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We enumerate all the spaces obtained by gluing in pairs the
faces of the octahedron in an orientation-reversing fashion.
Whenever such a gluing gives rise to nonmanifold points, we re-
move small open neighborhoods of these points, so we actually
deal with three-dimensional manifolds with (possibly empty)
boundary.

There are 298 combinatorially inequivalent gluing patterns, and
we show that they define 191 distinct manifolds, of which 132
are hyperbolic and 59 are not. All the 132 hyperbolic manifolds
have already been considered in different contexts by other au-
thors, and we provide here their known “names” together with
their main invariants. We also give the connected sum and JSJ
decompositions for the 59 nonhyperbolic examples.

Our arguments make use of tools coming from hyperbolic geom-
etry, together with quantum invariants and more classical tech-
niques based on essential surfaces. Many (but not all) proofs
were carried out by computer.

1. INTRODUCTION

At the very beginning of his fundamental book [Thurston
79], as an example of the richness of topology in three di-
mensions, Bill Thurston mentioned the fact that there
are quite a few inequivalent ways of gluing together in
pairs the faces of the octahedron. However, to our knowl-
edge, until now, nobody had ever exactly determined the
number of nonhomeomorphic 3-manifolds arising as the
results of these gluings. In this note we give a full so-
lution to this problem, in the context of orientable (but
unoriented) manifolds. After proving that there are 298
inequivalent gluing patterns, we have in fact proved the
following:

Theorem 1.1. Let O be the octahedron and let O be the
set of homeomorphism types of 3-manifolds that can be
obtained as follows:

• First, glue together in pairs in a simplicial and
orientation-reversing fashion the faces of O, thus
getting a compact polyhedron X.
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• Second, remove from X disjoint open stars of the
nonmanifold points, thus getting a compact ori-
entable 3-manifold with (possibly empty) boundary,
all the components of which have positive genus.

Then O contains precisely 191 elements, of which 132 are
hyperbolic and 59 are not. More precisely, the numbers of
inequivalent gluings and manifolds are split according to
the topological type of the boundary as shown in Table 1,
where Σg denotes the orientable surface of genus g.

For the PL notions of polyhedron, manifold, and star,
see for instance [Rourke and Sanderson 72]. As usual
[Benedetti and Petronio 92, Ratcliffe 06, Thurston 79],
a 3-manifold M is hyperbolic if M minus the boundary
components of M homeomorphic to the torus Σ1 carries
a complete metric with constant sectional curvatures −1
and totally geodesic boundary. The removed tori give
rise to the so-called cusps of the manifold.

In addition to proving Theorem 1.1, we provide rather
detailed information on the 191 elements of O. In par-
ticular, we determine the volume and other invariants
for the 132 hyperbolic manifolds in O, and we identify
the “names” they were given either in the Callahan–
Hildebrand–Weeks census [Callahan et al. 99, Weeks 93]
of small cusped hyperbolic manifolds, or in the Frigerio–
Martelli–Petronio census [Frigerio et al. 04a, Frigerio
et al. 04b] of small hyperbolic manifolds with geodesic
boundary. We also give detailed descriptions for the 59
nonhyperbolic elements of O. The list of the initial 298
inequivalent gluing patterns, and the triangulations (in
SnapPea [Weeks 93] format) of the final 191 manifolds,
together with geometric information for the hyperbolic
ones, is available from [Heard et al. 08].

The question of counting the elements of O has a
rather transparent combinatorial flavor and appears to
be well suited to computer investigation. The approach
we have chosen relies on some rather sophisticated ge-
ometric tools developed over the last three decades by
a number of mathematicians, and it has the additional
advantage of providing detailed information on the final
191 manifolds, besides distinguishing them. To analyze
the initial 298 manifolds, we have in fact employed the
machinery of hyperbolic geometry and its algorithmic as-
pects (Thurston’s hyperbolicity equations [Thurston 79],
the Epstein–Penner [Epstein and Penner 88] and Kojima
[Kojima 90, Kojima 92] canonical decompositions, the
Sakuma–Weeks [Sakuma and Weeks 95] and Ushijima
[Ushijima 02] tilt formulas), and other powerful topolog-
ical instruments (the prime [Hempel 76] and JSJ [Jaco

and Shalen 78, Johannson 79] decompositions, the the-
ory of normal surfaces [Haken 61], and the Turaev–Viro
invariants [Turaev and Viro 92]).

We thank the referee for pointing out that the count-
ing process, without the additional benefit of a detailed
knowledge of the resulting manifolds, could have been
carried out by computer almost completely using more
classical tools, particularly the homology of finite covers.
The fact that a majority of the manifolds we have found
turn out to be hyperbolic can be viewed as a manifes-
tation of the crucial role played by hyperbolic geometry
in the context of three-dimensional topology, as chiefly
witnessed by Thurston’s geometrization, now apparently
proved by Perelman [Thurston 79, Perelman 02, Perel-
man 03a, Perelman 03b].

To prove Theorem 1.1, we have written some small
specific Haskell code (available from [Heard et al. 08])
to list the combinatorially inequivalent gluing patterns,
and then we have used the Orb and Manifold Recognizer
programs [Heard 06, Matveev and Tarkaev 06] to match
or distinguish the resulting manifolds. There were, how-
ever, some manifolds for which the computer was unable
to find hyperbolic structures and some pairs of manifolds
that it was unable to tell apart. In these instances, we
had to work by hand using classical techniques, including
properly embedded essential surfaces.

More to the point, to ensure that our final list of 191
manifolds is indeed correct, despite having been obtained
by computer, we have adopted the following safeguards:

• We have obtained the list of the 298 inequivalent
gluings of O by running a single Haskell program
after having carefully tested its various parts.

• We have then subdivided the 298 manifolds into
classes according to their boundary, which of course
we could do quickly and without risk of miscalcula-
tions.

• On each boundary class we have run two pieces of
Orb code; the first one built (approximate) hyper-
bolic structures for many manifolds and grouped
the manifolds according to volume and fundamental
group (when it was able to recognize isomorphism);
the second piece tried to match the triangulations
within each set coming from the previous step; the
result was the list of 17 + 30 + 7 + 79+ 2 + 56 = 191
manifolds that eventually turned out to be the cor-
rect one; to show this our steps were as follows.

• We employed Orb to match all the manifolds in-
dicated by it to be hyperbolic with the manifolds
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Boundary Type #(Gluings) Hyperbolic Nonhyperbolic Total

∅ 37 – 17 17
Σ1 81 9 21 30

Σ1 � Σ1 9 2 5 7
Σ2 113 63 16 79

Σ2 � Σ1 2 2 – 2
Σ3 56 56 – 56

Total 298 132 59 191

TABLE 1. Numbers of distinct manifolds arising from orientation-reversing gluings of the faces of an octahedron, with
open stars of the nonmanifold points removed.

in the known hyperbolic censuses [Callahan et al.
99, Weeks 93] (for manifolds with torus boundary)
and [Frigerio et al. 04a, Frigerio et al. 04b] (for man-
ifolds with higher genus boundary); the fact that
manifolds found by Orb to be distinct were also
listed as distinct by these sources was useful in cross-
checking that the program was behaving correctly.

• We were left to confirm that the manifolds not found
by Orb to be hyperbolic were indeed not hyperbolic,
and distinct unless matched by Orb. To do this we
separated the class of manifolds with genus-2 bound-
ary from the other ones:

– Excluding the class with genus-2 boundary,
we employed the Recognizer; the program was
totally successful in detecting topological ob-
structions to hyperbolicity and in telling man-
ifolds apart, with a single exception for a pair
of closed manifolds that we had to distinguish
by theoretical means (see below for details).

– For the 16 genus-2 boundary items, we con-
structed by hand essential annuli—thus hy-
perbolicity was impossible in all cases—and
then we analyzed the homology of finite covers,
which left us with only two pairs of potentially
equal but not matched manifolds; again we
distinguished them theoretically, as explained
below.

It is perhaps worth remarking that the three most
problematic pairs just mentioned consist of distinct
manifolds sharing the same fundamental group.

1.1 Issues of Numerical Accuracy

As already mentioned, the hyperbolic structures con-
structed by Orb [Heard 06] are found by numerical ap-
proximation only. In the cusped case they have been
checked using exact arithmetic in algebraic number fields

with the program Snap [Goodman 03], by Oliver Good-
man. For manifolds with geodesic boundary, our hyper-
bolic structures are indeed only approximate ones, but we
have found complete agreement with the results in [Frige-
rio et al. 04a], where numerical approximation was also
used, but the C++ code written to this end was totally
independent of Orb. We also note that for some of the
manifolds (in particular, for those with genus-3 bound-
ary), hyperbolicity can also be established by theoretical
means.

2. PRELIMINARIES

In this section we collect some elementary facts needed
to prove Theorem 1.1.

2.1 Polyhedra versus Manifolds

Given a gluing pattern ϕ for the faces of the octahedron
O, as described in the statement of Theorem 1.1, let us
denote by X(ϕ) the polyhedron resulting from the glu-
ing, and by M(ϕ) the 3-manifold obtained from X(ϕ) by
removing disjoint open stars of the nonmanifold points.
The following easy fact, which we leave to the reader,
shows that X(ϕ) and M(ϕ) are in fact very tightly linked:

Proposition 2.1.

• Only the points of X(ϕ) arising from the vertices of
O can be nonmanifold points of X(ϕ).

• The homeomorphism type of X(ϕ) determines that
of M(ϕ), and conversely.

Before proceeding, recall that O denotes the set of
homeomorphism classes of all M(ϕ)’s as ϕ varies in the
set of simplicial and orientation-reversing gluing patterns
of the faces of O.



476 Experimental Mathematics, Vol. 17 (2008), No. 4

2.2 Number of Inequivalent Gluings

To count the elements of O, the first step is of course to
enumerate the combinatorially inequivalent gluing pat-
terns ϕ. Since O has eight faces and there are three dif-
ferent ways of gluing together any two chosen faces, the
number of different patterns is (8−1)!!×34 = 105×81 =
8505. However, there is a symmetry group with 48 ele-
ments acting on O, so the inequivalent patterns are actu-
ally much fewer than 8505. Using a small piece of Haskell
code we have in fact shown the following:

Proposition 2.2. There exist 298 combinatorially inequiv-
alent patterns of orientation-reversing gluings of the faces
of O.

2.3 Classification According to Boundary Type

Two homeomorphic manifolds of course have homeomor-
phic boundaries. Moreover, the boundary of an ori-
entable 3-manifold is an orientable surface, which is very
easy to identify by counting the number of connected
components and computing the Euler characteristic of
each of them. So the first easy step toward understand-
ing O and proving Theorem 1.1 is to split the inequivalent
gluing patterns according to the boundary they give rise
to. Using again a Haskell program, we found the results
described in the second column of Table 1.

2.4 Further Notation

Choosing one representative for each equivalence class
of gluing patterns ϕ and constructing the correspond-
ing manifold M(ϕ), we get a set of 298 manifolds that
we denote henceforth by M. By definition, O is obtained
from M by identifying homeomorphic manifolds, and the
main issue in establishing Theorem 1.1 is indeed to de-
termine which elements of M are in fact homeomorphic
to each other. Taking advantage of the easy work already
described, we denote by MΣ the set of elements of M
having boundary Σ, thus getting a splitting of M as

M = M∅ �MΣ1 �MΣ1�Σ1 �MΣ2 �MΣ2�Σ1 �MΣ3 .

Each set MΣ, after identification of homeomorphic man-
ifolds, gives rise to some OΣ, which we further split as

OΣ = Ohyp
Σ � Onon

Σ ,

separating the hyperbolic members from the non-
hyperbolic ones.

3. HYPERBOLIC MANIFOLDS

According to the well-known rigidity theorem [Thurston
79, Benedetti and Petronio 92, Ratcliffe 06], each 3-
manifold carries, up to isometry, at most one hyperbolic
structure, as defined after the statement of Theorem 1.1.
Note that the hyperbolic structures we consider are finite-
volume by default. Moreover the following facts hold:

1. Every hyperbolic manifold with cusps or nonempty
boundary has a “canonical decomposition,” which
allows the efficient comparison of it to any other such
manifold. This is the decomposition into ideal poly-
hedra due to Epstein and Penner [Epstein and Pen-
ner 88] for cusped manifolds (noncompact and with-
out boundary), and the decomposition into trun-
cated hyperideal polyhedra due to Kojima [Kojima
90, Kojima 92] for manifolds with nonempty bound-
ary. The hyperbolic structure of a manifold, whence
(by rigidity) its topology, determines not only the
polyhedral type of the blocks of the decomposition,
but also the combinatorics of the gluings.

2. If a manifold is represented by a triangulation,
namely as a gluing of tetrahedra, both its hyper-
bolic structure (if any) and its canonical decompo-
sition can be searched algorithmically. This applies
in particular to any element of the set M of man-
ifolds we need to analyze, because the octahedron
O can be viewed as a partial gluing of four tetra-
hedra. The idea to construct the hyperbolic struc-
ture, due to Thurston [Thurston 79], is to consider
a space of parameters for the hyperbolic structures
on each individual tetrahedron, and then to express
the matching of the structures on the glued tetrahe-
dra by a system of equations, which can be solved
using numerical tools. The method for constructing
the canonical decomposition is to modify any given
geometric triangulation until the canonical decom-
position is reached. This uses the “tilt formula”
of Sakuma and Weeks [Sakuma and Weeks 95] for
cusped manifolds, and its variation due to Ushijima
[Ushijima 02], together with some ideas from [Frige-
rio and Petronio 04], for manifolds with nonempty
geodesic boundary. Neither the search for the hyper-
bolic structure nor that for the canonical decomposi-
tion is fully guaranteed to work, but in practice they
always do (perhaps after some initial randomization
of the triangulation).

3. The computer programs SnapPea [Weeks 93], by Jeff
Weeks, and Orb [Heard 06], by Damian Heard, very
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efficiently implement the procedures mentioned in
the previous point (even if SnapPea does not deal
with manifolds with geodesic boundary); the same
procedures were also used to produce the census
[Frigerio et al. 04a] of hyperbolic manifolds with
geodesic boundary up to complexity 4.

4. Both SnapPea and Orb employ numerical approxi-
mation. Moreover, in the cusped case, the solutions
found can be checked using exact arithmetic in al-
gebraic number fields with the program Snap.

3.1 Genus-3 Geodesic Boundary

To prove Theorem 1.1, for each of the six sets MΣ that
we have, we need to determine which elements of MΣ

are homeomorphic to each other, thus finding the corre-
sponding OΣ, and then to decide which elements of OΣ

are actually hyperbolic. We begin with the case Σ = Σ3,
where the result is quite striking. It was initially discov-
ered from a computer experiment [Frigerio et al. 04a] and
later established theoretically. We include a sketch of the
proof for the sake of completeness.

Proposition 3.1. The 56 elements of MΣ3 are all hyper-
bolic and distinct from each other, so OΣ3 = Ohyp

Σ3
=

MΣ3 has 56 elements. For each element of this set,
the Kojima canonical decomposition has the same single
block, namely a truncated regular hyperbolic octahedron
with all dihedral angles equal to π/6.

Proof: An easy computation of Euler characteristic shows
that a gluing ϕ defines a manifold M(ϕ) bounded by
Σ3 if and only if it identifies all 12 edges to each other.
We want to show that such an M(ϕ) is hyperbolic with
geodesic boundary by choosing a hyperbolic shape of the
truncated octahedron that is matched by ϕ. Since all
edges are glued together, this can happen only if the ge-
ometric shape is such that all edges have the same length,
i.e., the octahedron is regular. If this is the case, all dihe-
dral angles are also the same, so they must all be 2π/12.
Such an octahedron certainly does not exist in Euclidean
or spherical geometry, but it does in hyperbolic geometry.
This implies that M(ϕ) is indeed hyperbolic.

Let us now analyze the Kojima canonical decomposi-
tion of M(ϕ). To this end we recall [Kojima 90, Kojima
92] that it is dual to the cut locus of the boundary, i.e.,
to the set of points having multiple shortest paths to
∂M(ϕ). Using the fact that M(ϕ) is the gluing of a reg-
ular truncated octahedron, which is totally symmetric,
it is not too difficult to show that the Kojima decompo-

No. Sym Hom No. Sym Hom

0 trivial Z
3 28 trivial Z

3

1 trivial Z
3 29 trivial Z

3

2 trivial Z
3 30 trivial Z

3

3 trivial Z
3 31 Z2 Z

3

4 trivial Z
3 32 Z2 Z

3

5 trivial Z
3 33 Z2 Z

3

6 trivial Z
3 34 Z2 Z

3

7 trivial Z
3 35 Z2 Z

3

8 trivial Z
3 36 Z2 Z

3

9 trivial Z
3 37 trivial Z3 + Z

3

10 trivial Z
3 38 Z2 Z3 + Z

3

11 trivial Z
3 39 D2 Z3 + Z

3

12 D2 Z
3 40 Z4 Z3 + Z

3

13 Z2 Z
3 41 Z2 Z

3

14 Z2 Z
3 42 trivial Z

3

15 trivial Z
3 43 Z2 Z

3

16 D2 Z
3 44 Z2 Z

3

17 Z2 Z
3 45 Z2 Z

3

18 D4 Z
3 46 trivial Z

3

19 Z2 Z
3 47 trivial Z

3

20 Z2 Z
3 48 Z2 Z

3

21 D4 Z
3 49 trivial Z

3

22 Z2 Z
3 50 Z2 Z

3

23 Z2 Z
3 51 trivial Z

3

24 Z2 Z
3 52 trivial Z

3

25 trivial Z
3 53 trivial Z

3

26 trivial Z
3 54 Z2 Z

3

27 trivial Z
3 55 Z2 Z

3

TABLE 2. Information on the 56 elements of Ohyp
Σ3

(the compact orientable hyperbolic manifolds with
geodesic boundary of genus 3 arising from gluings of
the octahedron). We note that all these manifolds
have volume 11.448776110 . . . and can be found in the
file census 4 T3 octa.snp available from [Frigerio et
al. 04b].

sition is given by the octahedron itself, with its gluing
pattern ϕ. This implies that the geometry of M(ϕ), and
hence its topology, determines ϕ. Therefore different ϕ’s
give rise to different M(ϕ)’s.

It follows from this result that the 56 elements of Ohyp
Σ3

all have the same volume, which one can calculate to be
11.448776110 . . . via Ushijima’s formulas [Ushijima 06].
Using Orb, we have also computed the symmetry groups
and homology of the elements of Ohyp

Σ3
, as described in

Table 2.
Note that these invariants alone are far from sufficient

to distinguish the 56 elements of MΣ3 from one another.
The table also shows the position of the manifolds in the
file census 4 T3 octa.snp available from [Frigerio et al.
04b]. Here and below, Zn and Dn denote respectively
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File No. Volume Sym Hom

census 4 cusp.snp 14 8.681737155 Z2 Z
3

census 4 cusp.snp 15 8.681737155 Z2 Z
3

TABLE 3. Information on the two elements of Ohyp
Σ2�Σ1

(the orientable hyperbolic manifolds with one cusp
and geodesic boundary of genus 2 arising from glu-
ings of the octahedron).

the cyclic group with n elements and the dihedral group
with 2n elements.

3.2 Genus-2 Geodesic Boundary and One Cusp

For the case Σ = Σ2 �Σ1, the analysis of MΣ is already
contained in [Frigerio et al. 04a]:

Proposition 3.2. The two elements of MΣ2�Σ1 are hy-
perbolic and distinct from each other, so OΣ2�Σ1 =
Ohyp

Σ2�Σ1
= MΣ2�Σ1 has two elements.

Table 3 describes the symmetry group and homology
of both elements of Ohyp

Σ2�Σ1
, and reference to their posi-

tion in the files available from [Frigerio et al. 04b], as we
determined using Orb.

3.3 Genus-2 Geodesic Boundary

The following partial information on the elements of MΣ2

can be deduced from the results in [Frigerio et al. 04a]:

Proposition 3.3. The set MΣ2 (which has 113 elements)
contains the following subsets:

• A set of 14 distinct hyperbolic manifolds with Ko-
jima decomposition having one and the same block,
namely a regular truncated octahedron with all dihe-
dral angles equal to π/3.

• A set of 8 distinct hyperbolic manifolds with Ko-
jima decomposition having one and the same block,
namely a nonregular truncated octahedron.

• A set of 4 distinct hyperbolic manifolds with Kojima
decomposition having the same two blocks, namely
two identical square pyramids.

Moreover, any other hyperbolic element of MΣ2 has Ko-
jima decomposition consisting of tetrahedra only.

To complete the analysis of the hyperbolic elements
of MΣ2 , we proved the following using Orb (and then
matching the results to those in [Frigerio et al. 04a]):

Proposition 3.4. Of the 113− (14 + 8 + 4) = 87 elements
of MΣ2 not covered by Proposition 3.3, at least 37 are
hyperbolic, and they are all distinct from one another.

After Orb has been able to construct the hyperbolic
structure of an element M of M and the solution has
been verified through the matching, one can positively
determine whether M is homeomorphic to any other
given hyperbolic manifold. However, if Orb fails to con-
struct the structure, one has to prove by some other
method that M is actually nonhyperbolic. This is what
we do in the next section. In particular, we prove that
the 113 − [(14 + 8 + 4) + 37] = 50 elements of MΣ2 not
covered by Propositions 3.3 and 3.4 are indeed nonhy-
perbolic, which implies the following:

Proposition 3.5. The set Ohyp
Σ2

consists of the 63 mani-
folds described in Propositions 3.3 and 3.4.

The elements of Ohyp
Σ2

, together with the usual infor-
mation on them determined by Orb, are listed in order of
increasing volume in Table 4. Again the first column indi-
cates the file from [Frigerio et al. 04b] where the manifold
can be located in the position (starting from 0) specified
in the second column. Note that the name of the file con-
tains a description of the Kojima canonical decomposi-
tion (e.g., tetra6 means that this decomposition consists
of six tetrahedra).

3.4 Cusped Manifolds

We carried out the analysis of the hyperbolic elements of
MΣ1 and MΣ1�Σ1 using Orb, with the following result:

Proposition 3.6.

• The set MΣ1 (which has 81 elements) contains 11
hyperbolic manifolds, yielding 9 distinct homeomor-
phism types.

• The set MΣ1�Σ1 (which has 9 elements) contains 2
distinct hyperbolic manifolds.

As above for the case of boundary Σ2, failure of Orb
to find a cusped hyperbolic structure does not imply that
the structure does not exist. However, in the next sec-
tion we show that the 81 − 11 = 70 elements of MΣ1

and the 9 − 2 = 7 elements of MΣ1�Σ1 not covered by
Proposition 3.6 are indeed nonhyperbolic, which implies
the following:
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File No. Volume Sym Hom
census 3.snp 86 7.636519630 trivial Z

2

census 3.snp 87 7.636519630 Z2 Z
2

census 3.snp 88 7.636519630 Z2 Z
2

census 3.snp 89 7.636519630 Z2 Z
2

census 3.snp 90 7.636519630 Z2 Z
2

census 3.snp 91 7.636519630 Z2 Z
2

census 3.snp 92 7.636519630 trivial Z
2

census 3.snp 93 7.636519630 Z2 Z
2

census 3.snp 94 7.636519630 Z2 Z
2

census 4 T2 tetra6.snp 0 8.297977385 Z2 Z
2

census 4 T2 tetra6.snp 1 8.297977385 Z2 Z
2

census 4 T2 tetra6.snp 2 8.297977385 Z2 Z
2

census 4 T2 tetra4.snp 75 8.625848296 Z2 Z
2

census 4 T2 tetra4.snp 76 8.625848296 Z2 Z
2

census 4 T2 octa nonreg.snp 0 8.739252140 D3 Z3 + Z
2

census 4 T2 octa nonreg.snp 1 8.739252140 D3 Z3 + Z
2

census 4 T2 octa nonreg.snp 2 8.739252140 Z2 Z
2

census 4 T2 octa nonreg.snp 3 8.739252140 Z2 Z
2

census 4 T2 octa nonreg.snp 4 8.739252140 Z2 Z
2

census 4 T2 octa nonreg.snp 5 8.739252140 Z2 Z
2

census 4 T2 octa nonreg.snp 6 8.739252140 D3 Z3 + Z
2

census 4 T2 octa nonreg.snp 7 8.739252140 D3 Z3 + Z
2

census 4 T2 pyramids.snp 0 9.044841574 Z2 Z
2

census 4 T2 pyramids.snp 1 9.044841574 Z2 Z
2

census 4 T2 pyramids.snp 2 9.044841574 Z2 Z
2

census 4 T2 pyramids.snp 3 9.044841574 Z2 Z
2

census 4 T2 tetra4.snp 161 9.082538547 trivial Z
2

census 4 T2 tetra4.snp 162 9.082538547 trivial Z
2

census 4 T2 tetra4.snp 163 9.087925790 Z2 Z3 + Z
2

census 4 T2 tetra4.snp 164 9.087925790 Z2 Z3 + Z
2

census 4 T2 tetra4.snp 165 9.087925790 Z2 Z
2

census 4 T2 tetra4.snp 166 9.087925790 Z2 Z
2

census 4 T2 tetra5.snp 3 9.134474458 Z2 Z2 + Z
2

census 4 T2 tetra5.snp 4 9.134474458 D4 Z
3

census 4 T2 tetra5.snp 5 9.134474458 D4 Z
3

census 4 T2 tetra5.snp 6 9.134474458 D2 Z2 + Z
2

census 4 T2 tetra5.snp 7 9.134474458 Z2 Z2 + Z
2

census 4 T2 tetra5.snp 8 9.134474458 D2 Z2 + Z
2

census 4 T2 tetra5.snp 15 9.333442928 Z2 Z
2

census 4 T2 tetra5.snp 16 9.333442928 trivial Z
2

census 4 T2 tetra5.snp 17 9.333442928 trivial Z
2

census 4 T2 tetra5.snp 18 9.333442928 Z2 Z
2

census 4 T2 tetra5.snp 19 9.333442928 Z2 Z3 + Z
2

census 4 T2 tetra5.snp 20 9.333442928 Z2 Z3 + Z
2

census 4 T2 tetra4.snp 245 9.346204962 Z2 Z3 + Z
2

census 4 T2 tetra4.snp 246 9.346204962 trivial Z
2

census 4 T2 tetra4.snp 247 9.346204962 Z2 Z
2

census 4 T2 tetra5.snp 21 9.350261353 Z2 Z3 + Z
2

census 4 T2 tetra5.snp 22 9.350261353 Z2 Z
2

census 4 T2 octa reg.snp 0 9.415841683 D2 Z3 + Z
2

census 4 T2 octa reg.snp 1 9.415841683 D4 Z/3 + Z
2

census 4 T2 octa reg.snp 2 9.415841683 D2 Z
2

census 4 T2 octa reg.snp 3 9.415841683 trivial Z2 + Z
2

census 4 T2 octa reg.snp 4 9.415841683 Z2 Z2 + Z
2

census 4 T2 octa reg.snp 5 9.415841683 Z2 Z/2 + Z
2

census 4 T2 octa reg.snp 6 9.415841683 D3 Z6 + Z
2

census 4 T2 octa reg.snp 7 9.415841683 D3 Z6 + Z
2

census 4 T2 octa reg.snp 8 9.415841683 trivial Z2 + Z
2

census 4 T2 octa reg.snp 9 9.415841683 Z2 + Z4 Z5 + Z
2

census 4 T2 octa reg.snp 10 9.415841683 D4 Z
2

census 4 T2 octa reg.snp 11 9.415841683 D2 Z
2

census 4 T2 octa reg.snp 12 9.415841683 Z4 Z
2

census 4 T2 octa reg.snp 13 9.415841683 trivial Z
2

TABLE 4. Information on the 63 elements of Ohyp
Σ2

(the compact orientable hyperbolic manifolds with geodesic boundary
of genus 2 arising from gluings of the octahedron).



480 Experimental Mathematics, Vol. 17 (2008), No. 4

Name Volume Sym Hom

m006 2.568970601 D2 Z5 + Z

m007 2.568970601 D2 Z3 + Z

m009 2.666744783 D2 Z2 + Z

m010 2.666744783 D2 Z6 + Z

m011 2.781833912 Z Z2

m032 3.163963229 D2 Z

m033 3.163963229 D2 Z9 + Z

m036 3.177293279 D2 Z3 + Z

m038 3.177293279 D2 Z

TABLE 5. Information on the nine elements of Ohyp
Σ1

(the one-cusped orientable hyperbolic manifolds aris-
ing from gluings of the octahedron).

Name Volume Sym Hom

m125 3.663862377 D4 Z
2

m129 3.663862377 D4 Z
2

TABLE 6. Information on the two elements of Ohyp
Σ1�Σ1

(the two-cusped orientable hyperbolic manifolds aris-
ing from gluings of the octahedron).

Proposition 3.7. The set Ohyp
Σ1

(respectively, Ohyp
Σ1�Σ1

)
consists of the nine (respectively, two) manifolds de-
scribed in Proposition 3.6.

Using Orb we have determined the symmetry group
and homology of each element of Ohyp

Σ1
and Ohyp

Σ1�Σ1
, to-

gether with the name it was given in [Callahan et al.
99, Weeks 93]. This information appears in Tables 5
and 6.

4. NONHYPERBOLIC MANIFOLDS

In this section we analyze the elements of M not covered
by Propositions 3.1, 3.2, 3.3, 3.4, and 3.6, thus complet-
ing our enumeration of O. Recall that only M∅, MΣ1 ,
MΣ1�Σ1 , and MΣ2 still require some work.

4.1 Matching of Triangulations

The numbers of elements of MΣ not already recognized
as belonging to Ohyp

Σ are as described in the central col-
umn of Table 7. As already remarked, all these manifolds
come with a triangulation consisting of four tetrahedra.
Now, one of the features of Orb is to compare two trian-
gulated manifolds for equality by randomizing the initial
triangulations and matching. So we have first exploited
this feature to reduce the numbers of potentially distinct
homeomorphism types, getting the results described in
the rightmost column of Table 7. In the rest of this sec-
tion we describe the proof of the following result:

Type According Apparently Apparently Distinct
to the Boundary Nonhyperbolic After Matching

M∅ 37 17
MΣ1 70 21

MΣ1�Σ1 7 5
MΣ2 50 16

MΣ2�Σ1 – –
MΣ3 – –

TABLE 7. Numbers of apparently nonhyperbolic ele-
ments of M, and potentially distinct homeomorphism
types after the triangulation matching performed us-
ing Orb.

Proposition 4.1. For Σ = ∅, Σ1, Σ1 � Σ1, Σ2 and I =
17, 21, 5, 16, respectively, let

(
M

(i)
Σ

)I

i=1
be the manifolds

as in the rightmost column of Table 7. Then:

1. If i �= j, then M
(i)
Σ is not homeomorphic to M

(j)
Σ .

2. Each M
(i)
Σ is nonhyperbolic.

This implies Propositions 3.5 and 3.7, the equalities
Onon

Σ =
(
M

(i)
Σ

)I

i=1
for all four relevant Σ’s, and hence

Theorem 1.1. Our proof utilizes computers and theoreti-
cal work. Note that Proposition 4.1 shows that Orb was
totally efficient both in constructing the hyperbolic struc-
tures and in comparing the nonhyperbolic manifolds for
homeomorphism.

In the sequel we freely use several classical notions,
results, and techniques of 3-manifold topology, in par-
ticular the definition of essential surface, the Haken–
Kneser–Milnor decomposition along spheres, the defini-
tion and properties of Seifert fibered spaces, and the
Jaco–Shalen–Johansson decomposition along tori and an-
nuli; see [Hempel 76, Fomenko and Matveev 97, Matveev
03]. Moreover, we use the fact that if a manifold contains
a properly embedded essential surface with nonnegative
Euler characteristic, then the manifold cannot be hyper-
bolic.

4.2 The 3-Manifold Recognizer

As already mentioned, besides Orb we have employed
another piece of software, namely the 3-Manifold Recog-
nizer [Matveev and Tarkaev 06]. The input to this pro-
gram is a triangulation of a 3-manifold M , and its output
is the “name” of M , by which we mean the following:

• For a Seifert M , (one of) its Seifert structure(s).

• For a hyperbolic M , its presentation(s) as a Dehn
filling of a manifold in the tables of Weeks [Callahan
et al. 99].
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• For an irreducible M having JSJ decomposition into
more than one block, the names (as just illustrated)
of the blocks, together with the gluing instructions
between the blocks.

• For a reducible manifold, the names (as just illus-
trated) of its irreducible summands.

The program is not guaranteed always to find the name
of the manifold (for instance, it does not even attempt to
do this for manifolds with boundary of genus 2 or more,
and it happens to fail also in other cases). But it can
always compute the first homology and, in the case of
boundary of genus at most 1, the Turaev–Viro invariants
[Turaev and Viro 92], which turned out to be very useful
for us.

We now describe the proof of Proposition 4.1, breaking
it into separate sections according to the boundary type
Σ, and at the same time we provide detailed topological
information on the manifolds M

(i)
Σ .

4.2.1 Closed Manifolds. Let us start with the case
Σ = ∅. The second item in Proposition 4.1, namely the
proof that each M

(i)
∅

is nonhyperbolic, was not an issue
in this case. In fact, it has been known for a long time
[Matveev 03] that any triangulation of a closed hyperbolic
manifold contains at least nine tetrahedra, whereas each
M

(i)
∅

admits a triangulation with four tetrahedra.
To show that M

(i)
∅

�∼= M
(j)
∅

for 1 � i < j � 17, we
ran the Recognizer, which successfully identified all the
manifolds (this was also independently done by Tarkaev).
From the names (all manifolds turned out to be Seifert or
connected sums of Seifert) we could see that the M

(i)
∅

’s
were indeed all distinct, except possibly for M

(1)
∅

and
M

(2)
∅

, which were both recognized to be the connected
sum of two copies of the lens space L(3, 1). Since L(3, 1)
has no orientation-reversing automorphism, even if one
looks (as we do) at orientable but unoriented manifolds,
there are two distinct ways of performing the connected
sum of L(3, 1) with itself, so the names of M

(1)
∅

and M
(2)
∅

provided by the Recognizer were indeed ambiguous.
To show that M

(1)
∅

�∼= M
(2)
∅

, we then had to ex-
amine their triangulations by hand, introducing an ar-
bitrary orientation on each and finding the essential
sphere realizing the connected sum. Cutting along this
sphere and capping off, we saw that for M

(1)
∅

, the two
connected summands were distinctly oriented copies of
L(3, 1), while for M

(2)
∅

, they were consistently oriented.
This led us to the proof of Proposition 4.1 for Σ = ∅.
More precisely, we established the following:

Proposition 4.2. The set Onon
∅

consists of 13 irreducible
manifolds and 4 reducible ones. The irreducible mani-
folds are the Seifert spaces

S
3, P

3, S
2 × S

1, L(3, 1), L(4, 1), L(5, 2),

L(6, 1), L(9, 2), L(12, 5),
(
P

2; (3, 2), (1, 0)
)
,

(
P

2; (2, 1), (1, 1)
)
,

(
P

2; (1, 3)
)
,

(
S

2; (2, 1), (3, 1), (3, 1), (1,−1)
)
,

and the reducible ones are

P
3#P

3, P
3#L(3, 1), L(3, 1)#L(3, 1),

L(3, 1)#
( − L(3, 1)

)
.

4.2.2 One-Cusped Manifolds. In this case, both
items in Proposition 4.1 required some work. We pro-
ceeded as follows.

To prove that M
(i)
Σ1

�∼= M
(j)
Σ1

for 1 � i < j � 21, we
again employed the Recognizer, calculating the first ho-
mology group and Turaev–Viro invariants up to order 16
of each M

(i)
Σ1

. From this computation we deduced that

M
(i)
Σ1

�∼= M
(j)
Σ1

for 1 � i < j � 21 except possibly for
i = 1, 2, 3, 4 and j = i + 4. For the remaining four pairs
of manifolds, we showed that the homeomorphism was
impossible by analyzing the JSJ decompositions. Specif-
ically, M

(1)
Σ1

and M
(5)
Σ1

turned out to be Seifert and dis-

tinct, and the same happened for M
(2)
Σ1

and M
(6)
Σ1

, whereas

M
(3)
Σ1

and M
(7)
Σ1

had nontrivial JSJ decompositions, with
the same blocks but different gluing matrices, and anal-
ogously for M

(4)
Σ1

and M
(8)
Σ1

.
The results just described allowed us to conclude that

M
(i)
Σ1

is nonhyperbolic for i = 1, . . . , 8. To show that
the same holds for i = 9, . . . , 21, we used the Recog-
nizer again to compute connected-sum and JSJ decom-
positions. In each instance the desired result was re-
turned because we obtained either connected sums or
manifolds having JSJ decomposition consisting of Seifert
pieces (sometimes only one of them). It is perhaps worth
mentioning that in one case the Recognizer failed to re-
turn the answer right away, but we were able to transform
the triangulation by hand into one that the Recognizer
could handle.

These arguments led us to the proof of Proposition 4.1
for the case Σ = Σ1, and also to the next, more specific,
result. In its statement we use matrices to encode gluings
between boundary components of Seifert spaces, which
requires choosing homology bases; when the base surface
of the fibration is orientable, the homology basis is (μ, λ),
where μ is a boundary component of the base surface of
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the fibration and λ is a fiber; see [Fomenko and Matveev
97] for the nonorientable case.

Proposition 4.3. The 21 elements of the set Onon
Σ1

subdi-
vide as follows:

• two reducible manifolds, both being the connected
sum of two Seifert spaces;

• ten irreducible Seifert spaces;

• seven irreducible manifolds whose JSJ decomposition
consists of two Seifert blocks;

• two irreducible manifolds whose JSJ decomposition
consists of three Seifert blocks.

More precisely:

• The two reducible manifolds are P
3#(D2 × S

1) and
L(3, 1)#(D2 × S

1).

• The ten Seifert spaces are

D2 × S
1,

(
S

2 \ 3D2, (1, 0)
)
,

(
D2, (2, 1), (2, 1), (1, 0)

)
,

(
D2, (2, 1), (3, 1), (1,−1)

)
,

(
D2, (3, 1), (3, 2), (1, 0)

)
,

(
D2, (3, 2), (3, 2), (1,−1)

)
,

(
D2, (3, 2), (4, 1), (1,−1)

)
,

(
D2, (3, 1), (4, 1), (1, 0)

)
,

(
P

2 \ D2, (2, 1), (1, 0)
)
,

(
P

2 \ D2, (3, 2), (1, 0)
)
.

• The seven manifolds having JSJ decomposition con-
sisting of two Seifert blocks are obtained by gluing
the following pairs of Seifert spaces along the home-
omorphism represented by the matrix ( 0 1

1 0 ):
(
S

2 \ 2D2, (2, 1), (1, 0)
)
,

(
D2, (2, 1), (2, 1), (1, 0)

)
;

(
S

2 \ 2D2, (2, 1), (1, 1)
)
,

(
D2, (2, 1), (4, 3), (1,−1)

)
;

(
S

2 \ 2D2, (3, 1), (1,−1)
)
,

(
D2, (2, 1), (3, 2), (1,−1)

)
;

(
S

2 \ 2D2, (3, 2), (1, 0)
)
,

(
D2, (2, 1), (3, 2), (1,−1)

)
;

(
S

2 \ 2D2, (2, 1), (1, 0)
)
,

(
D2, (3, 1), (3, 2), (1,−1)

)
;

(
S

2 \ 2D2, (2, 1), (1,−1)
)
,

(
D2, (3, 1), (3, 1), (1,−1)

)
;

(
P

2 \ 2D2, (1, 1)
) (

D2, (2, 1), (3, 1), (1,−1)
)
.

• The two manifolds having JSJ decomposition
consisting of three Seifert blocks are obtained
by gluing two Seifert spaces to two different
boundary components of

(
S

2 \ 3D2, (1, 2)
)
. In

the first example the remaining two Seifert
blocks are both (D2, (2, 1), (3, 2), (1,−1)).
In the second example the remaining two
Seifert blocks are (D2, (2, 1), (3, 1), (1,−1)) and
(D2, (2, 1), (3, 2), (1,−1)). The gluing homeomor-
phisms are all encoded by the matrix ( 0 1

1 0 ).

Remark 4.4. The fact that M
(3)
Σ1

and M
(7)
Σ1

have JSJ de-
compositions with the same two blocks but different glu-
ing matrices, and analogously for M

(4)
Σ1

and M
(8)
Σ1

, can
be recovered from the statement just given by changing
some parameters of the exceptional fiber. This allows
one to get identical presentations of some Seifert spaces
but different gluing matrices.

4.2.3 Two-Cusped Manifolds. For the case Σ = Σ1 �
Σ1 we had to deal with five manifolds, which we did
using the Recognizer. To show that they are distinct
we computed their Turaev–Viro invariants, which led to
the desired conclusion right away. To prove that they
are not hyperbolic we determined their JSJ decomposi-
tion, which always turned out to consist of Seifert blocks,
whence the conclusion. More precisely we established the
following:

Proposition 4.5. All five elements of Onon
Σ1�Σ1

are irre-
ducible. Three of them are Seifert spaces and two have
JSJ decomposition consisting of two Seifert blocks. The
Seifert spaces are

Σ1 × [0, 1],
(
S

2 \ 2D2; (2, 1), (1,−1)
)
,

(
S

2 \ 2D2; (3, 2), (1, 1)
)
;

the Seifert blocks for the two other manifolds are re-
spectively

(
S

2\3D2; (1, 0)
)
and

(
D2; (2, 1), (3, 1), (1,−1)

)
,

and two copies of
(
S

2 \2D2; (2, 1), (1,−1)
)
, while the glu-

ing is encoded by the matrix ( 0 1
1 0 ) in both cases.

4.2.4 Genus-2 Boundary: Distinguishing Manifolds.
The case of genus-2 boundary was the hardest to settle,
in particular because it could not be dealt with using the
Recognizer. We concentrate here on the task of showing
that M

(i)
Σ2

�∼= M
(j)
Σ2

for 1 � i < j � 16 (item 1 of Propo-
sition 4.1), postponing the proof of nonhyperbolicity to
another section. We proceeded as follows:

1. We first analyzed (by hand) the Turaev–Viro invari-
ants of each M

(i)
Σ2

. This allowed us to break down
our set of 16 manifolds into three groups of four
manifolds, one group of two, and two groups of one,
such that the manifolds in each group have the same
Turaev–Viro invariants of all orders, while manifolds
in different groups have a distinct Turaev–Viro in-
variant (of order 6 or 7, as it turned out).

2. Then we determined (by computer) the homology
of the threefold coverings of the manifolds in each
group. This allowed us to conclude that M

(i)
Σ2

�∼=
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M
(j)
Σ2

for 1 � i < j � 16 except possibly i = 1, 3
and j = i+1. Moreover, it was not difficult to show
that π1(M

(i)
Σ2

) = π1(M
(i+1)
Σ2

) for i = 1, 3 (and in fact

previously we had also shown that M
(i)
Σ2

and M
(i+1)
Σ2

have the same Turaev–Viro invariants of all orders).

3. To deal with the remaining two pairs M
(1)
Σ2

, M
(2)
Σ2

and

M
(3)
Σ2

, M
(4)
Σ2

, the strategy was to find their JSJ de-
compositions. Below we explain in some detail how
this was done.

The general idea was to switch from triangulations to
the dual viewpoint of special spines of 3-manifolds, and
more generally to simple spines [Matveev 03]. The reason
why this was beneficial in this case is that a special spine
that contains a 2-component with embedded closure in-
cident to two vertices (as our spines turned out to do)
admits a so-called inverse L-move [Matveev 03], whose re-
sult is a simple spine of the same manifold. In particular,
this spine may contain an annulus (or Möbius-strip) 2-
component, and it frequently turns out that the annulus
transversal to the core of the annulus 2-component (or to
the boundary of the Möbius strip) is essential. Moreover,
if the initial spine has a small number of vertices, one
may hope that after cutting along the annulus, the spine
breaks down into easily identifiable pieces (for instance,
polyhedra that collapse onto graphs), in which case the
annulus already constitutes the JSJ splitting surface of
the manifold in question. This is precisely the strategy
that worked in our case.

Let us now turn to our specific situation. After dual-
izing the triangulations and applying the inverse L-move,
we obtained the simple spines P1, . . . , P4 shown in Fig-
ure 1.

As explained in the caption, the spines of M
(1)
Σ2

and

M
(2)
Σ2

contain an annular 2-component, while those of

M
(3)
Σ2

and M
(4)
Σ2

contain a Möbius-strip 2-component.
Let us denote by Si the properly embedded annulus or
Möbius strip transversal to the curve αi also described
in the caption of Figure 1.

We begin with the case i = 1, 2. As one sees from
the picture, cutting Pi along αi, one gets a disjoint union
of two polyhedra that collapse respectively onto a circle
and onto a graph of Euler characteristic −1. Since this
corresponds to cutting M

(i)
Σ2

along Si, we deduce that

M
(i)
Σ2

is obtained by gluing a genus-2 handlebody and a
solid torus along a boundary annulus. Looking at the
core curves of the glued annuli, it is not difficult to show
that the annulus Si is essential in M

(i)
Σ2

, so it gives the
JSJ decomposition. Finally, making a closer examination

of the gluings, we saw that the annuli used in both glu-
ings are the same, while the gluing homeomorphisms are
different. This allowed us to conclude that M

(1)
Σ2

�∼= M
(2)
Σ2

.
Let us now turn to the case i = 3, 4. Cutting Pi along

the core circle of the Möbius-strip component (which
again corresponds to cutting M

(i)
Σ2

along Si) yields a poly-
hedron that collapses onto a graph of Euler characteristic
−1. Even if we get a single polyhedron (which must be
the case, since this time the cut is along the core of a
Möbius strip), we again conclude that the initial man-
ifold is obtained by gluing a genus-2 handlebody and a
solid torus along a boundary annulus. As before, it is not
hard to show that the annulus is in fact essential, so it
gives the JSJ decomposition. In addition, we have proved
that the annulus in the boundary of the solid torus is the
same in both cases, its core being the curve of type (2, 1).
In contrast, the cores of the annuli on the boundary of
the genus-2 handlebody used to obtain M

(3)
Σ2

and M
(4)
Σ2

are those shown in Figure 2.
The conclusion that M

(3)
Σ2

�∼= M
(4)
Σ2

now follows from
the next result, the long proof of which we only outline:

Proposition 4.6. No homeomorphism of the genus-2 han-
dlebody H takes the curve �3 shown in Figure 2 (left) to
the curve �4 shown in Figure 2 (right).

Proof: As already mentioned, we restrict ourselves to in-
dicating the general scheme of our argument only. As one
sees from Figure 2, for i = 3, 4 there exists an essential
disk Di in H that intersects �i transversely in exactly two
points. Moreover, cutting H along Di, we get two solid
tori T 0

i and T 1
i such that ∂T j

i contains a distinguished
disk Δj

i and an arc βj
i properly embedded in ∂T j

i \ Δj
i .

The pair (H, �i) is obtained by gluing T 0
i to T 1

i along a
homeomorphism Δ0

i → Δ1
i , with �i being the image of

β0
i ∪ β1

i . It is actually quite easy to see that the four
triples (T j

i , Δj
i , β

j
i ) for i = 3, 4 and j = 0, 1 can be iden-

tified with each other, but after doing this, the gluing
homeomorphisms Δ0

3 → Δ1
3 and Δ0

4 → Δ1
4 differ by a ro-

tation of angle π, which is isotopic to the identity but not
in a way that preserves the endpoints of the arcs. The
proof of the proposition then follows from this claim:

Claim 4.7. For � ∈ {�3, �4}, the disk D properly embedded
in H that intersects � transversely in two points and splits
H into two solid tori is unique up to isotopy preserving �.

The proof of this claim is rather long and technical.
We consider a handle decomposition of H into one 0-
handle and two 1-handles. This yields a decomposition
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FIGURE 1. The simple spines P1, . . . , P4 of M
(1)
Σ2

, . . . , M
(4)
Σ2

. The picture always shows the boundary of a regular neigh-
borhood of the locus of nonsurface points. To get P1 from the two separate fragments shown, one must identify the two
curves marked by arrows, which constitute the core α1 of the annular 2-component of P1, while all other 2-components
are disks. The same applies to P2, which contains an annulus with core α2. To get P3 from the fragment shown, one
should attach a Möbius strip to the “long” curve α3 and a disk to the other one, and the same applies to P4, which
contains a Möbius strip bounded by a curve α4.

FIGURE 2. The core curves of the annuli used to reconstruct M
(3)
Σ2

and M
(4)
Σ2

.

of ∂H into three punctured disks: one sphere with four
holes, and two annuli. Slightly modifying the definition
in [Matveev 03], we then call normal with respect to this
decomposition a curve in ∂H that intersects each of the
punctured disks along a collection of simple arcs with
endpoints on different boundary components or along a
simple closed curve. We next establish the following two
facts:

1. Up to isotopy preserving �, there is a unique normal
curve that intersects � in two points and decomposes
H into two solid tori.

2. The boundary of D can be isotoped (preserving �)
to normal position.

This concludes our argument.

4.2.5 Genus-2 Boundary: Nonhyperbolicity. To show
that none of the manifolds M

(i)
Σ2

is hyperbolic, we used
again the idea described above. Namely, we constructed
for each M

(i)
Σ2

a simple spine with an annulus or Möbius-
strip component, and we proved that the corresponding
proper annulus in the manifold is essential. This was
done as follows:

1. For about half of the M
(i)
Σ2

’s, the special spine dual
to the initial triangulation already contained a 2-
component incident to two vertices, so we found

a simple spine with an annulus or Möbius-strip 2-
component by applying an inverse L-move, as above.
For the other M

(i)
Σ2

’s we did the same, but we first
had to change the initial special spine, by applying
first one positive T-move [Matveev 03] and then one
inverse T-move elsewhere.

2. From the spine of M
(i)
Σ2

constructed in the previous
item we obtained a properly embedded annulus Si,
which we then showed to be essential. We did this
by cutting M

(i)
Σ2

along Si, which gave the following:

(a) In two cases, a genus-2 handlebody.

(b) In six cases, the union of a genus-2 handlebody
and a solid torus.

(c) In four cases, a manifold that could be further
split along an annulus into the union of a genus-
2 handlebody and a solid torus.

(d) In four cases, the union of a solid torus and a
manifold as described in the previous point.

In all cases, analyzing the way M
(i)
Σ2

can be recon-
structed from the pieces Si cuts it into, we could
then show that it is irreducible and that within it
Si is π1-injective and not boundary-parallel, from
which we obtained the desired conclusion.
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4.2.6 Further Information for Genus-2 Boundary. The
decomposition (a)–(d) just described along annuli of the
16 elements of Onon

Σ2
provides a rather accurate descrip-

tion of the topology of these manifolds. In addition to it,
we mention that in cases (c) and (d), the second split-
ting annulus is not disjoint from the trace of Si, so the
splitting cannot be described as being along the union of
two disjoint annuli.
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