(0, 0)) = (−b00(μ, ν), b01(μ, ν)),

is a local diffeomorphism near (0, 0). From now on, we
shall consider (b00, b01) as our parameters and rename
them (again) by (μ, ν), i.e., we shall write (b00, b01) =
(μ, ν). Therefore, our study concerns the map

fμ,ν(x, y) = −μ+ x2 + νy + γxy + h.o.t.(x, y), (1–4)

and we restrict our study to the case in which μ > 0.
In [Broer et al. 96] it was shown that

ν±(μ) =
5
7
(γ − 2)

√
μ+ O(μ

3
4 ). (1–5)

In [Gelfreich 03] the following formula is proposed:

ν+(μ) − ν−(μ) = K(μ, γ − 2)
(
Θγ + O(μ1/4 logμ)

)
,

(1–6)

where

K(μ, γ̃) =
5

6
√

2μ
5
4
· e−

√
2π2/ 4√μe−6π2γ̃/7 (1–7)

is referred to as the leading part of the width and Θγ is
an analytic invariant of the map F0,0 called a splitting
constant ; see [Gelfreich and Naudot 06].

The goal of this paper is to establish, numerically, a
more accurate formula for the width of the homoclinic
zone ν+(μ)− ν−(μ). The existence of asymptotic expan-
sions for the width of the homoclinic zone is currently an
open question. Furthermore, if it does exist, it is very
hard to compute analytically. The difficulty here comes
from the fact that the normal form of the map coincides
with that of the time-1 map of a vector field. Therefore
the difference between the flow and the map is pushed
beyond any algebraic order.

In the nearly integrable context, a polynomial asymp-
totic expansion for the splitting of the separatrices is pro-
posed in [Ramirez-Ros 05]: the author considers the per-
turbation of a Hamiltonian (elliptic) billiard. The system

depends on a perturbation parameter ε ≥ 0 and a hyper-
bolicity parameter h > 0 and admits four separatrices,
which break up when ε > 0.

In this special case, the author proposed an asymptotic
expansion for the area of the main lobes of the resulting
turnstile that takes the form of a power series (with even
terms) in ε. See [Gelfreich and Simó 09, Delshams and
Ramirez-Ros 99, Levallois and Tabanov 93] for more ref-
erences on the computation of separatrices splitting.

In this paper our approach is experimental. We study
examples and present strong numerical evidence for the
following expansion of the width of the homoclinic zone:

log
(
ν+(μ) − ν−(μ)

) 	 log
(
K(μ, γ − 2)

)
(1–8)

+
∑
k≥1

mkμ
k/4 + logμ

∑
k≥1

nkμ
k/2,

where K is given by (1–7).

Remark 1.1. One easily checks that the following formula
can be derived from (1–8):

ν+(μ) − ν−(μ) 	 K(μ, γ − 2)
∑
k≥0

∑
0≤j≤[ k

2 ]

c̃k,jμ
k/4 logj μ,

(1–9)

where [k
2 ] stands for the integer part of k/2 and the c̃k,j ’s

depend on the mk’s and the nk’s.
Observe that (1–9) is a double series with logarith-

mic terms, and numerically, for such an expansion, we
do not know any efficient techniques to compute the cor-
responding coefficients with high precision. However, the
asymptotic series (1–8) does not involve a double sum-
mation and therefore the corresponding coefficients can
be computed with a much higher precision.

Remark 1.2. Logarithmic terms may vanish. This occurs,
for instance, in the case of the Hénon map; see the next
section for more details.

Remark 1.3. From the numerical data, we are able to
guess a simple analytic expression for the first logarithmic
term in (1–8). More precisely, we have n1 = −(6(γ−2)

7
√

2

)2,
which is valid for all families studied in this article.

Remark 1.4. Our computations require very high pre-
cision, of several thousand digits. For this we use the
package Mathematica, which allows us to set the preci-
sion of our computation as high as required.

The paper is organized as follows. We shall consider
three different families that satisfy (up to appropriate
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smooth changes of coordinates) the setting above with
different nonlinear terms. As a result of our experiments,
for each family we shall state the asymptotics for the
width of the homoclinic zone, confirming formula (1–8).

Looking for the width of the homoclinic zone amounts
to fixing one parameter, say μ, in the unfolding (1–3),
and finding the values of the second parameter, say ν,
for which the system admits a first and a last homoclinic
tangency. We say that μ is the main parameter and ν is
the slave parameter. In Section 3 we briefly present the
strategy that we follow.

The rest of the section is devoted to the computation
of the invariant (stable and unstable) manifolds at the
saddle point. The splitting function, which is a key in-
gredient of our techniques, is presented.

Indeed, primary homoclinic orbits are in one-to-one
correspondence with zeros of the splitting function.
Therefore, the first and last homoclinic tangencies will
correspond to double zeros of the splitting function.
Moreover, the splitting function is periodic, with expo-
nentially decreasing harmonics, and is well approximated
by the splitting determinant. With good precision, com-
puting the width of the zone amounts to the computation
of the first two harmonics of the splitting function and
their dependence with respect to the slave parameter (the
main parameter being fixed).

For each family, we compute the width of the homo-
clinic zone for several hundred values of the main pa-
rameter μ and collect the results in a set of renormalized
data.

In the next step, the coefficients in (1–8) (considered
as an ansatz) are extracted by interpolation techniques.

The remaining part of the paper is devoted to the
verification of the validity of our results. More precisely,
we test the ansatz (1–8) and determine how precise our
data for the width of the homoclinic zone should be in
order to produce reliable results for the coefficients of the
asymptotic expansion.

Finally, the constant coefficient of the expansion
should coincide with the splitting constant [Gelfreich 03]:
following the procedure developed in [Gelfreich and Nau-
dot 06], we compare these constants with the constant
coefficients of the expansions.

2. MAIN RESULTS

Before presenting our main results, we first introduce the
following notions.

2.1 Asymptotic Sequences and Expansions

Let ε0 > 0 be given and let

S̃ = {f0, f1, . . . , fn, . . . },

where f0 ≡ 1 and for each integer i > 0, fi : (0, ε0) → R

is a smooth positive function such that

lim
x→0+

fi+1(x)
fi(x)

= 0,

or in other words, fi+1(x) = o(fi(x)). Such a family S̃ is
called an asymptotic sequence.

In this paper we shall consider the following asymp-
totic sequences:

P̃ = {1, x, x2 . . . , xn, . . . }, (2–1)

that is, fi(x) = xi and the Dulac asymptotic sequence
[Marděsic 94]

D̃ =
{
1, x, x2 log x, x2, x3, x4 log x, x4, . . . , x2n log(x),

x2n, x2n+1, . . .
}
,

that is, for all integer n ≥ 0,

f3n(x) = x2n, f3n+1(x) = x2n+1,

f3n+2(x) = x2n+2 log(x). (2–2)

Let φ : (0, ε0) → R be a smooth function. We say that

φ(x) 	
∑
n∈N

αnfn(x) (2–3)

is an asymptotic expansion of φ at 0 (where {fn}n∈N is
an asymptotic sequence and all αn’s are real) if for all
integer n,

φ(x) − φ{n}(x) = O(fn+1(x)),

where φ{n}(x) =
∑n

i=0 αifi(x). With respect to expan-
sions of the form (2–3), no convergence is implied and
often the αi’s are Gevrey-1, i.e.,

there existM > 0, r > 0, such that for all k ≥ 0,
|αk| ≤Mk!/rk.

2.2 Quadratic Family

Our first example is the quadratic map

Q = Qμ,ν,γ : R
2 → R

2, (2–4)

(x, y) �→ (x+ y, y + x2 − μ+ γxy + νy).
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Observe that Q mimics the unfolding (1–1), i.e., it takes
the form of Fμ,ν and ignores the higher-order terms. We
normalize the width of the homoclinic zone associated to
the quadratic family by defining

Sγ(μ) =
ν+(μ) − ν−(μ)
K(μ, γ − 2)

.

Within the precision of our computations we observe
that

logSγ(μ) 	
∑
k≥0

Mk(γ)μk/4 + logμ
∑
k≥1

Nk(γ)μk/2,

(2–5)

where Mk(γ) and Nk(γ) are real coefficients that depend
on the parameter γ.

Comparing with (1–6), we see that

exp(M0(γ)) ≡ Θγ

is the splitting constant associated with Q0,0,γ . More-
over, as we announced in the previous section, we have

N1(γ) ≡ −
(

6(γ − 2)
7
√

2

)2

.

For each value of γ, the Mk’s and Nk’s can be computed
with very high precision; see Table 1 for an illustration.

Formula (2–5) has been verified for the first 76 coef-
ficients: Mk, k = 0, . . . , 50, and N�, � = 1, . . . , 25. Al-
though the precision decreases almost linearly as k and
� increase, the first 76 coefficients can be computed with
60 correct digits. To compute these first coefficients, we
need to compute the width of the homoclinic zone with at
least 200 correct digits; see Section 4.2 for more details.

Even if we can propose an analytic expression for
N1(γ), we have not been able to guess analytic expres-
sions for the other coefficients Nk and Mk.

2.3 Bogdanov Family

Our second example is the Bogdanov map [Arrowsmith
93, Arrowsmith and Place 90, Bogdanov 75]

B = Ba,b,γ̃ : R
2 → R

2

(x, y) �→ (x+ y + x2 + γ̃xy + ax+ by,

y + x2 + γ̃xy + ax+ by).

The Bogdanov map, see for example [Arnol’d 72, Bog-
danov 81], is the Euler map of a two-dimensional system
of ordinary differential equations.

Arrowsmith studied the bifurcations and basins of
attraction and showed the existence of mode locking,

Arnold tongues, and chaos [Arrowsmith 93]; see also [Ar-
rowsmith and Place 90] for more details.

For this map the saddle point is located at the origin.
This map can be transformed to the form (1–3). Indeed,
let

u = x− a

2
,

v = y +
(
x− a

2

)2

+ γ̃
(
x− a

2

)
y + a

(
x− a

2

)
+ by.

We retrieve the map (1–2) and higher-order terms (1–3)
by putting

ν = a+ b− (γ̃ + 2)
a

2
, γ = γ̃ + 2, μ = a2/4,

and
fμ,ν = (x+ y)2 − μ+ γy2.

The parameter a is chosen to be the main parameter and
b the slave parameter. From (1–5), the Bogdanov map
admits a homoclinic zone near the line

b±(a) =
6
7
aγ̃ + O(a3/2).

The normalized width takes the form

S̃γ̃(a) =
b+(a) − b−(a)
K(a2/4, γ̃)

.

Similarly to the quadratic family, our experiments
showed that log S̃γ̃ satisfies the following asymptotics:

log S̃γ̃(a) 	
∑
k≥0

Ak(γ̃)ak/2 + log a
∑
k≥1

Bk(γ̃)ak, (2–6)

where Ak(γ̃) and Bk(γ̃) are real coefficients that depend
on the parameter γ. Comparing with (1–6), we see that

exp(A0(γ̃)) ≡ Θγ̃

is the splitting constant associated with B0,0,γ̃ . More-
over, we observe numerically that B1(γ̃) ≡ −(6γ̃/7)2.

In Table 1, we provide typical results for our compu-
tation for the quadratic and Bogdanov maps. Although
the first 20 coefficients do not show a tendency to grow
rapidly, we conjecture that the series (2–5) and (2–6) di-
verge and belong to the Gevrey-1 class defined at the end
of Section 2.1; compare with [Gelfreich and Simó 09].

2.4 Hénon Map

The last example to be considered in this paper is defined
by

H = Hã,b̃ : R
2 → R

2, (u, v) �→ (u1, v1),
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Coefficient Scale Value

A0 1 61.26721889

A1 a1/2 −29.82701974

B1 a log a −6.612244898

A2 a 5.824479250

A3 a3/2 17.41183781

B2 a2 log a 5.649967276

A4 a2 −0.2874798361

A5 a5/2 −22.04012159

B3 a3 log a −6.966574583

A6 a3 −6.250578833

A7 a7/2 39.27382902

B4 a4 log a 10.92891913

A8 a4 19.31687979

A9 a9/2 −82.17477248

B5 a5 log a −20.01663759

A10 a5 −50.35178499

A11 a11/2 186.9039750

B6 a6 log a 40.63376347

A12 a6 128.7996196

A13 a13/2 −444.7385574

Coefficient Scale Value

M0 1 −13.35083105

M1 μ1/4 −35.34533603

N1 μ1/2 log μ −9.183673469

M2 μ1/2 −25.71572403

M3 μ3/4 60.69366755

N2 μ log μ −41.92449575

M4 μ −215.4221683

M5 μ5/4 −45.92851439

N3 μ3/2 log μ −242.5333437

M6 μ3/2 −960.8699623

M7 μ7/4 755.3601690

N4 μ2 log μ −1587.303140

M8 μ2 −3308.441120

M9 μ9/4 1090.837521

N5 μ5/2 log μ −11017.80445

M10 μ5/2 −134120.3771

M11 μ11/4 22519.75418

N6 μ3 log μ −79363.78673

M12 μ3 904656.6104

M13 μ13/4 87833.05069

TABLE 1. The first 20 coefficients of the asymptotic expansion for the Bogdanov map (left, γ̃ = 3) and the quadratic map
(right, γ = −3). All the given digits are correct.

where
u1 = v, v1 = ãv2 − b̃u+ 1.

See [Kirchgraber and Stoffer 06] for recent results con-
cerning this family. The Hénon map has a fixed point of
Bogdanov–Takens type at ã = b̃ = 1.

We chose ã as the main parameter and b̃ as the slave
parameter. We note that the Hénon map is conjugate to
the Bogdanov family in the special case of γ̃ = 0. The
conjugacy is given by the following change of coordinates
and parameters:

u = x, v = x+ y + x2 + ax+ by,

b̃ = b+ 1, ã = (1 + b/2)2 − a2/4.

We also observe that the Hénon map can be transformed
to the form (1–1) with nonlinear term of the form (1–3)
by putting

u =
1
ã

(
x+

b̃+ 1
2

)
, v =

1
ã

(
x+

b̃+ 1
2

)
+

1
ã
y.

In the new system of coordinates, the Hénon map takes
the form (1–3) with

fμ,ν = (x+ y)2 − μ+ νy,

where
μ =

(
1 +

ν

2

)2

− ã, ν = b̃− 1.

The Hénon map admits a homoclinic zone near the line

b̃±(ã) ≡ 1, ã ≥ 1.

In the case of the Hénon map we define the normalized
width of the zone by

S̃(ã) =
b̃+(ã) − b̃−(ã)
K(1 − ã, 0)

.

Our numerical experiments show that S̃ has the following
asymptotic expansion:

S̃(ã) =
∑
k≥0

Ãk(1 − ã)k/4. (2–7)

In contrast to the case of the Bogdanov map with
γ �= 2 (i.e., γ̃ �= 0), the asymptotic expansion does not
contain logarithmic terms. We expect this property to
be closely related to the fact that the Hénon map con-
tains a one-parameter subfamily of area-preserving maps:
in [Brännström and Gelfreich 08], the authors study
the exponentially small splitting of separatrices for area-
preserving maps near a Hamiltonian saddle center bifur-
cation. This study covers the case of the area-preserving
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Hénon map. The authors show that the corresponding
series does not contain logarithmic terms. In general,
even when γ = 2, there is no reason to expect the loga-
rithmic terms to vanish for a map Fμ,ν .

3. COMPUTING THE WIDTH OF THE
HOMOCLINIC ZONE

In this section, our approach concerns the quadratic fam-
ily Qμ,ν,γ . The other families (Bogdanov and Hénon) are
treated in a similar way. From now on, we do not mention
the (μ, ν, γ) dependencies when it is not necessary, but
we may emphasize such dependence when it is needed.

3.1 Strategy

(i) We assume an ansatz and in particular the one given
in formula (1–8);

(ii) Compute ñ (several hundred) values of the width for
values of μ1/4 ∈ [c, d], where 0 < c < d are close to 0
(typically c ≈ 5/1000, d ≈ 1/100). It is convenient
to work with the so-called normalized width of the
homoclinic zone defined by

Sγ(μ) =
ν+(μ) − ν−(μ)
K(μ, γ − 2)

,

where K is defined by (1–7). The result is collected
in a set of data of the form

H =
{(
μ

1/4
i , log(Sγ(μi))

)
, (3–1)

c ≤ μi ≤ d, i = 1, . . . , ñ
}
.

(iii) Take � ∈ N such that 3�/2 + 1 ≤ ñ and � � 1 even.
Then we compute the coefficients Mk, k = 0, . . . , �,
and Nk, k = 1, . . . , �/2, of the truncated expansion

G{3�/2}(μ) =
�∑

k=0

Mk(γ)μk/4 + logμ
�/2∑
k=1

Nk(γ)μk/2

to interpolate the set H, i.e., for all integer i =
1, . . . , 3�/2 + 1, we have

logSγ(μi) =
�∑

k=0

Mk(γ)μk/4
i + logμi

�/2∑
k=1

Nk(γ)μk/2
i .

See Section 3.10 for more details.

Remark 3.1. For the Bogdanov family, the set of data for
the normalized width is denoted by

H̃ =
{
(a1/2

i , log(S̃γ(ai))), c̃ < ai < d̃, i = 1, . . . , ñ
}
,

(3–2)

where

S̃γ(ai) =
b+(ai) − b−(ai)
K(a2

i /4, γ̃)
and 0 < c̃ < d̃.

Remark 3.2. For the Hénon family, the set of data for the
normalized width is denoted by

Z̃ =
{
(|1 − ãi|, S̃(ãi)), c̃ < |1 − ãi| < d̃, i = 1, . . . , ñ

}
,

(3–3)

where

S̃(ãi) =
b̃+(ãi) − b̃−(ãi)
K((1 − ãi), 0)

and 0 < c̃ < d̃.

3.2 Invariant Manifolds

We now compute the stable and unstable manifolds at the
saddle point. In what follows, our description concerns
the quadratic map Q, but similar computations are done
for the Bogdanov map and the Hénon map.

From (2–4), the map Q has two fixed points:

Sμ = (
√
μ, 0), Cμ = (−√

μ, 0).

The point Cμ is a focus and Sμ is a saddle and will be the
point of interest. The eigenvalues of dQ(Sμ) are given by

λ1 =
1
2

(
2 + ν + γ

√
μ−

√
(γ
√
μ+ ν)2 + 8

√
μ
)
,

λ2 =
1
2

(
2 + ν + γ

√
μ+

√
(γ
√
μ+ ν)2 + 8

√
μ

)
.

For μ > 0 sufficiently small it is clear that λ1 < 1 < λ2.
At the saddle Sμ, the Taylor expansion of the local

stable manifold W s
loc and that of the local unstable man-

ifold Wu
loc are computed as follows. Denote by

Φs : (R, 0) → (R2,Sμ),

z �→ Φs(z) =
(√

μ+
∞∑

k=1

ϕkz
k,

∞∑
k=1

ψkz
k
)
,

and

Φu : (R, 0) → (C2,Sμ),

z �→ Φu(z) =
(√

μ+
∞∑

k=1

fkz
k,

∞∑
k=1

pkz
k
)
,

the parameterizations that respectively satisfy

Φs(λ1z) = Q ◦ Φs(z) and Φu(λ2z) = Q ◦ Φu(z)
(3–4)
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for all z near 0. Substituting the series into (3–4) and
collecting terms of the same order in z, we get, for k ≥ 1,

ϕk + ψk = λk
1ϕk, (3–5)

k∑
j=0

ϕjϕk−j + γ

k∑
j=0

ϕjψk−j + νψk = λk
1ψk,

and

pk + fk = λk
2pk, (3–6)

k∑
j=0

fjfk−j + γ

k∑
j=0

fjpk−j + νpk = λk
2pk.

Since λ2 > 1 and Q is entire, from (3–4) we easily
deduce that the radius of convergence of the series defined
in (3–6) is infinite. Denote by � the radius of convergence
of the series defined in (3–5). We fix Nmax ∈ N. Since we
are after a single branch of the stable manifold, we write

W s
loc ≈W s

Nmax
= {Φs,Nmax(z), 0 ≤ z ≤ δs},

where

Φs,Nmax(z) =
(√

μ+
Nmax∑
k=1

ϕkz
k,

Nmax∑
k=1

ψkz
k

)

and where 0 < δs < �.
We proceed in the same way for the local unstable

manifold, i.e.,

Wu
loc ≈Wu

Nmax
= {Φu,Nmax(z), 0 ≤ z ≤ δu},

where

Φu,Nmax(z) =
(√

μ+
Nmax∑
k=1

fkz
k,

Nmax∑
k=1

pkz
k

)
, (3–7)

and where 0 < δu � 1.
The local invariant manifolds are computed with the

following precision:

‖Φs,Nmax(z) − Φs(z)‖ = O (zNmax
)
,

‖Φu,Nmax(z) − Φu(z)‖ = O (zNmax
)
.

In particular, we have

‖Φu(λ2z) − Q ◦ Φu,Nmax(z)‖ = O (zNmax
)
. (3–8)

Since we need to study the map when homoclinic or-
bits are present, we need a good estimate of the global
unstable manifold.

Recall that Φu is entire and therefore both components
defined in (3–7) converge for all z as Nmax → ∞. How-
ever, for large z, the computation of the unstable man-
ifold requires too many coefficients, and therefore (3–7)
is not very convenient. We then proceed as follows.

Let P0 = Φu(z0) ∈ Wu and choose m0 such that

z1 = λ−m0
2 z0 ≤ δu.

Then for any fixed m0, we have

P0 = lim
Nmax→∞

Qm0 ◦ Φu,Nmax(z1),

and if z1 � 1, the convergence is fast.
Therefore, by putting

Wu ≈Wu
Nmax,m = {Qm ◦ Φu,Nmax(λ

−m
2 z), 0 ≤ z ≤ z0},

m ≥ m0, we get an accurate estimate of the global un-
stable manifold.

3.3 Jacobian and Wronskian Functions

Before introducing the splitting function that will play a
key role in the paper, we need to introduce two additional
functions.

We first define

J : D → C, z �→ det dQ(Φs(z)),

as the Jacobian of the map Q along the stable manifold

Φs(z) = (Φs,x(z),Φs,y(z)).

A straightforward computation gives

J(z) = 1 + ν + (γ − 2)Φs,x(z) − γΦs,y(z). (3–9)

In terms of series, from (3–9) we get

J(z) =
∞∑

k=0

Jkz
k, (3–10)

where J0 = 1 + ν + (γ − 2)
√
μ and for all k > 0, Jk =

(γ−2)φk−γψk. The Wronskian function (along the local
stable manifold)

Ω : D → R, z �→ Ω(z),

satisfies

Ω(λ1z) = J(z)Ω(z). (3–11)

We put Ω0 = 1 and look for a solution of (3–11) of the
form

Ω(z) = zlog J0/log λ1

(
1 +

∞∑
k=1

Ωkz
k

)
. (3–12)

With (3–11), (3–10), and (3–12), it follows that

Ωn =
1

λ1 − J0

(
Jn +

n−1∑
j=0

ΩjJn−1−j

)
.
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Both series (3–10) and (3–12) are convergent. The
functions J and Ω will be approximated by

JNmax(z) =
Nmax∑
k=0

Jkz
k

and

ΩNmax(z) = zlog J0/log λ1

(
1 +

Nmax∑
k=1

Ωkz
k

)

respectively. In this way, we have

|ΩNmax(λ1z) − JNmax(z)ΩNmax(z)| = O(|z|Nmax).
(3–13)

3.4 Splitting Function and Flow Box Theorem

In this section, we introduce the key part of our tech-
niques. Recall that in our investigation for the width of
the homoclinic zone, we fix the value of the main param-
eter and look for values ν+ and ν− of the slave parameter
that correspond, respectively, to the first and the last ho-
moclinic tangencies. In order to find a homoclinic point
we need to adjust the slave parameter in such a way that
two curves on the plane have an intersection. Finding a
homoclinic tangency requires additional adjustments to
make this intersection degenerate. This problem is much
easier in the discrete flow box coordinates, in which the
stable curve coincides with the horizontal axis and the
unstable one is a graph of a periodic function. A further
simplification will be achieved by observing that this pe-
riodic function is very close to a trigonometric polynomial
of the first order.

The splitting function Θ = Θμ,ν we shall introduce
now is such that the first and the last tangencies corre-
spond to double zeros of Θμ,ν+ and Θμ,ν− respectively.
Our investigation amounts then to finding values ν+ and
ν− such that Θμ,ν+ and Θμ,ν− possess double zeros.

In this section, we present the splitting function Θμ,ν

for the quadratic map. In the case of the Bogdanov map,
the splitting function is denoted by Θa,b. In what follows,
we assume that the parameter (μ, ν) is such that the
map Q possesses a homoclinic orbit, i.e., the unstable
manifold intersects the local stable manifold at a point
Φu(zu) = q0 = Φs(zs). Then we fix a neighborhood U of
the point q0. We parameterize W s

loc near q0 by

Γs : I0 �→ Φs(zs · λt
1),

where I0 = (−1, 1) and Wu near q0 by

Γu : I0 �→ Φu(zu · λt
2).

Now we state the following (flow box) lemma [Gelf-
reich 96].

Lemma 3.3. There exist E0 > 0 and an analytic diffeo-
morphism

Ψ : (−E0, E0) × I0 → R
2,

(E, t) �→ Ψ(E, t) = (X(E, t), Y (E, t)),

such that the following hold:

(i) Ψ(E, t+ 1) = Q ◦ Ψ(E, t);

(ii) Ψ(0, 0) = q0, Ψ(0, t) ∈W s
loc for t ∈ I0;

(iii) the Jacobian matrix

dΨ(E, t) =
(
∂X/∂E ∂X/∂t
∂Y /∂E ∂Y /∂t

)
(3–14)

is such that the second column of dΨ(0, t) is
Γ̇s = dΓs(t)/dt;

(iv) the map Ω̂(E, t) = det dΨ(E, t) satisfies Ω̂(0, t) =
Ω(zs · λt

1).

The splitting function, denoted by Θμ,ν(t), is the first
component of

Ψ−1 ◦ Γu(t) − Ψ−1 ◦ Γs(t).

Applying Taylor’s theorem to the stable manifold, we get

Ψ−1 ◦ Γu(t) − Ψ−1 ◦ Γs(t)

= dΨ−1(Ψ(0, t)) · (Γu(t) − Γs(t)
)

(3–15)

+ O(‖Γu(t) − Γs(t)‖2
)
.

The following properties hold:

• Let 0 < δ̃ < π. The map Θμ,ν has an analytic
continuation onto the rectangle

B = {t ∈ C | t = t′ + it′′, t′ ∈ I0, |t′′| ≤ �, (3–16)

|�| < (π − δ̃)/| logλ1|}.
The function Θμ,ν is periodic, so we can expand it
into a Fourier series:

Θμ,ν(t) =
∞∑

j=−∞
Pj(μ, ν)e2iπt.

As usual, the Fourier coefficients are defined by an
integral:

Pk(μ, ν) =
∫ 1

0

Θμ,ν(t)e−2ikπtdt, for each k ∈ N.
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Let 0 < � < (π − δ̃)/| log(λ1)|. Since the integral
of Θμ,ν(t)e−2ikπt over the boundary of the rectangle
{(t′ + it′′) | 0 ≤ t′ ≤ 1, 0 ≤ t′′ ≤ �} vanishes, we
conclude that∫ 1

0

Θμ,ν(t)e−2ikπtdt (3–17)

= e−2kπ�

∫ 1

0

Θμ,ν(t+ i�)e−2ikπtdt.

Consequently,

|Pk(μ, ν)| ≤ sup
t∈I0

|Θμ,ν(t+ i�)| · e−2|k|π�, (3–18)

i.e., the harmonics of Θμ,ν decrease exponentially.
The function Θμ,ν can be well approximated by the
sum of the zero- and first-order harmonics:

Θμ,ν(t) = P−1(μ, ν)e−2iπt + P0(μ, ν) (3–19)

+ P1(μ, ν)e2iπt + O2(t),

or equivalently, Θμ,ν is well approximated by a
trigonometric polynomial function

Θμ,ν(t) = P0(μ, ν) (3–20)

+ 2|P−1(μ, ν)| cos(2πt+ arg(P−1(μ, ν)))

+ O2(t),

where

sup
t∈I0

|O2|(t) = O(e−4π�). (3–21)

• Since dΨ−1(Ψ(0, t)) = (dΨ(0, t))−1, we have

dΨ−1(Ψ(0, t)) =
1

Ω̂(0, t)

(
∂Y /∂t −∂X/∂t
∂X/∂E ∂Y /∂E

)
.

Furthermore,

Ψ−1(Γu(t)) =
(
Eu(t), Tu(t)

)
,

Ψ−1(Γs(t)) =
(
Es(t), Ts(t)

)
= (0, t),

with (3–14) and (3–15). It follows that

Θμ,ν(t) = Eu(t) − Es(t) (3–22)

=
1

Ω̂(0, t)
det
(
d

dt
Γs(t),Γu(t) − Γs(t)

)

+ O(‖Γu(t) − Γs(t)‖2).

Thus we obtain a formula suitable for computation
of the splitting function in terms of the parameteri-
zation of the stable and unstable manifolds:

Θμ,ν(t) = Θ̃μ,ν(t) + h̃μ,ν(t), (3–23)

where

Θ̃μ,ν(t) =
1

Ω(zs · λt
1)

det
(
d

dt
Γs(t),Γu(t) − Γs(t)

)
(3–24)

is the splitting determinant and

|h̃μ,ν(t)| = O
(

sup
t∈I0

|Θ̃μ,ν(t)|2
)
. (3–25)

Note that even if the invariant manifolds and the
Wronskian are computed with a very high precision,
the function Θμ,ν(t) is evaluated only with a relative
error of order O(supt∈I0

|Θμ,ν |).

3.5 Approaching a Primary Homoclinic Orbit

In order to compute the width of the homoclinic zone,
we first find a value ν = ν̄ where the map possesses a
primary homoclinic orbit. Near ν = ν̄, Lemma 3.3 will
then be applied, and the splitting determinant Θ̃μ,ν will
be computed. We proceed as follows: We fix 0 < zs < δs
and a section Σ transverse to the local stable manifold
at pν = Φs(zs). We parameterize Σ as follows:

Σ = {pν + (0, y), −y0 < y < y0},
where 0 < y0 � 1. For each value of the main parameter,
we consider the slave parameter close to

ν0 =
(

5(γ − 2)
7

)√
μ

and compute a point qν ∈Wu ∩Σ that is the first inter-
section of Wu with the section.

In order to increase the speed of computations, we use
Newton’s method to solve the equation Γu(t) ∈ Σ. After
that we adjust ν in such a way that qν = pν . We do
not know an easy way to evaluate the derivative of qν
with respect to ν. Therefore we cannot apply Newton’s
method. However, we replace the derivative by a finite
difference approximation and use the secant method. In
other words, we consider the limit of the following se-
quence:

νn+1 = νn +
δ̄yνn

yνn+δ̄ − yνn

,

where qν = pν + (0, yν) and where 0 < δ̄ � 1. Set

ν̄ = lim
n→∞ νn.

Since pν̄ = qν̄ , the point (μ, ν̄) belongs to the homoclinic
zone.

Our next step is with the computation of the width
ν+(μ) − ν−(μ) for the given value of μ. The zeros (and
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double zeros) of Θμ,ν are in one-to-one correspondence
with primary homoclinic orbits (and homoclinic tangen-
cies) for the corresponding map; see [Gelfreich 96, Gelf-
reich 03] for more details. We then replace the problem
of finding homoclinic points and homoclinic tangencies to
that of finding double zeros of the splitting function Θμ,ν .

3.6 First and Last Tangencies

The most natural way to compute the width of the
homoclinic zone is to estimate both ν+ = ν+(μ) and
ν− = ν−(μ). Write

Θμ,ν(t) = P0(μ, ν) + Θ̂μ,ν(t). (3–26)

At the first tangency (ν = ν−), the graph of the splitting
function is located below the t-axis, and Θμ,ν− admits a
double zero. Therefore there exists t− ∈ I0 such that

Θμ,ν−(t−) = sup
t∈I0

Θμ,ν−(t) = 0 (3–27)

= P0(μ, ν−) + sup
t∈I0

Θ̂μ,ν−(t).

At the last tangency (ν = ν+) the graph of the splitting
function is located above the t-axis, and Θμ,ν+ admits a
double zero.

Therefore there exists t+ ∈ I0 such that

Θμ,ν+(t+) = inf
t∈I0

Θμ,ν+(t) = 0 (3–28)

= P0(μ, ν+) + inf
t∈I0

Θ̂μ,ν+(t).

If we neglect O2 in (3–20), then (3–27) and (3–28) are
equivalent to

P0(μ, ν+) − 2|P−1(μ, ν+)| = 0, (3–29)

P0(μ, ν−) + 2|P−1(μ, ν−)| = 0.

In this way the problem of finding the first and the last
tangencies is replaced by scalar equations in one variable
each. Therefore, instead of looking for intersections be-
tween Wu

loc and Wu and their tangencies, we save consid-
erable time by simply solving a scalar equation. Observe
that for ν near ν̄, for all t ∈ I0 we have

P0(μ, ν) = O(|P1(μ, ν)), (3–30)

sup
t∈I0

|Θμ,ν(t)| = O(|P1(μ, ν)).

From (3–19) we need only four points per period to eval-
uate P0 and P±1.

Concretely, we write

P0(μ, ν) ≈ R0(μ, ν) =
1
2

(
Θ̃μ,ν(0) + Θ̃μ,ν

(
1
2

))
P−1(μ, ν) ≈ R−1(μ, ν)

=
1
4

(
Θ̃μ,ν(0) − Θ̃μ,ν

(
1
2

)
(3–31)

+ i

(
Θ̃μ,ν

(
1
4

)
− Θ̃μ,ν

(−1
4

)))
P1(μ, ν) ≈ R1(μ, ν)

=
1
4

(
Θ̃μ,ν(0) − Θ̃μ,ν

(
1
2

)

− i

(
Θ̃μ,ν

(
1
4

)
− Θ̃μ,ν

(−1
4

)))
.

From (3–19), thanks to (3–23) and (3–25), the approxi-
mation here means that

max{|R0(μ, ν) − P0(μ, ν)|, |R±1(μ, ν) − P±1(μ, ν)|}
= O(sup

t∈I0

|Θμ,ν(t)|2). (3–32)

Moreover, with (3–30) we have

|R±1(μ, ν) − P±1(μ, ν)| = O(|R±1(μ, ν)|2). (3–33)

We then solve

R0(μ, ν̃+) − 2|R−1(μ, ν̃+)| = 0, (3–34)

R0(μ, ν̃−) + 2|R−1(μ, ν̃−)| = 0.

From (3–30), (3–32), (3–33), and (3–34), we have

Θμ,ν̃−(t−) = O(R2
−1(μ, ν̃

−)), (3–35)

Θμ,ν̃+(t+) = O(R2
−1(μ, ν̃

+)).

Let t0 ∈ I0. By the mean value theorem, we have

|ν+ − ν̃+| = O
(

R2
−1(μ, ν̄)

∂Θμ,ν(t0)/∂ν|ν=ν̄

)
, (3–36)

|ν− − ν̃−| = O
(

R2
−1(μ, ν̄)

∂Θμ,ν(t0)/∂ν|ν=ν̄

)
.

This approach gives a good estimate of the locus of
the homoclinic zone and therefore of the corresponding
width, but requires the computation of both ν+ and ν−

to very high precision. To be more precise, assume that
we want to compute the width of the homoclinic zone
for a given value of the main parameter with N correct
digits, while the width of the zone (roughly estimated
with formula (1–6)) satisfies

10−Nz−1 ≤ ν+ − ν− < 10−Nz , (3–37)
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where Nz � 1. Thus we need to compute both ν+ and
ν− with Nz +N correct digits. We observe (numerically)
that

ν̃+ − ν̃− = O
( |R−1|(μ, ν̄)
∂Θμ,ν(t0)/∂ν|ν=ν̄

)
; (3–38)

also compare with (3–42) below.
Therefore with (3–36) and (3–38), ν̃+ − ν̃− gives an

estimate of the width with a relative error of the same
order. In particular, this means that we cannot chooseN
bigger than Nz. With this method, thanks to (3–33), the
estimates of P0(μ, ν) and of P−1(μ, ν) are obtained with
a relative error of the same order as |P−1(μ, ν̄)|. This re-
quires the computation of the splitting determinant with
the same relative precision. When the main parameter
tends to 0, since the eigenvalues λ1 and λ2 tend to 1, the
number of iterations (i.e., m0) and the number of terms
in (3–7) (i.e., Nmax) required to compute the unstable
manifold need to be chosen bigger and bigger.

Moreover, in order to guarantee (3–33), we need to
have P0(μ, ν) = O(P−1(μ, ν)), i.e., (3–30), which re-
quires that the local stable and unstable manifolds be
close to one another, and more precisely, that

‖Γu(t) − Γs(t)‖ = O(K(μ, γ − 2)). (3–39)

As a conclusion, as the main parameter tends to 0, this
approach becomes more and more delicate.

In what follows, we propose another approach, one
that does not require the computation of P0(μ, ν), yet
still requires a first value of ν = ν̄ such that (3–30) and
gives an estimate of the width with the same precision.

3.7 The Real Approach

From (3–27) and (3–28) we have

P0(μ, ν+) − P0(μ, ν−) = − inf
t∈I0

Θ̂μ,ν+(t) + sup
t∈I0

Θ̂μ,ν−(t).

(3–40)

Furthermore, from the mean value theorem, there exists
ν− ≤ ν2 ≤ ν+ such that

P0(μ, ν+) − P0(μ, ν−) =
∂P0

∂ν

∣∣∣
ν=ν2

· (ν+ − ν−).

(3–41)

Thus we get

ν+ − ν− =
supt∈I0

Θ̂μ,ν−(t) − inft∈I0 Θ̂μ,ν+(t)
∂P0/∂ν

∣∣
ν=ν2

. (3–42)

We observe (numerically) that Θ̂μ,ν does not change
much with respect to ν. More precisely, for all ν− ≤ ν3 ≤
ν+, ν− ≤ ν4 ≤ ν+, and for all t ∈ I0,

|Θ̂μ,ν4(t) − Θ̂μ,ν3(t)|
ν4 − ν3

= O(|P−1|(μ, ν̄)). (3–43)

Thus, with (3–20) and (3–30) we have

sup
t∈I0

Θμ,ν−(t) − inf
t∈I0

Θμ,ν+(t) (3–44)

= 4|P−1|(μ, ν̄) + O(P2
−1(μ, ν̄)).

Furthermore, with (3–26) we have

∂P0

∂ν

∣∣∣
ν=ν2

(t) =
∂Θμ,ν

∂ν

∣∣∣
ν=ν2

(t) − ∂Θ̂μ,ν

∂ν

∣∣∣
ν=ν2

(t) (3–45)

=
∂Θμ,ν

∂ν

∣∣∣
ν=ν2

(t) + O(P−1(μ, ν̄)).

With (3–22) and (3–23) we have

∂Θμ,ν

∂ν
|ν=ν2(t) =

∂Θ̃μ,ν

∂ν

∣∣∣
ν=ν2

(t) + O(Θ̃μ,ν̄(t)). (3–46)

We then write

Θ̃μ,ν4(t) − Θ̃μ,ν3(t) =
∂Θ̃μ,ν

∂ν
(t)
∣∣∣
ν=ν3

· (ν4 − ν3)

+ O((ν4 − ν3)2), (3–47)

and therefore

Θ̃μ,ν4(t) − Θ̃μ,ν3(t)
ν4 − ν3

=
∂Θ̃μ,ν

∂ν
(t)
∣∣∣
ν=ν2

+ O((ν+ − ν−)).

(3–48)

We observe (numerically) that the left-hand side of
(3–48) stays away from 0 as the main parameter tends
to 0. More precisely, there exists v0 > 0 such that for all
μ > 0, ν3, ν4 near ν̄ and for all t ∈ I0,∣∣∣∣∣Θ̃μ,ν4(t) − Θ̃μ,ν3(t)

ν4 − ν3

∣∣∣∣∣ > v0. (3–49)

With (3–30), (3–45), and (3–48) and by choosing ν3 and
ν4 sufficiently close to one another, we have

∂P0

∂ν
|ν=ν2 =

Θ̃μ,ν4(t) − Θ̃μ,ν3(t)
ν4 − ν3

+ O(|P−1|(μ, ν̄))
+ O(ν+ − ν−). (3–50)

Therefore, with (3–42), (3–44), (3–49), and (3–50)) we
can write

ν+ − ν− = Z(μ) + O(Z2(μ)), (3–51)
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where

Z(μ) =
4|P−1|(μ, ν̄)(ν3 − ν4)
Θ̃μ,ν3(t0) − Θ̃μ,ν4(t0)

, t0 ∈ I0. (3–52)

Thanks to (3–31) we obtain the following estimate for
the width of the homoclinic zone:

ν+ − ν− ≈ Zr(μ) =
4|R−1(μ, ν̄)|(ν3 − ν4)
Θ̃μ,ν3(t0) − Θ̃μ,ν4(t0)

. (3–53)

With (3–33), (3–51), and (3–52) it follows that

(ν+ − ν−) −Zr(μ) = O(Z2
r (μ)). (3–54)

This real approach gives a good estimate of the width
of the homoclinic zone with the same precision as before
in (3–36). Moreover, it requires only the computation of
P−1(μ, ν̄) and that of Θ̃μ,ν(t) for two different values of
ν. However, we still need to find a value of ν = ν̄ such
that (3–30) holds.

In what follows we present another way to compute
the width: In the new approach, Γu does not need to
return near Γs as close as in (3–39). In this way, we will
be able to compute the splitting determinant with less
precision. This alternative approach consists in looking
at the splitting function for complex values of t.

3.8 The Complex Approach

Now we present another way to compute the first har-
monic, with less precision than in the real approach, but
with less effort.

Recall that formulas (1–5) and (1–6) already give the
following estimate:

ν+ − ν− = O(K(μ, γ − 2)). (3–55)

Moreover, with (3–49) and (3–52), (3–55) gives us a
rough estimate of |P±1|, i.e., we have |P±1|(μ, ν) =
O(K(μ, γ − 2)).

Take 0 � δ < � and Δ0 = K(μ, γ − 2)e2πδ such that
K(μ, γ − 2) � Δ0. Assume that we have found a value
of ν = ν0 such that

K(μ, γ − 2) � sup
t∈I0

Θμ,ν0(t) ≤ Δ0. (3–56)

Observe that looking for such a value of ν = ν0 requires
less effort than searching for ν̄ where supt∈I0

Θμ,ν̄ =
O(K(μ, γ − 2)). In particular, we need to compute
the splitting function with a relative error only of order
supt∈I0

Θμ,ν0(t).
With (3–19), there exists s ∈ I0 such that

sup
t∈I0

Θμ,ν0(t) = P0(μ, ν0) + P−1(μ, ν0)e−2iπs

+ P1(μ, ν0)e2iπs + O2(s).

Since |P±1|(μ, ν0) = O(K(μ, γ − 2)), we then conclude
that P0(μ, ν0) = O(Δ0). Since Δ0 � K(μ, γ − 2),
we are not able to compute precisely the first harmonic
P−1(μ, ν0) with the real approach. However, instead of
considering t ∈ I0 as real, we now consider t in the com-
plex interval [δi, δi + 1]. Recall that the Fourier coeffi-
cients of Θμ,ν0(t) are

P0(μ, ν0) =
∫ 1

0

Θμ,ν0(t)dt, P−1(μ, ν0)

=
∫ 1

0

e2πitΘμ,ν0(t)dt.

Since Θμ,ν0 is periodic and analytic in B defined in
(3–16), we have

P−1(μ, ν0) =
∫ iδ+1

iδ

e2πitΘμ,ν0(t)dt. (3–57)

With (3–19) we have

e2πitΘμ,ν0(t) = P−1(μ, ν0) + e2πitP0(μ, ν0) (3–58)

+ e4πitP1(μ, ν0) + e2πitO2(t),

where

O2(t) = O
(

sup
t′∈I0

|Θ2
μ,ν0

(iδ + t′)|
)
. (3–59)

With (3–18) we have

P±1(μ, ν0) = O(e−2π�).

Therefore, since P0(μ, ν0) = O(Δ0), with (3–19) and
(3–59), we have

sup
t′∈I0

|Θμ,ν0 |(iδ + t′) = O (e2πδ−2π�
)

= O (|P−1|e2πδ
)
,

(3–60)

and further we have

P1(μ, ν0)e4iπt = O
(
e−2π(�+2δ)

)
, (3–61)∣∣e2πitO2(t)

∣∣ = O (|e+2πit|P−1|2(μ, ν0)e4πδ|)
= O(e−2π(2�−δ)).

We distinguish two cases:

Case 1: δ > �
3 . In this case, 2� − δ < � + 2δ, and from

(3–61) we have

|P1(μ, ν0)e4iπt| � |e2πitO2(t)|.
Using (3–23), we write

e2πitΘμ,ν0(t) = e2πitΘ̃μ,ν0(t) + e2πith̃μ,ν0(t) (3–62)

= A(t) + E1(t),
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where A(t) = P−1(μ, ν0) + e2πitP0(μ, ν0), and with
(3–61),

E1(t) = O(e−2π(2�−δ)).

Observe that for t ∈ [iδ, iδ + 1], we have

|e2iπth̃μ,ν0(t)| = O(e−2π(2�−δ)).

In this case∫ iδ+1

iδ

A(t)dt =
1
2
(A(iδ) + A(iδ + 1/2)

)
. (3–63)

But with (3–62), we have

∫ iδ+1

iδ

e2πitΘ̃μ,ν0(t)dt =
∫ iδ+1

iδ

A(t)dt + O(e−2π(2�−δ)).

(3–64)

Finally, from (3–57), (3–62), (3–63), and (3–64) we get

P−1(μ, ν0) = C−1(μ, ν0) + r̃1, (3–65)

where

C−1(μ, ν0) =
1
2
e−2πδ

(
Θ̃μ,ν0(iδ) − Θ̃μ,ν0

(
iδ +

1
2

))
,

|r̃1| = O(e−2π(2�−δ)).

Case 2: δ ≤ �
3 . In this case, from (3–61) we have

|P1(μ, ν0)e4iπt| ≥ |e2πitO2(t)|.

Therefore we cannot neglect the term P1e
4πit from the

integration in (3–57). Thus we write

e2iπtΘ̃μ,ν0(t) = P−1(μ, ν0) + e2πitP0(μ, ν0)

+ P1(μ, ν0)e4πit + E(t)

= Ã(t) + E(t),

where with (3–61), we have

Ã(t) = P−1(μ, ν0) + e2πitP0(μ, ν0) + P1e
4πit,

E(t) = O(e−2π(2�−δ)).

In this case,∫ iδ+1

iδ

Ã(t)dt =
1
4

(
Ã(iδ) + Ã

(
iδ +

1
2

)
+ Ã

(
iδ +

1
4

)

+ Ã
(
iδ +

3
4

))
,

and we get

P−1(μ, ν0) = C−1(μ, ν0) + r̃2, (3–66)

where

C−1(μ, ν0)

= e−2πδ 1
4

(
Θ̂μ,ν0(0) − Θ̂μ,ν0

(
1
2

)

− i

(
Θ̂μ,ν0

(
1
4

)
− Θμ,ν0

(−1
4

)))
,

and

|r̃2| = O(e−2π(2�−δ)) = O(C2
−1(μ, ν0)e

2πδ).

When δ > �/3, the estimate given in (3–65) requires the
computation of the splitting determinant Θ̃μ,ν0(t) at only
two different values of t. However, when δ ≤ �/3, (3–66)
requires four different values of t. The computation in
the first case is faster, but since δ is bigger, we lose some
precision.

From the complex approach, the width of the homo-
clinic zone is approximated by

ν+(μ) − ν−(μ) ≈ Zc(μ), (3–67)

where

Zc(μ) = 4
|C−1(μ, ν0)|(ν′3 − ν′4)
Θ̃μ,ν′

3
(t) − Θ̃μ,ν′

4
(t)

,

with ν′3 and ν′4 chosen near ν0. Since C−1(μ, ν0) =
O(e−2π�) with (3–65) or (3–66), we have

|Zc(μ) − (ν+(μ) − ν−(μ))| = O(C2
−1(μ, ν

+)e2πδ).
(3–68)

3.9 Real versus Complex

The real approach provides a good estimate of the width
of the homoclinic zone. More precisely, formula (3–53)
gives an estimate of the width with a relative error of the
same order; see (3–54).

However, this approach requires that one compute the
splitting determinant with the same relative error. This
task becomes more and more delicate as the main pa-
rameter approaches zero.

The complex approach requires less precision for the
computation of the splitting determinant (and therefore
can be computed much faster) as δ is chosen larger. How-
ever, the estimate of the width is obtained with less pre-
cision.

In the case of the Bogdanov map, we use similar nota-
tion: b is the slave parameter and a is the main parame-
ter. The first harmonic computed with (3–31) is denoted
by R−1(a, b̄), where b̄ is the analogue of ν̄ in the case of
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FIGURE 2. Left: (I) Graph of log10 |e2πδ| against the parameter a. Recall that δ is chosen such that K(μ, γ − 2) �
supt∈I0

Θμ,ν0(t) ≤ Δ0 = O(P0(μ, ν0)) (3–56). (II) Graph of log10 |C1(a, b0)| against the parameter a, which essentially
coincides with the graph of log10 |R1(a, b̄)| against a. (III) The corresponding error, i.e., log10 |C1(a, b0)−R1(a, b̄)| against
a. Right: (IV) Computation of the magnitude of the homoclinic zone with the real approach, i.e., log10(Zr(a)) against
a. (V) The graph of log10 |Zr(a) −Zc(a)| against a.

the quadratic map. Similarly, C−1(a, b0) stands for the
first harmonic computed with (3–65) or (3–66), where b0
is the analogue of ν0 in the case of the quadratic map.

For illustration, we compute the first harmonic and
the width of the homoclinic zone using both approaches
for the Bogdanov map (γ̃ = 3); see Figure 2.

We easily verify that

log10

(
C−1(a, b0) − R−1(a, b̄)

)
≈ 2 log10(|R|−1(a, b̄)) + log10(e

2πδ),

which follows from (3–54) and (3–68). Furthermore, we
also verify that

log10 |Zr(a) −Zc(a)|

≈ log10

( |C−1(a, b0)|e2πδ(b′3 − b′4)
Θ̃a,b′3(t0) − Θ̃a,b′4(t0)

)

≈ log10(b
+ − b−) + log10 |C−1(a, b0)e2πδ|,

where b′3, b
′
4 are the analogues of ν′3, ν

′
4.

Example 3.4. We consider the Bogdanov map with
a ≈ 7 × 10−5. Using the real approach, we have
log10(b+ − b−) ≈ −1000; see Figure 2. With this ap-
proach, we compute Θ̃a,b̄ with a relative error of order
10−1000, which is already a quite delicate task. However,
from the complex approach, we can (for instance) choose
δ in such a way that e2πδ ≈ 10700; see again Figure 2.

In this way, for values of t ∈ [iδ, iδ + 1], we have

log10(Θ̃a,b0(t)) ≈ log(C1(a, b0)e2πδ) ≈ −300.

Therefore, computing C1(a, b0) with (3–66) requires
the computation of the splitting determinant with a rel-

ative error or order 10−300. Moreover, we just need to
find a first value of b = b0 such that

log10 sup
t∈I0

‖Γu(t) − Γs(t)‖ ≈ −300.

However, instead of having a relative error for the
width of order 10−1000 as with the real approach, we
obtain an estimate of the width with a relative error of
order 10−300.

Now that we can compute the width of the homoclinic
zone, we do so for ñ (several hundred) values of μ1/4 and
establish the set

H =
{
(μ

1
4
i , log(δi)), δi = ν+(μi) − ν−(μi), c < μi < d,

i = 1, . . . , ñ
}
. (3–69)

In what follows, we describe how we extract the corre-
sponding coefficients from the ansatz (1–8).

3.10 Extracting the Coefficients

Recall that the ansatz we shall consider takes the form
(2–3), where the fn’s satisfy (2–2). From the set H de-
fined by (3–69) we construct the following matrices:

A = (Ai,j)i=0,...,ñ−1,j=1,...,ñ, Ai,j = fi

(
μ

1/4
j

)
.

In the case of the Bogdanov map, the set of normalized
data is defined in (3–2), that is, the μ

1/4
i ’s above are

replaced by a1/2.
Let

α = (α1, . . . , αñ) = A−1 ·w,
where w = (log δ1, . . . , log δñ). Observe that

ñ−1∑
i=0

αifi(μ
1/4
j ) = log δj, ∀j = 1, . . . , ñ,
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Coeff. Scale Hénon Map

Ã0 1 2.4744255935532510538408 × 106

Ã1 |ã − 1|1/4 −2.878113364919828141704 × 106

Ã2 |ã − 1|1/2 1.8211174314566012763528 × 106

Ã3 |ã − 1|3/4 −412552.07921345800366019

Ã4 |ã − 1| −309961.28583121907079391

Ã5 |ã − 1|5/4 257055.93487794037812901

Ã6 |ã − 1|3/2 −56830.201956139947433580

Ã7 |ã − 1|7/4 −12386.990577003086404843

Ã8 |ã − 1|2 −11792.964908478734939516

Ã9 |ã − 1|9/4 18742.189161591275288347

Ã10 |ã − 1|5/2 −4774.6727458595190485600

Ã11 |ã − 1|11/4 −2822.9663193640187675835

Ã12 |ã − 1|3 3276.6438736125169964394

Ã13 |ã − 1|13/4 −1910.5466958542171966392

Ã14 |ã − 1|7/2 7704.6605615546853854041

Ã15 |ã − 1|15/4 −7827.0351891507566506398

Ã16 |ã − 1|4 13919.102717097324631620

Ã17 |ã − 1|17/4 −11932.139780641352182621

Ã18 |ã − 1|9/2 22120.721696311178434645

TABLE 2. The 19 first coefficients in (2–6). All the
given digits are correct. We also conjecture that the
series (2–6) belongs to the Gevrey-1 class.

that is, the coefficients αi have been constructed in such
a way that the map

φ{ñ} : (0, ε0) → R, (3–70)

x �→ φ{ñ}(x) =
ñ∑

i=0

αifi(x)

interpolates the set of data H.
To illustrate our techniques, Table 1 indicates the first

coefficients of the interpolation (ñ ≈ 100) in the case of
the Bogdanov map (left, γ̃ = 3) and in the case of the
quadratic map (right, γ = −3). In the case of the Hénon
map, replacing the ansatz (1–8) by (2–7), we obtain the
coefficients indicated in Table 2.

Redoing the above interpolation for different values of
γ reveals that the first nonlinear term in the expansion
satisfies

N1(γ) = −
(

6(γ − 2)
7
√

2

)2

(3–71)

in the case of the quadratic map, and

B1(γ̃) = −
(

6γ̃
7

)2

(3–72)

in the case of the Bogdanov map. These equalities have
been verified to high precision. More precisely, we show
that (3–71) and (3–72) are verified up to the same number
of correct digits as in (4–7) when we check the extrapo-
lation to zero; see Section 4.3 below for more details.

4. VALIDATION OF THE NUMERICAL METHOD

To test the validity of our result, we propose three tests.
First, we test the validity of the ansatz. In what fol-
lows, the experiments are presented in the cases of the
Bogdanov map and the Hénon map, but the same test
can be applied in the case of the quadratic map, thereby
confirming formula (2–5).

4.1 Extrapolability

We claim that the ansatz (1–8) is appropriate for an
asymptotic expansion of the width if the following cri-
terion is satisfied.

Assume that a function G : (0, ε0) → R possesses the
following asymptotics at 0:

G(x) 	
∞∑

i=0

αifi(x),

where {fi(x), i ∈ N} is the asymptotic sequence defined
in (2–2).

Define

G{3k+3}(x) =
3k+3∑
i=0

αifi(x). (4–1)

We have

|G(x) −G{3k+3}(x)| = x2k+3
(
α3k+4 + ε1(x)

)
, (4–2)

where ε1(x) = O(x). From (4–2) we get

log |G(x) −G{3k+3}(x)|
= log |α3k+4| + (2k + 3) log x+ log

(
1 + ε(x)

)
(4–3)

= log |α3k+4| + (2k + 3) log x+ ε2(x),

where ε2(x) = O(|x|).
This implies that the quantity log |G(x)−G{3k+3}(x)|

is approximatively linear in logx. This must be satisfied
for values of x outside the data set used for interpolation.

Now we apply this criterion to the Bogdanov family.
Recall that a is the slave parameter and b is the main
parameter. Take an interval [c′, d′], where c < c′ < d′ <
d, and consider the interpolation of the set H̃ for values
of a in [c′, d′]. In other words, we consider the set

H̃′ =
{
(a1/2, log δ(a)) ∈ H̃ | c′ < a < d′

}
,

which consists of 3k + 4 different values, and construct
the corresponding set of coefficients {αi}i=0,...,3k+3 as de-
scribed in Section 3.
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−40

FIGURE 3. Plot of the set Lc,d (4–4) for the Bogdanov
map in the case γ̃ = 3, c = 3.5×10−5, d = 9.4×10−3,
ñ = 140, k = 36.

We plot the set

Lc,d =
{
(log(a), log |G{3k+3}(

√
a) − (b+(a) − b−(a))|),

c < a < d
}

(4–4)

in Figure 3: ñ = 140, k = 36, c = 3.5 × 10−5, d =
9.4×10−3. The bold line shows the interval [c′, d′]. From
(4–1) and (4–2) we must get

log |G{3k+3}(
√
a) − (b+(a) − b−(a))| ≈ 37 log a+ C

= 74 log
√
a+ C,

where C is a constant. In Figure 3, the set (4–4) looks
like a straight line with slope approximately 75, which
indicates that the ansatz (1–8) satisfies the above crite-
rion.

In the Hénon case, we interpolate the set of data (3–3)
with the polynomial ansatz (2–1), and the normalized
width takes the form

b̃+(ã) − b̃−(ã)
K(1 − ã, 0)

	
ñ∑

i=0

Ãi(1 − ã)i/4.

We test the polynomial expansion in the same way
that we test the Dulac expansion for the Bogdanov case.
More precisely, writing

G̃{k̃−1}(x) =
k̃−1∑
i=0

Ãix
i, G̃(x) 	

∞∑
i=0

Ãix
i,

we have

log |G̃(x) − G̃{k̃−1}(x)| = log |Ãk̃| + k̃ log x+ O(x),
(4–5)

and replacing x by (ã− 1)1/4 in (4–5) leads to

log
∣∣∣G̃((ã− 1)1/4

)
− G̃{k̃}

(
(ã− 1)1/4

)∣∣∣
= log |Ãk̃| +

k̃

4
log(ã− 1) + O

(
(ã− 1)1/4

)
.

−20 −19 −17

−320

−300

−280

−260

−240

−18

FIGURE 4. Plot of the set L̃c,d (4–6) for the Hénon
map, c = 1.69 × 10−10, d = 1.125 × 10−7, k̃ = 60,
ñ = 140.

The set

L̃c,d =
{(

log(ã− 1), (4–6)

log |G̃{k̃}((ã− 1)1/4) − (b̃+(ã) − b̃−(ã))|),
c < ã− 1 < d

}
is plotted (with k̃ = 60, c = 1.69 × 10−10, d = 1.125 ×
10−7) in Figure 4. The graph mimics a straight line of
slope ≈ 15 = 60/4, meaning that the polynomial ansatz
satisfies the above criteria.

The second experiment consists in checking the sta-
bility of our interpolation as we (randomly) change the
data H̃.

4.2 Checking Numerical Stability

In this section, our interest is with the precision of our
data for the normalized width of the homoclinic zone
that is required to produce reliable results for the coef-
ficients. The result of our test is presented in the case
of the Bogdanov map. That is, we test the asymptotic
expansion (2–6).

In order to simulate round-off errors, we modify the
data in the Nth digit by adding a random perturbation of
order 10−N to every value of the normalized width and
recompute the coefficients of the asymptotic expansion
using the procedure described in Section 3. We repeat
the experiment for several values of N .

Figure 5 concerns the coefficients A11 in (2–6): for
each value of N , we recompute the corresponding coeffi-
cient (denoted by A

{N}
11 ) after adding a random pertur-

bation of order 10−N . The figure clearly indicates that
the precision of the computation decreases linearly with
respect to N , and if the number of correct digits in the
data is less than N = 170, the corresponding coefficient
cannot be computed correctly. However, if N = 200,
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γ̃ Θ(γ̃) − log10 |(Θ(γ̃) − exp(A0(γ̃)))/Θ(γ̃)|
−2 0.28524883190581352 65.23

0 2.47442559355325105 × 106 90.01

3 4.05522622851113044 × 1026 62.04

6 2.70980378082897208 × 1047 60.03

7 3.09943158275750458 × 1054 59.6

9 5.18377311752952789 × 1068 55, 6

TABLE 3. The value of Θ(γ̃) for different values of γ̃. We clearly observe that the splitting constant coincides with the
first term in (2–6) up to at leat the first 50 digits.

160 170 180 190 200 210

−40

−20

20

FIGURE 5. The relative error log10

∣∣A11−A
{N}
11

A11

∣∣ plotted
against N for the Bogdanov map with γ̃ = 3.

the corresponding coefficient is computed with 30 cor-
rect digits.

4.3 Extrapolation to Zero

As announced in Section 2, for each family we are able
to define the splitting constant associated with the “un-
perturbed map”; see [Gelfreich and Naudot 06] for more
details.

In what follows, our discussion concerns the Bogdanov
family. The splitting constant is denoted by Θ(γ̃). Using
formula (2–6), we have

exp(A0(γ̃)) = Θ(γ̃). (4–7)

Since we can independently compute the invariant Θ(γ̃)
with very high precision, we can easily check the validity
of our computation for the first term of the asymptotic
expansion.

Table 3 indicates, for different values of γ̃, the val-
ues of Θ(γ̃) (left) computed with 20 correct digits. For
each value of γ̃, we observe that (4–7) holds, and we in-
dicate the relative error represented by − log10 |(Θ(γ̃) −
exp(A0(γ̃)))/Θ(γ̃)| in the right-hand column.
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“Invariant Circles in the Bogdanov–Takens Bifurcation for
Diffeomorphisms.” Ergodic Th. Dynam. Syst. 16:6 (1996),
1147–1172.

[Delshams and Ramirez-Ros 99] A. Delshams and R.
Ramirez-Ros. “Singular Separatrix Splitting and the
Melnikov Method: An Experimental Study.” Experiment.
Math. 8:1 (1999), 29–48.

[Dumortier et al. 81] F. Dumortier, P. R. Rodrigues, and R.
Roussarie. Germs of Diffeomorphisms in the Plane, Lecture
Notes in Mathematics 902. New York: Springer, 1981.
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Precision Computations of Divergent Asymptotic Series
and Homoclinic Phenomena.” To appear in Discrete and
Continuous Dynamical Systems, 2009.
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