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There is much interest in finding short presentations for the finite
simple groups. In a previous paper we produced nice efficient
presentations for all small simple groups and for their covering
groups. Here we extend those results from simple groups of or-
der less than 100,000 up to order one million, but we leave one
simple group and one covering group for which the efficiency
question remains unresolved. We give presentations that are
better than what was previously available, in terms of length and
in terms of computational properties, in the process answering
two previously unresolved problems about the efficiency of cov-
ering groups of simple groups. Our results are based on major
amounts of computation. We make substantial use of systems
for computational group theory and, in particular, of computer
implementations of coset enumeration.

1. INTRODUCTION

There is much recent interest in finding short presenta-
tions for simple groups and their covering groups, wit-
nessed by [Bray et al. 06, Campbell et al. 04, Guralnick
et al. 07a, Guralnick et al. 07b, Korchagina and Lubotzky
06, Wilson 06]. This paper extends [Campbell et al. 04]
to larger simple groups and relies on much material given
there. We do not repeat the theoretical background infor-
mation, but for completeness, we do provide an overview
of the techniques and theorems used. We give the names
of simple groups in Atlas format [Conway et al. 85], and
we denote the covering group of the simple group G by
Ĝ. Various different measures for length of presentations
appear in the literature. We use a simple one suitable
for our purposes: the total length of the relators (after
free and cyclical reduction) in the corresponding presen-
tation.

Epstein studied geometric properties of groups in [Ep-
stein 61]. He used homological arguments to show
that there is a lower bound on the minimal num-
ber of relations required to present a group. He
called a group efficient if this lower bound could be
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achieved. A relevant, more formal, description appears
in [Campbell et al. 04].

A survey of results till 1989 for simple groups of order
up to one million is given by Campbell, Robertson, and
Williams in [Campbell et al. 89]. After this, progress
was made starting in 2003 when L3(5) was shown to
be efficient by Campbell, Havas, Hulpke, and Robertson
[Campbell et al. 03] and M̂22 was shown to be efficient in
[Havas and Ramsay 03a], in both cases using techniques
outlined here.

In the process of finding efficient presentations we
answer two previously unresolved problems about the
efficiency of covering groups of simple groups: we
show that Â8 and L̂2(121) are efficient by giving ef-
ficient presentations for them. This leaves two ques-
tions about the efficiency of the simple groups of or-
der less than one million and their covers to be an-
swered. We address these and other unsolved problems in
Section 5.

2. METHODOLOGY

We report on the results of systematic attempts to find
efficient presentations of simple groups of order between
105 and 106 and of their covering groups. There are three
distinct methods: we look at short presentations for per-
fect groups; we consider all essentially different generat-
ing pairs for simple groups; and we look at one-relator
quotients of free products Cm ∗Cn for coprime m and n.
These are the same kinds of techniques used in [Campbell
et al. 04]. We outline them here and give references to
more-detailed descriptions. We also state without proof
the theoretical results that we use.

2.1 Method 1

A first source of efficient presentations for small sim-
ple groups and their covers is provided by censuses of
short presentations of perfect groups, extending work
in [Havas and Ramsay 03a]. The extension includes 2-
generator, 2-relator presentations with length up to 24;
2-generator, 3-relator presentations with length up to 26;
3-generator, 3-relator presentations with length up to 20;
and selected one-relator quotients of Cm ∗ Cn (the free
product of an m-cycle and an n-cycle) for coprime m

and n. (By a one-relator quotient of a particular group
we mean a presentation obtained by adding one extra
relator to a presentation for the specified group.) This
last census overlaps with presentations considered by our
third method.

2.2 Method 2

The second method uses a Magma [Bosma et al. 97] pro-
gram developed by Havas, Newman, and O’Brien [Havas
et al. 04], which enables us to find all distinct generat-
ing sets for moderately sized permutation groups. (The
program uses representatives from appropriately merged
orbits of the action of the automorphism group of each
permutation group studied.) We use this program to find
such distinct generating pairs for groups under consider-
ation, and then use the built-in algorithm of Magma to
find a presentation of the group on some of these gener-
ating sets.

Presentations found in this way tend to have a reason-
ably small number of relators, increasing with increasing
group order. They are rarely efficient, even for small
groups. Often, however, simply checking all efficient-
sized subsets of the relators reveals efficient presenta-
tions. These checks are carried out by first quickly check-
ing that a subset presents a perfect group (for otherwise
it does not present a group we are seeking). Note that
here we might be looking for either the underlying simple
group or some stem extension. If this test is passed, then
we attempt to check that the presentation is correct by
coset enumeration; we generally use the ACE enumerator
[Havas and Ramsay 01], either as available in GAP [GAP
Group 04a] or Magma, or as a stand-alone program for
some more-difficult cases.

2.3 Method 3

The third method has two variants. The first variant
extends the idea of enumerating one-relator quotients of
Cm ∗ Cn to building appropriate one-relator quotients
that present a simple group, or a stem extension, by com-
puting and testing relators that hold in the context of a
specific generating set for a specific group. This is an
easy modification of the process described by Campbell,
Havas, Hulpke, and Robertson [Campbell et al. 03] us-
ing the GAP program PGRelFind [GAP Group 04b] and
[Gamble et al. 04]. The second variant [Conder et al. 06]
starts with the free product Cm ∗Cn and its natural pre-
sentation { a, b | am, bn }. We look for simple or perfect
finite quotients of this group that can be obtained by ad-
joining a single extra relator. Thus we seek quotients of
the form 〈 a, b | am, bn, w(a, b) 〉, where w = w(a, b) is
a word in the generators a and b and their inverses a−1

and b−1, usually of relatively small length. We have im-
plemented Magma programs that allow us to specify m,
n, allowable lengths for w, and desired quotient groups.
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2.4 Underlying Theory

We use three results from [Campbell et al. 04] that enable
us to amalgamate relators in presentations to give pre-
sentations for associated groups with fewer relators. The
proofs of these results are constructive, which enables us
to build efficient presentations using them.

Theorem 2.1. Let G be a finite simple group. Suppose
that G, or some stem extension of G, can be presented as

{ a, b | ap = bq = w(a, b) = 1 }.

Then the covering group of G, all stem extensions of G,
and G itself are efficient.

Corollary 2.2. Let G be a finite simple group. Suppose
that G, or some stem extension of G, can be presented as

{ a, b | u(a, b)p = v(a, b)q = w(a, b) = 1 }.

Suppose also that u(a, b) and v(a, b) generate the free
group on a and b. Then the covering group of G, all
stem extensions of G, and G itself are efficient.

Theorem 2.3. Let G be a finite simple group. Suppose
that G, or some stem extension of G, can be presented as

{ a, b | u(a, b)p = v(a, b)q = w(a, b) = 1 }.

In addition suppose, for some integers k and l, that G̃

presented by

{ a, b | u(a, b)kpv(a, b)lq = w(a, b) = 1 }

is perfect and generated by u(a, b) and v(a, b). Then G̃ is
the covering group of G.

2.5 Effectiveness of Our Methods

Each of our methods relies on investigations of search
spaces of varying kinds. With increasing group size and
presentation length the search spaces grow enormously.
In [Campbell et al. 04], where the underlying simple
groups have size less than 105, we give some graphic ex-
amples of this.

Such limitations become more pronounced with the
larger groups considered here. We give some rough CPU
times taken for some of the lengthier computations. The
CPU times are for runs on a Sun SPARC V9 machine
with a 750-MHz CPU running SunOS. For example, in
some cases partial searches with Method 2 ran for several
CPU months.

Each of our methods is impacted by this, and so in
contrast to the situation in [Campbell et al. 04], where
we generally applied each of the three methods to every
group, here we usually did not further study a simple
group in great detail once we had found an efficient pre-
sentation for it and its cover. What this means is that
we applied Method 1, which is based on searching among
presentations for perfect groups, for all groups in this
catalogue. However we did not necessarily try Method 2
or 3.

Sometimes we have not succeeded in using our meth-
ods to directly find efficient presentations for simple
groups. Instead we first found efficient presentations
for a covering group, from which we could then readily
produce longer, but still efficient, presentations for the
simple group by factoring out the center of the covering
group.

One problem we face in producing our table of new
presentations is that once we are able to find an effi-
cient presentation for a group, then there are arbitrarily
many. We say that two presentations are equivalent if
the relations of each hold in the groups defined by them.
In Table 2 we give an instance of a presentation with
shortest-found length. We give coset enumeration per-
formance measured by the total number of cosets used in
a successful enumeration of the trivial subgroup using the
Hard strategy of ACE, with the group generators given
in alphabetical order.

We take the presentation as produced by our process
and generally do not make major efforts like those de-
scribed in [Havas and Ramsay 00] to improve it. Thus we
give presentations produced by Magma at most slightly
simplified, but with various relators in what may seem
less-natural forms (in the sense that inversion or cyclic
rotation may produce more-usual forms). In contrast,
presentations from censuses of short presentations arise
with relators in canonical form, as described in [Havas
and Ramsay 03a]. Generally speaking, there are often
other variants, including longer presentations, that enu-
merate better. We comment on each of the groups in
Section 4.

As far as reliability of results is concerned, we assert
that all presentations given in this paper correctly de-
fine the groups. Each new presentation that appears
has been verified by both GAP and Magma programs to
present the specified group. Here we intentionally do not
use ACE for the GAP check, but rather use GAP’s inter-
nal coset enumerator (which was entirely independently
written), providing a greater level of confidence in the
results.
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Name Relators and/or Relations Length Cosets

U3(5) x2 = (xy)10, xy−2xy2x(yxy−2xyxy)2, (x, y2)4 = y5 68 197015911

Û3(5) not known to be efficient

J1 a2b3, (AB(ab)2)4(Ab)2AB(ab)3aB(ab)2(AB)2 51 8187235

A9 xyXyxY , x15, xy(xy2)2(x2y)2x2(x2y2)2 45 944000

Â9 not known to be efficient

L2(64) xyXyxY , x4yxy4x5y5x5y4xy 37 5102529

L2(81) a2, b3, ab(aB(ab)3)2(aB)4((ab)3aB)2 47 412909

L̂2(81) a2b3, abAB(Ab)3AB(ab)3(AB)4((ab)3aB)2 47 2172625

L3(5) not known to be efficient

M22 a2 = (ab)11, (abab2)7 = b4,

(ab)2(aB)2ab2(ab)2aBab(ab2)2 = b4 82 907059999

M̂22 not known to be efficient

J2 a2, b3, (ab)2(aB)2ab(aB)4(ab)3(aB)4ab(aB)2 43 699938

Ĵ2 a2b3, (ab)2(aB)2ab(AB)4(Ab)3(AB)4ab(aB)2 43 1469303

L2(121) a3 = b11, (ab4ab7)2, aB2Ab3ab2Ab3aB2AB3 61 3672993

L̂2(121) not known to be efficient

L2(125) a2, b3, (ab)4(aB)14(ab)4(aB)−7 63 5389408

L̂2(125) a2 = b3, (Ab)4(aB)14(Ab)4(aB)−7 63 22877752

S4(4) not known to be efficient

TABLE 1. Shortest efficient presentations as of 1989.

Name Relators Length Cosets Order Ref

U3(5) a7, abAbbabABBB, aabABBaBabab 30 313132 126000 4.11

Û3(5) not known to be efficient 378000 4.11

J1 xyXyxY, x3(yx)2xy2x3y3xyx2y3 29 1372504 175560 4.1

A9 a4, aBabABABBAbb, abABaBaBABaaB 29 291299 181440 4.2

Â9 xyXyxY, x3y3xY 2X2Y (xy)3yx(xy)3yxy 35 72204121 362880 4.2

L2(64) aabABaBAb, aab3aaB4 20 6046093 262080 4.3

L2(81) (xY )3, (yXy)2, x4y3xy3xyxy3xy3 33 385827 265680 4.4

L̂2(81) aabABAb, a3BabbAAbbAAbbaB 24 912581 531360 4.4

L3(5) xyXyxY, x4(y2x)2x2y3X3Y X(yxx)2y 33 63268192 372000 4.5

M22 a5(Ab)3, aabABabbAB, b11 30 2104858 443520 4.6

M̂22 aababAAB, abbbbaBaB 17 21611026 5322240 4.6

J2 a3, b5, ababbABAbbabaB 22 1211899 604800 4.7

Ĵ2 aabaaBAAB, abbbaBBaBB 19 2972373 1209600 4.7

L2(121) (xY )3, (yXy)2, x10y2x4y3x4y2 37 3132563 885720 4.8

L̂2(121) a4bAABAAb, a3bAB4Ab 22 2043084 1771440 4.8

L2(125) (xY )3, (yXy)2, x7yx2yxyxy2xyxyx2y 35 1327887 976500 4.9

L̂2(125) a3bAABAAb, a3BABa3B4 23 2852237 1953000 4.9

S4(4) not known to be efficient 979200 4.10

TABLE 2. Our short presentations.
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3. RESULTS

We give nice efficient presentations for simple groups of
order between 105 and 106 and for their covering groups.
We exclude L2(p) for prime p ≥ 5 (for which [Sunday 72]
gives efficient presentations) and L̂2(p) (for which [Camp-
bell and Robertson 80] gives efficient presentations). We
also exclude S4(4) (the smallest simple group for which
no efficient presentation is known) and Û3(5) (the small-
est covering group for which no efficient presentation is
known).

We put our efficient presentations in context by com-
paring them with the shortest presentations known in
1989, before the availability of the methods outlined in
Section 2. Sometimes those presentations imply the ex-
istence of shorter presentations. For example, where pre-
sentations include relators like a2 and b3 or like a2b3, it is
possible to follow the ideas explained in [Campbell et al.
86] to give shorter presentations on x = ab and y = aB

or y = AB.
We adopt the convention of using uppercase letters

to denote inverses in presentations, so that, for example,
A = a−1. We give presentations by listing sets of relators
and/or relations (often only implicitly specifying the gen-
erators). For coset enumeration purposes the generators
are always given in alphabetical order.

The tables (which have the simple groups listed in or-
der of increasing size) give the name of the simple group,
relators and/or relations for the group, the total length
of the relators in the corresponding presentation (freely
and cyclically reducing relators as done by ACE), and
the total number of cosets used in a successful coset enu-
meration for this presentation over the trivial subgroup
using the Hard strategy of the ACE enumerator. The
presentations in Table 1 appear in [Jamali and Robert-
son 89, Campbell and Robertson 88, Campbell et al.
86, Campbell et al. 90], or [Campbell et al. 89]. In Ta-
ble 2 we provide a reference to the subsection in which
we give further information on the group.

4. COMMENTARY

Our methodology produces a very large number of effi-
cient presentations for most of the groups under consider-
ation. Then simple modifications to these lead to many
more presentations that are efficient. In our tables we
have given, from among the shortest efficient presenta-
tions that arose as one of our generated presentations,
one that enumerates with the fewest number of total
cosets over the trivial subgroup. (We emphasize that we

use this purely as a measure of coset enumeration per-
formance and do not suggest that enumerations over the
trivial subgroup are the best way to compute with the
presentation to gain other information about the group.)
We also give further information for each simple group.

The ordering of the subsections in this section is a
little unusual. It might seem natural to put the groups
in order of increasing size of simple group. We have done
this with one exception: we have put the smallest, U3(5),
last because it leads to a problem that we have not solved
and it makes more sense to consider it after the others.

4.1 J1

The presentation for J1 in Table 2 was obtained by
applying Corollary 2.2 to a one-relator quotient of
C2 ∗ C3, with the relator found by an intelligent
search. A predecessor of our presentation arose in
Method-1 censuses, in addition to one other inequiva-
lent presentation. The instances that we use started
with the two relators (xY )3 and (yXy)2, to which
we added w1 = x3yxyxxyyx3y3xyxxy3 and w2 =
x4yx3yxxy3xxyxxyxxy, respectively. Coset enumera-
tions of the 175560 cosets over the trivial subgroup for
these 3-relator presentations took totals of 554222 and
2674513 cosets, respectively. We use w1 in our tabulated
presentation. (The analogous presentation with w2 uses
11761688 cosets.)

Further, a study of one-relator quotients of { a3, b7 }
yields four inequivalent length-14 words that may be
added to give presentations of J1, namely

ababababAbaBaB, abababaBaBabAb,

ababaBaBaBaBAB, ababaBABaBaBaB.

Presentations using these relators take 322550, 305976,
370801, and 318374 total cosets over the trivial subgroup,
respectively. The proof of Theorem 2.1 in [Campbell et
al. 04] explains how to convert these presentations into
efficient ones for J1, longer than our tabulated one.

The group J1 has 88570 distinct generating pairs,
and we looked at 7982 of these (in a computation tak-
ing two CPU months), yielding 554 3-relator presen-
tations. Among those were some that could be pro-
cessed using the ideas in the proofs of Theorem 2.1 or
Corollary 2.2 to give other efficient presentations for
J1. These include { b3, aBAABaababab, (Ba)7 }, { b2,
a3bA3baabAAbA4ba3bAAba3ba3ba, (bA)3 }, { b7, (BA)3,
aBA5BAABab }, and { babABABab3abab, (aba)2, a7 }.
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4.2 A9

Neither A9 nor Â9 arose in our Method-1 censuses. We
explain how we used Methods 2 and 3 to find efficient
presentations for them.

The group A9 has 39247 distinct generating pairs and
Â9 has 155118. We investigated distinct generating pairs
of A9 for 24 CPU days, during which time we looked at
3861 pairs. In the process we found 107 efficient presenta-
tions for A9, with lengths between 29 and 57. There was
only one presentation with length 29, so we tabulate it.

None of the 107 presentations was of a form suitable
for the application of Theorem 2.1, Corollary 2.2, or The-
orem 2.3. This meant that we were not able to use any of
them to build an efficient presentation for Â9. We inves-
tigated 4855 of the distinct generating sets for the cover
(in a computation taking two CPU months) and failed
to find any efficient presentations or any presentations to
which Theorem 2.1, Corollary 2.2, or Theorem 2.3 could
be applied.

In the end, Â9 succumbed to Method 3 using
PGRelFind (in a run taking 84 CPU hours). We stud-
ied longer one-relator quotients of C2 ∗ C3. On mapping
C2 ∗ C3 onto a representation of A9 satisfying presen-
tation 16.4 of [Campbell and Robertson 84], we found
various words with length greater than or equal to 54
that mapped onto the identity. There were seven words
with length 54 produced, which give equivalent presen-
tations. For all of these we could show that they suffice
to produce Â9 as a one-relator quotient of C2 ∗ C3.

Starting with { a, b | a2, b3 } we found, inter alia, that
the word

w = ababaBababababaBaBaBabaBababa

BabaBabaBaBababaBabaBabab

maps to the identity in the representation of A9. We
investigated the group presented by { a, b | a2, b3, w }
and found (by coset enumeration) that it is Â9, using
38120066 cosets over the trivial subgroup. The proof of
Theorem 2.1 then delivers us a very large number of ef-
ficient presentations for Â9 with length 59 and larger.

One way to obtain length-59 presentations is to take
the word w and construct w̃ from w by replacing the
sequence of a’s in w by any one of the sequences gen-
erated from a multiset with 15 a’s and 12 A’s. There
are clearly

(
27
12

)
= 17383860 such sequences, which lead

to that number of superficially different (but equivalent)
presentations { a2b3, w̃ } for Â9.

Now defining x = ab and y = aB, so that a = xY x

and b = Xy, we obtain presentations on x and y. We did

this for all
(
27
12

)
presentations for Â9 obtained as described

above and simplified them. This led to presentations with
lengths varying from 35 to 91. The full length distribu-
tion that we obtained this way was as follows (length,
number of presentations):

35, 3544; 37, 97361; 39, 663083; 41, 1538547;
43, 1980852; 45, 2334578; 47, 2365991; 49, 2114241;
51, 1744472; 53, 1397000; 55, 1066256; 57, 768446;
59, 502991; 61, 332949; 63, 194842; 65, 132423;
67, 67975; 69, 39145; 71, 19279; 73, 9724; 75, 6136;
77, 2128; 79, 1124; 81, 468; 83, 158; 85, 112; 87, 18;
89, 12; 91, 5.

This shows how dramatically the number of efficient
presentations for a group may grow. We simply list the
canonical version of the first of the length-35 presenta-
tions for Â9 that we found.

4.3 L2(64)

For L2(64) we tabulate a length-20 presentation from a
Method-1 census of short 2-generator, 2-relator presen-
tations for perfect groups. It is interesting to note that
it is one shorter than the shortest presentation that we
have obtained [Campbell et al. 04] for L2(32). It is the
unique shortest canonical 2-relator presentation for this
group that we have found. The census of 3-generator, 3-
relator presentations with length up to 20 revealed nine
length-20 presentations for this group, varying only in
their longest relator. The one that enumerates best, us-
ing 629376 cosets, is { aabAB, bcbcBc, abcaccccb }.

We have found 2-generator, 2-relator presentations
that are longer but better for coset enumeration than
our Table 2 presentation. At length 23 we have

{ a3bABAb, a3BBAAbAAbAABB },
which uses 924002 cosets, and at length 24 we have

{ aabaaBAAB, a5baBaBBaaBB },
which uses 398265.

The shortest presentations, length 24, that we found
that can be readily seen as consequences of the applica-
tion of Corollary 2.2 include

{ a7(A2b)2, aabbaBaB3AbAbb }
and

{ a5(Ab)2, abAB3AbabbaBBabb },
which use 1441467 and 12173611 cosets, respectively. A
representative of the shortest presentations that we have
found for L2(64) as a one-relator quotient of C2 ∗ C3 is

{ (xY )3, (yXy)2, x5yx3yxy4xyx3y },
which uses 314212 cosets.
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4.4 L2(81)

The presentation in Table 2 for L2(81) is a one-relator
quotient of C2 ∗ C3. In our Method-1 censuses of such
quotients we found two essentially different presentations
for this group with long relator having length 21; the
other one is

{ (xY )3, (yXy)2, (x2y)2xy5x2y5xy },
which uses more cosets, 1861721.

For L̂2(81) we tabulate a presentation from a Method-
1 census of short 2-generator, 2-relator presentations. It
is the unique shortest canonical 2-relator presentation for
this group that we have found. Longer presentations can
be constructed from our presentations for L2(81).

4.5 L3(5)

The efficiency problem for L3(5) was resolved in [Camp-
bell et al. 03]. There the presentation

{ a2b3, AbAbABAbAbABaBaBAbAbABAbAb

ABaBaBaBabaBaBabaBaBABAB }
was revealed. It was derived from presentation 17.6 of
[Campbell and Robertson 84]. It has length 55 and uses a
total of 92162535 cosets. Equivalents of this presentation
were revealed by our censuses. Then, via the same kind of
transformation to generators x and y as used above for
Â9, we looked at

(
25
11

)
presentations, revealing 4457400

presentations with lengths from 33 to 85, including 1651
with length 33. We list the canonical version of the first
of the length-33 presentations for L3(5) that we found.

Our censuses also revealed a longer (length-41) presen-
tation that gives L3(5) as an explicit one-relator quotient
of C2 ∗ C3:

{ a3(ab)2, abbaBBaB4ab3AbbAB3ab3Ab3aB3 }.
This presentation is harder for coset enumeration, using
237949556 cosets.

4.6 M22

The group M22 and its covering group are studied in
detail in [Conder et al. 06], motivated in part by the fact
that M̂22 has surprisingly short efficient presentations.
Here we simply list the shortest efficient presentations
for these groups revealed in that paper, which contains
comprehensive information about efficient presentations
for both groups. Briefly, the presentation for M̂22 is a
shortest presentation possible, while the presentation for
M22 is built by adding a relator that kills the center in
the context of a slightly longer presentation of M̂22.

4.7 J2

Two inequivalent efficient presentations for J2 as one-
relator quotients of C2 ∗ C3 appear in [Campbell and
Robertson 84] and [Campbell and Robertson 88]. Our
censuses revealed equivalents of these. We also found
other efficient presentations as one-relator quotients of
C3 ∗C5, C2 ∗C7, and C3 ∗C10. We tabulate the shortest
we found, a one-relator quotient of C3 ∗ C5. A presenta-
tion longer by 1, namely { a5, (ab)3, aabbaaBBAABB },
enumerates better (837516 cosets).

For Ĵ2 we tabulate a presentation from a census
of short two-relator presentations for perfect groups
that is the unique shortest canonical two-relator pre-
sentation for this group. Very many efficient pre-
sentations arise from the various presentations for J2

as a one-relator quotient of Cm ∗ Cn. These include
{xyXyxY, x3y4xyyx3Y XY XXY xy }, which may be de-
rived from a one-relator quotient of C2 ∗ C3 and uses
1375550 cosets.

4.8 L2(121)

The presentation in Table 2 for L2(121) is a one-relator
quotient of C2 ∗ C3. In our Method-1 censuses of such
quotients we found three inequivalent presentations for
this group with long relator having length 25; the others
are

{ (xY )3, (yXy)2, x5y2xyx(xy2)3x2yxy2 }
and

{ (xY )3, (yXy)2, x3yxy3xyx3y3xy4xy3 },
which use more cosets, 4619952 and 72687164, respec-
tively.

For L̂2(121) we tabulate a presentation from a
Method-1 census of short 2-generator, 2-relator presen-
tations. It is the unique shortest canonical 2-relator pre-
sentation for this group that we have found. Longer
presentations can be constructed from our presentations
for L2(121).

4.9 L2(125)

The presentation in Table 2 for L2(125) is a one-relator
quotient of C2 ∗ C3. Up to equivalence, it is the only
presentation with this length that we have found.

For L̂2(125) we tabulate a presentation from a
Method-1 census of short 2-generator, 2-relator presen-
tations. It is the unique shortest canonical 2-relator pre-
sentation for this group that we have found. Longer
presentations can be constructed from our presentation
for L2(125).
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Relators Length Cosets

baBa3Babb, (abAABa)2, aBaBA3bbA3B 35 2464234

(aBB)2, Abaaba3baabAB, ABBABA3B3A3B 35 3786512

(abaa)2, bAABaababb, ABAbaBaBAABaBabABAB 37 2492551

(aBBa)2, bAABaababb, ABAbaBaBAABaBabABAB 37 4191954

(aB4)2, abaBBABAbbABABB, Ab3ABAABBABabA 40 2480214

(aB4)2, abaBBABAbbABABB, baBABBAABAb3AA 40 2534585

(aBAba)2, BaBaaBAABab3AA, B3aBBABabbABBAB 41 3605111

bAABaababb, ABaaBAABBABBA, ABAbaBaBAABaBabABAB 42 1077562

a2, B4aB4aBaB3aBa, babbaB6abbababaBaba 43 7036654

a6, aBaBaaBabb, bbbAAABaaaBBaa, b17 47 1041750

(ab)2, aB(Baa)2bbaaBa, a17, ABBaaBA3bAbA4bbaBa4BaBa3bA 67 2657240

(ab)2, ABaBBa4bbaBA3, a17, ABBaaBA3bAbA4bbaBa4BaBa3bA 69 1428848

b4, ABBabAbAAbbabbabAb, aBBAbABBAAbbAbAbbaB, (ab)17 75 9061870

TABLE 3. Interesting presentations for S4(4).

4.10 S4(4)

A substantial computational effort aimed at finding an ef-
ficient presentation for S4(4) was already made in [Camp-
bell et al. 03]. This led to a presentation with one more
relator than an efficient one. We tried each of Methods
1, 2, and 3 but failed to obtain an efficient presentation.
Methods 1 and 3 are hampered by the fact that S4(4) is
not generated by any pair of elements of which one is an
involution and the other has order 3. Using Method 2
we found 117843 distinct generating sets and looked at
only some of them. (It took 19 CPU hours to find the
generating sets, then over 2 CPU hours, on average, to
construct a presentation on a given generating set.)

The presentations started off looking quite unwieldy;
the average number of relators was 16. Indeed, we varied
the method to look at a random sample of about 10000
generating sets. In a computation taking 36 CPU days
we did find many shorter presentations with one extra
relator, including those in Table 3.

We also looked at some two-relator quotients of Cm ∗
Cn and found four that present S4(4). These four-relator
presentations can be readily used via simple extensions
of Theorem 2.1 and Corollary 2.2 or Theorem 2.3 to give
other three-relator presentations for S4(4) (by amalga-
mating power relations). We have tried to construct effi-
cient presentations for S4(4) based on the presentations
in Table 3 but have not succeeded.

4.11 U3(5)

Even though U3(5) is the smallest simple group in our
range, it is difficult to handle with our methods. Again,
Methods 1 and 3 are hampered by the fact that U3(5) is
not generated by any pair of elements of which one is an
involution and the other has order 3. Neither U3(5) nor

its cover appeared in any of our censuses, and neither ap-
peared as a one-relator quotient of any Cm ∗Cn. Indeed,
we have not been able to find an efficient presentation
for Û3(5).

The group U3(5) has 9947 distinct generating pairs,
and Û3(5) has 88290 distinct generating pairs. We in-
vestigated all the distinct generating sets for U3(5) (in
13 CPU days) and found many efficient presentations for
the group. Unfortunately, none was of a form suitable
for applying Theorem 2.1, Corollary 2.2, or Theorem 2.3.
There is a tantalizing collection of efficient presentations,
and we list a selection of those we found in Table 4. We
have tried to construct efficient presentations for Û3(5)
based on these but have not succeeded.

It is worth noting that Magma presentations found
are not necessarily shortest possible even in quite sim-
ple ways. The second presentation in Table 4 is readily
converted by a simple Tietze transformation into presen-
tations that are shorter by one. In Table 2 we tabulate a
canonical representative of that presentation (produced
by the ACME program [Havas and Ramsay 03b]).

The presentations listed in Table 4 were chosen be-
cause of their attractive structure or because coset enu-
meration is relatively easy. They include efficient presen-
tations, and also some nice ones with one extra relator
and that include three power relations.

These four-relator presentations can be readily used
via simple extensions of Theorem 2.1, Corollary 2.2, or
Theorem 2.3 to give three-relator presentations for U3(5)
or its cover (by amalgamating power relations). Most
of these came from applications of Method 2. However,
the length-31 and length-37 presentations arose in a dif-
ferent way. Investigating L3(4) in [Campbell et al. 04],
we found it useful to study one-relator quotients of the
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Relators Length Cosets

a7, BABABababa, abbaBa3b3Aba 31 335319

a7, AbbabAB3ab, abaabbAB3aab 31 353243

b7, aBaabaBA3b, ABBa3bAABBAB 31 366504

b7, BaBABaBAbA, baBAba3bABaba 31 1062315

b5, BABABabAbAbaBA, BaBBAbbabbABBa 33 3341611

b8, a3ba3bbabb, aBaB3a4B3 33 13279158

a7, AbbAbaaBBaab, AbbAAbbaaBBA3B 34 400830

b7, ABBAABaabaaB3, ABaB3aaB3aBA 35 1063840

a4, bAABBAABABBabA, bAABAABAABAb3abA 35 3200496

b5, BABaBABaBAbABa, bABA4BAbaBaaBa 35 4038434

b4, aaBaBBaabbABAb, aBBaBBABBAba5B 35 4268641

b4, BAbABBaabbabaa, bA5BAbbAbbabba 35 4375702

a7, AAbba3bbA3BBaB, AAbbAAbA3BBA3b 39 1569322

a4, baabbabbAAbAB4A, baabaabaaB4AABAAb 40 1608805

b3aB5a, aaBaaBA5B, Abba3BaBBaB3A4B 41 1916333

a3bA4ba, BabbA3BBaB, abAbaaBaBa3BBAAbAAbaB 43 173182

ab5abaBBab, a3Ba3BA5B, a3ba4B3A4b 43 329760

a6bA3ba, ba5bbaB4ab, aabaaB6A3bAb 44 279893

aba3babAAb, BaabbaaBBA3B, Ba3b3a3BBA7B 44 6335191

ab5aaB3a, a3Ba3BA4B, Ab6a3b4ABBAAb 45 4917429

a7, AbbAbA5BBA5b, Abba5bbA5BBA3B 46 891029

a3Ba3BA5B, ba3b4A5ba, aab5aB3A6B 47 382676

b2, A3bAbaba3baba4bAb, AbAbabAbAba3bAbAbabAbAb 47 656937

a3ba3bA4b, Ba4bba3BA4B, Baabba5b4aBBAB3a 51 14841176

BAb4aB6AB, babbabaB5aB5a, BAbAb7abAB3ABBABaBa 59 1968195

a3Ba3BA5B, Aba5BaabAABA3BA5b, Abaaba4BaabAABA5BABA 63 5962702

a3ba3bA5b, Aba5BaabAABA6bA3B, Aba4Ba3BaabAbA5bA3BA 66 8798157

aabA5ba, bbaBaaBaaBa3B5AAb, b3(aaB)4a5(bAA)5bb 68 2207159

a5, (ab)3, b7, aabaabaabAbbbAb 31 1545569

b3, a7, (Ba)5, baBAba3bABaba 34 1512755

(Ba)3, b7, a8, bbA4BABa4b 35 304591

(ab)2, a5, b7, aabAAbbaBBaB3AABaB 37 144589

b7, a8, (BAB)3, BBA4Ba4BBa 38 839310

a4, (BA)3, (Ba)5, BAABAABAbAbABaaBaaB 39 185439

b3, a8, (Ba)7, aBA4bAAba4BaB 42 625696

a2, b5, (aB)7, abaBabbabbabbaBabababbab 47 155425

b2, a7, (AAb)5, aabAAba3ba3bAAbaababab 48 185983

TABLE 4. Interesting presentations for U3(5).

group (l,m, n) = { a, b | al, bm, (ab)n }. Those presenta-
tions are the shortest, best-enumerating instances of one-
relator quotients of (5, 7, 3) and (5, 7, 2) that we found
that give U3(5).

We investigated some of the distinct generating sets for
the cover and failed to find any efficient presentations or
any presentations to which Theorem 2.1, Corollary 2.2, or
Theorem 2.3 could be applied. We did not find any more-
attractive presentations than the ones we have listed for
U3(5). As we have seen, there can be very many effi-
cient presentations for a group. Once we start allowing
extra relations, the number of presentations goes up very
rapidly. In Table 5 we give a few of the 2-generator, 3-

relator presentations for Û3(5) that we found, essentially
as produced by our Magma program. We have been un-
able to use any of these to build an efficient presentation
for Û3(5).

We note that of the 24 presentations, all but 3 can
be viewed as containing a relator that amalgamates two
power relators (with not necessarily coprime orders). In-
deed, the first presentation can be seen this way via two
different amalgamations; its first relator may be obtained
from A5(baa)2 and its second relator from (AAB)2b7. If
we replace any of the amalgamated relators in any of the
presentations by the two underlying power relators, we
obtain a presentation for U3(5).
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Relators Length Cosets

bAAAbaa, bAABAAbbbbb, BBaBAbABAbbAbAbAB 35 912849

BBBaBAbbaBA, aaaaaaabbbbb, BaaBABaaBBBaBB 37 474817

AbaBBAbabbb, aaaaaaabbbbb, BaaBABaaBBBaBB 37 483482

bAAAAbbbb, aBABAbaaBaBAba, bbababAAbaBabba 38 457952

AAAAAbbbb, AbbaBABAbbaBAb, BaBAABAABABAbbA 38 468011

BAAAABBBB, abAbaBaababaBa, bbaBabAAbababba 38 575437

AbaBBAbabbb, baBBaaababAb, ABAbABaaaBAbABAb 39 484642

BBBaBAbbaBA, baBBaaababAb, ABAbABaaaBAbABAb 39 470694

BAAAABBBB, abaBABaabaBaBa, baBBBaBaaBABabba 39 549192

BaBaBabbba, BBaBBAABBaBBa, babAbaBaabaaBabA 39 1180984

AAAAAAAbbbb, aBabaaaabbAAAb, aBabbABAbbaBaB 39 1135822

bAAAAbbbb, AbabAAbabAB, baBBaaBaBaaBBabbAbAb 40 476477

aaaaaaaaBBBB, aBBAAAAbbaBAB, ABabaBAAbbAAbbA 40 649026

AbABaaaBaabA, abaBAAABAbAbb, ABABABABAbbbABAB 41 1149775

BaBABaabABBA, bABAbbaababaBa, BABABABAbbbbbbA 41 616640

AbABaaaBaabA, abaBAAABAbABB, ABABABABAbbbABAB 41 979135

ABBBBAbAbAb, babaBaaabbABab, bbAbABaaaBaBBabA 41 768857

AbbABaabAbab, abaBaBaaBBAbAB, ABBBBBBAbAbAbAb 42 576893

AbbABBAbbAbb, aBAAAAAbbbabb, aBABAbAbaabbabaBaB 43 716389

BabAAAAbaBaba, baaaaaaabAbAbA, BAbabaBaaBBAbbAB 43 537103

AbAbAbAbbbbbb, bbABAbAABabbAAb, aaBaBABaaBaBBaBB 44 651280

aBBaaaBBab, BaBaaaaaBaBaBa, aBaBABAABAAbaBAAbbbAb 45 537264

babaaaaabababa, BAbAABaaBAbAAB, BaBAbAbAAbaBaBBBA 45 1031556

BAbAbbAAbaBaBBB, BBaBaBaBaBBBBBBB, abABAbAAAbaBabbAb 48 999804

TABLE 5. Some 3-relator presentations for Û3(5).

5. OPEN PROBLEMS

In [Campbell et al. 04] we posed five open problems mo-
tivated by the investigation in that paper. The first three
problems we presented there are as follows:

1. Is every simple group efficient? If not, which is the
smallest inefficient simple group? Only one sim-
ple group of order less than one million is a can-
didate: S4(4). In particular, is L2(2n) efficient for
all n? Note that this has a positive solution for
n = 2, 3, 4, 5, 6.

2. Does the covering group of every finite simple group
have a balanced presentation?

3. Is An efficient for all n? This has a positive solution
for n ≤ 9. Even a much weaker question appears to
be open. Is there a 2-generator presentation for An

with k relators, where k is independent of n?

There has been some progress on each of these. Ques-
tion 3 asks whether An is efficient for all n and also poses
a weaker question: is there a 2-generator presentation for
An with k relators, where k is independent of n? The

weaker question has been answered in the affirmative in
[Bray et al. 06, Guralnick et al. 07a, Guralnick et al.
07b]. In [Bray et al. 06], a 3-generator presentation is
given with at most 246 relators, which, the authors note,
may be used to obtain a 2-generator presentation with a
bounded number of relations. In [Guralnick et al. 07a],
a 27-generator presentation with at most 122 relators is
given. The authors of [Guralnick et al. 07b] state that
An has a presentation with 4 generators and 10 rela-
tors. In fact, these papers, together with [Korchagina
and Lubotzky 06], also give information on Question 1:
is every finite simple group efficient? In [Guralnick et
al. 07a] it is proved that every finite simple group (ex-
cept perhaps the Ree groups) has a presentation with a
bounded number of relators (certainly less than 500). In-
deed, with respect to Question 2, [Wilson 06] states, “It
seems reasonable to conjecture that the covering group
of every finite simple group has a presentation with two
generators and two relators.”

On the one hand, our success in finding many efficient
presentations supports this conjecture. On the other
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hand, our failure as yet to find efficient presentations
for Û3(5) and S4(4) reveals these as the only possible
counterexamples of order less than one million.
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