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For continuous interval maps we formulate a conjecture on the
shape of the cycles of maximum topological entropy of period
4k + 2. We also present numerical support for the conjecture.
This numerical support is of two different kinds. For periods 6,
10, 14, and 18 we are able to compute the maximum-entropy
cycles using nontrivial ad hoc numerical procedures and the
known results of [Jungreis 91]. In fact, the conjecture we for-
mulate is based on these results.

For periods n = 22, 26, and 30 we compute the maximum-
entropy cycle of a restricted subfamily of cycles denoted by C∗

n.
The obtained results agree with the conjectured ones. The con-
jecture that we can restrict our attention to C∗

n is motivated the-
oretically. On the other hand, it is worth noticing that the com-
plexity of examining all cycles in C∗

22, C∗
26, and C∗

30 is much
less than the complexity of computing the entropy of each cycle
of period 18 in order to determine those with maximal entropy,
therefore making it a feasible problem.

1. INTRODUCTION

We embark on the final stages of the program of classifica-
tion of maximum-entropy n-cycles and n-permutations.
This problem has its genesis in Šarkovs′kĭı’s theorem
[Šarkovs′kĭı 64, Šarkovs′kĭı 95], which describes an or-
dering of the set of possible periods of periodic points of
a continuous map of an interval onto itself. If f : I → I

is such a map and P is a finite, fully invariant set of f
(that is, f(P ) = P and so P is a periodic orbit or union
of periodic orbits), intrinsic information about the map
is encoded in the set P .

We can think of the set P as a permutation θ induced
by f |P in a natural way. If S = {p1, p2, . . . , pn} with
p1 < p2 < · · · < pn is any finite, fully invariant set, then
we define θ : {1, . . . , n} → {1, . . . , n}:

θ(i) = j ⇐⇒ f(pi) = pj .

The permutation θ is called the type of S.
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FIGURE 1. Two orbits of period 4 of different types.

In the early 1990s Misiurewicz and Nitecki [Misi-
urewicz and Nitecki 91], building on work of Baldwin
[Baldwin 87], developed a more detailed description of
the invariant sets of an interval map. The order that
they described encompassed not only the period of the
orbit but also its type; for example, the period-4 orbit
f(1) = 3, f(2) = 1, f(3) = 4, f(4) = 2 has a different
type from that of the period-4 orbit g(1) = 4, g(2) = 1,
g(3) = 2, g(4) = 3 (see Figure 1).

A natural question arising from this work is this: for
the sets Pn of permutations of length n and the sets Cn of
cyclic permutations of length n (n ∈ N), can we identify
those elements that represent the periodic orbits and in-
variant sets (in general) that are the most complicated in
terms of their dynamics? To answer this question, we can
consider the topological entropy of these permutations,
which gives us a numerical measure of the complexity for
each permutation.

The topological entropy of a permutation θ, which will
be denoted by h(θ), is defined as follows:

h(θ) := inf{ h(f) : f has an invariant set of type θ },

where the topological entropy h(f) of a map f , first de-
fined in [Adler et al. 65], is a topological invariant that
measures the dynamical complexity of f (for more in-
formation on the definition and basic properties of the
topological entropy, see also [Alsedà et al. 00]).

Typically, computing the entropy of a map is difficult.
However, the computation of the entropy of a permuta-
tion can be easily done using the following algebraic tools:
if S is a finite, fully invariant set for f of type θ, then
there is a unique map fθ : [1, n] → [1, n] that satisfies

(i) fθ(i) = θ(i), for i ∈ {1, . . . , n};

(ii) fθ is affine on each interval Ii = {x ∈ R : i ≤ x ≤
i+ 1} for each i ∈ {1, . . . , n− 1}.

The map fθ is known as the “connect-the-dots” map,
and clearly it has an invariant set of type θ. From this
map we can construct a matrix M(θ) with i, j entry given
by

mij =

{
1, if fθ(Ii) ⊃ Ij ,

0, otherwise,

for i, j ∈ {1, . . . , n− 1}. It is well known (see [Block and
Coppel 92, Proposition VIII.19]) that

h(θ) = log(ρ(M(θ))) ≥ 0,

where ρ(M(θ)) is the spectral radius of M(θ).
In their paper, Misiurewicz and Nitecki obtain an

asymptotic result that shows that the maximum entropy
for n-cycles and n-permutations approaches log(2n/π) as
n → ∞. To prove this result, they constructed a fam-
ily of cyclic permutations of period n ≡ 1 (mod 4) that
has the required asymptotic growth rate. Geller and
Tolosa [Geller and Tolosa 92] extended this definition
to a family of periodic orbits of period n ≡ 3 (mod 4)
and proved that this family in fact does have maximum
entropy among all n-permutations.

This family was later shown to be unique [Geller and
Weiss 95]. Since the family described is a family of
cyclic permutations, the question of which n-cycles and
n-permutations have maximum topological entropy for n
odd has been completely answered.

For the case n even, the classification turns out to
be somewhat more complicated, since the maximum-
entropy n-permutations are acyclic. All maximum-
entropy n-permutations for n even were described by
King [King 97, King 97] and independently by Geller and
Zhang [Geller and Zhang 98].

The remaining problem of classifying maximum-
entropy n-cycles (n even) has been a much tougher nut
to crack. While we can calculate the entropy of all n-
cycles for a given n in the cases of n small, the num-
ber of n-cycles grows very fast, and so this quickly be-
comes an unrealistic approach to finding a solution. De-
spite these computational restrictions, two families of
maximum-entropy 4k-cycles have been described [King
and Strantzen 01] and have recently been shown to be
the only two families with maximum entropy (up to a
reversal of orientation) [King and Strantzen 05].

The outstanding case in this classification problem is
to classify the maximum-entropy (4k + 2)-cycles, which
is the subject of our current investigation.

It is well known that the complexity of these sorts
of combinatorial problems grows factorially, so a naive
approach to this problem (generating all n-cycles and se-
lecting those with maximum entropy) is infeasible from
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a computational point of view. Therefore, to carry on
our investigation it is essential to find a valid means of
restricting the number of cycles to be considered. The
set Cn is endowed with a partial order, usually called the
forcing relation (see [Jungreis 91] or [Misiurewicz and
Nitecki 91] for details). It has been shown that topo-
logical entropy respects this partial order on Cn (see
[Misiurewicz and Nitecki 91]), so that if φ is smaller
than θ in the forcing relation, then h(φ) ≤ h(θ). As
a consequence, any candidates for maximum-entropy cy-
cles must be forcing-maximal in Cn. According to Jun-
greis, the forcing-maximal cycles satisfy the statements of
Corollary 9.6 and Theorem 9.13 of [Jungreis 91]. We will
call such cycles Jungreis cycles (see Section 2 for a pre-
cise definition). Therefore, any candidates for maximum-
entropy cycles must be Jungreis.

Using appropriate numerical procedures, we have com-
puted the topological entropy of all Jungreis cycles in
Cn for n ≤ 17, with the aim of both obtaining the un-
known maximal entropy cycles for periods 6, 10, and 14
and testing the speed of this naive approach. Moreover,
by developing nontrivial numerical procedures, which is
one of the main issues of this paper, we have also iden-
tified the maximum-entropy cycle for period 18. So, we
have obtained the maximum-entropy (4k + 2)-cycles for
k = 1, 2, 3, 4.

Performing the same kind of numerical exploration
for n ≥ 22 is beyond any current computer capabili-
ties. However, by generalizing the results obtained for
n ≤ 18 we have defined three families of cycles (one for
n = 4k+2, k ≥ 3, k odd, and two for n = 4k+2, k even)
with entropies that act as lower bounds for the maximum
topological entropy in Cn for each respective case. Fur-
thermore, we believe that these families are indeed those
whose entropies are maximal in Cn.

This paper is organized as follows. In Section 2 we
state Jungreis’s results and define the notion of a Jun-
greis cycle. We split the set of all Jungreis cycles into two
subsets C0

n and C1
n, which are constructed and explored

using two different computational approaches. The nota-
tion, tools, and algorithmic strategies to explore C0

n and
C1

n are developed in Sections 3 and 4 respectively. These
techniques have been used to systematically explore the
case n = 18. The results obtained are also reported in
these sections.

In Section 5 we introduce the families of (4k + 2)-
cycles that generalize the previous computational results.
These families are candidates for maximum-entropy cy-
cles. Finding the maximum-entropy n-cycle using the
algorithm described in Sections 3 and 4 is not feasible in

computational terms when n > 18. So, in Section 6 we
study the problem of finding entropy-maximal (4k + 2)-
cycles, k ≥ 5, on a restricted set of cycles that is a sub-
class of C0

n. The validity of this restriction is motivated
theoretically and justified numerically in the same sec-
tion. Finally, in Section 7 we derive some conclusions
and formulate the conjectures supported by the numeri-
cal experiments motivating the paper.

The C++ code of the programs that we have used to
perform the computations in the paper, together with a
file with brief instructions describing how to compile and
use them, are available from http://www.mat.uab.cat/
∼alseda/research/.

2. JUNGREIS CYCLES

An n-permutation θ will be called maximodal if every
point 1, 2, . . . , n is either a local maximum or a local min-
imum for fθ. An n-cycle θ will be called a Jungreis cycle
if it is maximodal and fθ satisfies one of the following
conditions:

(J.i) all maximum values are above all minimum val-
ues;

(J.ii) exactly one maximum value is less than some min-
imum value and exactly one minimum value is
greater than some maximum value.

The sets of Jungreis n-cycles satisfying (J.i) and (J.ii)
will be respectively denoted by C0

n and C1
n.

The following result is an immediate consequence of
Corollary 9.6 and Theorem 9.13 of [Jungreis 91]1 together
with the previously stated fact that topological entropy
respects the forcing relation:

Theorem 2.1. Each maximum-entropy cycle is a Jungreis
cycle.

Hence, to compute the maximum-entropy n-cycle, it
is enough to explore the class of all Jungreis n-cycles.
To have an idea of the computational complexity of this
task, see in Table 1 the number of Jungreis n-cycles for
each n between 4 and 17.

In the cases n ≤ 17 (in particular, for n = 4k + 2 for
k ≤ 3) we have calculated the entropies of all Jungreis n-
cycles using a straightforward procedure. Specifically, we
generate all maximodal n-cycles in lexicographic order
and we discard those that are not Jungreis. For each

1In fact, Jungreis proves that the forcing-maximal cycles satisfy
a third condition, which we do not consider here, since it is too
difficult to implement algorithmically in an efficient way.
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n Card(C0
n) Card(C1

n) Total

4 2 0 2
5 2 1 3
6 7 5 12
7 24 15 39
8 72 105 177
9 288 561 849

10 1452 3228 4680
11 8640 20548 29188
12 43320 145572 188892
13 259200 1084512 1343712
14 1814760 8486268 10301028
15 14515200 73104480 87619680
16 101606400 636109560 737715960
17 812851200 5937577920 6750429120

TABLE 1. The number of elements in C0
n and C1

n.

remaining cycle, we compute the Markov matrix and its
spectral radius using the power method. The output of
the program is the maximum spectral radius in this set.

This direct method has been implemented in C++ and
when executed on a standard personal computer, gives
the maximum entropy for cycles of period less than 14 in
a matter of seconds. The case 14 takes a few minutes. For
periods 15, 16, and 17, the program has to be executed
on a more-powerful computer,2 with running times of
about half an hour, 5 hours, and 38 hours respectively.3

In Table 2 we present the collection of maximum-entropy
n-cycles for n ∈ {4, . . . , 17} together with their respective
entropies.

Of course, the results for periods 6, 10, and 14 are
new and have been obtained using the method above.
Since the maximum-entropy cycles for periods different
from 6, 10, and 14 are already known, it was not strictly
necessary for us to perform these lengthy computations
in these cases. Our purpose in doing so was firstly, to
gain an estimate of how long the execution of our method
would take in each case; secondly, to determine how fast
the execution time was increasing from one period to the
next (to estimate the feasibility of the study of period 18
with the same techniques); and finally to verify that we
had developed the procedure in a valid way by testing it
in known situations.

In view of our previous discussion (and the reported
execution times), extending the investigation to periods
larger than 17 has proved challenging, since the number
of Jungreis 18-cycles is already too large to be explored

2In our case, a Dual Xeon at 2.66 GHz with hyperthreading.
3With a CPU usage higher than 95%.

by this straightforward method. In Sections 3 and 4 we
introduce some new tools to construct and explore the
sets C0

n and C1
n (n even) in an efficient way. These tools

have been shown to be powerful enough to test all Jun-
greis 18-cycles in a reasonable amount of time.

3. EFFICIENT GENERATION OF CYCLES IN C0
n

In this section, C0 will stand for C0
n. Each permuta-

tion θ ∈ Pn will be written as a sequence (c1, c2, . . . , cn),
where ci = θ(i). Hence the set Pn will be used to denote
both the set of n-permutations and the set of sequences
{(c1, c2, . . . , cn) : {c1, c2, . . . , cn} = {1, 2, . . . , n}}, with-
out confusion.

For a sequence α = (c1, c2, . . . , cn) with 1 ≤ ci ≤ n,
the dual of α, denoted by d(α), is the sequence

(n+ 1 − cn, n+ 1 − cn−1, . . . , n+ 1 − c1).

Observe that d(d(α)) = α. It is well known that when
θ ∈ Pn, the entropies of θ and d(θ) are equal, since
the corresponding connect-the-dots maps are topologi-
cally conjugated.

For the remainder of Sections 3 and 4, we will assume
that p ≥ 3 is an integer and that n = 2p. Also, Np and
Qp will denote respectively the set of all sequences of p
distinct integers (c1, c2, . . . , cp) such that 1 ≤ ci ≤ n and
the analogous set for p+1 ≤ ci ≤ n, i = 1, 2, . . . , p. Note
that Pp, Qp ⊂ Np.

In what follows we will also use the following three
maps:

• σ̂+ : {1, 2, . . . , p} → {1, 2, . . . , p} defined by

σ̂+(a) :=

{
a+ 1 if a < p,
1 if a = p;

• σ̂− : {p+ 1, p+ 2, . . . , n} → {p+ 1, p+ 2, . . . , n} de-
fined by

σ̂−(a) :=

{
a− 1 if a > p+ 1,
n if a = p+ 1;

• δ̂ : {1, 2, . . . , n} → {1, 2, . . . , n} defined by δ̂(a) :=
n+ 1 − a.

Observe that δ̂(σ̂+(a)) = σ̂−(δ̂(a)) for every a ∈
{1, 2, . . . , p} and δ̂(σ̂−(a)) = σ̂+(δ̂(a)) for every a ∈
{p+ 1, p+ 2, . . . , n}.
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n Maximum-Entropy Cycles Entropy

4 (2,4,1,3),
(3, 1, 4, 2) 0.881373587 . . .

5 (2, 4, 1, 5, 3) 1.083936863 . . .
6 (3, 6, 2, 5, 1, 4) 1.256056722 . . .
7 (4, 6, 2, 7, 1, 5, 3) 1.454520522 . . .
8 (4, 6, 1, 8, 2, 7, 3, 5),

(5, 3, 7, 2, 8, 1, 6, 4) 1.609651344 . . .
9 (4, 6, 2, 8, 1, 9, 3, 7, 5) 1.721042556 . . .

10 (6, 4, 9, 3, 8, 2, 10, 1, 7, 5) 1.815568127 . . .
11 (6, 8, 4, 10, 2, 11, 1, 9, 3, 7, 5) 1.929670502 . . .
12 (6, 8, 4, 10, 3, 11, 1, 12, 2, 9, 5, 7),

(7, 5, 9, 2, 12, 1, 11, 3, 10, 4, 8, 6) 2.024121348 . . .
13 (6, 8, 4, 10, 2, 12, 1, 13, 3, 11, 5, 9, 7) 2.101379638 . . .
14 (7, 9, 4, 10, 1, 14, 2, 12, 3, 13, 5, 11, 6, 8) 2.169240867 . . .
15 (8, 10, 6, 12, 4, 14, 2, 15, 1, 13, 3, 11, 5, 9, 7) 2.247430219 . . .
16 (8, 10, 6, 12, 3, 15, 1, 16, 2, 14, 4, 13, 5, 11, 7, 9),

(9, 7, 11, 5, 13, 4, 14, 2, 16, 1, 15, 3, 12, 6, 10, 8) 2.315471390 . . .
17 (8, 10, 6, 12, 4, 14, 2, 16, 1, 17, 3, 15, 5, 13, 7, 11, 9) 2.374577194 . . .

TABLE 2. The maximum-entropy n-cycles for periods smaller than 18. The notation (c1, c2, . . . , cn) for an n-cycle θ means
that ci = θ(i) for 1 ≤ i ≤ n.

These three maps can be extended, in a straightfor-
ward way, to self-maps of Np as follows. We define the
map σ+ : Pp → Pp by setting

σ+
(
a1, a2, . . . , ap

)
:=

(
σ̂+(a1), σ̂+(a2), . . . , σ̂+(ap)

)
,

the map σ− : Qp → Qp by

σ−(
a1, a2, . . . , ap

)
:=

(
σ̂−(a1), σ̂−(a2), . . . , σ̂−(ap)

)
,

and finally, the map δ : Np → Np by

δ(a1, a2, . . . , ap) :=
(
δ̂(ap), δ̂(ap−1), . . . , δ̂(a1)

)
.

The next result follows easily from the above defini-
tions.

Lemma 3.1. The following statements hold:

1. For every α ∈ Np it follows that δ(δ(α)) = α.

2. σ+ is a bijection from Pp onto Pp.

3. σ− is a bijection from Qp onto Qp.

4. δ is a bijection between Pp and Qp.

5. For every α in Pp it follows that δ(σ+(α)) = σ−(δ(α)).

6. For every α in Qp it follows that δ(σ−(α)) =
σ+(δ(α)).

Definition 3.2. Let α = (a1, a2, . . . , ap) and β =
(b1, b2, . . . , bp) be sequences fromNp. Then, the sequence

(a1, b1, a2, b2, . . . , ap, bp)

of length n will be denoted by α⊕ β. Now we define the
following two products:

cross product: For α, β ∈ Np we define

α⊗ β := α⊕ δ(β).

dot product: For α, β ∈ Pp we define

α� β := σ−(δ(α)) ⊕ σ+(β).

The proof of the next result is a simple exercise that
follows directly from Lemma 3.1.

Lemma 3.3. Let α, β ∈ Np. Then, d(α⊕β) = δ(β)⊕δ(α),
d(α ⊗ β) = β ⊗ α, and whenever α, β ∈ Pp, d(α � β) =
β � α.

Remark 3.4. Clearly, each cycle θ ∈ C0 can be writ-
ten as θ = α ⊕ β with α = (a1, a2, . . . , ap) and β =
(b1, b2, . . . , bp), where either

(i) α ∈ Pp and β ∈ Qp, in which case the minimum
values are {a1, a2, . . . , ap} and the maximum values
are {b1, b2, . . . , bp}, or
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(ii) α ∈ Qp and β ∈ Pp, in which case the maximum
values are {a1, a2, . . . , ap} and the minimum values
are {b1, b2, . . . , bp}.

We define C0,m to be the subset of C0 that contains
all cycles for which fθ(1) is a minimum, and C0,M to be
the subset of C0 that contains all cycles for which fθ(1)
is a maximum. We note that θ satisfies Remark 3.4(i)
precisely when θ ∈ C0,m, and θ satisfies Remark 3.4(ii)
precisely when θ ∈ C0,M .

By combining Remark 3.4 and Lemma 3.1 we easily
obtain the following result, which says that every cycle
in C0 can be written either as a cross product or as a dot
product of two permutations in Pp. This is the key result
in this section and the one that motivated the definitions
of cross and dot product.

Proposition 3.5. If θ ∈ C0,m then θ = θ1 ⊗ θ2 for some
θ1, θ2 ∈ Pp. If θ ∈ C0,M , then θ = θ1 � θ2 for some
θ1, θ2 ∈ Pp.

Remark 3.6. For every α, β ∈ Pp it follows that θ = α⊗β
and θ′ = α� β are elements of Pn that are always max-
imodal and have all maxima above all minima. More-
over, fθ(1) is a minimum, whereas fθ′(1) is a maxi-
mum. Despite these facts, the converse of Proposition
3.5 does not hold, since in general, α ⊗ β and α � β

need not be cycles. To see this, consider the follow-
ing examples: (3, 1, 2) ⊗ (1, 2, 3) = (3, 4, 1, 5, 2, 6), which
is not a cycle because it contains the cycle {1, 3}, and
(2, 3, 1)� (1, 2, 3) = (5, 2, 6, 3, 4, 1), which has 2 as a fixed
point.

In view of all we have said above, if the cross (respec-
tively dot) product of two elements of Pp belongs to Cn,
then it clearly belongs to C0,m, respectively C0,M .

3.1 Algorithmic Strategy to Generate C0

We create a list, A, consisting of all elements of Pp en-
dowed with any order � (a natural candidate is the lexi-
cographic order). In view of Proposition 3.5 and Remark
3.6, we have to compute all products α⊗β and α�β, for
α, β ∈ A, and in each case, check whether the obtained
permutation is a cycle. Note that since the entropies of
a cycle and its dual are equal, Lemma 3.3 implies that
it is enough to consider only those products α ⊗ β and
α� β for α, β ∈ A such that α � β.

This algorithm is still inefficient, since we spend a lot
of time performing products that do not produce cycles.
For instance, there is a substantial proportion of permu-

tations α ∈ Pp such that α⊗ β and α� β are not cycles
for any β. To improve efficiency, these α’s should be dis-
carded from A. Observe that neither condition can be
derived from the other (for instance, (2, 3, 1) ⊗ β never
gives a cycle, while (2, 3, 1) � (3, 2, 1) is a cycle). Next
we state and prove some results that allow us to decide
whether a permutation α can be deleted from A.

For a, b ∈ N with 1 ≤ a ≤ b, we establish the following
notation:

[a, b] := {m ∈ N : a ≤ m ≤ b};
O[a, b] := {m ∈ N : m is odd and a ≤ m ≤ b};
E[a, b] := {m ∈ N : m is even and a ≤ m ≤ b}.

For each α ∈ Pp, we define two injective maps

φα : O[1, n] → [1, p]

given by

φα(2i− 1) = α(i),

for 1 ≤ i ≤ p, and

ϕα : O[1, n] → [p+ 1, n]

given by

ϕα(n+ 1 − 2i) =

{
n− α(i) if α(i) �= p,

n if α(i) = p,

for 1 ≤ i ≤ p.

Lemma 3.7. Let α ∈ Pp. Then α ⊗ β is not a cycle for
any β ∈ Pp if and only if φα has a cycle.

To better understand the meaning of the above lemma
and the definition of the map φα, we consider the follow-
ing example.

Example 3.8. Let α = (3, 4, 2, 1, 5) ∈ P5. Then,

φα : {1, 3, 5, 7, 9} → {1, 2, 3, 4, 5},

where φα(1) = 3, φα(3) = 4, φα(5) = 2, φα(7) = 1,
and φα(9) = 5. Each point in O[1, 10] has a finite φα-
orbit that terminates with an even number or is a cycle
of odd numbers. Here, Orbφα(1) = {1, 3, 4}, Orbφα(3) =
{3, 4}, Orbφα(5) = {5, 2}, Orbφα(7) = {7, 1, 3, 4}, and
Orbφα(9) = {9, 5, 2}, and φα has no cycles.
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We note that when φα has no cycles,

(i) Orbφα is a sequence of numbers that terminates ex-
actly when an even number is reached;

(ii)
⋃

i∈O[1,n] Orbφα(i) = [1, p]∪O[1, n]. Hence, the ele-
ments of E[p+ 1, n] are precisely those that do not
appear in Orbφα(i) for any i ∈ O[1, n].

When φα has no cycles, there always exists a β such
that θ := α ⊗ β is a cycle. To construct such a θ in the
example above, we first take the φα-orbits of maximal
length: Orbφα(7) = {7, 1, 3, 4} and Orbφα(9) = {9, 5, 2}.
Then we set θ(i) = φα(i) for each i ∈ O[1, n], θ(2) = 7,
θ(4) = 6, θ(6) = 8, θ(8) = 10 and θ(10) = 9. This
gives a permutation θ = (3, 7, 4, 6, 2, 8, 1, 10, 5, 9), which
is clearly cyclic. In this case, θ = α ⊗ (2, 1, 3, 5, 4).
This construction is not unique. Observe that we could
just as easily have chosen θ(2) = 6, θ(4) = 9, θ(6) =
8, θ(8) = 10, and θ(10) = 7, giving the cycle θ =
(3, 6, 4, 9, 2, 8, 1, 10, 5, 7) = α⊗ (4, 1, 3, 2, 5).

Proof of Lemma 3.7: Assume that φα has an m-cycle X .
In particular, each element of X is odd and not larger
than p, so that m < p/2 + 1. Let β ∈ Pp and θ :=
α ⊗ β ∈ Pn. By the definition of the cross product we
have α(i) = θ(2i − 1) for 1 ≤ i ≤ p. So θ and φα take
the same values in O[1, n], and therefore, X is also an
m-cycle of θ. Since m < p/2+1 < n, θ is not an n-cycle.

Now assume that φα has no cycles. We will show that
α⊗ β is an n-cycle for some β ∈ Pp. Observe that

θ := α⊗ β

= (α1, n+ 1 − βp, α2, n+ 1 − βp−1, . . . , αp, n+ 1 − β1)

= (φα(1), γ2, φα(3), γ4, . . . , φα(n− 1), γn),

where γ2i denotes n+ 1 − βp+1−i for 1 ≤ i ≤ p. To end
the proof of the lemma it is enough to choose each γ2i in
such a way that the resulting α⊗β is a cycle. To do this,
we proceed as follows: Recall that φα takes values in [1, p]
and that φ−1

α ([1, p]) = O[1, n]. Therefore, by backward
iteration of φα, for each l ∈ E[1, p] we can construct a
sequence

{
i0l , i

1
l , . . . , i

ml−1
l

}
such that

1. ml ≥ 1,

2. i0l ∈ O[p+ 1, n],

3. ijl ∈ O[1, p] for 1 ≤ j ≤ ml − 1,

4. φα

(
ijl

)
= ij+1

l for 0 ≤ j ≤ ml−2 and φα

(
iml−1
l

)
= l.

Moreover, since we are assuming that φα has no cycles,
it follows that for each i ∈ O[1, n], some φα-iterate of i
belongs to E[1, p]. Hence,⋃

l∈E[1,p]

{
i0l , i

1
l , . . . , i

ml−1
l

}
= O[1, n].

Let m be the cardinality of E[1, p] (so m equals p/2 if p
is even and (p− 1)/2 if p is odd). Now we define

γ2j = θ(2j) :=

⎧⎪⎨⎪⎩
i02j+2, for 1 ≤ j < m,

2j + 2, for m ≤ j ≤ p− 1,
i02, if j = p.

Then, the permutation α⊗ β is the cycle

i02, i
1
2, . . . , 2, i

0
4, i

1
4, . . . , 4, . . . , i

0
2m, i

1
2m, . . . , 2m,

2m+ 2, 2m+ 4, . . . , n

(where the successive iterates of i02 are consecutively writ-
ten from left to right).

The proof of the next result is analogous to that of
Lemma 3.7, and hence it is omitted:

Lemma 3.9. Let α ∈ Pp. Then α � β is not a cycle for
any β ∈ Pp if and only if ϕα has a cycle.

Corollary 3.10. Let α ∈ Pp. If φα has a cycle that does
not contain p then α⊗β and α�β are not cycles for any
β ∈ Pp.

Proof: By Lemma 3.7, we have only to prove that
α � β is not a cycle for any β ∈ Pp. By Lemma
3.9, it is enough to show that ϕα has a cycle. Let
X = {x, φα(x), . . . , φm−1

α (x)} be a cycle of φα not con-
taining p and consider the map ϕ : O[1, n] → [p+ 1, n]
given by ϕ(n + 1 − 2i) = n − α(i) for 1 ≤ i ≤ p.
Since X is a cycle of the map 2i − 1 → α(i), obviously
n−X := {n− x, n− φα(x), . . . , n− φm−1

α (x)} is a cycle
of ϕ. Moreover, since p /∈ X , then p = n − p /∈ n − X .
So, from the definition of the maps ϕα and ϕ it follows
that they take equal values over n−X . Therefore, n−X
is also a cycle of ϕα.

In view of Corollary 3.10, each permutation α ∈ Pp

such that φα has a cycle not containing p can be deleted
from A. This trick has allowed us to significantly shorten
the length of A, thus reducing the total number of cross
and dot products performed, and hence the combinatorial
complexity of the task.



398 Experimental Mathematics, Vol. 17 (2008), No. 4

The task of generating the reduced list A taking into
account Corollary 3.10, performing all the products, and
computing the entropy of each product that gives rise to
a cycle has been implemented in C++ and executed for
period 18 in eight separate parallel jobs (four dealing with
each kind of product, cross and dot) on a cluster of Dual
Xeon computers at 2.66 GHz with hyperthreading, with
an execution time of about 6.5 hours.4 This procedure
has given

(10, 8, 12, 5, 13, 3, 15, 4, 16, 2, 18, 1, 17, 6, 14, 7, 11, 9)

= (7, 4, 1, 9, 2, 3, 5, 6, 8)� (7, 4, 2, 3, 1, 9, 5, 6, 8)

as the maximum-entropy cycle in C0
18, with entropy

log(11.33428901405 . . .).

4. EFFICIENT GENERATION OF CYCLES IN C1
n

In this section, C1 will stand for C1
n. Also, recall that

p ≥ 3 is an integer and n = 2p. Let A− ⊂ Np be the
set of sequences (a1, a2, . . . , ap) such that ai > p for a
unique i ∈ [1, p] and let A+ ⊂ Np be the set of sequences
(a1, a2, . . . , ap) such that ai ≤ p for a unique i ∈ [1, p].

The next lemma is an immediate consequence of
Lemma 3.1(1) and the definitions of A− and A+:

Lemma 4.1. δ(A+) = A− and δ(A−) = A+.

Remark 4.2. Clearly, each cycle θ ∈ C1 can be writ-
ten as θ = α ⊕ β with α = (a1, a2, . . . , ap) and β =
(b1, b2, . . . , bp), where either

(i) α ∈ A− and β ∈ A+, in which case the minimum
values are {a1, a2, . . . , ap} and the maximum values
are {b1, b2, . . . , bp}, or

(ii) α ∈ A+ and β ∈ A−, in which case the maximum
values are {a1, a2, . . . , ap} and the minimum values
are {b1, b2, . . . , bp}.

It is worth noticing that, in both cases, ai �= bj for
any i, j.

We define C1,m to be the subset of C1 that contains
all cycles for which fθ(1) is a minimum, and C1,M to be
the subset of C1 that contains all cycles for which fθ(1)
is a maximum. We note that θ satisfies Remark 4.2(i)
precisely when θ ∈ C1,m, and θ satisfies Remark 4.2(ii)
precisely when θ ∈ C1,M .

4With a CPU usage higher than 95% for each job.

We will next show that any cycle in C1,m can be writ-
ten as a cross product of two elements of A− satisfying
certain properties that will be characterized in detail.

Lemma 4.3. Assume that θ ∈ C1,m and let α =
(a1, a2, . . . , ap) ∈ A− and β = (b1, b2, . . . , bp) ∈ A+ be
such that θ = α⊕ β. Then:

i.m: ai �= n for 1 ≤ i ≤ p;

i.M : bi �= 1 for 1 ≤ i ≤ p;

ii.m: there is an i ∈ [1, p] such that ai = 1;

ii.M : there is an i ∈ [1, p] such that bi = n;

iii.m: if ai = n− 1 for some i then i = 1;

iii.M : if bi = 2 for some i then i = p;

iv.m: a1 �= 1;

iv.M : bp �= n.

Proof: Since θ ∈ C1,m, the minimum values
are {a1, a2, . . . , ap} and the maximum values are
{b1, b2, . . . , bp}. Set θ = (c1, c2, . . . , cn). Note that
ai = c2i−1 and bi = c2i for 1 ≤ i ≤ p. Statement i.m
follows from the fact that n cannot be a minimum value.

Statement i.M follows from the fact that 1 cannot be
a maximum value. Statement ii.m follows directly from
i.M . Statement ii.M follows directly from i.m. For state-
ment iii.m, in a maximodal n-permutation, if n − 1 is a
minimum value, then it has to be the image of either 1 or
n (since there is only one integer in the range [1, n] larger
than n− 1). Hence, either c1 = n− 1 or cn = n− 1. But
cn = bp ∈ β; hence cn �= n − 1, since we have assumed
that ai = n−1 ∈ α. Statement iii.M follows analogously.
To prove statement iv.m, if a1 = 1, then c1 = 1 and θ is
not a cycle. Statement iv.M follows from the fact that if
bp = n, then cn = n and θ is not a cycle.

The proof of the following lemma follows directly from
the definition of d.

Lemma 4.4. If γ ∈ A− satisfies properties i.m through
iv.m, then δ(γ) satisfies properties i.M through iv.M .

The next result states that each cycle in C1,m can be
written as a cross product of two elements of A−.

Lemma 4.5. If θ ∈ C1,m, then θ = θ1 ⊗ θ2 for some
θ1, θ2 ∈ A− satisfying properties i.m through iv.m.
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Proof: By Lemma 4.3, θ = α ⊕ β with α ∈ A− sat-
isfying i.m through iv.m and β ∈ A+ satisfying i.M
through iv.M . From Lemma 4.1 we have δ(β) ∈ A−,
and from Lemma 4.4, it satisfies i.m through iv.m. By
the definition of the cross product and using the fact that
δ(δ(β)) = β, we can write θ = α⊗ δ(β). So we are done
by taking θ1 = α and θ2 = δ(β).

Remark 4.6. Obviously, the converse of Lemma 4.5 does
not hold. The cross product of two elements from A−

that satisfy properties i.m through iv.m may not give an
element of C1,m for two reasons. The first one is that
such a product may fail to give a cyclic permutation as
shown in the following example (here p = 9):

(10, 1, 3, 4, 5, 6, 7, 8, 9)⊗ (2, 5, 8, 1, 3, 9, 6, 12, 4)

= (10, 15, 1, 7, 3, 13, 4, 10, 5, 16, 6, 18, 7, 11, 8, 14, 9, 17).

(The result of the above product is not a permutation
since 10 and 7 appear twice while 2 and 12 are omitted
and, furthermore, it contains the 2-cycle {7, 4}.)

The second problem we may have is that even when
the product of two elements from A− gives a cycle, we
cannot guarantee in advance that this cycle will be max-
imodal:

(10, 1, 3, 4, 5, 6, 7, 8, 9)⊗ (17, 8, 7, 6, 5, 3, 2, 1, 4)

= (10, 15, 1, 18, 3, 17, 4, 16, 5, 14, 6, 13, 7, 12, 8, 11, 9, 2).

What is clear from the construction is that when the
product of two elements from A− satisfying properties
i.m through iv.m gives a maximodal cycle, then this cycle
must belong to C1,m.

Our next step is to show that in a similar way as be-
fore, every element of C1,M can be written as a cross
product of two elements of A+ satisfying certain proper-
ties that will be characterized in detail.

Lemma 4.7. Assume that θ ∈ C1,M and let α =
(a1, a2, . . . , ap) ∈ A+ and β = (b1, b2, . . . , bp) ∈ A− be
such that θ = α⊕ β. Then

I.M : ai �= 1 for 1 ≤ i ≤ p;

I.m: bi �= n for 1 ≤ i ≤ p;

II.M : there is an i ∈ [1, p] such that ai = n;

II.m: there is an i ∈ [1, p] such that bi = 1;

III.M : ai �= 2 for 1 ≤ i ≤ p;

III.m: bi �= n− 1 for 1 ≤ i ≤ p.

Proof: Since θ ∈ C1,M , the maximum values
are {a1, a2, . . . , ap} and the minimum values are
{b1, b2, . . . , bp}. Set θ = (c1, c2, . . . , cn). Note that
ai = c2i−1 and bi = c2i for 1 ≤ i ≤ p. Statement I.M
follows from the fact that 1 cannot be a maximum value.
Statement I.m follows from the fact that n cannot be a
minimum value.

Statement II.M follows directly from I.m. Statement
II.m follows directly from I.M .

For statement III.M , assume that ai = 2 for some
i. In a maximodal n-permutation, if 2 is a maximum
value then it has to be the image of either 1 or n (since
there is only one integer from 1 to n smaller than 2).
Hence, either c1 = 2 or cn = 2. But cn = bp ∈ β, and
hence cn �= 2, since we have assumed that ai = 2 ∈ α.
Therefore, 2 = c1 = a1. But since 1 is a maximum of θ,
c2 = 1. Thus {1, 2} is a 2-periodic orbit of θ, and θ is
not a cycle, a contradiction.

For statement III.m, assume that bi = n− 1 for some
i. In a maximodal n-permutation, if n − 1 is a mini-
mum value, then it has to be the image of either 1 or n
(since there is only one integer from 1 to n larger than
n − 1). Hence either c1 = n − 1 or cn = n − 1. But
c1 = a1 ∈ α, and hence c1 �= n − 1, since we have as-
sumed that bi = n− 1 ∈ β. Therefore, n− 1 = cn = bp.
But since n is a minimum of θ, cn−1 = n. Thus
{n− 1, n} is a 2-periodic orbit of θ, and θ is not a cycle,
a contradiction.

The proof of the following lemma is straightforward.

Lemma 4.8. If γ ∈ A− satisfies properties
I.m through III.m, then δ(γ) satisfies properties I.m
through III.M .

Finally, the proof of the next lemma is analogous to
that of Lemma 4.5 by replacing Lemmas 4.3 and 4.4 by
Lemmas 4.7 and 4.8, respectively.

Lemma 4.9. If θ ∈ C1,M , then θ = θ1 ⊗ θ2
for some θ1, θ2 ∈ A+ satisfying properties I.M
through III.M .

Remark 4.10. As in the case of Lemma 4.5, the converse
of Lemma 4.9 does not hold for similar reasons. The
examples (also for the case p = 9) are

(13, 18, 4, 14, 15, 16, 12, 10, 11)

⊗ (14, 10, 11, 8, 17, 18, 15, 12, 16)

= (13, 3, 18, 7, 4, 4, 14, 1, 15, 2, 16, 11, 12, 8, 10, 9, 11, 5)
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(where in this case the result of the above product is not
a permutation because 4 and 11 appear twice and 5 and
6 are both mapped to 4) and

(9, 11, 12, 13, 14, 15, 16, 17, 18)

⊗ (15, 18, 17, 16, 14, 13, 12, 11, 9)

= (9, 10, 11, 8, 12, 7, 13, 6, 14, 5, 15, 3, 16, 2,

17, 1, 18, 4)

which is clearly not maximodal.
Also, as in the previous case, when the product of

two elements from A+ satisfying properties I.M through
III.M gives a maximodal cycle, this cycle must belong
to C1,M .

4.1 Algorithmic Strategy to Generate C1

We will generate separately the elements of C1,m and
those of C1,M . To generate C1,m we need to create the
list Y of all the elements of A− satisfying properties i.m
through iv.m, endowed with any order � (a natural can-
didate is the lexicographic order).

In view of Lemma 4.5 and Remark 4.6, we have to
compute all the products α ⊗ β for α, β ∈ Y, and in
each case, check whether the obtained permutation is a
maximodal cycle. Observe that since the entropies of a
cycle and its dual are equal, in view of Lemma 3.3 it is
enough to consider only the products α⊗ β for α, β ∈ Y
such that α � β.

Analogously, to generate C1,M we need to create the
list Z of all the elements of A− satisfying the properties
I.M through III.M , endowed with an order �. As above,
using Lemmas 4.9 and 3.3 it is enough to perform all
products α⊗ β for α, β ∈ Z such that α � β.

Again, by Remark 4.10, in each case we have to check
whether the product gives rise to a maximodal cycle.

The method of generating the two lists Y and Z, per-
forming all the products, and computing the entropy of
each product that gives rise to a cycle has been imple-
mented in C++. This program has been used for period
18, splitting the task into 16 subtasks (four dealing with
each list Y and Z) that have been executed in parallel
on a cluster of Dual Xeon computers at 2.66 GHz with
hyperthreading, with an execution time of about three
months.5 This procedure has given

(9, 8, 12, 6, 13, 3, 15, 4, 16, 2, 18, 1, 17, 5, 14, 7, 11, 10)

= (9, 12, 13, 15, 16, 18, 17, 14, 11)

⊗ (9, 12, 14, 18, 17, 15, 16, 13, 11)

5With a typical CPU usage higher than 45% for each job.

and

(9, 8, 12, 6, 13, 2, 18, 1, 17, 3, 15, 4, 16, 5, 14, 7, 11, 10)

= (9, 12, 13, 18, 17, 15, 16, 14, 11)

⊗ (9, 12, 14, 15, 16, 18, 17, 13, 11)

as the maximum-entropy cycles in C1
18, with entropy

log(11.321231505957 . . .).
As a consequence of this together with the numerical

results described at the end of Section 3, the maximum-
entropy cycle for period 18 is the one in C0

18 reported
there.

It is clear that this method cannot be extended to peri-
ods larger than 18, since the execution time is prohibitive.
To continue our investigation to higher periods, it has
been necessary to focus our attention on a restricted set of
cycles, one that is most likely to include those of highest
entropy.

5. THREE CONJECTURED FAMILIES
OF CYCLES

In this section we introduce three families of (4k + 2)-
cycles (one for k odd and two for k even). They
have been obtained by generalizing the computational
results that have been reported in the previous sec-
tions. The topological entropy of the cycles gener-
ated by these families is monotonically increasing as
k → ∞.

Definition 5.1. For n = 4k + 2, k > 1, we denote by θn

the element of C0
n that is given as follows:

• If k = 2p with p odd, then

θn : j →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4p+ 1 + j, if j ∈ O[1, p],
4p+ 2 + j, if j ∈ O[p+ 2, 3p],
4p− 1 + j, if j ∈ O[3p+ 2, 4p+ 3],
12p+ 6 − j, if j ∈ O[4p+ 5, 5p+ 2],
12p+ 3 − j, if j ∈ O[5p+ 4, 7p],
12p+ 4 − j, if j ∈ O[7p+ 2, n− 1],
4p+ 2 − j, if j ∈ E[2, p+ 1],
4p+ 3 − j, if j ∈ E[p+ 3, 3p+ 1],
4p+ 4 − j, if j ∈ E[3p+ 3, 4p+ 2],
j − 4p− 3, if j ∈ E[4p+ 4, 5p+ 3],
j − 4p− 2, if j ∈ E[5p+ 5, 7p+ 1],
j − 4p− 1, if j ∈ E[7p+ 3, n].
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(
1

1≤i≤ p+1
2︷ ︸︸ ︷

4p+ 4 − 2i 2i . . . 3p+ 3 p+ 1

1≤i≤ p−1
2︷ ︸︸ ︷

3p+ 5 − 4i p− 2 + 4i 5p+ 4i 7p+ 3 − 4i . . . p+ 7 3p− 4 7p− 2 5p+ 5

p+ 3 3p

1≤i≤ p−1
2︷ ︸︸ ︷

7p+ 2i 5p+ 4 − 2i . . . n− 3 4p+ 5 n− 1
1≤i≤ p+1

2︷ ︸︸ ︷
4p+ 5 − 2i 8p+ 4 − 2i . . . 3p+ 4 7p+ 3 3p+ 2

1≤i≤ p−1
2︷ ︸︸ ︷

7p+ 5 − 4i 3p+ 3 − 4i p+ 4i 5p+ 2 + 4i . . . 5p+ 7 p+ 5 3p− 2 7p
1≤i≤ p+1

2︷ ︸︸ ︷
5p+ 5 − 2i p+ 2 − 2i . . . 4p+ 4 1

)
.

FIGURE 2. The cycle θn for the case of n = 8p+ 2, p odd.

.

• If k = 2p with p even, then

θn : j →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4p+ 1 + j, if j ∈ O[1, p+ 1],
4p+ j, if j ∈ O[p+ 3, 3p+ 1],
4p− 1 + j, if j ∈ O[3p+ 3, 4p+ 3],
12p+ 6 − j, if j ∈ O[4p+ 5, 5p+ 3],
12p+ 5 − j, if j ∈ O[5p+ 5, 7p+ 1],
12p+ 4 − j, if j ∈ O[7p+ 3, n− 1],
4p+ 2 − j, if j ∈ E[2, p],
4p+ 1 − j, if j ∈ E[p+ 2, 3p],
4p+ 4 − j, if j ∈ E[3p+ 2, 4p+ 2],
j − 4p− 3, if j ∈ E[4p+ 4, 5p+ 2],
j − 4p, if j ∈ E[5p+ 4, 7p],
j − 4p− 1, if j ∈ E[7p+ 2, n].

• If k ≥ 3 is odd, then

θn : j →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k − j + 2, if j ∈ O[1, k − 2],
k + 1, if j = k,

2k − j, if j ∈ O[k + 2, 2k − 1],
j − 2k + 1, if j ∈ O[2k + 1, 3k − 2],
j − 2k, if j ∈ O[3k, 3k + 2],
j − 2k − 1, if j ∈ O[3k + 4, n− 1],
2k + 1 + j, if j ∈ E[2, k − 1],
3k + 1, if j = k + 1,
2k + 3 + j, if j ∈ E[k + 3, 2k − 2],
6k + 2 − j, if j ∈ E[2k, 3k − 1],
6k + 5 − j, if j ∈ E[3k + 1, 3k + 3],
6k + 4 − j, if j ∈ E[3k + 5, n].

For example, for n = 8p + 2, p odd, it can be shown
that θn is the cycle shown in Figure 2.

We also note the following general features of fθn :

1. For n = 4k + 2, k even, the map fθn has a local
maximum at j = 1, while for n = 4k+ 2, k odd, the
map fθn has a local minimum at j = 1.

2. Each cycle θn is maximodal, and fθn has all maxi-
mum values greater than all minimum values (that
is, θn ∈ C0

n).

3. For n = 4k + 2, k even, fθn has a global minimum
at j = 2k + 4, while for n = 4k + 2, k odd, fθn has
a global minimum at j = 2k − 1.

4. For n = 4k + 2, k even, fθn has a global maximum
at j = 2k + 3, while for n = 4k + 2, k odd, fθn has
a global maximum at j = 2k.

Note that the entropy-maximal 6-cycle is not gener-
ated by the formulas given in Definition 5.1. However,
we have computed it to be the cycle θ6(1) = 3, θ6(2) =
6, θ6(3) = 2, θ6(4) = 5, θ6(5) = 1, θ6(6) = 4. Moreover,
all other 6-cycles (up to a reversal of orientation) have
entropy strictly smaller than h(θ6).

Figure 3 shows the asymptotic behavior of the en-
tropies of the cycles in the conjectured families, together
with those of the maximum-entropy cycles of period 4k,
compared to the Misiurewicz–Nitecki bound log(2n/π).
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FIGURE 3. The three curves in the figure represent
the difference between the Misiurewicz–Nitecki bound
log(2n/π) and the entropies of (i) the maximum-
entropy n-permutation, for n ∈ E[6, 50] (lower curve),
(ii) the maximum-entropy 4k-cycle, for k ∈ [2, 12]
(center curve), (iii) the cycle θ4k+2, for k ∈ [1, 12]
(upper curve).

6. FURTHER RESTRICTIONS FOR n = 22
AND BEYOND

Finding the maximum-entropy n-cycle using the algo-
rithm described in Sections 3 and 4 is infeasible in com-
putational terms when n > 18. Instead, it is necessary to
make further restrictions on the subclass of cycles to be
explored. For n = 22, we have considered the subclass
C∗

22 of 22-cycles satisfying that for each φ ∈ C∗
22,

(i) φ ∈ C0
22,

(ii) φ(i) = ψ22(i), for i ∈ {1, 2, 21, 22},
where ψ22 is the entropy-maximal 22-permutation de-
scribed in [King 97] (see also Table 3). We remark that
θ22 belongs to C∗

22, and precisely, we have found that it
is the maximum-entropy cycle in C∗

22. Moreover, the en-
tropy of any other cycle in the class is strictly smaller
than h(θ22) (up to duality).

Clearly, using this procedure, we have not calculated
the entropies of a large number of 22-cycles that poten-
tially have larger entropy than θ22. However, based on
preliminary results (again see Table 3), we believe that

(i) for k ∈ N, the entropy-maximal (4k+ 2)-cycles will
have all maximum values above all minimum values;

(ii) for k ≥ 2 and n = 4k + 2, if ψn is the entropy-
maximal n-permutation as defined in [King 97],
the maximum-entropy cycle φn will be such that
φn(i) = ψn(n+1−i) for all i ∈ [

1, k
2 +1

]∪[
7k
2 +2, n

]
,

k even, or φn(i) = ψn(i) for all i ∈ [1, k− 1]∪ [3k+
4, n], k odd.

To support these claims we will now briefly explain
why we think that the maximum-entropy cycles have this
structure.

6.1 All Maximum Values Are above All Minimum
Values

Consider the induced matrix of a maximodal (4k + 2)-
cyclic permutation θ that has all maximum values above
all minimum values. Without loss of generality we will
assume that fθ has a minimum at 1.

It is known that the jth column sum of the in-
duced matrix M(θ) is bounded above by the minimum of
{2j, 2(n− j)} [Misiurewicz and Nitecki 91]. In this case,
the upper bound is achieved for each j ∈ [1, 4k+1]. This
means, for example, that column 2k+ 1 (the central col-
umn of M(θ)) will consist entirely of 1’s. This is because
[2k + 1, 2k + 2] ⊆ [fθ(i), fθ(i + 1)] for all i ∈ [1, 4k + 1].
As a consequence, M(θ) is maximal, where for any non-
negative matrix A, A denotes the sum of all of its en-
tries. This is clearly an important factor in identifying
maximum-entropy permutations, since

ρ(M(θ)) = lim
m→∞ M(θ)m 1/m

(see [Seneta 81]).
However, for a maximodal cyclic permutation φ with

one maximum value less than or equal to 2k + 1 (and
hence one minimum value greater than 2k+1), the upper
bound is not achieved in at least the (2k + 1)st column,
since for some i odd, [fφ(i), fφ(i + 1)] ⊆ [2k + 2, 4k +
2], and for some i even, [fφ(i − 1), fφ(i)] ⊆ [1, 2k + 1].
Thus

∣∣M (2k+1)
∣∣ ∈ {4k − 1, 4k − 2, 4k − 3}; that is, the

column sum is reduced by 2, 3, or 4. It is also possible
that other column sums are less than min{2j, 2(n− j)},
reducing the value of M(θ) even further. Consequently,
M(θ) is not maximal. However, it should be noted that
for permutations φ and θ, M(φ) < M(θ) does not
necessarily imply that h(φ) < h(θ).

The above discussion leads us to the following conjec-
ture:

Conjecture 6.1. For each period n, the maximum-entropy
n-cycle belongs to C0

n.

Table 4 provides numerical evidence supporting Con-
jecture 6.1. Indeed, comparing the maximum entropies
in C1

n shown in this table with those in C0
n from Table

2 (together with C0
18) confirms that Conjecture 6.1 holds

for 4 ≤ n ≤ 18.
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Period Max Permutation Entropy Max Cycle Entropy
n ψn θn

10 (5, 7, 3, 9, 1, 10, 2, 8, 4, 6) 1.8427299 . . . (6, 4, 9, 3, 8, 2, 10, 1, 7, 5) 1.8155681 . . .

14 (7, 9, 5, 11, 3, 13, 1, (7, 9, 4, 10, 1, 14, 2,
14, 2, 12, 4, 10, 6, 8) 2.1832659 . . . 12, 3, 13, 5, 11, 6, 8) 2.1692408 . . .

18 (9, 11, 7, 13, 5, 15, 3, 17, 1, (10, 8, 12, 5, 13, 3, 15, 4, 16,
18, 2, 16, 4, 14, 6, 12, 8, 10) 2.4362460 . . . 2, 18, 1, 17, 6, 14, 7, 11, 9) 2.4278325 . . .

22 (11, 13, 9, 15, 7, 17, 5, (11, 13, 9, 15, 6, 16, 3,
19, 3, 21, 1, 22, 2, 4, 21, 1, 22, 2, 20, 4, 18, 5,

18, 6, 16, 8, 14, 10, 12) 2.6377584 . . . 19, 7, 17, 8, 14, 10, 12) 2.6320413 . . .

26 (13, 15, 11, 17, 9, 19, 7, 21, 5, (14, 12, 16, 10, 19, 9, 21, 7,
23, 3, 25, 1, 26, 2, 24, 4, 22, 23, 5, 22, 4, 24, 2, 26, 1, 25,
6, 20, 8, 18, 10, 16, 12, 14) 2.8052961 . . . 3, 20, 6, 18, 8, 17, 11, 15, 13) 2.8011896 . . .

30 (15, 17, 13, 19, 11, 21, 9, (15, 17, 13, 19, 11, 21, 8,
23, 7, 25, 5, 27, 3, 29, 1, 22, 5, 27, 3, 29, 1, 30, 2,
30, 2, 28, 4, 26, 6, 24, 8, 28, 4, 26, 6, 24, 7, 25, 9,

22, 10, 20, 12, 18, 14, 16) 2.9487002 . . . 23, 10, 20, 12, 18, 14, 16) 2.9454988 . . .

34 (17, 19, 15, 21, 13, 23, 11, 25, (18, 16, 20, 14, 22, 11, 23, 9,
9, 27, 7, 29, 5, 31, 3, 33, 1, 25, 7, 27, 5, 29, 6, 30, 4, 32,
34, 2, 32, 4, 30, 6, 28, 8, 26, 2, 34, 1, 33, 3, 31, 8, 28, 10,

10, 24, 12, 22, 14, 20, 16, 18) 3.0740659 . . . 26, 12, 24, 13, 21, 15, 19, 17) 3.0716352 . . .

TABLE 3. In column 2, we list the maximum-entropy permutations ψn defined in [King 97]. In column 4, we list the
maximum-entropy cycles (obtained by numerical exploration for n = 10, 14, 18 and conjectured for n = 22, 26, 30, 34).

6.2 Positions Fixed for Certain Values

The asymptotic estimate of the upper bound for the topo-
logical entropy of a permutation obtained by Misiurewicz
and Nitecki [Misiurewicz and Nitecki 91] depends on an
(n × n), 0-1 matrix �n, n even, in which the 1’s form a
diamond pattern. Although this matrix is not the matrix
of any permutation, the matrix of the entropy-maximal
(n+1)-permutation can be obtained from it with minimal
changes.

More specifically, in the induced matrix of a permuta-
tion, no two columns can be identical. For the matrix �n,
there are n/2 pairs of identical columns (columns i and
n − i for i ∈ [1, n/2]). We select one column from each
pair (except the central pair) and shift the 1’s in that
column either up or down by 1; that is, if the selected
column j has 1’s in rows a, . . . , b, then our new column j
will have 1’s in rows a + 1, . . . , b+ 1 or a − 1, . . . , b− 1.
In the case of the central pair of columns, both of which
contain all 1’s, we simply delete a 1 in either row 1 or
row n in one of the columns, as indicated:

�8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0
0 0 1 1 1 1 0 0
0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M(θ9) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 0 0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is natural to assume that the induced matrices of
the maximum-entropy n-cycles will also retain the basic
shape of �n, with minimal variations occurring due to
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n Max Cycles in C1
n Entropy

5 (4, 5, 2, 3, 1) 0.739693870 . . .
6 (4, 5, 2, 6, 1, 3) 1.209787792 . . .
7 (5, 4, 6, 1, 7, 2, 3) 1.335115163 . . .
8 (4, 3, 8, 2, 7, 1, 6, 5),

(5, 6, 1, 7, 2, 8, 3, 4) 1.572942040 . . .
9 (4, 3, 7, 2, 9, 1, 8, 5, 6) 1.667923417 . . .
10 (5, 4, 8, 1, 9, 3, 10, 2, 7, 6),

(5, 4, 8, 3, 9, 2, 10, 1, 7, 6) 1.812929625 . . .
11 (7, 6, 9, 3, 10, 1, 11, 2, 8, 4, 5) 1.900790891 . . .
12 (6, 5, 9, 1, 12, 2, 11, 3, 10, 4, 8, 7),

(6, 5, 9, 2, 12, 3, 11, 1, 10, 4, 8, 7),
(7, 8, 4, 10, 1, 11, 3, 12, 2, 9, 5, 6),
(7, 8, 4, 10, 3, 11, 2, 12, 1, 9, 5, 6) 2.012291633 . . .

13 (6, 5, 9, 3, 11, 2, 13, 1, 12, 4, 10, 7, 8) 2.083877398 . . .
14 (8, 9, 5, 11, 1, 14, 2, 12, 4, 13, 3, 10, 6, 7),

(8, 9, 5, 11, 4, 12, 3, 13, 1, 14, 2, 10, 6, 7) 2.167815951 . . .
15 (9, 8, 11, 5, 13, 3, 14, 1, 15, 2, 12, 4, 10, 6, 7) 2.236009214 . . .
16 (8, 7, 11, 5, 13, 4, 14, 2, 15, 1, 16, 3, 12, 6, 10, 9),

(8, 7, 11, 5, 13, 4, 16, 2, 14, 1, 15, 3, 12, 6, 10, 9),
(9, 10, 6, 12, 3, 15, 1, 14, 2, 16, 4, 13, 5, 11, 7, 8),
(9, 10, 6, 12, 3, 16, 1, 15, 2, 14, 4, 13, 5, 11, 7, 8) 2.310571525 . . .

17 (8, 7, 11, 5, 13, 3, 15, 2, 17, 1, 16, 4, 14, 6, 12, 9, 10) 2.366709736 . . .
18 (9, 8, 12, 6, 13, 3, 15, 4, 16, 2, 18, 1, 17, 5, 14, 7, 11, 10),

(9, 8, 12, 6, 13, 2, 18, 1, 17, 3, 15, 4, 16, 5, 14, 7, 11, 10) 2.426679857 . . .

TABLE 4. The maximum-entropy cycles in C1
n.

cyclicity conditions. Changing the positions of the 1’s
in the columns of this matrix to form the matrix of a
permutation cannot increase the spectral radius.

It is worth noting that in the case n = 22, we im-
posed the constraint φ(i) = ψ22(i) for i ∈ {1, 2, 21, 22}
purely for computational reasons. However, it turns out
that the cycle of highest entropy that we found with
this restriction, that is, θ22, satisfies θ22(i) = ψ22(i) for
i ∈ {1, 2, 3, 4, 19, 20, 21, 22}, which gives numerical sup-
port to our argument above.

An n-permutation φ that satisfies conditions 1 and 2
above will have an induced matrix M such that

(i)
〈
M (2k+1)

〉
= [1, n− 1],

(ii)
〈
M(1)

〉
= [2k + 1, 2k + 2],

(iii)
〈
M(2)

〉
= [a, 2k + 2], where a < 2k + 1,

(iv)
〈
M(n−2)

〉
= [2k, b], where b > 2k + 1,

(v)
〈
M(n−1)

〉
= [2k, 2k + 1],

(vi)
∣∣M (j)

∣∣ = min{2j, 2(n− j)} for all j ∈ [1, n− 1],

where M (j) denotes the jth column of M , M(i) denotes
the ith row of M and

〈
M (j)

〉
(respectively

〈
M(i)

〉
) de-

notes the set {i : ai j = 1} (respectively {j : ai j = 1}).
These six conditions imply that

(vii)
〈
M (2k)

〉
= [2, n− 1],

(viii)
〈
M (2k+1)

〉
= [1, n− 1],

(ix)
〈
M (2k+2)

〉
= [1, n− 2],

(x)
〈
M (j)

〉 ⊆ [2, n− 3], ∀j ≤ 2k − 1,

(xi)
〈
M (j)

〉 ⊆ [3, n− 2], ∀j ≥ 2k + 3,

(xii) M is maximal.

As a consequence, the 1’s in the matrix will retain the
approximate diamond shape.

For n ∈ {26, 30} we have restricted our computations
to specific classes of maximodal n-cycles, in line with the
discussion above. In particular, we consider the classes
C∗

26 ⊂ C0
26 of cycles φ such that φ(i) = ψ26(27 − i), and

C∗
30 ⊂ C0

30 of cycles φ such that φ(i) = ψ30(i), for all
i ∈ {1, 2, . . . , 2k − 8, 2k + 11, . . . , n − 1, n}. Note that
as remarked in the case n = 22, θ26 ∈ C∗

26 and θ30 ∈
C∗

30. Observe also that in the cases n ∈ {22, 26, 30},
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this restriction leaves φ ∈ C∗
n with n− 18 positions fixed

according to ψn, while for periods n = 4k + 2 ≥ 34 this
is no longer true. Indeed, for period 34, the conjectured
maximum-entropy cycle θ34 agrees with ψ34 in only 10
positions, thus leaving 24 free positions.

Thus, the task of finding the highest-entropy cycle in
C∗

22, C
∗
26, and C∗

30 has a computational complexity not
larger than that of finding the highest-entropy cycle in
C0

18, while this problem is unsolvable with the conjectures
and techniques devised in this paper for periods n =
4k + 2 ≥ 34.

6.3 Algorithmic Strategy to Generate C∗
n,

n ∈ {22, 26, 30}
As already defined, the elements of C∗

n are the maximodal
cycles of period n = 4k + 2 that have a certain pattern
at the beginning and at the end of the cycle, which is de-
termined by ψn. As Table 5 already shows, the parity of
k completely determines the structure of C∗

n, and there-
fore we will consider these two cases separately. However,
before continuing our discussion we should bear in mind
a crucial property that influences the whole strategy of
this computation: the permutations ψn are self-dual (this
can be checked directly from the definition of ψn; see also
[King 97]).

6.4 The Case k Odd

All cycles θ ∈ C∗
n have fθ(1) as a minimum. Hence, in

view of Proposition 3.5, θ = θ1 ⊗ θ2 for some θ1, θ2 ∈
P2k+1. We use a method similar to that used to gen-
erate Cn to generate all cycles in C∗

n; that is, we cre-
ate a list A∗ ⊂ P2k+1 such that each α ∈ A∗ satisfies
α(i) = ψn(2i−1) for i ∈ {1, 2, . . . , k−4, k+6, . . . , 2k+1},
and φα has no cycle not containing 2k + 1 (that is, we
use Corollary 3.10 to discard those permutations α such
that α ⊗ β is not a cycle for any β ∈ P2k+1). Also, as
usual, we endow the list A∗ with any order � (a natural
candidate is the lexicographic order).

Now observe that for every α, β ∈ A∗, from the defini-
tion of the cross product and the fact that ψn is self-dual,
we have that α⊗ β takes the form

(
α(1), δ̂(β(2k + 1)), α(2),

δ̂(β(2k)), . . . , α(k − 4), δ̂(β(k + 6)), 
18, α(k + 6),

δ̂(β(k − 4)), α(k + 7), δ̂(β(k − 5)), . . . , α(2k + 1),

δ̂(β(1))
)

=
(
ψn(1), δ̂(ψn(n− 1)), ψn(3), δ̂(ψn(n− 3)), . . . ,

ψn(2k − 9), δ̂(ψn(2k + 11)), 
18, ψn(2k + 11),

δ̂(ψn(2k − 9)), ψn(2k + 13), δ̂(ψn(2k − 11)), . . . ,

ψn(n− 1), δ̂(ψn(1))
)

=
(
ψn(1), ψn(2), . . . , ψn(2k − 8), 
18, ψn(2k + 11),

ψn(2k + 12), . . . , ψn(n)
)
∈ C∗

n,

where 
18 denotes an undetermined sequence in P18.
Therefore, by Remark 3.6, to generate all elements from
C∗

n we have to compute all products α⊗β for α, β ∈ A∗,
and in each case, check whether the obtained permuta-
tion is a cycle. Note that since the entropies of a cycle and
its dual are equal, Lemma 3.3 implies that it is enough
to consider only those products α⊗ β for α, β ∈ A∗ such
that α � β.

6.5 The Case k Even

In the case of k even, all cycles θ ∈ C∗
n have fθ(1) as

a maximum and hence θ = θ1 � θ2 for some θ1, θ2 ∈
P2k+1, again by Proposition 3.5. The list A∗ ⊂ P2k+1 is
generated in exactly the same manner as in the case k
odd, except that in this case we fix α(i) = (σ̂+)−1(ψn(n+
1 − 2i)) for i ∈ {1, 2, . . . , k − 4, k + 6, . . . , 2k + 1}. For
every α, β ∈ A∗, the product α� β takes the form(
σ̂−(δ̂(α(2k + 1))), σ̂+(β(1)), σ̂−(δ̂(α(2k))), σ̂+(β(2)),

. . . , σ̂−(δ̂(α(k + 6))), σ̂+(β(k − 4)), 
18,

σ̂−(δ̂(α(k − 4))), σ̂+(β(k + 6)), σ̂−(δ̂(α(k − 5))),

σ̂+(β(k + 7)), . . . , σ̂−(δ̂(α(1))), σ̂+(β(2k + 1))
)

=
(
δ̂(ψn(1)), ψn(n− 1), δ̂(ψn(3)), ψn(n− 3), . . . ,

δ̂(ψn(2k − 9)), ψn(2k + 11), 
18, δ̂(ψn(2k + 11)),

ψn(2k − 9), δ̂(ψn(2k + 13)), ψn(2k − 11), . . . ,

δ̂(ψn(n− 1)), ψn(1)
)

=
(
ψn(n), ψn(n− 1), . . . , ψn(2k + 11), 
18, ψn(2k − 8),

ψn(2k − 9), . . . , ψn(1)
)
∈ C∗

n,

where 
18 denotes an undetermined sequence in P18.
Then we can generate all relevant elements in C∗

n as in
the previous case: we have to compute all products α�β
for α, β ∈ A∗ such that α � β and in each case, check
whether the obtained permutation is a cycle.

In Table 5 we summarize all the above information
(namely the type of product to use and the structure
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n Structure of the
Restricted A-List

Product

22 (11;P 9; 10) ⊗
26 (11, 9;P 13

9 ; 10, 12) �
30 (15, 13, 11;P 9; 10, 12, 14) ⊗

TABLE 5. The structure of the A∗-lists and the type
of products to consider to compute the maximum-
entropy cycle in C∗

n.

of the A∗-list for each period) for the particular case of
periods n = 22, 26, 30. When we write P p

9, we mean
that the list is generated by successively inserting in the
corresponding place each permutation α ∈ P9 and then
replacing 9 by p (when we omit the superscript we mean
that the last step, replacing 9 by p, is omitted). Of
course, any permutation α ∈ Pn/2 such that φα has a
cycle not containing n/2 can be discarded from A∗ (see
Corollary 3.10).

Using the above strategy, we have found numerically6

that the maximum-entropy cycle in C∗
n is θn for n =

26, 30, as well as for n = 22. Moreover, the entropy of
any other cycle in the class is strictly smaller than h(θn)
(up to duality). These results are summarized in Table 3.

7. CONCLUSIONS: FAMILIES AS LOWER BOUNDS

The families of cycles that we have described in Section 5
provide a good lower bound on the maximum topological
entropy of cycles in C4k+2. Indeed, the sequence of topo-
logical entropies of the cycles generated by each family
is monotonically increasing as k → ∞, and furthermore,
if we combine the three sequences into a single sequence,
the new sequence obtained is also monotonically increas-
ing as k → ∞ (see Figure 3 and Tables 2 and 3).

However, a degree of caution should be taken: as re-
marked by a referee, in the search for entropy-maximizing
cycles of order n, first there was a distinction between n
odd and n = 2m; then between m odd and m = 2k; and
now, conjecturally, between k odd and k = 2�.

In this situation we might think that we are facing
an infinite cascade of such distinctions. However, since
we have found no single cycle among those generated
with entropy larger than θn, we believe that the following
conjectures are reasonable.

6Of course, the execution times of these computations are at
most half of the necessary time to compute the maximum-entropy
cycle in C0

18, since here for each period we have to consider only
one kind of product.

Conjecture 7.1. If θn is an n-cycle as described in Defi-
nition 5.1, then θn has maximum entropy in Cn.

Conjecture 7.2. If θn is an n-cycle as described in Defini-
tion 5.1, then θn is the unique entropy-maximal element
of Cn, up to duality.
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