
On the Integral Carathéodory Property
Winfried Bruns

CONTENTS

1. Introduction
2. Deciding UHC
3. Deciding ICP
4. The Search
5. Computational Issues
Acknowledgments
References

2000 AMS Subject Classification: Primary: 52B20

Keywords: Affine monoid, lattice polytope, unimodular covers,
integral Carathéodory property

In this note we document the existence of a finitely generated
rational cone that is not covered by its unimodular Hilbert sub-
cones, but satisfies the integral Carathéodory property. We ex-
plain the algorithms that decide these properties and describe
our experimental approach that led to the discovery of the ex-
amples.

1. INTRODUCTION

Let C ⊂ R
d be a finitely generated rational cone, i.e., the

set of all linear combinations a1x1 + · · ·+ anxn of rational
vectors x1, . . . ,xd with coefficients from R+. We can of
course assume that xi ∈ Z

d , i = 1, . . . ,n. In this note a
cone is always supposed to be rational and finitely generated.
Moreover, we will assume that C is pointed: if x,−x ∈ C,
then x = 0. Finally, it is tacitly understood that C has full
dimension d.
The monoid M(C) = C∩Z

d is finitely generated by Gor-
dan’s lemma (for example, see [Bruns and Gubeladze 07, Sec-
tion 2.A]). Since C is pointed, M is a positive monoid, so that
0 is the only invertible element in M(C).
It is not hard to see that M(C) has a unique minimal sys-

tem of generators, which we call its Hilbert basis, denoted by
Hilb(M(C)) or simply Hilb(C). It consists of those elements
z �= 0 of M(C) that have no decomposition z = x + y in M(C)
with y,z �= 0.
We want to discuss combinatorial conditions on Hilb(C)

expressing that C or M(C) is covered by certain “simple”
subcones or submonoids, respectively. To this end we define
a u-subcone of C to be a subcone generated by vectors
x1, . . . ,xd ∈ Hilb(C) that form a basis of the group Z

d . In
particular, x1, . . . ,xd are linearly independent, and if just
this weaker condition is satisfied, then the cone S generated
by x1, . . . ,xd is called an f -subcone. In this case we let
Γ(S) denote the subgroup of Z

d generated by x1, . . . ,xd , and
Σ(S) the submonoid of Z

d generated by x1, . . . ,xd . Note that

c© A K Peters, Ltd.
1058-6458/2007 $ 0.50 per page

Experimental Mathematics 16:3, page 359

360 Experimental Mathematics, Vol. 16 (2007), No. 3

S is a u-subcone if and only if Γ(S) = Z
d , or equivalently,

Σ(S) = S∩Z
d .

One says that C satisfies (UHC) if C is the union of its u-
subcones. The letter U stands for unimodular, H reminds us
of the condition that the generators of the u-subcones belong
to Hilb(C), and C simply stands for cover.
A weaker condition than (UHC) is the integral

Carathéodory property (ICP). One says that C has (ICP)
if every element of M(C) can be written as a linear com-
bination of at most d elements xi ∈ Hilb(C) with integral
nonnegative coefficients ai. The terminology is motivated by
Carathéodory’s theorem: let y1, . . . ,ym be a minimal system
of generators of the cone C; then every element y ∈ C is a
linear combination y = a1yi1 + · · ·+ adyid with nonnegative
real coefficients.
Both (UHC) and (ICP) can be formulated more generally

for positive affine monoidsM ⊂Z
d . However, it is easy to see

that every monoid M satisfying (UHC) is given in the form
M = R+M∩Z

d . By a theorem of Bruns and Gubeladze [Bruns
and Gubeladze 99, Theorem 6.1], the same is true if M satis-
fies (ICP), provided the group gp(M) generated by M equals
Z

d . In [Bruns and Gubeladze 99] it is also shown that (ICP)
is equivalent to the formally stronger condition that M is the
union of its submonoids Σ(S). (There, this condition is called
(FHC).) The equivalence is crucial for our note, and therefore
we reproduce the statement and its proof in Theorem 3.2.
While we view (UHC) and (ICP) as structural properties of

(normal) affine monoids, these properties were first discussed
in the context of integer programming: see [Cook et al. 86,
Sebő 90].
It was asked by Sebő [Sebő 90] whether every cone C has

(ICP) or (UHC), and he proved that (UHC) holds if d ≤ 3.
He actually proved a stronger statement: C has a triangulation
by u-subcones. A counterexample to (UHC) in dimension 6,
called C10 in the following, was found by Bruns and Gube-
ladze [Bruns and Gubeladze 99], and then verified to violate
(ICP), too, in cooperation with Henk, Martin, and Weismantel
[Bruns et al. 99]. Despite the existence of the counterexample,
one can fairly say, at least heuristically, that almost all cones
satisfy (UHC).
It remained an open problem whether (UHC) is strictly

stronger than (ICP). In this note we want to document the ex-
istence of cones that satisfy (ICP) but fail (UHC), explain the
algorithms that decide (UHC) and (ICP), and describe the ex-
perimental approach that led to the discovery of the examples.
All our experiments seem to indicate that C10 is the core

counterexample to (ICP) and (UHC). In fact, all counterex-
amples to these properties that have been found contain it. It
would be very desirable indeed to clarify the situation in di-
mensions 4 and 5.

unicover(D,n)
1 for i← n to N
2 do
3 if D⊂Ui
4 then return
5 if int(D)∩ int(Ui) �= ∅

6 then (D1,D2)← split(D,Ui)
7 unicover(D1, i)
8 unicover(D2, i)
9 return
10 output(D not u-covered)
11 return

main()
1 Create the listU1, . . . ,UN of u-subcones ofC
2 unicover(C,1)

FIGURE 1. An algorithm deciding UHC.

2. DECIDING UHC

Let us say that x ∈ C is u-covered if it is contained in a u-
subcone. A subset of C is u-covered if each of its elements is
u-covered. Using this simple terminology, we can describe an
algorithm deciding (UHC); see Figure 1.
In the algorithm we use a function named split (see Fig-

ure 2). It decomposes D along a support hyperplane H of a
u-subcone U such that D∩H> �= ∅ as well as D∩H< �= ∅.
Such a hyperplane does indeed exist if int(D)∩ int(U) �= ∅,
but D �⊂ U . The cones produced are D1 = D ∩ H+ and
D2 = D∩H−. (The open half-spaces determined by H are
denoted by H> and H<, and H+ and H− are the correspond-
ing closed half-spaces.)
It is easy to see that the algorithm terminates: there are

only finitely many hyperplanes by which we split subcones.
Therefore only finitely many subcones can be created.
In order to check the correctness of the algorithm, observe

that at each step in the for loop in unicover none of the u-
subconesU1, . . . ,Ui−1 ofC intersects the interior of D. In fact,
the index i is increased only if int(D)∩ int(Ui) = ∅. (In the

D2

D1

U

FIGURE 2. The function split.

Bruns: On the Integral Caratheodory Property 361

recursive call, the index i that has been reached at the parent
level starts the for loop at the child level.)
Thus, when the loop terminates with i = N + 1, none of

the u-subcones of C intersects the interior of D. So D, and
consequentlyC, indeed contains a vector that is not u-covered.
Conversely, ifC contains such a vector x, then on each level

of the recursion tree one finds a subcone D containing x, and
for such D the condition D⊂Ui can never be satisfied. There-
fore there exists an end node of the recursion tree at which the
loop is left with i = N +1.
The pseudocode in Figure 1 is a somewhat simplistic

sketch of the actual implementation, since it is necessary
to cope with substantial memory requirements. For exam-
ple, the list U1, . . . ,UN is not produced a priori, but extended
whenever necessary and always kept as small as possible.
Moreover, all allocated memory is recycled carefully within
the program.
Instead of starting the covering algorithm with the full cone

C, the actual implementation uses the output of a preprocessor
that computes several triangulations ∆1, . . . ,∆t ofC. The input
to unicover (and also to caradec below) is the list of inter-
sections D1∩·· ·∩Dt , where Di is a nonunimodular simplicial
cone in ∆i.

3. DECIDING ICP

Let us first fix some terminology that parallels that for (UHC).
An element x ∈C∩Z

d is f -covered if it belongs to one of the
monoids Σ(S), where S is an f -subcone; and a subset of C is
f -covered if each of its elements is f -covered.
The following lemma contains the basic criterion by which

we can check thatC is f -covered. In the theorem following it,
we will then see that this property is equivalent to (ICP).

Lemma 3.1.

(a) Let G1, . . . ,Gn be subgroups of Z
d, and let N be a residue

class of Z
d modulo G1∩·· ·∩Gn. Then N ⊂G1∪·· ·∪Gn

if and only if N∩ (G1∪·· ·∪Gn) �= ∅.

(b) Let S1, . . . ,Sn be f -subcones of C, each containing the d-
dimensional subcone D of C. If every residue class of Z

d

modulo Γ(S1)∩·· ·∩Γ(Sn) meets Γ(S1)∪·· ·∪Γ(Sn), then
D is f -covered.

(c) Let D be a d-dimensional subcone of C with the following
property: for every f -subcone S either D⊂ S or int(D)∩
int(S) = ∅. Furthermore, let GD be the intersection of the
groups Γ(S) and S ⊃ D, with HD their union. Then D is
f -covered if and only if every residue class of Z

d modulo
GD meets HD.

Proof: (a) Suppose that N ∩ (G1 ∪ ·· · ∪Gn) �= ∅, and let x
be an element in the intersection, x ∈ Gi. The subgroup G′ =
G1∩·· ·∩Gn is contained in Gi, and so N = x+G′ ⊂ Gi. The
converse implication is trivial.
(b) Let x ∈ D∩Z

d . It follows from (a) that x ∈ Γ(Si) for
some i. But x ∈ Si, too. Therefore x ∈ Γ(S)∩Si = Σ(Si). (At
this point we use that the generators of Si are linearly indepen-
dent.)
(c) It remains to show only the necessity of the condition.

For this we need only observe that every residue class N of
Z

d modulo GD meets int(D). By hypothesis on D, an element
x ∈ N ∩ int(D) is f -covered if and only if x ∈ Σ(S) for some
f -subcone S containing D.

We include the next theorem and its proof for the conve-
nience of the reader. It is a simplified version of [Bruns and
Gubeladze 99, Theorem 6.1], whose proof contains the crucial
ideas for the algorithm deciding (ICP).

Theorem 3.2. Let M ⊂ Z
d be a positive affine monoid such

that gp(M) = Z
d. If M satisfies (ICP), then M = R+M∩Z

d,
and every element of M is f -covered.

Proof: We dissect C = R+M along all the support hyper-
planes of the cones spanned by linearly independent vec-
tors x1, . . . ,xd of Hilb(M) into elementary subcones. Set
M̄ = R+M ∩Z

d and choose x ∈ M̄. Suppose that x has no
representation as a linear combination x = a1y1+ · · ·+ adyd ,
with a1, . . . ,ad ∈ Z+ and y1, . . . ,yd ∈ Hilb(M) linearly inde-
pendent. The element x belongs to one of the elementary sub-
cones D, and as in the proof of the lemma it follows that there
exists a finite-index subgroup G of Z

d such that no element
z of (x + G)∩ int(D) has a representation a1y1 + · · ·+ adyd

with a1, . . . ,ad ∈ Z+ and y1, . . . ,yd ∈ Hilb(M) linearly inde-
pendent.
The crucial point is that M̄ \M is contained in the union of

finitely many hyperplanes [Bruns and Gubeladze 07, Section
2.B], and the same applies to all elements of M that are lin-
ear combinations of at most d linearly dependent elements of
Hilb(M). But (x + G)∩ int(D) is not contained in the union
of finitely many hyperplanes, and so must contain elements of
M. This is impossible if M satisfies (ICP).

For the algorithm deciding (ICP) we have to enrich our data
structure by those components that have shown up in the proof
of the lemma. Subcones are replaced by triples (D,G,R),
where D is a subcone ofC, G is a finite-index subgroup of Z

d ,
and R is a list of residue classes in Z

d/G. In R each residue
class is represented by a single vector that belongs to it, and

362 Experimental Mathematics, Vol. 16 (2007), No. 3

caradec(D,G,R,n)
1 for i← n to N
2 do
3 if D⊂ Si
4 then R′ ←∅

5 for
(
x ∈R, y ∈ G/(G∩Γ(Si))

)

6 do
7 if x+ y /∈ Γ(Si)
8 then R′ = R′ ∪{x+ y}
9 G← G∩Γ(Si), R←R′
10 if R = ∅

11 then return
12 if D �⊂ Si and int(D)∩ int(Si) �= ∅

13 then (D1,D2)← split(D,Si)
14 caradec(D1,G,R, i)
15 caradec(D2,G,R, i)
16 return
17 output(D not f -covered)
18 return

main()
1 Create the list S1, . . . ,SN of f -subcones ofC
2 caradec(C,Zd ,{0},1)

FIGURE 3. An algorithm deciding ICP.

in the algorithm (see Figure 3) the loop

for
(
x ∈R, y ∈ G/(G∩Γ(Si))

)

runs over all elements ofR×G/(G∩Γ(Si)).
Again it is clear that the algorithm terminates after finitely

many steps: the number of hyperplanes that we can use to split
subcones of C is still finite (though larger than for (UHC)).
The crucial point for caradec is that at each step in the

loop the f -cones S1, . . . ,SN satisfy the following conditions:

1. for each j ≤ i−1 either S j ⊃ D or int(S j)∩ int(D) = ∅;

2. G is the intersection of all groups Γ(S j), j ≤ i− 1, for
which D⊂ S j;

3. R is the list of those residue classes in Z
d/G that are

not contained in the union of the groups Γ(Sj), j ≤ i−1,
D⊂ S j.

We have only to check that these conditions remain satis-
fied when Si is tested against D. To this end, let Sk1 , . . . ,Skm

be those among S1, . . . ,Si−1 that contain D.
If int(Si)∩ int(D) = ∅, then D �⊂ Si, and this case is done.
If int(Si)∩ int(D) �= ∅, butD �⊂ Si, then i is not increased (!)

and all three conditions are inherited by both D1 and D2:
among the S j, j≤ i−1, exactly Sk1 , . . . ,Skm contain D1 or D2,
simply because S j ⊃D1 or S j ⊃D1 implies int(S j)∩ int(D) �=
∅, and so S j ⊃ D.

But if Si ⊃D, the bookkeeping is also correct. Evidently G
is replaced by the correct group G∩Γ(Si). Next observe that
all residue classes of G∩Γ(Si) that are contained in residue
classes modulo G not appearing inR remain in Γ(Sk1)∪·· ·∪
Γ(Skm). On the other hand, those that refine elements of R

must belong to Γ(Si) to be in Γ(Sk1)∪·· ·∪Γ(Skm)∪Γ(Si). The
correctness of the algorithm follows now immediately from
Lemma 3.1.
The greatest hurdle is the listsR of residue classes, which

usually become extremely long already in dimension 6. More-
over, along each branch of the recursion tree, several of them
must be kept in memory. (This problem cannot be eliminated
by a nonrecursive implementation.)
The growth of the listR can be estimated. Set

e = #
(
G/(G∩Γ(Si))

)
and e′ = #(Zd/Γ(Si)).

Each element x ∈ R is involved in e vectors x + y. At most
one of them lies in Γ(Si), since the vectors y belong to distinct
residue classes modulo Γ(Si). Therefore

#(R ′)≥ (e−1)#(R).

If the elements ofR are randomly distributed over the residue
classes of Zd modulo Γ(Si), then the expected share of vectors
x+ y ∈ Γ(Si) drops to 1/e′.
Instead of keeping the lists of residue classes in memory,

one could alternatively try to follow the recursion tree along
the whole list S1, . . . ,SN , compute only G along each branch,
and test the residue classes one by one only at the end nodes.
However, this approach seems infeasible, since it derives no
advantage from the case e = 1, which fortunately happens
frequently and often stops the recursion before the end of
S1, . . . ,SN is reached.
The list S1, . . . ,SN is actually scanned in growing order of

the determinants of the Si. This has turned out to be very
effective, at least for those cones that satisfy (ICP). In fact,
all cones in Table 3 with (ICP) are f -covered by simplicial
subcones of determinant ≤ 2.
In addition to caradec we use a Monte Carlo approach for

disproving (ICP). It reads the output of unicover, computes
a large number of vectors in the non-u-covered subcones ofC,
and tests whether they are f -covered.

Remark 3.3. caradec provides us with a precise measure
for the failure of (ICP), namely the ratios #(R)/#(G) at the
end nodes of the recursion tree. For the cone C10 (Table 1),
there is precisely one end node with R �= ∅, and the ratio is
32/15552= 1/486. The number of non- f -covered vectors in
the Monte Carlo test confirms the ratio rather precisely.

Bruns: On the Integral Caratheodory Property 363

For the coneC′′15 (Table 3) there is again a single group with
R �= ∅ and ratio

2,4468,480/2,286,144,000,000≈ 1.07/106.

So the Monte Carlo test cannot be expected to be conclusive
with fewer than 106 test vectors.

4. THE SEARCH

Let us recapitulate an important notion from [Bruns and Gube-
ladze 99]. An element x of Hilb(C) is called destructive if
H ′ = Hilb(C) \ {x} is not the Hilbert basis of R+H ′. We say
that C is tight if every element of Hilb(C) is destructive. The
crucial role of tight cones for (UHC) and (ICP) is illuminated
by the following lemma [Bruns and Gubeladze 99, Corollary
2.3].

Lemma 4.1. Let C be a cone that is a counterexample to
(UHC) or (ICP). Suppose C is minimal first with respect to
dimension and second with respect to #Hilb(C). Then C is
tight.

Remark 4.2. Updating the information in [Bruns and Gube-
ladze 99], we mention that tight cones exist in all dimensions
d ≥ 3. The first 3-dimensional tight cone was found by P.
Dueck. The smallest such cone found by the author has a
Hilbert basis of 19 elements. The elements of the Hilbert ba-
sis in the extreme rays form a regular hexagon (with respect
to the action of GL3(Z)), so that the cone has the dihedral
group D6 as its automorphism group. The regularity is an in-
dication that it may be the smallest possible tight cone. (Here
and in the following the automorphism group of a coneC is al-
ways understood to be the automorphism group of the monoid
C∩Z

d .)

Our search for counterexamples has been based on the cru-
cial Lemma 4.1. We produce a set of random vectors, consider
them as the generating set of a coneC, and then use a program
named shrink to remove nondestructive elements of Hilb(C)
until a tight cone is reached (shrink is based on the same al-
gorithm as normaliz; see [Bruns et al. 98, Bruns and Koch
01]). Almost always,C shrinks to the 0-cone, but sometimes a
nontrivial tight cone emerges. Then unicover, and possibly
caradec, are invoked.
When we started the search in spring 1998, we used cones

over randomly generated lattice parallelepipeds. In May 1998
the search stopped with the counterexample C10. Its Hilbert
basis is shown in Table 1. The coneC10 has 27 support hyper-
planes.

z1 = (0, 1, 0, 0, 0, 0) z6 = (1, 0, 2, 1, 1, 2)

z2 = (0, 0, 1, 0, 0, 0) z7 = (1, 2, 0, 2, 1, 1)

z3 = (0, 0, 0, 1, 0, 0) z8 = (1, 1, 2, 0, 2, 1)

z4 = (0, 0, 0, 0, 1, 0) z9 = (1, 1, 1, 2, 0, 2)

z5 = (0, 0, 0, 0, 0, 1) z10 = (1, 2, 1, 1, 2, 0)

TABLE 1. Hilb(C10).

The reader should note that for the questions considered in
this note we can always replace a given coneC by φ(C), where
φ is an arbitrary transformation in GLd(Z). In this sense, C
stands for a class of cones that are isomorphic under an inte-
gral isomorphism of R

d . We express this fact by speaking of
different embeddings of a cone C.
While unicover showed that C10 fails (UHC), it was then

verified in cooperation with Henk, Martin, and Weismantel
that C10 also fails (ICP) (caradec was not written before
September 2006). See [Bruns and Gubeladze 99] and [Bruns
et al. 99] for more information onC10.
The automorphism group of C10 is remarkably large: it is

the Frobenius group F20 of order 20, which acts transitively
on z1, . . . ,z10. (The group F20 is the semidirect product of Z5

with its automorphism group Z
∗
5
∼= Z4.) From the embedding

above one can see that at least the dihedral groupD5⊂F20 acts
onC10. All the remaining 10 automorphisms have order 4 and
swap {z1, . . . ,z5} with {z6, . . . ,z10}. Moreover, z1, . . . ,z10 all
lie in the hyperplane given by −5ζ1+ ζ2+ · · ·+ ζ6 = 1. The
convex hulls of {z1, . . . ,z5} and {z6 . . . ,z10} are both simplices
of dimension 4.

Remark 4.3. It was communicated to us by F. Santos that
the lattice polytope spanned by Hilb(C10) is a projection of
the Ohsugi–Hibi polytope [Ohsugi and Hibi 99]. The projec-
tion leads to the following description of C10 ∩Z

6. Consider
the complete graph K5 and decompose it into two cycles of
length 5 as shown in Figure 4.

1

2

3

4

5

FIGURE 4. Cycle decomposition of K5.

364 Experimental Mathematics, Vol. 16 (2007), No. 3

Now choose the incidence vectors (1,1,0,0,0), etc., of the
edges in the first cycle and prefix them with 0. Then prefix
the incidence vectors (1,0,1,0,0), etc., of the second cycle
with 1. The resulting 10 vectors in Z

6 generate a monoid M
isomorphic to C10 ∩Z

6. While this description is even more
aesthetic than the one in Table 1, it has the disadvantage that
gp(M) is of index 2 in Z

6.

In the summer of 1998 a second counterexample C12 to
(UHC) and (ICP) emerged. It has a Hilbert basis of 12 ele-
ments. We continued the search for two more years. The frus-
trating outcome was that C10 appeared over and over again,
but no new counterexample showed up (and even C12 did not
return until November 22, 2006).
The project was taken up again at the end of 2004 when our

department installed a dual-processor Opteron system with
very fast integer arithmetic. Nevertheless, the outcome of the
search remained as disappointing as it had been before.
Finally, in August 2006 we did what should have been

done long before, namely compare C12 with C10: it turned
out that Hilb(C12) (in an embedding that had to be found!)
extends Hilb(C10) by two vectors. Relative to C10, this find-
ing explained why C12 fails (UHC) and (ICP), too: the extra
u-subcones and f -subcones are not sufficient to cover all in-
tegral vectors in C10. (It also shows that one cannot speed up
shrinking by removing two vectors at a time.)
However, this not very surprising a posteriori insight made

it suddenly clear that there might be many interesting objects
in the vicinity ofC10. Especially when we approachC10 along
a shrink path, why should the stronger property (UHC) not be
lost before (ICP)? After a modification of shrink we also ap-
plied unicover to the, for example, six last nontight approxi-
mations toC10, and within hours many new non-(UHC) cones
emerged. Several of them defeated all Monte Carlo attacks on
(ICP). It became clear that caradec had to be implemented,
and it indeed recognized many non-(UHC), but (ICP), cones.
Ironically, within a few weeks after we had given up our

narrow-minded insistence on checking only tight cones, two
new non-(UHC) such cones surfaced, both of them satisfying
(ICP). They appear as C′12 and C15 in Table 2.

C12 : z′11 = (2, 2, 1, 4, 1, 3) C15 : w1 = (2, 1, 0, 5, 1, 5)

z′12 = (2, 3, 1, 4, 1, 2) w2 = (1, 0,−1, 4, 0, 4)
w3 = (0, 0,−1, 1, 0, 1)

C′12 : z′′11 = (0,−1, 2,−1,−1, 2) w4 = (2, 1, 2, 3, 2, 4)

z′′12 = (1, 0, 3, 0, 0, 3) w5 = (1, 1, 0, 3, 1, 2)

TABLE 2. Additional vectors in Hilb(C12), Hilb(C′12), Hilb(C15).

#Hilb #Supp ICP Aut flat

C10 10 27 no F20 yes

C12 12 39 no Z2×Z2 yes

C′12 12 40 yes F20 yes

C14 14 34 yes {id} yes

C′14 14 39 no {id} yes

C′′14 14 42 yes Z2 no

C′′′14 14 44 yes {id} yes

C15 15 36 yes {id} no

C15′ 15 36 yes {id} yes

C′′15 15 44 no {id} yes

C16 16 49 no Z2 yes

C′16 16 36 no Z2 yes

C19 19 46 yes {id} yes

TABLE 3. Tight non-(UHC) cones.

Since all these cones contain C10, we list only the extra
vectors that complement the Hilbert basis of C10 (using the
embedding given in Table 1).
The most interesting example after C10 undoubtedly is

C′12, and not only because it satisfies (ICP). Its automorphism
group—certainly invisible from the embedding given—is
again the Frobenius group F20. It is clear that F20 cannot act
transitively on Hilb(C′12), which rather decomposes into an or-
bit of 10 elements and one of 2. However, this is by no means
an extension of the action of F20 onC10, since the orbit of two
elements is {z1,z5}! Only a subgroup isomorphic to Z2×Z2

restricts to C10, showing that there are five conjugate embed-
dings of C10 into C′12, and each of them contains z1,z5.
The convex hulls of {z1, . . . ,z5,z′′11} and {z6 . . . ,z10,z′′12}

are both bipyramids over a tetrahedron. The bipyramids are
situated in the parallel hyperplanes with the equations ζ1 = 0
and ζ1 = 1. Both C12 and C′12 have their Hilbert bases in the
hyperplane spanned by Hilb(C10), but this is not true forC15.
Table 3 lists all 13 tight non-(UHC) cones of dimension

6 that had been found by February 2, 2007, including those
mentioned already. In the last column we indicate whether
the Hilbert basis is contained in a hyperplane.
The smallest non-(UHC) but (ICP) cone we have found has

a Hilbert basis of 11 elements, and the largest has a Hilbert ba-
sis of 24 elements (most likely (ICP)). Like all the others, they
are extensions of C10, which seems to be the core obstruction
to (ICP) and (UHC).
This finding is further supported by computations in di-

mension 7. All tight non-(UHC) (and partly non-(ICP)) cones
of dimension 7 we have found inherit the failure of (UHC) or
even (ICP) fromC10. We forgo including data similar to those
in Table 3, since they do not add essentially new information.

Bruns: On the Integral Caratheodory Property 365

While we have the implications (UHC) =⇒ (ICP) =⇒
M = R+M∩Z

d (under the condition gp(M) = Z
d), it is now

clear that the converse implications do not hold. However, it
remains an open problem whether all cones in dimensions 4
and 5 have (ICP) or even (UHC).

5. COMPUTATIONAL ISSUES

All programs were written in C. The tight cones in Section
4 were found by the Opteron (O) system mentioned above.
It runs Linux, and the executables were produced by the gcc
compiler.
In the following we will also mention computations on two

other systems, the author’s Intel Core2 6600 (C2) with Win-
dows XP and the DJGPP port of gcc, and the University of
Osnabrück’s Itanium (I) system with Linux and the Intel com-
piler icc. The machines (O) and (C2) are close to each other
in speed; (I) is somewhat slower (for integer arithmetic), but
has very large memory (32 GB).
Some of the equipment used in the 1998 computations is

still accessible. This allowed us to measure the gain in speed
by improved hardware: the factor is at least 40. Moreover, a
better implementation of shrink yields an acceleration by a
factor of at least 3. In other words, four months of the 1998
search take now a single day.
The number of cones shrunk by shrink per second de-

pends very much on the parameters used for their creation.
The performance for 6-dimensional cones generated by ran-
dom 0-1 vectors, whose number varies between 6 and 26,
is about 1000 per second on (O) or (C2). Cones over 5-
dimensional parallelotopes of Euclidean volume ≤ 30 are
shrunk at a rate of 0.6 per second. The output of tight cones is
nevertheless comparable.
The cones in Section 4 are a light snack for unicover.

For example, the running time forC′′14 on (C2) is 1.7 seconds.
About 2.5 million vectors are created, but the list of vectors
in memory simultaneously is bounded by 15,000; C19 needs
about 50 seconds on (C2).
While all the other programs use 32-bit arithmetic,

caradec is set to 64-bit. It has no problem with all the cones
mentioned, as long as they have (ICP), simply because in all
cases they are f -covered by cones of determinant ≤ 2. The
running time forC′′14 on (C2) is 6.9 seconds.
Despite its sometimes enormous appetite for memory,

caradec has also been successful for all the cones of Table
3 that lack (ICP), with the exception ofC16 and C′16.

It failed for these cones, though it was allowed 200 million
vectors in memory.
The (ICP) property of C16 and C′16 was falsified by the

Monte Carlo method with 1 million test vectors for each of
the non-(UHC) subcones produced by unicover (17.4 sec-
onds on (C2) forC16).
The longest successful run of caradec with a negative re-

sult was C′′15: 1.990 seconds on (I), 2.1 billion vectors, 110
million simultaneously. The Monte Carlo method does the
job with 1 million vectors for the single non-(UHC) subcone
in 2.7 seconds on (C2). See Section 3 for further data on C′′15.

ACKNOWLEDGMENTS

The author is very grateful to Joseph Gubeladze for inspiring dis-
cussions and to theMathematisches Forschungsinstitut Oberwolfach,
where the first steps of this project were taken during a joint visit
within the MFO’s RiP program.

REFERENCES

[Bruns and Gubeladze 99] W. Bruns and J. Gubeladze. “Normality
and Covering Properties of Affine Semigroups.” J. Reine Angew.
Math. 510 (1999), 151–178.

[Bruns and Gubeladze 07] W. Bruns and J. Gubeladze. “Polytopes,
Rings and K-Theory.” In preparation. Preliminary version avail-
able online (http://www.math.uos.de/staff/phpages/brunsw/kripo.
pdf).

[Bruns and Koch 01] W. Bruns and R. Koch. “Computing the Inte-
gral Closure of an Affine Semigroup.” Univ. Iagel. Acta Math. 39
(2001), 59–70.

[Bruns et al. 99] W. Bruns, J. Gubeladze, M. Henk, A. Martin, and
R. Weismantel. “A Counterexample to an Integer Analogue of
Carathéodory’s Theorem.” J. Reine Angew. Math. 510 (1999),
179–185.

[Bruns et al. 98] W. Bruns, R. Koch, et al. “NORMALIZ: Computing
Normalizations of Affine Semigroups.” Available via anonymous
ftp (ftp://ftp.math.uos.de/pub/osm/kommalg/software/), 1998.

[Cook et al. 86] W. Cook, J. Fonlupt, and A. Schrijver. “An Integer
Analogue of Carathéodory’s Theorem.” J. Comb. Theory, Ser. B
40 (1986), 63–70.

[Ohsugi and Hibi 99] H. Ohsugi and T. Hibi. “A Normal (0,1)-
Polytope None of Whose Regular Triangulations Is Unimodular.”
Discrete Comput. Geom. 21 (1999), 201–204.

[Sebő 90] A. Sebő. “Hilbert Bases, Carathéodory’s Theorem, and
Combinatorial Optimization.” In Integer Programming and Com-
binatorial Optimization, edited by R. Kannan andW. Pulleyblank,
pp. 431–456. Waterloo: University of Waterloo Press, 1990.

Winfried Bruns, Universität Osnabrück, FB Mathematik/Informatik, 49069 Osnabrück, Germany (wbruns@uos.de)

Received October 24, 2006; accepted December 13, 2006.

