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In this paper we present the results of computer searches using a
variation of an energy-minimization algorithm used by Kottwitz
for finding good spherical codes. We prove that exact codes
exist by representing the inner products between the vectors as
algebraic numbers. For selected interesting cases, we include
detailed discussion of the configurations. Of particular interest
are the 20-point code in R

6 and the 24-point code in R
7, each

of which is the union of two cross-polytopes in parallel hyper-
planes. Finally, we catalogue all of the codes we have found.

1. INTRODUCTION

Given N points that lie on the unit sphere Sn−1 in R
n, we

wish to determine how they should be placed so that the
minimal distance between any two points is maximized.
Any set of points on the unit sphere is called a spheri-
cal code, and the problem of finding the best code has
been proposed many times and in many contexts (though
usually only in three dimensions), from packing circles
on a sphere to distributing orifices on pollen-grains (e.g.,
[Clare and Kepert 86, Tammes 30]).

The only known optimal solutions in three dimensions
are for N ≤ 12 and N = 24, while in four dimensions
only the cases N ≤ 8, N = 10 [Bachoc and Vallentin 07],
and N = 120 have been proven. The remaining known
optimal codes are for N ≤ 2n for any n, in which the
points form either a simplex or a subset of the cross-
polytope; certain codes derived from the Leech lattice
and the E8 root system; and lastly an infinite family
based on isotropic subspaces [Ballinger et al. 07].

Excluding these few cases, the best known codes have
been found either by specific constructions or, more com-
monly, by computer searches using various optimization
algorithms.

Given the difficulty of proving the optimality of even
very small codes, most work related to this problem has
been in finding close approximations to good configura-
tions. The most extensive table of codes was created by
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N. J. A. Sloane, with the collaboration of R. H. Hardin,
W. D. Smith, and others, and is available electronically
[Sloane 94].

In this work we use the technique of energy minimiza-
tion to find good spherical codes. Leech first observed
the possibility of such an approach, and it has been used
in previous work several times [Leech 57]. Kottwitz gave
a fairly comprehensive list of three-dimensional codes for
up to 90 points [Kottwitz 91], which was expanded later
by Buddenhagen and Kottwitz while searching for codes
with multiplicity greater than one (i.e., codes for which
there exist distinct configurations that obtain the same
optimal distance) [Buddenhagen and Kottwitz 94].

Nurmela investigated some global optimization meth-
ods based on energy minimization and provided numer-
ical results for codes in up to five dimensions [Nurmela
95], but the most successful implementations have been
based on using a large number of random starts and a
local optimization algorithm so that there is a high prob-
ability that at least one of them converges to the global
optimum.

Our algorithm has several changes to improve on old
implementations as well, such as reducing exponent bias
and choosing a different local optimization method. This
has resulted in three improved spherical codes in four di-
mensions as well as new higher-dimensional codes, par-
ticularly in six and seven dimensions, that exhibit inter-
esting symmetries. Section 2 describes our algorithm in
detail, and Section 3 gives a brief analysis of the improved
codes.

The remainder of this work focuses on providing rigor-
ous analysis of codes, particularly showing that the best
known codes can be represented as exact configurations
in terms of algebraic numbers as opposed to close esti-
mates. This is an important step toward making com-
puter solutions to the problem rigorous and allows us to
observe true equalities and relations between points and
edges in the code.

Buddenhagen and Kottwitz did similar work while
looking for three-dimensional codes with multiplicity
greater than one, and provided detailed exact descrip-
tions of the two distinct optimal 15-point codes [Bud-
denhagen and Kottwitz 94].

In several cases we were able to identify a considerable
amount of underlying symmetry and structure using the
methods of Section 4. For three particularly interesting
cases we provide brief discussion of the configurations
in Section 5. The final section gives tables of the exact
codes, in dimensions four through eight, based on their
minimal polynomials.

2. METHODOLOGY

We consider an inverse power law potential function on
the spherical code C = {x1, x2, . . . , xN} ⊂ Sn−1 defined
by

E =
∑

1≤i<j≤N

(
α

|xi − xj |
)s

,

where α is a constant to prevent overflow, s is the ex-
ponent of the inverse power law, and |xi − xj | is the
Euclidean distance between the two points in R

n. As
s → ∞, the smallest distance will be the dominating
term in the energy expression. Hence, minimizing this
potential function over all possible C will give approx-
imate codes that get better as s increases. In certain
highly symmetrical cases, when s is sufficiently large, the
method will produce the actual optimal code, whereas in
general it converges to the optimal code as s → ∞.

Several issues arise, however, if one tries to minimize
E using a large s with a random configuration of points.
There is an implementation problem, in that α cannot be
chosen well so that E neither overflows nor is too small.
It has no abstract mathematical role, but it is important
to consider in dealing with floating-point arithmetic. If
a poor choice of α is used with a power of s = 1,000,000,
for example, a slight deviation in |xi − xj | from α by
only 0.001 will result in either 1.0011000000 ≈ 10434 or
0.9991000000 ≈ 10−435, neither of which would be handled
well by a computer.

There is also a problem regarding the behavior of the
function E as s increases, because the number of local
minima increases as well. Starting with a high expo-
nent in the inverse power interaction will usually converge
quickly to a poor local minimum.

Taking into consideration these problems, Kottwitz
used the following algorithm [Kottwitz 91]:

1. Start with s = 80 and a random configuration of
points.

2. Run a local optimization algorithm until conver-
gence.

3. Double s and repeat the previous step starting from
the local optimum found, stopping after the opti-
mization is run for s = 1,310,720.

This remedies the issues described, because α can be
chosen before each optimization to reflect the minimal
distance of the configuration, and the points will tend
toward a good code without getting stuck early on in a
bad local minimum.
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For our work we use a similar strategy, but to avoid
the bias introduced by fixing an initial exponent we start
with a random exponent between 10 and 160 each time.
Furthermore, we allow the doubling procedure to con-
tinue until the exponent exceeds 100,000,000. Before
each optimization procedure, we choose α to be the ex-
act minimal distance between all pairs of points, as done
by Nurmela [Nurmela 95]. This is a good choice because
as the power increases, the improvement in the minimal
distance decreases, and we have found that this balance
keeps the energy expression in the desired range.

While Kottwitz used gradient descent and Newton–
Raphson methods to optimize the energy function at
each step [Buddenhagen and Kottwitz 94, Kottwitz 91],
we picked the nonlinear conjugate gradient algorithm for
several reasons.

Firstly, it is easy to implement yet much more effective
than gradient descent. It also requires only the gradient
at each step and does not need to compute the Hessian,
which is costly and very complex especially as the di-
mension increases. We experimented with three versions
of the nonlinear conjugate gradient algorithm: Fletcher–
Reeves, Polak–Ribière, and Hestenes–Stiefel. We found
that the Hestenes–Stiefel formula for updating the con-
jugate direction was most effective for our model, con-
verging faster than Polak–Ribière and displaying better
results than those of Fletcher–Reeves.

We must also consider the constrained nature of opti-
mization on a sphere, since the conjugate gradient algo-
rithm does not accommodate constraints on the domain.
Our solution to this is simply to scale each point in C

back onto the sphere after each movement in the conju-
gate direction. We realize, however, that as the code ap-
proaches a local minimum, the points will tend to move
almost directly away from the sphere because most of
the movement along the tangent space will be balanced
by their neighbors. When scaled they will consequently
appear to have moved very little if at all, slowing conver-
gence and possibly even getting stuck before converging.

To compensate for this, when the exponent in the in-
verse power law interaction is high, for each point we
look only at the component of the gradient that lies in
the tangent space to the sphere at that point. We do not
implement such a procedure for lower exponents because
the conjugate directions depend on previous gradients as
well, so the magnitudes should be consistent relative to
each other.

Using the method that has been described, imple-
mented in C++, we ran the optimization with at least
1000 random starts, taking the best result of these runs.

We then applied a similar optimization to the configura-
tion to improve the precision using a starting exponent
of 10,000,000 and doubling until 640,000,000. Once this
converged we were able to obtain fairly accurate results
for our codes, but not accurate enough to find their exact
representations.

Finally, we found the set of shortest edges to approx-
imately five or six decimal places and set them equal to
each other, which determined a rigid structure solved us-
ing Newton–Raphson methods for a small number of it-
erations to a precision of about 500 decimal digits. Then
we placed the remaining points, the rattlers, by moving
them iteratively as far as possible from the rigid points,
again maximizing the minimal distance. We used the
pari/gp software for the last two optimization steps.

After the full procedure, our set of codes per-
formed very well against previous data. For the three-
dimensional codes on which we ran our program, we re-
produced the best known results in every case, while for
four-dimensional codes we were able to find three codes
with 40, 68, and 71 points that improved on the best pre-
vious results. In higher dimensions, for smaller numbers
of points we are confident that we were able to find good
(and most likely optimal) configurations.

3. IMPROVED CODES IN R
4

Our work has improved on three codes in four dimen-
sions, namely those with 40, 68, and 71 points. They are
briefly examined in this section. Note that the improve-
ments are small, on the order of 1/1000 or less.1

3.1 40 Points

The maximal cosine of 0.65049780106271773133 . . . oc-
curs 108 times, but is the only inner product that oc-
curs more than twice, suggesting that this configuration
is quite asymmetric.

3.2 68 Points

The maximal cosine of 0.75104449257228207352 . . . oc-
curs 196 times, and there is one other inner product,
0.74925795575260304153 . . . , that occurs three times.
Every other edge length appears to be unique.

1A catalogue of all of the codes can be found online at http:
//www.aimath.org/data/paper/WangSphericalCode/. The data
available online reflects only results prior to the optimization done
in pari/gp.
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3.3 71 Points

The maximal cosine of 0.75637601134814761871 . . . oc-
curs 199 times, and there are three other inner products
that occur three times each in the code; they are

0.75152318440020477595 . . . ,

0.75574916415250115097 . . . ,

0.75632115855377282465 . . . .

The other edges are unique.

4. PROPERTIES FOR IDENTIFYING CODES

We examine some properties of spherical codes that we
hope can characterize them more substantially and rig-
orously than a list of floating-point coordinates. First,
we introduce the N × N Gram matrix G such that
Gij = 〈xi, xj〉, where 〈x, y〉 denotes the standard inner
product between the unit vectors x and y. Since all vec-
tors on the unit sphere have magnitude one, we also have
Gij = cos (θij), where θij is the angle between the vectors
xi and xj .

4.1 Edge-Length Occurrences

One effective way of determining whether a spherical
code has symmetry is to look at the number of occur-
rences of each edge length or the number of unique edge
lengths between distinct points, which we will denote by
m. Since the distance and inner product are related by

|xi − xj |2 = 2 − 2〈xi, xj〉,

this consists in simply looking at the unique entries of the
Gram matrix and the number of times each is repeated.

We note that considering edge-length occurrences is
a generic and flexible strategy for describing codes and
detecting overall symmetry, especially when m is small
relative to the code size.

To find more specific symmetries, we can look at the
edge lengths emanating from any one point in the code
and check whether any other points share these. In par-
ticular, we can often group vertices together as equivalent
if the lists of edge lengths emanating from them are ex-
actly the same. We note that this is a necessary but not
sufficient condition for the vertices to be equivalent under
the action of the symmetry group of the configuration.

4.2 Exact Algebraic Numbers

One inevitable concern that arises from computer
searches for spherical codes is whether the set of points

found by the computer really exists. Numerical results
can be useful for recognizing exact solutions, but with fi-
nite precision it is not clear whether all the distances are
really what we think they are. Consequently, it is impor-
tant to have some sort of method of converting the work
of computer approximations into definitive arrangements
so that they may be analyzed with more certainty and
have a hope of being proven optimal as well.

Since a code is the solution to a number of polyno-
mial equalities between the shortest edges, the coordi-
nates of each rigid point in the code are algebraic and
lie in a number field. Moreover, we then know that the
inner products are algebraic as well. Once we have deter-
mined the coordinates of the points in the code to high
precision, we are able to effectively compute, using the
pari/gp math software command algdep, the minimal
polynomial for the maximal inner product between two
distinct vectors, i.e.,

u = max
1≤i<j≤N

〈xi, xj〉.

This was done for a number of three-dimensional codes
by Buddenhagen and Kottwitz, and we extend their
work. Just looking for a minimal polynomial P such that
P (u) ≈ 0 can be misleading, however, because even with
high precision it could be the case that u is in fact not
the root of P , but just very close. On the other hand, if
we could show that the code with exactly the root of P

(closest to u, to be specific) as the maximal inner prod-
uct does exist, we would have an exact arrangement that
is practically equivalent. We have been able to do so for
most codes whose minimal polynomial we could calcu-
late.

To verify the existence of the codes, we first use the
pari/gp command lindep to specify the elements of G

in terms of polynomials in some primitive element of the
number field. Empirically, we have found that u is often
sufficient for doing this, though in several cases this has
not been true (in particular for 22 points in three dimen-
sions, 21 points in five dimensions, and 14 points in six
dimensions).

Once we have the exact Gram matrix, we may check
whether G is indeed a Gram matrix of a set of points
on the unit sphere in R

n, namely, that it satisfies the
following properties: (a) G is symmetric; (b) the diago-
nal elements of G are all equal to 1; (c) G has rank at
most n; and (d) G is positive semidefinite. If G satisfies
each of these conditions, it must be the Gram matrix of
a spherical code, and thus we are able to prove the ex-
istence of such a code. The first two properties are easy



Wang: Finding and Investigating Exact Spherical Codes 253

to check, and the last two can be tested by observing the
characteristic polynomial pG(λ) of G, which will be of
degree N .

Let

pG(λ) = aNλN + aN−1λ
N−1 + · · · + a1λ + a0.

It is known that G has rank at most n if and only if pG(λ)
has a root at λ = 0 with multiplicity at least N − n,
or equivalently a0 = a1 = · · · = aN−n−1 = 0. Also,
G is positive semidefinite if and only if the remaining
coefficients are nonzero and alternate in sign. This makes
it relatively easy to check whether G is indeed a Gram
matrix.

5. DISCUSSION OF SELECTED CASES

Here we present more detailed results of three cases that
we found particularly interesting and that have not been
previously described in the literature (except the last).
Some brief discussion of other cases can be found online.2

5.1 12 Points in R
5

This is a very simple configuration, so it is not surprising
that the Gram matrix is quite simple as well, consisting
of only five unique entries (excluding the 1’s along the
diagonal). It is shown in Table 1.

Let V1 be the set of points corresponding to the first
ten rows/columns of the Gram matrix, and let V2 be
the remaining two points. There are two aspects of this
Gram matrix that are particularly intriguing. The first
that stands out is that all the edges between V1 and V2

correspond to an inner product of u or −u, which is a
result of the points in V2 being antipodal. The second
is that every element is represented as a polynomial in u

of degree two or less. The minimal polynomial, however,
is 25u4 + 30u3 + 24u2 + 2u − 1, which has degree four.
This is unusual because in most cases a significant num-
ber of elements of the Gram matrix are polynomials in
u of maximal degree, i.e., one less than the degree of the
minimal polynomial. While we do not have an explana-
tion for this, it may be significant to the structure of the
code.

5.2 20 Points in R
6

This configuration, the first especially nice one, is highly
symmetric; each point in the entire configuration is equiv-
alent to every other one. Each point is at the minimal
distance with 11 other points in the code. Furthermore,

2At http://www.aimath.org/data/paper/WangSphericalCode/.

since the minimal polynomial is 14u−3, all of the entries
in the Gram matrix are rational numbers, specifically
multiples of 1

14 . The dot products corresponding to the
edges that emanate from any point are (in order from
largest to smallest)

{
1,

3
14

, 0, − 1
14

, − 5
14

, −3
7
, −4

7
, − 9

14

}
.

The only repetitions are 3
14 , which shows up 11 times,

and − 9
14 , which shows up three times.

It turns out that this code is the union of two five-
dimensional cross-polytopes in parallel hyperplanes. We
can orient them with respect to one another: if we choose
coordinates to allow one of the cross-polytopes to be
given by plus or minus the standard orthonormal basis
vectors, then after projection into the equatorial hyper-
plane and rescaling, the other cross-polytope is given by

±
(

2
11

,− 6
11

,− 6
11

,
3
11

,− 6
11

)
±

(
6
11

,
2
11

,
6
11

,
6
11

,− 3
11

)

±
(
− 3

11
,− 6

11
,

2
11

,
6
11

,
6
11

)
±

(
6
11

,
3
11

,− 6
11

,
2
11

,
6
11

)

±
(

6
11

,− 6
11

,
3
11

,− 6
11

,
2
11

)
.

The way the orientation is determined is still un-
known, but there is evidence of some sort of underlying
structure that is worth investigating further.

5.3 24 Points in R
7

This is the other particularly nice configuration. All 24
points in this code are symmetric with respect to one
another, and the minimal polynomial is 19u2 + 2u − 1,
so the Gram matrix has very few entries, and they are
all simple. The only entries other than the 1’s along the
diagonal are u, −u, −3u, and 2u − 1. Each vector has
inner product u with fifteen other vectors, −u with two
other vectors, −3u with five other vectors, and 2u − 1
with a single other vector. This configuration appears
to be a very good code, since both the 22- and 23-point
codes are the same as this with points removed.

It is very similar to the 20-point code in R
6, since

it also consists of two cross-polytopes in parallel hyper-
planes. As with the other case, we can orient the cross-
polytopes relative to each other by setting one to be plus
or minus the standard orthonormal basis vectors. After
projection into the equatorial hyperplane and rescaling,
the other cross-polytope is then given by the following
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 u V V u u u u u W u −u
u 1 u V V u u u W u u −u
V u 1 u V u u W u u u −u
V V u 1 u u W u u u u −u
u V V u 1 W u u u u u −u
u u u u W 1 V u u V −u u
u u u W u V 1 V u u −u u
u u W u u u V 1 V u −u u
u W u u u u u V 1 V −u u
W u u u u V u u V 1 −u u

u u u u u −u −u −u −u −u 1 −1
−u −u −u −u −u u u u u u −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

TABLE 1. Configuration of 12 points in R
5, Section 5.1. Here V and W satisfy V > W and are given in terms of u by

V = 5
2
u2 − u − 1

2
, W = −5u2 − 4u.

N u (20 Decimal Places) Minimal Polynomial
9 0.16201519961163454918 16u3 − 16u2 − 4u + 1
10 0.16666666666666666667 6u − 1
11 0.23040556359455544174 8u3 − 12u2 − 2u + 1
12 0.25000000000000000000 4u − 1
13 0.30729565398102882233 5632u9 +9472u8 − 3072u7 − 5888u6 +544u5 + 944u4 +152u3 − 44u2 − 14u− 1
14 0.31951859421260363550 58u7 + 174u6 + 140u5 − 16u4 − 54u3 − 10u2 + 4u + 1
15 0.35099217594534630330 36u4 − 18u3 + 10u2 − 1
16 0.38762817712253427776 256u10+1024u9+256u8−1152u7+160u6+176u5−144u4+36u3+37u2−6u−3
17 0.41226632322755925382 Unknown
18 0.42281941407305934403 14424u16+42932u15+18232u14−62100u13−53831u12+41528u11+46442u10−

18248u9−20977u8 +6180u7+5372u6−1556u5−721u4+240u3+34u2−16u+1
19 0.43425854591066488219 3u2 + u − 1
20 0.43425854591066488219 3u2 + u − 1
21 0.47138085850731791682 16u8 − 128u7 − 64u6 + 32u5 + 72u4 + 32u3 − 16u2 − 8u + 1
22 0.49788413084355235629 Unknown
23 0.50000000000000000000 2u − 1
24 0.50000000000000000000 2u − 1
25 0.53731605665507787660 Unknown
26 0.54078961769753707673 3392u6 + 2112u5 − 496u4 − 656u3 − 132u2 + 6u − 1
27 0.55759135118017018253 794u5 + 393u4 − 344u3 − 82u2 + 6u + 1

TABLE 2. Four-Dimensional Codes. Data for N = 9, 10, 12, 20, 24 are taken from [Ericson and Zinoviev 64].

N u (20 Decimal Places) Minimal Polynomial
11 0.13285354259858991809 45u3 − 25u2 − 5u + 1
12 0.15393160503302123095 25u4 + 30u3 + 24u2 + 2u − 1
13 0.18725985188285358702 17u3 − 5u2 − 5u + 1
14 0.20000000000000000000 5u − 1
15 0.20000000000000000000 5u − 1
16 0.20000000000000000000 5u − 1
17 0.27047583526857362209 9u4 − 16u3 − 10u2 + 1
18 0.27550174165981923839 484u5 − 488u4 + 97u3 + 17u2 − u − 1
19 0.29182239902449014615 57u6 − 38u5 − 109u4 + 32u3 + 23u2 − 10u + 1
20 0.29938569289912478230 5u3 + 13u2 − u − 1
21 0.31491695717530346285 869312u14+8798656u13−1062776u12−10586775u11−968269u10+3532907u9+

188249u8−659974u7 −11746u6 +72246u5−806u4−5267u3−97u2 +207u+21
22 0.35499503416625620683 Unknown
23 0.36977269694307633377 Unknown
24 0.37423298246516725173 1620u10 + 5508u9 − 5751u8 − 2406u7 + 2055u6 + 276u5 + 559u4 − 210u3 −

127u2 + 48u − 4

TABLE 3. Five-Dimensional Codes. Data for N = 11, 16 are taken from [Ericson and Zinoviev 64].
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N u (20 Decimal Places) Minimal Polynomial
13 0.11307975214744721385 96u3 − 36u2 − 6u + 1
14 0.13249092032347031437 237299200u13 +463738880u12 +366062080u11 +142462784u10 +23021376u9 −

2398832u8−1849600u7−343428u6−1802u5+11443u4+ 1390u3−128u2−20u+1
15 0.14494897427831780982 20u2 + 4u − 1
16 0.17114764942939365334 4000000u8 +15120000u7 +9896400u6 −2451600u5 −4503600u4 −1511460u3 −

87480u2 + 43740u + 6561
17 0.18327433702314481858 400u4 + 240u3 + 16u2 − 8u − 1
18 0.19781218860197545241 784u8 − 280u7 − 1191u6 + 120u5 + 218u4 − 62u3 − 31u2 + 2u + 1
19 0.20022602589120548304 Unknown
20 0.21428571428571428571 14u − 3
21 0.24285284801369170251 Unknown
22 0.24886966078882474478 Unknown
23 0.25000000000000000000 4u − 1
24 0.25000000000000000000 4u − 1
25 0.25000000000000000000 4u − 1
26 0.25000000000000000000 4u − 1
27 0.25000000000000000000 4u − 1

TABLE 4. Six-Dimensional Codes. Data for n = 13 and n = 27 are taken from [Ericson and Zinoviev 64].

N u (20 Decimal Places) Minimal Polynomial
15 0.09870177627236447933 175u3 − 49u2 − 7u + 1
16 0.11332087960014474125 85823999u12 + 153503984u11 + 163426326u10 + 92426704u9 + 29708081u8 +

9292960u7 + 2252404u6 + 410976u5 + 29489u4 − 3216u3 − 746u2 − 48u − 1
17 0.12484758986639552862 Unknown
18 0.12613198362288317392 47u2 + 2u − 1
19 0.15659738541709551030 1280u6 − 352u4 − 48u3 + 37u2 + 3u − 1
20 0.16952084719853722593 23u2 + 2u − 1
21 0.18152396080041583541 Unknown
22 0.18274399763155681015 19u2 + 2u − 1
23 0.18274399763155681015 19u2 + 2u − 1
24 0.18274399763155681015 19u2 + 2u − 1

TABLE 5. Seven-Dimensional Codes. Data for N = 15, 20 are taken from [Ericson and Zinoviev 64].

N u (20 Decimal Places) Minimal Polynomial
17 0.08773346332333854567 288u3 − 64u2 − 8u + 1
18 0.09946957270878709386 Unknown
19 0.11140997502603998543 Unknown
20 0.11949686668719356518 244u3 + 60u2 − 2u − 1
21 0.13060193748187072126 28u2 + 4u − 1
22 0.13060193748187072126 28u2 + 4u − 1
23 0.15745541772761612286 Unknown
24 0.15769214493936087799 4u4 − 4u3 − 27u2 − 2u + 1

TABLE 6. Eight-Dimensional Codes. Data for N = 17, 22 are taken from [Ericson and Zinoviev 64].

vectors:

±
(

0,
1√
5
,− 1√

5
,− 1√

5
,

1√
5
,

1√
5

)

±
(

1√
5
, 0,

1√
5
,− 1√

5
,− 1√

5
,

1√
5

)

±
(
− 1√

5
,

1√
5
, 0,

1√
5
,− 1√

5
,

1√
5

)

±
(
− 1√

5
,− 1√

5
,

1√
5
, 0,

1√
5
,

1√
5

)

±
(

1√
5
,− 1√

5
,− 1√

5
,

1√
5
, 0,

1√
5

)

±
(

1√
5
,

1√
5
,

1√
5
,

1√
5
,

1√
5
, 0

)
.

This is a very structured set of vectors, but it also
differs from the vectors in the six-dimensional case. It
would be an interesting question to determine how in
general the cross-polytopes should be arranged relative
to each other to maximize the minimal distance.

6. CATALOGUE OF EXACT CONFIGURATIONS

We present several tables of results for newly calculated
exact spherical codes in dimensions four through eight,
specifically the maximal inner product u and the min-
imal polynomial. In each dimension, we attempted to
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calculate a minimal polynomial for the maximum inner
product of the configurations for up to 24 points (27 in
four and six dimensions). We were able to do so for quite
a few, but there are a still a number of codes for which we
were unable to do this. In general we attempted this cal-
culation using 500 decimal places of the maximum inner
product.

Moreover, for the minimal polynomials we calculated,
we were able to verify all but two of them using the meth-
ods of Section 4. These are 21 points in five dimensions
and 14 points in six dimensions, both of which have poly-
nomials of high degree. The case of 27 points in four
dimensions should also be noted because it has three rat-
tlers, and since their positions are not fixed relative to the
other points we did not include them in our verification
of the minimal polynomial.

Lastly, we have a single new minimal polynomial in
three dimensions, concerning the 22-point code. The
minimal polynomial we found is 486u18 + 13113u17 +
114996u16 + 117476u15 + 658256u14 + 378752u13 −
347056u12−121388u11+81724u10−70886u9−55992u8+
12716u7+6528u6−2392u5−208u4+284u3+14u2+5u+4.
But as in the two cases mentioned previously, we have
been unable to verify this through finding an exact Gram
matrix.

Note that Tables 2 and 3 are the same codes as
recorded in [Sloane 94] but with minimal polynomials
associated with them. Also, some codes predate refer-
ences to [Ericson and Zinoviev 64], but it is a convenient,
systematic reference work.
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