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Computing the relations for the coefficients satisfied by the char-
acteristic polynomial of the Kronecker product of a general n×n

matrix by a general m × m matrix leads to an elimination prob-
lem that is already difficult for small values of n and m. In this ar-
ticle we focus on the problems for (n, m) ∈ {(2, 3), (2, 4), (3, 3)}
and use these problems for developing and testing a new elimi-
nation technique called elimination by degree steering.

1. INTRODUCTION

Elimination has a long tradition in commutative alge-
bra and algebraic geometry, starting from the classical
resultant methods (see, for example, [van der Waerden
31, Chapter 11]), nowadays being partially replaced by
Gröbner-basis techniques using elimination orders; see
[Cox et al. 98] for a comparison of the two methods.
The problem we wanted to treat came up in the con-
text of the recognition problem for matrix groups over
finite fields in [Leedham-Green and O’Brien 97]: Decide
whether a polynomial of degree nm is the characteris-
tic polynomial of a Kronecker product of two matrices
of degrees n, m ≥ 2. As C. Leedham-Green pointed out,
eliminating the coefficients of the polynomials of degrees
n and m from the expressions of the coefficients for the
polynomial of degree nm in terms of these for the case
n = m = 2 can be done by a short hand calculation. The
next case, 6 = 2 · 3, has been solved by heavy machine
calculations in [Schwingel 99] using Magma [Bosma et
al. 97]. It was noted there that no package at that time
could deal with the problem as it stands. Although, for
instance, Singular [Greuel et al. 05] can now just about
tackle the problem, it still has to give up on the next one,
8 = 2 · 4, although the equations can be written out in a
few lines; see Section 5.

The purpose of this paper is twofold. Firstly, it devel-
ops a general elimination method, called elimination by
degree steering. Secondly, it applies this method to the
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above problem for degrees 6 = 2 · 3, 8 = 2 · 4, and par-
tially for 9 = 3 · 3; see Section 2 for the formulation and
main results, and Section 6 for the derivation and further
details. The method was found and tested in the context
of Janet bases. It certainly can also be used in the con-
text of general Gröbner bases. For our computations we
use the package Involutive [Blinkov et al. 03], where a
powerful implementation of Janet’s algorithm in C++ is
available; see also [Blinkov et al. 07]. Theoretical details
on this algorithm can be found in [Plesken and Robertz
05].

For the concrete problem, an essential step in the
derivation is the investigation of the determinant-one
case as described in Section 5. Both the computations
and the results try to teach us something by their com-
plexity: They do not seem to be adequate for the original
problem. We therefore comment on the original problem
of [Leedham-Green and O’Brien 97] in the last section.
Nevertheless, the challenge is a really good one to give a
new impulse to develop new elimination techniques.

Concerning the general algorithmic aspect, our main
point is to demonstrate how the lexicographic term order-
ing can be avoided for the purpose of elimination. This
ordering has its merits in short descriptions of elimina-
tion algorithms in the context of Gröbner bases, but in
our experience, it is not so convincing for hard problems,
at least not for Janet bases, which are special Gröbner
bases. The algorithmic idea of this paper is to approxi-
mate the lexicographic term ordering using gradings, but
only to the point that it performs the elimination and not
any further. A simple but effective lemma shows when
one has reached the aim; see Section 4. The same section
also gives some probabilistic tools for judging the diffi-
culty of an elimination problem beforehand. The pre-
ceding section gives some generalities on Janet bases, in
particular pointing out their advantages for the sort of
calculations performed in the present paper.

General files and Maple worksheets providing the re-
sults of Sections 2 and 6 are available on an asso-
ciated web page for this paper: http://wwwb.math.
rwth-aachen.de/charpoly.

2. RESULTS ON THE CHARACTERISTIC
POLYNOMIALS

The characteristic polynomials that come up will be writ-
ten in the form

pn,a := tn +
n∑

i=1

(−1)i ait
n−i,

with indeterminates ai over the field K := Q or over
K := Z. The following elimination problem is consid-
ered: Given two polynomials pn,a and pm,b, let pnm,c be
the characteristic polynomial of the Kronecker product of
their companion matrices. The set of relations obtained
in this way will be called K(n,m):

K(n,m) = {c1 − a1b1, c2 − a2
1b2 − a2b

2
1 + 2a2b2, . . . ,

cnm−1 − am−1
n an−1b

n−1
m bm−1, cnm − am

n bn
m}.

The problem is to eliminate a1, . . . , an, b1, . . . , bm from
K(n,m). Let

I(n,m) := 〈K(n,m)〉 ∩ K[c1, . . . , cnm] � K[c1, . . . , cnm]

denote the elimination ideal. It is clearly prime. As-
signing degree i to ci turns I(n,m) into a homogeneous
ideal and R(n,m) := K[c1, . . . , cnm]/I(n,m) into a graded
K-algebra with field of fractions Q(n,m) of transcendence
degree n + m − 1 over K. The image of ci in R(n,m) or
in Q(n,m) will also be denoted by ci.

In the sequel we shall mainly give the Hilbert series of
R(n,m) and the minimal number of homogeneous genera-
tors of I(n,m) according to their degrees. The latter will
be written also as a generating function. For a graded
ideal I in a Z≥0-graded finitely generated K-algebra A,

ε(I) :=
∑

i

dit
i

will be called the minimal basis number, where di is the
number of elements of degree i in any minimal set of
homogeneous generators of I.

2.1 The Ideal I(2,2)

Let K := Z. The ideal I(2,2) is generated by c2
3 − c2

1c4,
which has degree 6. In particular, the minimal basis num-
ber is ε(I(2,2)) = t6. The Hilbert series for R(2,2) for
K := Q is

1 + t3

(1 − t) (1 − t2) (1 − t4)
.

This is well known and can be computed by hand. Ob-
viously, R(2,2) is Cohen–Macaulay.

2.2 The Ideal I(2,3)

In [Schwingel 99], a minimal set of generators for I(2,3)

in the case K = Q is claimed to have 16 elements of de-
grees between 19 and 30. We confirm this. However, the
generators are too long to be listed, the first and shortest
one c8

1c5c6 + · · ·+ c4c
3
5 having 53 monomials (rather than

28 as claimed in [Schwingel 99]). A complete list even for
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the more difficult case K = Z appears on the associated
web page.

Proposition 2.1. For K = Q, the minimal basis number
for I(2,3) is

ε(I(2,3)) = t19 + t20 + 2t21 + 2t22 + 3t23 + 2t24 + t25

+ t26 + t27 + t28 + t30

and the Hilbert series for R(2,3) is

p − q

(1 − t)(1 − t2)(1 − t3)(1 − t4)

with

p = 1 + t5 + t6 + t10 + t11 + t12 + t15 + t16 + t17 + t18

+ t26 + t27 + t29,

q = t19(1 + t2 + t3 + 2t4 + t6 + t11).

Corollary 2.2. The algebra R(2,3) is not Cohen–Macaulay.

Proof: In the above representation of the Hilbert series
H as a rational function, numerator and denominator
are relatively prime. If R(2,3) were Cohen–Macaulay,
then one would have homogeneous elements e1, e2, e3, e4

in R(2,3) generating a polynomial algebra over K such
that R(2,3) is free over K[e1, e2, e3, e4] with a basis of ho-
mogeneous elements. Hence, if a(i) denotes the degree of
ei, one would have

H =
r

(1 − ta(1))(1 − ta(2))(1 − ta(3))(1 − ta(4))

with r ∈ Z[t] with all coefficients nonnegative. However,
equating both sides, one sees that (a(1), a(2), a(3), a(4))
is bound to be obtainable from one of (1, 2, 3, 4),
(1, 1, 6, 4), (1, 1, 2, 12) by taking (possibly different) mul-
tiples in each slot after permuting the a(i), because the
denominator (1−ta(1))(1−ta(2))(1−ta(3))(1−ta(4)) must
be divisible by

(1 − t)(1 − t2)(1 − t3)(1 − t4) = μ4
1μ

2
2μ3μ4,

where μi denotes the ith cyclotomic polynomial. That
is, one of the a(i) must be divisible by 3, one by 4, and
two by 2, leaving the described possibilities. In all three
cases, the leading coefficient of

(1 − ta(1))(1 − ta(2))(1 − ta(3))(1 − ta(4))
(1 − t)(1 − t2)(1 − t3)(1 − t4)

∈ Z[t]

is positive, contradicting the fact that the leading co-
efficient of p − q is negative. So, for instance, if the
slots of (a(1), a(2), a(3), a(4)) are multiples of the slots
of (1, 1, 2, 12), then

1 − ta(1)

1 − t
= 1 + t + · · · + ta(4)−1,

. . . ,

1 − ta(4)

1 − t12
= 1 + ta(4)/12 + · · · + ta(4)−a(4)/12.

The computation of the singular locus of R(2,3) is al-
ready a highly nontrivial affair with the present possibil-
ities; we leave it as a challenge to the reader. Here are
some data that are cheaper to obtain even before com-
puting the presentation of R(2,3) (cf. Sections 4 and 6)
and give at least some idea about the ordinary degrees
of some of the relations and the structure of R(2,3):

Proposition 2.3. Any four of the ci are al-
gebraically independent over K, and the degrees
[Q(2,3) : K(ci(1), ci(2), ci(3), ci(4))] with 1 ≤ i(1) <

i(2) < i(3) < i(4) ≤ 6 are in increasing order:
3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 7, 9, 9, 12, 18.

2.3 The Ideal I(2,4)

For I(2,4) we find a minimal set of generators consisting
of 122 elements of degrees 28 to 40, the first c8

1c4c
2
8 +

· · · + c4c
2
5c

2
7 having 125 terms. Complete listings are on

the associated web page.

Proposition 2.4. Let K := Q. The minimal basis number
for I(2,4) is

ε(I(2,4)) = t28 + 11t30 + 9t31 + 36t32 + 20t33 + 22t34

+ 10t35 + 8t36 + 3t37 + t39 + t40,

and the Hilbert series for R(2,4) is

p − q

(1 − t)(1 − t2)(1 − t3)(1 − t4)(1 − t6)

with

p = 1 + t5 + t7 + t8 + t10 + t12 + t13 + t14 + 2t15 + t16

+ t17 + t18 + t19 + 2t20 + 2t21 + 2t22 + 2t23 + 2t24

+ 2t25 + 2t26 + 2t27 + 2t28 + 3t29 + 4t35 + 20t36

+ 19t37 + 34t38 + 8t39 + 5t40 + 7t45 + 3t46 + 3t47,

q = 8t30 + 6t31 + 33t32 + 17t33 + 12t34 + 13t41 + 18t42

+ 14t43 + 5t44.
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The leading coefficient in the numerator p − q is this
time positive, so that the reasoning of the proof of Corol-
lary 2.2 has to be modified, and it gets complicated. But
it looks likely that R(2,4) is not Cohen–Macaulay. Again,
the following information is much easier to obtain:

Proposition 2.5. Any five of the ci are alge-
braically independent over K, and the degrees [Q(2,4) :
K(ci(1), . . . , ci(5))] with 1 ≤ i(1) < · · · < i(5) ≤ 8 in
increasing order with the numbers of instances in paren-
theses in case they are not equal to 1 are 2(2), 6(7), 7,
9(3), 10(2), 11, 12(10), 14(9), 16(5), 18, 20(2), 22(2),
24(2), 25, 29, 32, 35(2), 42(2), 48(2).

2.4 The Ideal I(3,3)

Let K := Q. In this case we have not computed a min-
imal generating set. However, we have obtained some
information that demonstrates the size of the problem:
The minimal basis number for I(3,3) is

ε(I(3,3)) = 19t30 + 60t31 + higher-order terms.

The Krull dimension of R(3,3) is still 5, any five of the
ci are algebraically independent over K, and the degrees
[Q(3,3) : K(ci(1), . . . , ci(5))] with 1 ≤ i(1) < · · · < i(5) ≤
9 in increasing order with the numbers of instances in
parentheses in case they are not equal to 1 are 6, 9, 10,
11(2), 12(13), 13(2), 14, 15(3), 16, 17(2), 18(6), 19(3),
20(3), 21(2), 24(8), 25, 26, 28, 29, 30(8), 31, 32(2), 35,
36(8), 37, 38(2), 39, 40, 42(6), 43, 44(2), 45(2), 48(10),
50(2), 51, 52, 53, 54(3), 66(2), 72(2), 78(3), 90(3), 108(4),
126(5).

In Section 6, the determinant-one case, where the ad-
ditional relations a3 = b3 = c9 = 1 are assumed, is fully
treated and a possibility to get from there to generators
of I(3,3) is outlined.

3. THE USE OF THE JANET ALGORITHM

Most of the computations for the cases I(2,4) and I(3,3)

are on the verge of the present possibilities. Therefore it
was important to use one of the most powerful Gröbner-
basis packages available to us; we had access to the code
to modify it according to our needs, which was the ginv

package [Blinkov et al. 07]. In fact, we used the problems
of this paper to test and improve this software. It works
with Janet bases or—slightly more generally—involutive
bases, which form a special case of Gröbner bases; cf.
[Blinkov et al. 03, Blinkov et al. 01, Gerdt 05].

Apart from its good performance, the Janet algorithm
provides a Janet basis, which has various other advan-
tages. For instance, it immediately yields an explicit
vector-space basis for the ideal as well as for the residue
class ring, which among other things allows one to read
off the Hilbert series in the homogeneous case, as given,
for example, in Propositions 2.1 and 2.4; cf. [Plesken and
Robertz 05]. (Note that in [Schwingel 99], a Gröbner ba-
sis for I(2,3) was computed, but not the Hilbert series.)
Homogenizing the elements in the Janet basis with re-
spect to a degree-compatible term ordering yields a Janet
basis of the homogenized ideal; see Section 6 for details.

Since minimal generating sets of homogeneous ele-
ments came up in the previous section, we take the op-
portunity to demonstrate the usefulness of the concept
of Janet bases in this context as well. See [Greuel et al.
05] for corresponding algorithms using general Gröbner
bases. Our point is that within the philosophy of Janet
bases with its multiplicative and nonmultiplicative vari-
ables, these computations come rather naturally.

Algorithm 3.1. (Minimal generating set for homogeneous
ideals.)

Input: A degree d ∈ N, a grading on the polynomial
algebra K[x1, . . . , xn] with xi homogeneous, and
the Janet basis J with respect to degree-reverse
lexicographic ordering of a homogeneous ideal in
K[x1, . . . , xn], where K is a field.

Output: The subset Md of J of those elements of degree
d in J that form the degree-d elements in a minimal
generating set of 〈J〉 of homogeneous elements.

Step 1: Compute the set Nd of unprocessed omission
precandidates as follows:

Nd := {xip | p ∈ J, xi nonmultiplicative for p,

deg(xip) = d}.

Step 2: Start with J ′ := {p ∈ J | deg(p) < d} with
assignment of multiplicative variables taken from J

and perform involutive reduction of the elements of
Nd with respect to J ′. An element of Nd that re-
duces to zero is omitted from Nd. An element a ∈ Nd

that reduces to a nonzero element a′ is also removed
from Nd, but a′ is appended to J ′ (and is potentially
an involutive divisor for further reductions in degree
d). This process ends when Nd is empty.
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Step 3: Md consists of all those elements of degree d in
Jd := {p ∈ J | deg(p) = d} whose leading mono-
mial does not occur among the leading monomials
of degree d in J ′.

To validate this algorithm, define
Ld := {mp | p ∈ J, deg(p) < d, m a monomial in the

multiplicative variables of p, deg(mp) = d},
so that Jd

⊎
Ld is a K-vector-space basis of the homoge-

neous component 〈J〉d of the ideal generated by J . We
are interested in 〈J〉d/〈Nd, Ld〉K , which is dealt with in
Step 2.

There is also an alternative to the above algorithm:
The Janet basis J ′′ for the ideal generated by J ′ := {p ∈
J | deg(p) < d} is computed accurately up to degree
d, so that involutive reduction can be performed prop-
erly on homogeneous elements of degree d with respect
to J ′′. Then the difference of the td-coefficients of the
two Hilbert series of 〈J〉 and 〈J ′′〉 gives the number of
elements of Md. If one wants to compute not just the
number but the set of degree-d elements in some minimal
generating set for the homogeneous ideal, then involutive
reduction is performed on the elements of J of degree d,
and similarly as in Step 2 above, J ′′ gets enlarged by the
elements that do not reduce to 0. In the end, the ele-
ments of degree d in J ′′ can be taken to form the subset
of elements of degree d in a minimal homogeneous gen-
erating set for the homogeneous ideal. The principles of
the techniques developed here will also be essential for
passing from I

(1,1)
(3,3) to I(3,3) in Section 6.

4. ELIMINATION BY DEGREE STEERING

Here we give an elimination algorithm that uses the phi-
losophy of the lexicographic or elimination-term ordering
on the monomials without using these orderings them-
selves. Since our inspiration came from Janet bases and
we have tested the ideas only on Janet bases, we formu-
late the criterion and the algorithm only for Janet bases,
though it is clear that it works also for general Gröbner
bases, as the referee pointed out. The approach also prof-
its from the idea of a Gröbner walk.

Lemma 4.1. Let J ⊆ K[X1, . . . , Xn, Y1, . . . , Ym] be a
Janet basis with respect to some term ordering. For any
0 	= p ∈ K[X1, . . . , Xn, Y1, . . . , Ym] let λ(p) be its leading
monomial. If

J ∩ K[Y1, . . . , Ym] = {p ∈ J | λ(p) ∈ K[Y1, . . . , Ym]},
then J ∩ K[Y1, . . . , Ym] generates 〈J〉 ∩ K[Y1, . . . , Ym].

Proof: The case J ∩ K[Y1, . . . , Ym] = ∅ is trivial. Let
q ∈ 〈J〉 ∩K[Y1, . . . , Ym] be nonzero. Since there is no Xi

involved in q, it can be reduced by some element p ∈
J with λ(p) not divisible by any Xi. By hypothesis,
p ∈ K[Y1, . . . , Ym], so that the first step of involutive
reduction replaces q by an element in 〈J〉, again without
Xi’s and with smaller leading monomial with respect to
the given term ordering. So induction yields the result.

Note that the last lemma does not claim that J ∩
K[Y1, . . . , Ym] is a Janet basis for 〈J〉 ∩ K[Y1, . . . , Ym],
which of course might sometimes happen. By the way,
the lemma immediately implies that the lexicographic
and the elimination-term orderings eliminate, because
these term orderings enforce the hypothesis of Lemma
4.1. The point of the following algorithm is that one
gradually reaches the state in which the hypothesis is
satisfied by choosing different gradings for the polyno-
mial ring.

Algorithm 4.2. (Degree steering.)

Input: A nonempty finite subset

N ⊆ K[X1, . . . , Xn, Y1, . . . , Ym].

Output: A subset M ⊆ K[Y1, . . . , Ym] generating

〈N〉 ∩ K[Y1, . . . , Ym].

Algorithm: Run Janet’s algorithm for N over K with
respect to some term ordering that respects the grad-
ing. Keep replacing N by this Janet basis and chang-
ing the term ordering by increasing the degrees of all
the Xi until the criterion of Lemma 4.1 is satisfied.
Then take the intersection of the Janet basis with
K[Y1, . . . , Ym] to obtain M .

Of course, for serious problems one will not eliminate
all Xi in one go with this algorithm, but rather one by
one. Successful degree steering needs some experience
with the problem. For hard problems it is important not
to increase the degree of the variable that one wants to
eliminate too fast. If one increases the degrees of the
Xi too fast, one is well advised to complement Janet’s
algorithm by the following global strategy for steering
the run of Janet’s algorithm.

Remark 4.3. Let t be a certain step during the run of
Janet’s algorithm. In step t the algorithm has an inter-
mediate Janet basis J(t). Some of the elements of J(t)
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might stay in the final Janet basis J = J(tf ), while oth-
ers might get thrown out before the algorithm finishes.
Call ρ(t) the number of times up to step t that some el-
ement got thrown out of some intermediate Janet basis
J(s) with s ≤ t. Also at step t, one has a list of sub-
module elements that still have to be tested to reduce to
zero or to lead to new elements in an intermediate Janet
basis J(s) for some s > t. Denote the length of this list
in step t by θ(t).

1. A run of Janet’s algorithm will be considered smooth
if ρ(tf ) = 0.

2. If ρ(t) grows beyond a certain bound and θ(t) is still
big, then it might well be worthwhile to add J(t)
to the original input and start a new run of Janet’s
algorithm rather than finishing the present run.

Similar to the spirit of this remark, we mention that
in our experience, it is very helpful to add to the input
any approximation of the Janet basis in the Yj that is
already available.

To have a rough measure of the difficulty of a problem,
the computation of various field degrees can be helpful.
Here is a setup that is more special than the general
setup for degree steering but general enough to cover the
problems treated in this paper. Given a field K and n

variables x1, . . . , xn and polynomials

yi = pi(x1, . . . , xn) ∈ K[x1, . . . , xn], i = 1, . . . , m,
(4–1)

the aim is to find a presentation for the subring K[y] :=
K[y1, . . . , ym] of K[x] := K[x1, . . . , xn].

Lemma 4.4. Let K be infinite and assume that y1, . . . , yn

in (4–1) are algebraically independent over K. Then
there exist infinitely many (a1, . . . , an) ∈ Kn such that
the degree [K(x1, . . . , xn) : K(y1, . . . , yn)] is equal to the
K-vector-space dimension of

K[X1, . . . , Xn]/〈ai − pi(X1, . . . , Xn) | i = 1, . . . , n〉.

Proof: Apply Janet’s algorithm to {Yi −pi(X1, . . . , Xn) |
i = 1, . . . , n} over K(Y1, . . . , Yn). During this run, only
finitely many polynomials q(Y1, . . . , Yn) ∈ K[Y1, . . . , Yn]
occur in the denominators or are chosen for dividing all
coefficients of an intermediate Janet-basis element. Obvi-
ously there are infinitely many choices for (a1, . . . , an) ∈
Kn such that q(a1, . . . , an) 	= 0 for all these q. For

each such (a1, . . . , an), the Janet basis for the ideal
〈ai − pi(X1, . . . , Xn) | i = 1, . . . , n〉 over K can be ob-
tained from the Janet basis for 〈Yi −pi(X1, . . . , Xn) | i =
1, . . . , n〉 over K(Y1, . . . , Yn) by substituting the aj for
the Yj . In particular, the dimension claim follows.

If the field K is big enough and suitable for quick
computations, this lemma allows quick and rather reli-
able guesses for the degrees [K(x) : K(yi | i ∈ S)] for the
maximal subsets S ⊆ {1, . . . , m} such that {yi | i ∈ S}
is algebraically independent over K. For small degrees
and small |S| one might be able to verify the result by
actually computing over the field K(yi | i ∈ S).

5. THE PROBLEMS AND THEIR SPECIAL STRUCTURE

Returning to the elimination problem for characteristic
polynomials, we keep the notation of Section 2. Table 1
gives some examples of K(n,m) for small values of n, m.

Remark 5.1. We note the following:

1. If one assigns degree i to ai and bi and 2j to cj , the
relations are homogeneous [Glasby 01].

2. A scaling of the ai by a factor f i with f ∈ K∗ can
be compensated by a scaling of the bj by the fac-
tor f−j without changing the ck. Therefore, one
may assume bm = 1. As a result, the rational
function field K(a1, . . . , an, b1, . . . , bm−1) is finite over
K(c1, . . . , cnm).

3. More generally, a scaling of the ai by a factor f i with
f ∈ K∗ and a scaling of the bj by a factor g−j with g ∈
K∗ results in a scaling of the ck by the factor (fg)k.

4. If all determinants are equal to 1, i.e., if an := 1 and
bm := 1, then cnm = 1 and the resulting system allows
the automorphism

ai 
→ an−i, bj 
→ bm−j , ck 
→ cnm−k

for 1 ≤ i < n, 1 ≤ j < m, and 1 ≤ k < mn.

Item 3 above suggests that we should proceed as fol-
lows: Assume first that a1 = b1 = 1. Then we have
c1 = 1. We do the elimination there and recover the re-
lations from those in c2, . . . , cnm by making them homo-
geneous (with respect to the grading defined in item 1).
For instance, in the case n = m = 2, one obtains
−2a2b2 + a2 + b2 − c2, a2b2 − c3, a2

2b2
2 − c4 and hence

c2
3− c4 as an inhomogeneous relation and c2

3− c4c
2
1 as the
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K(n,m) Examples

K(2,3) a1b1 − c1,−2a2b2 + b1
2a2 + a1

2b2 − c2, 3a1a2b3 − b1a2a1b2 − a1
3b3 + c3,

−2a2
2b3b1 + a2b1a1

2b3 + a2
2b2

2 − c4,−a2
2b3a1b2 + c5, a2

3b3
2 − c6

K(2,4) a1b1 − c1,−2a2b2 + b1
2a2 + a1

2b2 − c2, 3a1a2b3 − b1a2a1b2 − a1
3b3 + c3,

2a2
2b4−2a2

2b3b1−4a1
2a2b4+a2b1a1

2b3+a1
4b4+a2

2b2
2−c4, a2

2b3a1b2−
3a2

2a1b4b1 + a2b1a1
3b4 − c5,−2a2

3b2b4 + a2
3b3

2 + a2
2a1

2b4b2 − c6,
a2

3a1b3b4 − c7, a2
4b4

2 − c8

K(3,3) a1b1−c1,−2a2b2+b1
2a2+a1

2b2−c2, −3a3b3+3b2a3b1+3a1a2b3−b1
3a3−

b1a2a1b2 − a1
3b3 + c3, −2b2

2a3a1 − 2a2
2b3b1 − a1b3a3b1 + b1

2a3a1b2 +
a2b1a1

2b3 +a2
2b2

2 − c4, 2a3b2a1
2b3 −a2

2b3a1b2 −a3b2
2a2b1 + b2a3a2b3 +

2a2b3b1
2a3−a3b1

2a1
2b3+c5, a2

3b3
2+3a3

2b3
2−3b2a3

2b3b1−3a1b3
2a3a2+

a3
2b2

3 + a3b2a1b3a2b1 − c6, 2a1b3
2a3

2b1 − a3
2b2

2b3a1 − a2
2b3

2a3b1 +
c7, b2a3

2b3
2a2 − c8, a3

3b3
3 − c9

TABLE 1. Some examples of K(n,m) for small values of n, m.

final homogeneous relation. However, the computations
in the other cases turn out to be rather hard. It appeared
to be much better to treat the case cnm = 1 first, which
is of independent interest, because we are talking about
the determinant being one.

Proposition 5.2.

1. The affine variety V := V (K(n,m)) is irreducible of
dimension n + m, and the Zariski closure Vc :=
V (I(n,m)) of its projection onto the c-components is
therefore also irreducible; Vc has dimension n+m−1.

2. Let d := gcd(n, m). The variety V 1 := V (K(n,m) ∪
{cnm − 1}) decomposes into the subvarieties

V (1,ω) := V
(
K(n,m) ∪

{
cnm − 1, am/d

n bn/d
m − ω

})
,

where ω runs through the dth roots of unity in K. All
these varieties have dimension n + m − 2. They are
permuted transitively by multiplication of the ai by f i

and the bj by gj, where f, g ∈ K∗ satisfy (fg)nm =
1. On projection onto the c-components, the Zariski
closures V

(1,ω)
c of the images of the V (1,ω) stay disjoint

and have the corresponding properties.

3. The codimension-one subvariety

V (K(n,m) ∪ {cnm − 1, an − 1, bm − 1}) ⊆ V (1,1)

projects onto a dense subset of V
(1,1)
c .

Proof: The claims follow from the previous remark and
from cnm − am

n bn
m ∈ K(n,m), which factors on setting

cnm = 1 in

1 − (am/d
n bn/d

m )d =
∏

ωd=1

(ω − am/d
n bn/d

m ).

We introduce the following notation:

I
(α,β)
(n,m) := 〈K(n,m) ∪ {cnm − 1, an − α, bm − β}〉

∩ K[c1, . . . , cnm],

where αm/dβn/d is a dth root of unity in K as in the
previous proposition.

As a pleasant feature, one should note that the com-
putation of the vanishing ideal of one of the V

(1,ω)
c , for

example of V
(1,1)
c , easily yields the others and that any

two of them are relatively prime because of the pairwise
disjointness of the V

(1,ω)
c . In particular, their intersec-

tion is equal to their product. After having taken the
intersection, one can again pass to the homogeneous re-
lations without difficulty, whereas one still has to perform
an (in general unpleasant) elimination of some variable
s against the relation sd − cnm. For instance, the case
n = m = 2 gives with c4 = a2 = b2 = 1 almost immedi-
ately the polynomial c3 − c1 for V

(1,1)
c . This easily yields

c3+c1 for V
(1,−1)
c and hence c2

3−c2
1 for the projection V 1

c

of V 1 onto the c-components, which immediately yields
c2
3−c2

1c4 as its homogenization generating the ideal I(2,2)

for Vc. Of course, the same result can be obtained by
eliminating the element s of degree 2 from c3 − c1s and
s2 − c4.

6. THE COMPUTATION AND FURTHER RESULTS

In this section we describe how the actual computations
for finding generators of the elimination ideal I(n,m),
where (n, m) ∈ {(2, 3), (2, 4), (3, 3)}, are carried out, or
in the last case, could be carried out. In each case, first
generators for I

(1,1)
(n,m) will be computed, where the Krull

dimension is one less and the result interesting in itself.
By homogenizing a Janet basis for I

(1,1)
(2,3) , one immedi-

ately gets generators for I(2,3), because 2, 3 are relatively
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prime. In the other two cases one has more work to do,
as explained in Section 5.

6.1 The System K(2,3)

The following derivation of generators of I(2,3) seems to
be different from that given in [Schwingel 99] and has the
advantage of being reproducible.

We compute a Janet basis of I
(1,1)
(2,3) as follows:

(a) Set a2 = b3 = c6 = 1 in K(2,3) to obtain Kdet=1
(2,3) .

(b) Compute a Janet basis from Kdet=1
(2,3) using the degree-

reverse lexicographic ordering defined by c5 > c4 >

· · · > c1 > b2 > b1 > a1 with degrees 2i for ci and i

for bi and for ai.

(c) Eliminate a1 by degree steering (cf. Algorithm 4.2),
that is, by increasing the degree of a1 up to 9.

(d) Eliminate b1 by degree steering, that is, by increasing
the degree of b1 up to 21.

(e) Eliminate b2 by degree steering, that is, by increasing
the degree of b2 up to 19.

(f) Redefine the degrees of ci to be i and end up with
a Janet basis for I

(1,1)
(2,3) consisting of 21 elements of

degrees 19 to 31.

We compute information about I(2,3) as follows:

(a) Use the degree-reverse lexicographic ordering defined
by c6 > c5 > c4 > · · · > c1 with degrees i for ci and
obtain a generating set of I(2,3) by homogenizing the
elements of the Janet basis for I

(1,1)
(2,3) .

(b) Compute a Janet basis from the generating set of
(a). It consists of 42 elements of degrees 19 to 41.
Immediately obtain the Hilbert series for the residue
class ring R(2,3) listed in Proposition 2.1.

(c) Compute a minimal set of homogeneous generators
for I(2,3) from the set of generators in (a) and the
Janet basis in (b) by applying the methods of Sec-
tion 3.

Remark 6.1. We note the following:

1. Homogenizing a polynomial in c1, . . . , c5 works as
follows: One substitutes ci/ti for ci, takes the nu-
merator of the resulting expression, and substitutes
c6 for t6. Because of the special situation that m = 2
and n = 3 are relatively prime, by Section 5, the
result will not contain any t’s, and because of the

special properties of Janet bases (cf. Section 3), this
process applied to a Janet basis will give a generat-
ing set for the homogeneous situation.

2. The computations can also be carried out over Z

instead of over Q. In this case one gets slightly dif-
ferent generators. On the web page we list a minimal
set of homogeneous generators over Z, which turns
out also to be minimal over the rationals. (A set
of generators for I

(1,1)
(2,3) is obtained from this list by

simply substituting 1 for c6.)

3. Prior to the above computations one can get very
reliable guesses of various degrees of field exten-
sions involved by applying Lemma 4.4, starting from
K(2,3) with b3 = 1 as additional relation. These de-
grees can be checked afterward. For instance, the
degree of K(a1, a2, b1, b2, b3 = 1) over K(c1, . . . , c6)
is 1. It turns out that any four of the ci are alge-
braically independent over K. Here are the degrees
for [K(c1, . . . , c6) : K(ci | i ∈ S)] followed by the
four-element subsets S of {1, . . . , 6} corresponding
to the minimal subsets of the ci where this degree is
finite:

3: {1, 2, 5, 6} , {1, 4, 5, 6} ,
4: {1, 3, 5, 6} ,
5: {1, 2, 3, 4} , {1, 2, 3, 5} , {1, 3, 4, 5} ,
6: {1, 2, 4, 5} ,
7: {1, 2, 3, 6} , {1, 3, 4, 6} , {2, 3, 5, 6} , {3, 4, 5, 6} ,
9: {1, 2, 4, 6} , {2, 4, 5, 6} ,

12: {2, 3, 4, 5} ,
18: {2, 3, 4, 6}

This list not only says something about the general
degree of difficulty in computing a Janet basis for
I(2,3) but also gives some specific information about
certain elements. For example, any polynomial in
c1, c2, c3, c4, c5 contained in I(2,3) is a multiple of
a minimal relation of degrees 12, 5, 6, 5, 5 in c1,
c2, c3, c4, c5. Actually, one should more carefully
say “of degrees dividing these numbers,” but they
always turn out to be equal.

6.2 The System K(2,4)

We compute a Janet basis of I
(1,1)
(2,4) as follows:

(a) Set a2 = b4 = c8 = 1 in K(2,4) to obtain Kdet=1
(2,4) .

(b) Compute a Janet basis from Kdet=1
(2,4) using the degree-

reverse lexicographic ordering defined by c7 > c6 >
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· · · > c1 > b2 > b1 > a1 with degrees 2i for ci and i

for bi and for ai.

(c) Eliminate a1 by degree steering (cf. Algorithm 4.2),
that is, by increasing the degree of a1 up to 15.

(d) Eliminate b1 by degree steering, that is, by increasing
the degree of b1 up to 24.

(e) Eliminate b2 by degree steering, that is, by increasing
the degree of b2 up to 40.

(f) Eliminate b3 by degree steering, that is, by increasing
the degree of b3 up to 18.

(g) Redefine the degrees of ci to be i and end up with
a Janet basis for I

(1,1)
(2,4) consisting of 131 elements of

degrees 16 to 41, listed on the associated web page.

We compute information about I(2,4) as follows:

(a) Use the degree-reverse lexicographic ordering defined
by z4 > c8 > c7 > · · · > c1 with degrees i for ci and
4 for z4, homogenize the elements of the Janet basis
for I

(1,1)
(2,4) (see below), and add the relation z2

4 − c8.

(b) Compute a Janet basis from the generating set of (a).
Use degree steering to eliminate z4 by increasing the
degree of z4.

(c) End up with a Janet basis for I(2,4). It consists of 233
elements of degrees 28 to 55. Immediately obtain the
Hilbert series for the residue class ring R(2,4) listed
in Proposition 2.4.

(d) Compute a minimal set of homogeneous generators
for I(2,4) from the Janet basis in (c) by applying the
methods of Section 3; see the associated web page.

Remark 6.2. We note the following:

1. Homogenizing a polynomial in c1, . . . , c7 works as
follows: One substitutes ci/ti for ci, takes the nu-
merator of the resulting expression, and substitutes
c8 for t8. This time, since m = 2 and n = 4 have
greatest common divisor 2, the results of Section 5
imply that the resulting polynomials will also de-
pend on t, more precisely on t4, which is replaced
by the new variable z4, and because of the special
properties of Janet bases (cf. Section 3), this process
applied to a Janet basis will give a generating set for
the homogeneous situation.

2. The intermediate variable z4 can be avoided by ho-
mogenizing a Janet basis for the intersection I

(1,1)
(2,4) ∩

I
(1,−1)
(2,4) . As pointed out in Section 5, a Janet basis

of I
(1,−1)
(2,4) can be obtained from an easy substitution

into the Janet basis of I
(1,1)
(2,4) . However, taking the

intersection of the two ideals turns out to be much
more time-consuming than proceeding as described
above via elimination of z4. From the minimal gen-
erating set of I(2,4), one can, of course, also obtain
generators for I

(1,1)
(2,4) ∩ I

(1,−1)
(2,4) by specializing c8 to 1.

3. Again, prior to the computation one can compute
reliable guesses for various degrees of field exten-
sions and check them afterward. One obtains, for
instance,

[K(a1, a2, b1, b2, b3, b4 = 1) : K(c1, . . . , c8)] = 2,

and that any five of the c1, . . . , c8 are algebraically
independent over K. The occurrences of the vari-
ous degrees of the [K(c1, . . . , c8) : K(ci | i ∈ S)]
are listed in Proposition 2.5 for the 56 subsets S of
{1, . . . , 8} with five elements. The explicit assign-
ment of the subsets to the degrees are as follows:

Degrees1 where S contains 8:

2: {1, 2, 6, 7, 8} , {1, 3, 5, 7, 8}
6: {1, 2, 3, 7, 8} , {1, 2, 5, 7, 8} , {1, 3, 4, 7, 8} ,

{1, 3, 6, 7, 8} , {1, 4, 5, 7, 8} , {1, 5, 6, 7, 8}
12: {1, 2, 3, 5, 8} , {1, 2, 4, 7, 8} , {1, 2, 5, 6, 8} ,

{1, 4, 6, 7, 8} , {2, 3, 6, 7, 8} , {3, 5, 6, 7, 8}
14: {1, 2, 3, 4, 8} , {1, 2, 3, 6, 8} , {1, 2, 4, 5, 8} ,

{1, 3, 4, 5, 8} , {2, 3, 5, 6, 8} , {2, 5, 6, 7, 8} ,
{3, 4, 5, 7, 8} , {3, 4, 6, 7, 8} , {4, 5, 6, 7, 8}

16: {1, 3, 5, 6, 8} , {2, 3, 5, 7, 8}
20: {1, 4, 5, 6, 8} , {2, 3, 4, 7, 8}
22: {1, 3, 4, 6, 8} , {2, 4, 5, 7, 8}
24: {1, 2, 4, 6, 8} , {2, 4, 6, 7, 8}
42: {2, 3, 4, 5, 8} , {3, 4, 5, 6, 8}
48: {2, 3, 4, 6, 8} , {2, 4, 5, 6, 8}

1The subfield of K(c1, . . . , c8) generated by c1, . . . , c7 is not
isomorphic to the field K(c1, . . . , c7) for the case Kdet=1

(2,4)
, but is

isomorphic to an extension of degree 2 of it. Therefore the de-
gree [K(c1, . . . , c7) : K(ci | i ∈ S)] for the case Kdet=1

(2,4)
, where

S is a 4-element subset of {1, . . . , 7} corresponding to a minimal
subset of {c1, . . . , c7} for which the above degree is finite, equals
[K(c1, . . . , c8) : K(ci | i ∈ S′)] divided by 2, where S′ = S ∪ {8}.
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Degrees where S does not contain 8:

6: {1, 2, 3, 5, 6}
7: {1, 2, 3, 4, 5}
9: {1, 2, 3, 4, 6} , {1, 2, 3, 5, 7} , {1, 2, 5, 6, 7}

10: {1, 2, 3, 4, 7} , {1, 2, 3, 6, 7}
11: {1, 3, 4, 5, 7}
12: {1, 2, 4, 5, 6} , {1, 2, 4, 5, 7} , {1, 3, 4, 5, 6} ,

{1, 3, 5, 6, 7}
16: {1, 3, 4, 6, 7} , {1, 4, 5, 6, 7} , {2, 3, 5, 6, 7}
18: {1, 2, 4, 6, 7}
25: {2, 3, 4, 5, 6}
29: {3, 4, 5, 6, 7}
32: {2, 3, 4, 5, 7}
35: {2, 3, 4, 6, 7} , {2, 4, 5, 6, 7}

6.3 The System K(3,3)

We compute a Janet basis of I
(1,1)
(3,3) as follows:

(a) Set a3 = b3 = c9 = 1 in K(3,3) to obtain Kdet=1
(3,3) .

(b) Compute a Janet basis from Kdet=1
(3,3) using the degree-

reverse lexicographic ordering defined by c8 > c7 >

· · · > c1 > b2 > b1 > a2 > a1 with degrees 2i for ci

and i for bi and for ai.

(c) Eliminate a1 by degree steering (cf. Algorithm 4.2),
that is, by increasing the degree of a1 up to 15.

(d) Eliminate b1 by degree steering, that is, by increasing
the degree of b1 up to 21.

(e) Eliminate a2 by degree steering, that is, by increasing
the degree of b2 up to 21. Here things are speeded
up by assigning new degrees, namely 2, 3, 4, 5, 4, 3,
2, 1 for c8, c7, . . . , c1 and 2, 2 for a2, b2. The degree
of a2 needs to be increased only up to 4.

(f) Eliminate b2 by degree steering. Things are speeded
up tremendously by keeping the degrees for the ci

from (e). Then the degree of b2 has to be raised only
up to 3.

(g) Raise the degrees of ci to i for i = 6, 7, 8 in this
order and compute the Janet basis for I

(1,1)
(3,3) in each

step (in the spirit of degree steering), until one has
a Janet basis for I

(1,1)
(3,3) with respect to the ordering

c8 > c7 > · · · > c1 with degrees i for ci. This Janet
basis consists of 171 elements of degrees 15 to 41; see
the associated web page.

Remark 6.3. We note the following:

1. Step (e) gets a bit hard and step (f) very hard if one
does not lower the degrees of c8, c7, c6. The price
one has to pay is in step (g), which provides the nec-
essary starting Janet basis for the homogenization.
Somehow, the problem does not like its natural de-
grees: When all the ci apart from c8 have degree i

and c8 still has degree 2, the Janet basis has only 36
elements instead of the final 171 elements.

2. Here are some additional data for Kdet=1
(3,3) . From

Lemma 4.4 or by checking explicitly one gets (after
setting b3 = a3 = c9 = 1)

[K(a1, a2, b1, b2) : K(c1, . . . , c8)] = 6

and the following list of degrees for [K(c1, . . . , c8) :
K(ci | i ∈ S)] followed by the four-element subsets
S of {1, . . . , 8} corresponding to the minimal subsets
of {c1, . . . , c8} for which these degrees are finite:

2: {1, 2, 3, 8} , {1, 2, 4, 8} , {1, 2, 5, 8} ,
{1, 2, 7, 8} , {1, 4, 7, 8} , {1, 5, 7, 8} ,
{1, 6, 7, 8}

3: {1, 3, 5, 8} , {1, 4, 5, 8} , {1, 4, 6, 8}
4: {1, 2, 3, 7} , {1, 2, 5, 7} , {1, 2, 6, 8} ,

{1, 3, 4, 8} , {1, 3, 7, 8} , {1, 5, 6, 8} ,
{2, 4, 7, 8} , {2, 6, 7, 8}

5: {1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 4, 7} ,
{1, 2, 6, 7} , {2, 3, 7, 8} , {2, 5, 7, 8} ,
{4, 6, 7, 8} , {5, 6, 7, 8}

6: {1, 2, 4, 5} , {1, 3, 6, 8} , {1, 4, 6, 7} ,
{1, 5, 6, 7} , {2, 3, 4, 8} , {2, 3, 5, 8} ,
{4, 5, 7, 8}

7: {1, 2, 3, 6} , {1, 2, 5, 6} , {1, 4, 5, 7} ,
{2, 4, 5, 8} , {3, 4, 7, 8} , {3, 6, 7, 8}

8: {1, 3, 4, 5} , {1, 3, 4, 7} , {1, 3, 5, 7} ,
{1, 3, 6, 7} , {1, 4, 5, 6} , {2, 3, 6, 8} ,
{2, 4, 6, 8} , {2, 5, 6, 8} , {3, 4, 5, 8} ,
{4, 5, 6, 8}

9: {1, 2, 4, 6} , {3, 5, 7, 8}
11: {1, 3, 5, 6} , {3, 4, 6, 8}
12: {1, 3, 4, 6} , {3, 5, 6, 8}
13: {2, 3, 4, 7} , {2, 4, 5, 7} , {2, 5, 6, 7}
15: {2, 3, 5, 7} , {2, 3, 6, 7} , {2, 4, 6, 7}
18: {2, 3, 4, 5} , {2, 3, 5, 6} , {3, 4, 6, 7} ,

{4, 5, 6, 7}
21: {2, 3, 4, 6} , {2, 4, 5, 6} , {3, 4, 5, 6} ,

{3, 4, 5, 7} , {3, 5, 6, 7}
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We compute information about I(3,3) as follows:

(a) Use the degree-reverse lexicographic ordering defined
by z3 > c9 > c8 > c7 > · · · > c1 with degrees i

for ci and 3 for z3, homogenize the elements of the
Janet basis for I

(1,1)
(3,3) (see below), and add the relation

z3
3 − c9. Denote by I(3,3,z) the ideal generated by

this set in K[c1, . . . , c9, z3]. After this, one could in
principle proceed as in the case I(2,4):

(b) Compute a Janet basis from the generating set of (a).
Use degree steering to eliminate z3 by increasing the
degree of z3.

(c) End up with a Janet basis for I(3,3). Immediately
obtain the Hilbert series for the residue class ring
R(3,3).

(d) Compute a minimal set of homogeneous generators
for I(3,3) from the Janet basis in (c) by applying the
methods of Section 3.

However, steps (b) to (d) were rather hard to perform
with the computing facilities available to us. Instead we
modestly computed some starting information, such as
the list of field degrees given at the end of Section 2
based on Lemma 4.4. Further, we computed the small-
est two degrees for which the components of I(3,3) were
not trivial, by starting from the Janet basis for I(3,3,z)

from (a). The Hilbert series for the ideal is too big to be
recorded here, but the concept of multiplicative and non-
multiplicative variables for Janet bases allows us not only
to enumerate vector-space bases for each homogeneous
component (I(3,3,z))k of degree k but also, since z3

3 − c9

is in the Janet basis with all ci multiplicative, to enu-
merate vector-space bases for the subspaces (I(3,3,z))k,2

of elements of degree ≤ 2 in z3. The generating function
counting these basis vectors can be computed explicitly
as a rational function. The first few terms of the expan-
sion are

2t15 + 3t16 + 7t17 + 21t18 + 37t19 + 64t20 + 117t21

+ 172t22 + 264t23 + 388t24 + 538t25 + 735t26

+ 1009t27 + 1311t28 + 1715t29 + 2216t30 + 2798t31

+ 3511t32 + 4400t33 + · · · .

What we want to know are vector-space bases of the sub-
space (I(3,3,z))k,0 = (I(3,3))k of (I(3,3,z))k,2 of elements of
degree 0 in z3, and we have computed them for k = 29,
30, 31 and obtained dimensions 0, 19, 79, which implies
that the minimal basis number is

ε(I(3,3)) = 19t30 + 60t31 + higher-order terms.

If one computes these bases for the next few degrees, one
can hope to give this as supporting information into a run
of elimination by degree steering into the Janet basis for
I(3,3,z) to eliminate z3, where of course one would start
with a rather high degree for z3. But from the numbers
that have been computed, it should be clear that it is not
so easy to finish the calculation in a reasonable amount
of time.

7. CONCLUDING REMARKS

The elimination problem turned out to be rather diffi-
cult already for the case 9 = 3 · 3. In view of the original
recognition problem for matrix groups over finite fields, it
will certainly be easier to decide things by direct compu-
tation: Given a polynomial pnm,c(x) of degree nm over a
finite field F , decide whether it is the characteristic poly-
nomial of a Kronecker product of two matrices of degrees
n, m over F . The equations for this involving the coeffi-
cients of the characteristic polynomials of the two smaller
matrices are readily written down, as we saw, and—with
the concrete ci given—much more easily solved or else
the nonexistence of solutions checked than can be per-
formed by the general elimination. However, there will
also be a limit to this sort of computation. At that stage,
one could proceed as follows: Find a splitting field F1 for
pnm,c(x) and see whether the nm roots w1, . . . , wnm of
pnm,c(x) in F1 can be distributed into an n×m matrix of
rank 1 over F1. This is a problem for which it is easy to
give an algorithm based on the fact that for any wi there
must exist at least (n − 1)(m − 1) indices j such that
there are two different indices k, l ∈ {1, . . . , nm} − {i, j}
with wiwj = wkwl. In this case, too, it is easier to try
to compute the decomposition than to come up with any
sort of invariant deciding the existence. But in any case,
this remark throws an interesting light on the problem of
this paper, since there one does not start with the wi but
looks for conditions expressed in terms of the elementary
symmetric functions in the wi.
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