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The minimum dilatation of pseudo-Anosov 5-braids is shown to
be the largest zero λ5 ≈ 1.72208 of x4 − x3 − x2 − x + 1, which
is attained by σ1σ2σ3σ4σ1σ2.

1. INTRODUCTION

Let f : D2 → D2 be an orientation-preserving disk home-
omorphism that is the identity map on the boundary
∂D2, and let {pi} ⊂ int(D2) be a periodic orbit of f

(or more generally a finite set invariant under f). The
points pi move under an isotopy from the identity map
on D2 to f . Their trajectory forms a geometric braid
β, a collection of strands in D2 × [0, 1] connecting pi × 1
to f(pi) × 0 (see Figure 1). The isotopy class of β de-
termines the homotopy class of f relative to {pi} ∪ ∂D2

and vice versa. An n-braid refers to the isotopy class of
a geometric braid with n strands. The set of n-braids
forms the braid group Bn.

From now on we consider f as a homeomorphism on
a punctured sphere f : int(D2)− {pi} → int(D2)− {pi}.
In particular, by forgetting the boundary ∂D2, we ignore
Dehn twists along ∂D2 that do not affect the dynamics
of the braid β. In other words, we consider an n-braid β

as a mapping class on an (n+1)-times punctured sphere
with the (so-called) boundary puncture fixed.

1.1 Topological Entropy

The topological entropy hT (β) of the braid β is defined
to be the infimum topological entropy of the disk home-
omorphisms representing β:

hT (β) = inf
g�f

hT (g).

The topological entropy of a braid is a conjugacy invari-
ant measuring the dynamical complexity of the braid. It
is equal to the logarithm of the growth rate of the free
group automorphism induced on π1(D2 − {pi}). When
β is represented by a pseudo-Anosov homeomorphism
f with dilatation factor λf = λ(f), we have hT (β) =
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FIGURE 1. A pseudo-Anosov 5-braid σ3σ4σ3σ2σ3σ1

with its invariant train track. The train track τ ⊂
D2 × 1 on the top slides down in the complement of
the braid to f(τ) ⊂ D2 × 0 on the bottom, where f is
the disk homeomorphism representing the braid.

log λf . In this case the dilatation λ(β) of the braid is
also given by λ(β) = λf .

If f is homotopic to a periodic homeomorphism, the
braid β is called periodic. If there is a collection of dis-
joint subsurfaces of int(D2) − {pi} with negative Euler
characteristics that is homotopically invariant under f ,
the braid β is called reducible. Since we consider the
dynamics of a periodic braid to be trivial, studying the
dynamics of braids reduces to the maps on aperiodic ir-
reducible components.

1.2 Pseudo-Anosov Homeomorphisms

By the Nielsen–Thurston classification of surface homeo-
morphisms [Thurston 88, Bers 78, Bestvina and Handel
95, Daskalopoulos and Wentworth 03], an aperiodic irre-
ducible braid is represented by a pseudo-Anosov home-
omorphism. A pseudo-Anosov homeomorphism has sev-
eral nice extremal properties: It realizes the minimum
topological entropy and the minimum quasi-conformality
constant in its homotopy class. It also has the minimum
number of periodic orbits for each period [Birman and
Kidwell 82].

A surface homeomorphism f : F → F is called a
pseudo-Anosov homeomorphism relative to a puncture
set {pi} ⊂ F when the following conditions hold: First
we need a singular flat metric on F with a finite singu-
larity set {qj} such that {pi} ⊂ {qj}. Each singularity
qj has its cone angle in {kπ | k ∈ Z>0}. If a singularity
has cone angle π, it must be one of the puncture points
pi. The homeomorphism f is required to preserve {qj}
and to be locally affine (hyperbolic) on F − {qj} with

a constant dilatation factor λf > 1. In particular, at a
fixed point in F − {qj}, the map f is locally written as[

λf 0

0 λ−1
f

]
.

Thus roughly speaking, if a surface homeomorphism f

represents an aperiodic irreducible mapping class, then
one can simplify f by pulling it tight everywhere until
it becomes linear almost everywhere in an appropriate
sense.

The horizontal directions to which f expands by the
factor λf can be integrated to form one invariant mea-
sured foliation Fs. The vertical directions perpendic-
ular to Fs form the other invariant measured foliation
Fu. From a singularity qj with cone angle kπ, k singular
leaves of Fs emanate. In this case, qj is called a k-prong
singularity.

Note that in the above definition of pseudo-Anosov
homeomorphism we can remove or add punctures while
keeping the same map f : F → F . When {f j(x)} is
a periodic orbit of unpunctured points, puncturing at
{f j(x)} refers to adding them to the puncture set {pi}.
Conversely, when {f j(p1)} is a periodic orbit of k-prong
punctured singularities for k > 1, capping them off refers
to removing them from the puncture set. For pseudo-
Anosov braids, puncturing or capping off corresponds to
adding or removing some strands.

Let f̃ : F̃ → F̃ be a lift of f on a finite-fold cover
F̃ of F branched at some finite set of points invariant
under f . Then by pulling back the flat metric on F to F̃ ,
the lift f̃ is also a pseudo-Anosov homeomorphism with
the same dilatation factor λf̃ = λf .

1.3 Train-Track Representative

Using a Markov partition (or its associated train-track
representative), the flat metric and the pseudo-Anosov
homeomorphism can be described quite concretely (see
[Fathi et al. 79, Exposé 9] for the definition and see Fig-
ure 2 for an example). Let {Ri} be a Markov partition
for a pseudo-Anosov homeomorphism f . The transition
matrix Mf = (mij) is defined by setting the i, j entry mij

to be the number of times that f(Ri) crosses over Rj .
The transition matrix Mf is Perron–Frobenius: For

some k > 0, each entry of Mk
f is strictly positive. In

particular, the largest eigenvalue of Mf is real and has
an eigenvector with strictly positive coordinates [Seneta
73, Theorem 1.1].

The widths vi and the heights wi of Ri satisfy the
equations

λfvi =
∑

j

mijvj , wj =
1
λf

∑
i

mijwi.



Ham and Song: The Minimum Dilatation of Pseudo-Anosov 5-Braids 169

FIGURE 2. The boundary of the L-shaped region reads, counterclockwise from the puncture on the top, abb−1cdd−1eff−1g
with ac = g−1e−1. After side pairing, the L-shaped region becomes a four-times punctured sphere with a flat metric.
The pseudo-Anosov homeomorphism maps each rectangle to a longer and thinner horizontal strip running over other
rectangles. In the train-track representative, each edge is assigned tangential and transverse measures coming from the
width and the height of the corresponding rectangle.

In particular, the dilatation factor λf appears as the
eigenvalue of Mf whose eigenvector has strictly positive
coordinates.

We use train-track representatives as a notational sim-
plification for Markov partitions. As in Figure 2, each ex-
panding edge of the invariant train track corresponds to
a rectangle in the Markov partition. Once we know the
transition matrix of the graph map, it is easy to recover
the heights and widths of the rectangles.

1.4 Main Question

Let us consider the set Λg,n of the dilatation factors for
pseudo-Anosov homeomorphisms on an n-times punc-
tured genus-g surface Fg,n:

Λg,n = {λf | f : Fg,n → Fg,n

pseudo-Anosov homeomorphisms}.
Since we can bound the number of rectangles in

Markov partitions using the Euler characteristic of the
punctured surface, Λg,n consists of eigenvalues of Perron–
Frobenius matrices with bounded dimension. In partic-
ular, the set Λg,n is discrete and has a minimum. Our
current work is motivated by the following question:

Question 1.1. What is min Λg,n?

The question asks for the simplest pseudo-Anosov home-
omorphism on the surface.

A pseudo-Anosov homeomorphism f induces an isom-
etry on the Teichmüller space equipped with the Teich-
müller metric. The pair of invariant measured foliations
(Fs,Fu) determines a geodesic axis in the Teichmüller

space on which f acts as a translation by log λf . The
axis projects down to a closed geodesic in the moduli
space, which is the quotient of the Teichmüller space by
the action of the mapping class group.

Conversely, any closed geodesic in the moduli space
represents the conjugacy class of some pseudo-Anosov
mapping class. Therefore, Question 1.1 can be rephrased
as asking for the shortest closed geodesic in the moduli
space.

The hyperbolic volume of the mapping torus is an-
other natural complexity measure for a pseudo-Anosov
homeomorphism. We notice that a pseudo-Anosov home-
omorphism with small dilatation tends to have a mapping
torus with small hyperbolic volume and vice versa.

The question for the minimum volume of the hyper-
bolic mapping tori on a given surface seems to be much
more difficult than Question 1.1. In [Cao and Meyerhoff
01] the minimum volume for orientable cusped hyperbolic
3-manifolds is computed. An extensive use of computer
programs is involved in its proof. In this paper we also
use a computer program for the proof of the main the-
orem, but the algorithm and the actual code are much
simpler than those of [Cao and Meyerhoff 01].

1.5 Related Results

The question of the minimum dilatation of pseudo-
Anosov homeomorphisms on a given surface still remains
largely unanswered since the Nielsen–Thurston classifi-
cation of surface homeomorphisms. The existence of a
Markov partition [Fathi et al. 79, Exposé 10] for a pseudo-
Anosov homeomorphism implies that a dilatation should
appear as the largest eigenvalue of a Perron–Frobenius
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matrix of bounded dimension, hence in particular should
be an algebraic integer. However, it is not clear how the
restriction that the symbolic dynamical system dictated
by a Perron–Frobenius matrix be from a homeomorphism
on a given surface actually affects the possible values of
entropy (the logarithm of the dilatation).

There are several known results relevant to this ques-
tion of the minimum dilatation of pseudo-Anosov home-
omorphisms. Penner [Penner 91] gives a lower bound
21/(12g−12+4n) for the dilatations on Fg,n a genus-g
surface with n punctures. In [Penner 91, Bauer 92,
Brinkmann 04], pseudo-Anosov homeomorphisms on Fg,0

with small dilatations are constructed showing that the
minimum dilatation on Fg,0 converges to 1 as the genus g

increases. Fehrenbach and Los [Fehrenbach and Los 99]
compute a lower bound (1+

√
2)1/n for the dilatations of

pseudo-Anosov disk homeomorphisms (braids) that per-
mute the punctures in one cycle. In [Song 05b], a lower
bound 2 +

√
5 for the dilatations of pseudo-Anosov pure

braids is given. A pseudo-Anosov disk homeomorphism
is represented by a transitive Markov-tree map preserv-
ing the endpoint set of the tree with the same topolog-
ical entropy. Baldwin [Baldwin 01] gives a lower bound
log 3 for the topological entropy of transitive Markov-tree
maps fixing each endpoint.

The exact values of the minimum dilatations are
known only for a few simple cases. Zhirov [Zhirov 95]
shows that if a pseudo-Anosov homeomorphism on F2,0

has an orientable invariant foliation, then its dilatation is
not less than the largest zero λ5 of x4−x3−x2−x+1, and
he gives an example of a pseudo-Anosov homeomorphism
realizing the dilatation λ5.

The pseudo-Anosov 3-braid σ2σ
−1
1 is shown to be the

minimum in the forcing partial order among pseudo-
Anosov 3-braids by Matsuoka [Matsuoka 85] and Han-
del [Handel 97]; hence it attains the minimum dilatation.
The pseudo-Anosov 4-braid σ3σ2σ

−1
1 is claimed in [Song

et al. 02] to have the minimum dilatation, but the proof
given there unfortunately contains an error.

1.6 Outline

In this paper we prove the following theorem, giving at
the same time a corrected proof of the minimality of the
dilatation of σ3σ2σ

−1
1 ∈ B4.

Theorem 1.2. The 5-braid σ1σ2σ3σ4σ1σ2 attains the min-
imum dilatation of pseudo-Anosov 5-braids.

The dilatation of a pseudo-Anosov braid is invariant
under several operations such as conjugation, compos-

ing with a full twist, taking the inverse, and taking the
reverse. It turns out that for braid indices 3 to 5, the
pseudo-Anosov braids realizing the minimum dilatations
are essentially unique, modulo the aforementioned opera-
tions. This could be just a coincidence. It would be a nice
surprise if some uniqueness property were to be proved
for the minimum-dilatation pseudo-Anosov braids.

The two main ingredients of the proof of Theorem 1.2
are the construction of folding automata for generating
candidate pseudo-Anosov braids for the minimum dilata-
tion, and the following lemma for bounding the word
lengths of the candidate braids.

Lemma 1.3. If M is a Perron–Frobenius matrix of di-
mension n with λ > 1 its largest eigenvalue, then

λn ≥ |M | − n + 1,

where |M | denotes the sum of entries of M .

This lemma improves on [Papadopoulos and Penner
90, Theorem 6] and replaces the erroneous Lemmas 3
and 4 of [Song et al. 02].

Given a pseudo-Anosov homeomorphism

f : (F, {pi}) → (F, {pi})

on a surface F with punctures pi with negative Euler
characteristic χ(F − {pi}) < 0, there exists a train-track
representative of f . There exists an invariant train track
τ ⊂ F − {pi} that carries f(τ). In particular, there is a
splitting sequence

τ = τ0 � τ1 � · · · � τk = f(τ)

from τ to f(τ), where τj � τj+1 is an elementary splitting
move.

By observing that there are only finitely many diffeo-
morphism types of the pair (F − {pi}, τj), one can effec-
tively construct a splitting automaton, which is a finite
graph with train tracks as its vertices and with splitting
moves as its arrows.

The existence of the train-track representative, in
particular of the splitting sequence, implies that every
pseudo-Anosov homeomorphism appears, up to conju-
gacy, as a closed path in some splitting automaton (see
[Papadopoulos and Penner 87]). Papadopoulos and Pen-
ner [Papadopoulos and Penner 90, Theorem 6] also give
a lower bound for the dilatation in terms of word length
in automata.

In this paper we use folding automata as in [Song et al.
02], which are finite graphs with embedded train tracks
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FIGURE 3. An elementary folding map.

as vertices and with elementary folding maps as arrows.
An elementary folding map is an inverse of a splitting
move.

If we are given an upper bound for the word length
in terms of the dilatation, then on a fixed folding au-
tomaton, the search for the minimum dilatation in the
automaton reduces to checking for finitely many closed
paths.

Lemma 1.3, which is an improvement of [Papadopou-
los and Penner 90, Theorem 6], not only gives an upper
bound of the word lengths of mapping classes with di-
latation bounded by a fixed number, but also trims out
many branches that appear in the course of searching a
big tree, namely the set of paths with bounded length. In
fact, Lemma 1.3 implies that it suffices to consider only
those paths with the property that every subpath has a
transition matrix with bounded norm.

For the minimum dilatation of 5-braids, the previously
mentioned restriction on paths by transition matrix norm
and another restriction by Lemma 3.3 significantly reduce
the number of candidate braids, making the computation
feasible.

We think that the same method for computing the
minimum dilatation would still work for a few simpler
cases such as that of a genus-2 closed surface, although it
would involve a more complicated computer-aided search.

2. FOLDING AUTOMATA

Given a pseudo-Anosov homeomorphism f : (F, {pi}) →
(F, {pi}) on a closed surface F with punctures {pi}, there
exists an invariant train track τ ⊂ F −{pi}, and f is rep-
resented by a train-track map fτ : τ → τ [Papadopoulos
and Penner 87].

A train track τ is a smooth branched 1-manifold em-
bedded in the surface F −{pi} such that each component
of the complement F−{pi}−τ is either a once-punctured
k-gon for k ≥ 1 or an unpunctured k-gon for k ≥ 3. The
train track τ is called invariant under f if f(τ) smoothly
collapses onto τ in F − {pi}, inducing a smooth map
fτ : τ → τ that maps branch points to branch points.
In this case one may repeatedly fold (or zip) f(τ) near

cusps to obtain a train track isotopic to τ in F −{pi} (see
Figure 3 and [Kleinberg and Menasco 98, Figures 4, 5]).

Let fτ : τ → τ be a train-track representative of a
pseudo-Anosov homeomorphism f . An edge e of τ is
called infinitesimal if it is eventually periodic under fτ ,
that is, fN+k

τ (e) = fN
τ (e) for some N, k > 0. An edge of

τ is called expanding if it is not infinitesimal.
An expanding edge e actually has a positive length

in the sense that limN→∞ |fN
τ (e)|/λN

f is positive, where
| · | denotes the word length of a path, and λf = λ(f)
denotes the dilatation factor for f .

A graph map is called Markov if it maps vertices to
vertices, and is locally injective at points that do not
map into vertices. Given a Markov map g : τ → τ ′, the
transition matrix Mg = (mij) is defined by the condition
that the jth edge (e′j)

±1 of τ ′ occurs mij times in the path
g(ei), the image of the ith edge of τ . When τ ′ = τ , the
transition matrix is square, and considering its spectral
radius makes sense.

The spectral radius of Mfτ
equals the dilatation factor

λ(f) for the pseudo-Anosov homeomorphism f . Coordi-
nates of the corresponding eigenvectors of Mfτ

and its
transpose MT

fτ
are tangential and transverse measures of

edges of τ , which are projectively invariant under f .
An elementary folding map π : τ → τ ′ is a smooth

Markov map between two train tracks τ and τ ′ such that
for only one edge e of τ does the image π(e) have word
length 2, the other edges mapping to paths of length 1.
In other words, the transition matrix Mπ is of the form
P + B for some permutation matrix P and for some ele-
mentary matrix B.

When the train tracks are embedded in a surface, as
in our case of concern, the pairs of edges that are folded
should be adjacent in the surface: The two segments of τ

that are identified by the elementary folding map are two
sides of an open triangle in F − {pi} − τ (see Figure 3).

Proposition 2.1. A train-track representative fτ : τ →
τ of a surface homeomorphism f : (F, {pi}) → (F, {pi})
admits a folding decomposition as follows:

fτ = ρ ◦ πk ◦ · · · ◦ π1,
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FIGURE 4. A folding operation that absorbs an infinitesimal edge.

where πj : τj → τj+1 are elementary folding maps, τ1 =
τk+1 = τ , and ρ : τ → τ is an isomorphism induced by a
periodic surface homeomorphism

(F − {pi}, τ) → (F − {pi}, τ)

preserving τ .

Proof: The result follows from [Stallings 83]. See [Pa-
padopoulos and Penner 87, Song et al. 02] for more de-
tails.

By observing that there are only finitely many possible
diffeomorphism types for the pairs (F −{pi}, τj) appear-
ing in the folding decomposition, we can construct folding
automata. A folding automaton is a connected directed
graph with diffeomorphism types of train tracks as ver-
tices, with elementary folding maps and isomorphisms as
arrows. See Figure 7 for a simplified version of a folding
automaton. The train tracks in Figure 7 admit no non-
trivial isomorphisms; that is, if h : (D5, τ) → (D5, τ) is
an orientation-preserving diffeomorphism fixing τ in the
automaton, then h is isotopic to the identity map. So
in Figure 7 there are no arrows corresponding to isomor-
phisms.

Corollary 2.2. All train-track representatives of pseudo-
Anosov homeomorphisms are represented by closed ori-
ented paths in folding automata.

Each closed path based at a train track τ in a fold-
ing automaton has an associated train-track representa-
tive fτ : τ → τ of some homeomorphism f : (F, {pi}) →
(F, {pi}). If the disk homeomorphism f is pseudo-
Anosov, it admits a train-track representative fτ whose
transition matrix Mfτ

is Perron–Frobenius (also called
primitive) modulo infinitesimal edges: For some N > 0,
the power MN

fτ
is strictly positive in the block of expand-

ing edges. To find out whether M is Perron–Frobenius, it
suffices by [Holladay and Varga 58, Wielandt 50], [Seneta
73, Theorem 2.8] to check whether Mn2−2n+2 has all
nonzero entries, where n is the dimension of the ma-
trix M .

Now we discuss simplifying the train-track maps so
that we can restrict to simplified folding automata. If the
pseudo-Anosov homeomorphism f fixes a distinguished
puncture p0, that is, f(p0) = p0 (for instance when f

is from a disk homeomorphism and p0 is the boundary
puncture), then we can give a restriction to the train-
track map fτ : τ → τ , thereby reducing the size of the
folding automata needed in our computation.

We first assume that only the component of F −τ con-
taining p0 has expanding edges on its sides: The other
components of F − τ not containing p0 are bounded only
by infinitesimal edges. If one is given a train-track repre-
sentative fτ : τ → τ not satisfying this assumption, one
may apply a splitting operation [Bestvina and Handel 95,
Section 5] near p0 (when p0 is enclosed only by infinites-
imal edges), then apply a sequence of folding operations
[Bestvina and Handel 92, p. 15], [Los 96, Section 2.2] near
other punctures pi, i 	= 0, until all the components of
the train-track complement not containing p0 shrink to
become infinitesimal, to obtain a new train-track repre-
sentative satisfying the assumption [Bestvina and Handel
92, Proposition 3.3].

Applying some more folding operations (see Figure 4),
we can also remove any cusp occurring between an ex-
panding edge and an infinitesimal edge. We assume that
cusps occur only at corners of infinitesimal multigons. If
one is given a train-track representative with a cusp inci-
dent only to expanding edges not satisfying this assump-
tion, one may apply a splitting operation at the cusp
until the cusp hits an infinitesimal multigon (see Fig-
ure 5). Therefore a pseudo-Anosov braid has an invariant
train track that is locally modeled by infinitesimal k-gons
to which expanding edges are joined (possibly) forming
cusps only between expanding edges (see Figure 6).

In this paper we use simplified versions of folding au-
tomata whose train tracks satisfy the previously given
conditions, and each arrow is either an isomorphism or a
composite of two elementary folding maps whereby one
expanding edge and one infinitesimal edge are absorbed
into another expanding edge. It is not hard to see that
simplified folding automata also generate all the conju-
gacy classes of pseudo-Anosov homeomorphisms.
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FIGURE 5. A splitting operation that shifts a cusp incident only to expanding edges.

FIGURE 6. Local models for train tracks in simplified folding automata.

FIGURE 7. A folding automaton for pseudo-Anosov 5-braids with two unpunctured 3-prong singularities.
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In this paper our subject of interest is pseudo-Anosov
homeomorphisms on a 5-times punctured disk D5, or
equivalently on a 6-times punctured sphere F0,6 with a
distinguished boundary puncture.

We explain how to read Figure 7, which depicts a
simplified version of a folding automaton. Each train
track is embedded in a 5-times punctured disk, with
each puncture enclosed by an infinitesimal monogon.
Each embedding is chosen arbitrarily, and only the
orientation-preserving diffeomorphism types of embed-
ded train tracks count.

An arrow is a composite of two elementary folding
maps, one involving an infinitesimal edge and another
involving only expanding edges. We ignore the infinites-
imal edges in computing the transition matrix because
the occurrences of infinitesimal edges do not affect the
resulting dilatation factor.

An arrow is drawn dashed if it induces a homeomor-
phism isotopic to the identity, and it is drawn solid oth-
erwise. Note that a folding map π : τ → τ ′ determines a
disk homeomorphism

f : D5 → D5

up to isotopy when the embeddings τ → D5 and τ ′ → D5

of the two train tracks are fixed. In particular, τ ′ � f(τ);
that is, f(τ) folds to be τ ′, inducing the folding map π.
To each solid arrow a braid word is assigned representing
the associated disk homeomorphism.

Edges of a train track are numbered {1, 2, . . . , 6} in
such a way that in the peripheral word running clockwise
from a cusp, new edges appear in increasing order. This
naming of edges amounts to fixing a groupoid homomor-
phism from paths in the automaton to transition matri-
ces; that is, for two paths γ and δ, M(γ ·δ) = M(γ)M(δ)
if γ ends at the starting vertex of δ, where M(γ) denotes
the transition matrix for γ.

Each arrow is associated with a permutation
i1i2i3i4i5i6 and a rule m → n, meaning that under the
elementary folding map, the edge j maps to ij for j 	= m,
and m maps to im · n. (Here we are concerned with only
the transition matrix, so that the direction of edges and
the order of concatenation are irrelevant.)

Given an adjacent pair (e1, e2) of edges with a cusp
between them, there are two possible folding maps: one
such that the image of e1 passes over that of e2, and the
other vice versa. Therefore, from each train track in Fig-
ure 7, two arrows of elementary folding maps emanate.
Likewise, two arrows point toward each train track, be-
cause at each cusp two different elementary splittings are
possible.

3. SEARCH FOR THE MINIMUM DILATATION

In this section we prove that the largest zero λ5 of x4 −
x3 − x2 − x + 1 is indeed the minimum dilatation for
pseudo-Anosov 5-braids.

The problem for the minimum dilatation reduces to a
search in a finite set of closed paths in folding automata
because by [Papadopoulos and Penner 90, Theorem 6]
or by Lemma 1.3 the dilatation grows as the norm of the
transition matrix, and there are only finitely many closed
paths whose transition matrices have norm bounded by
a given number. For instance, if a closed path in folding
automata has length N , then its associated transition
matrix has norm at least N .

We first restate and prove Lemma 1.3.

Lemma 3.1. If M is a Perron–Frobenius matrix of di-
mension n with λ > 1 its largest eigenvalue, then

λn ≥ |M | − n + 1,

where |M | denotes the sum of entries of M .

Proof: Let M = (mij) and let (vi) be the eigenvector
given by the equation

λvi =
n∑

j=1

mijvj

for vi > 0, 1 ≤ i ≤ n.
The matrix M is the transition matrix of a graph G

with vertex set V (G) = {1, 2, . . . , n} such that the num-
ber of oriented edges from i to j is mij . Let Mn = (kij).
The number of paths with length n from i to j is kij . For
each pair (i, j) of vertices there exists an oriented path
from i to j, since M is Perron–Frobenius.

Note that (vi) is also the eigenvector of Mn with eigen-
value λn. Choose vp = mini vi the smallest coordinate of
(vi):

λnvp =
∑

j

kpjvj ≥
( ∑

j

kpj

)
vp since vj ≥ vp.

The inequality λn ≥ ∑
j kpj reads that λn is not less than

the number of length-n paths from the vertex p of G.
Take a maximal positive tree T ⊂ G rooted at p : Each

vertex of G is connected to p by a unique oriented path
in T . Since T is maximal, |V (T )| = |V (G)| = n, so that
the number of edges of T is |E(T )| = n − 1.

If an oriented path γ from p has length n, it must
digress from T at some point. Define a(γ) = e ∈ E(G)−
E(T ) to be the first edge not in E(T ) of γ. This defines
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a function

a : {length-n paths from p in G} → E(G) − E(T ).

Clearly, a is a surjection since the tail of each edge in
E(G)−E(T ) is connected to p by a path in T with length
at most n − 1. Therefore

λn ≥
∑

j

kpj ≥ |E(G) − E(T )| = |M | − (n − 1),

and the proof of the lemma is complete.

Theorem 3.2. [Song et al. 02] If a pseudo-Anosov 4-
braid has an invariant foliation with one unpunctured
3-prong singularity, then its dilatation is not less than
λ4 ≈ 2.29663, the largest zero of x4 − 2x3 − 2x + 1.

Proof: Let β ∈ B4 be a pseudo-Anosov 4-braid in the
theorem. Up to conjugacy and multiplication by central
elements, β appears as a closed path γ in the folding
automaton in Figure 8.

If λ(β) < 2.3, then by Lemma 1.3 we have a bound
31 > 2.34 + 4 − 1 ≥ |Mγ | for the norm of its transition
matrix Mγ .

By a computer-aided search [Song 05a] in the finite
set of paths γ with |Mγ | < 31, we conclude that up to
conjugacy, multiplication by central elements, and taking
the inverse, the braid σ3σ2σ

−1
1 is the only pseudo-Anosov

4-braid with dilatation less than 2.3. It can be easily
checked that λ(σ3σ2σ

−1
1 ) = λ4.

We say that two matrices have the same pattern if
they have zero entries and positive entries in the same
positions. We write M ≥ M ′ for M = (mij) and M ′ =
(m′

ij) if mij ≥ m′
ij for all i, j.

In the following lemma we ignore the parts of tran-
sition matrices arising from infinitesimal edges, so that
for a closed path to represent a pseudo-Anosov homeo-
morphism implies that its transition matrix is Perron–
Frobenius.

Lemma 3.3. Let γ be a closed path in a folding automa-
ton. Let N, k > 0 be numbers such that the transition
matrices M(γN+i+k) and M(γN+i) have the same pat-
tern and M(γN+i+k) ≥ M(γN+i) for any i ≥ 0. Then a
closed path of the form α · γN+i+k · δ in the folding au-
tomaton represents a pseudo-Anosov homeomorphism if
and only if α · γN+i · δ does. Furthermore, in this case
we have the inequality

λ(α · γN+i · δ) ≤ λ(α · γN+i+k · δ)
between their dilatation factors.

Proof: It suffices to prove the lemma for δ ·α ·γN+i+k and
δ · α · γN+i, since conjugation affects neither dilatation
factor nor being pseudo-Anosov.

Since M(γN+i+k) and M(γN+i) have the same pat-
tern, M(δ ·α)M(γN+i+k) and M(δ ·α)M(γN+i) also have
the same pattern. In particular, one is Perron–Frobenius
if and only if the other is, which proves the first claim of
the lemma.

From
M(γN+i) ≤ M(γN+i+k)

we have

M(δ · α · γN+i) ≤ M(δ · α · γN+i+k),

which by [Seneta 73, Theorem 1.1(e)] implies the inequal-
ity of the lemma.

Remark 3.4. Let γ,N, k be given as in Lemma 3.3.
Then the lemma implies that when we search just for
the minimum dilatation factor for pseudo-Anosov home-
omorphisms, it suffices to search in the set of paths that
do not contain γN+k as a subpath.

In the search in the automaton in Figure 7, we exclude
paths containing several closed paths, for example

(
123564
1 → 4

· 123456
1 → 4

)6

,

(
123456
4 → 1

· 312456
4 → 3

)6

,

and second iterates of length-1 loops. This reduces the
size of the set of candidate braids for minimum dilata-
tion to the extent that the computation in the proof of
Theorem 3.5 becomes possible on a personal computer.

Theorem 3.5. If a pseudo-Anosov 5-braid has an in-
variant foliation with two unpunctured 3-prong singular-
ities, then its dilatation is not less than the largest zero
≈ 2.01536 of x6 − x5 − 4x3 − x + 1.

Proof: It is easy to check that there are only nine different
diffeomorphism types of train tracks in D5, locally mod-
eled by infinitesimal multigons with outgoing expanding-
edge legs as in Figure 6. By computing the elementary
folding maps among them (more precisely composites of
two elementary folding maps, one of them involving an
infinitesimal edge), we have a folding automaton as de-
picted in Figure 7.

By a computer-aided search [Song 05a] in the set of
paths γ with |Mγ | ≤ 2.026 + 5 < 73, we conclude that
up to conjugacy and multiplication by central elements,
σ4σ3σ

−1
1 σ−1

2 with dilatation ≈ 2.01536 is the only such
pseudo-Anosov 5-braid with dilatation less than 2.02.
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FIGURE 8. A simplified folding automaton for pseudo-Anosov 4-braids with a 3-prong singularity.

Lemma 3.6. If a pseudo-Anosov 5-braid has an invariant
foliation with an unpunctured 4-prong singularity, then
its dilatation is not less than the largest zero, ≈ 2.15372,
of x4 − 3x3 + 3x2 − 3x + 1.

Proof: The folding automaton for this case is similar to
the one in Figure 8. As in the proof of Theorem 3.2,
a computer-aided search [Song 05a] in the set of closed
paths up to length 56 > 2.25 + (5 − 1) shows that the
largest zero of x4 − 3x3 + 3x2 − 3x + 1 is the minimum
dilatation factor in the automaton, and it is achieved by
σ4σ3σ2σ

−1
1 .

Lemma 3.7. If a pseudo-Anosov 5-braid has an invariant
foliation with a punctured 3-prong singularity, then its
dilatation is not less than λ5, the largest zero of x4 −
x3 − x2 − x + 1.

Proof: Let f : F0,6 → F0,6 be a pseudo-Anosov homeo-
morphism with an invariant foliation F . If the invariant
measured foliation F on a 6-times punctured sphere has
a punctured 3-prong singularity, then it has five other
punctured 1-prong singularities and no more.

We can assume that the punctured 3-prong singular-
ity is the boundary puncture, since it should be fixed by
the homeomorphism f . Now we use the folding automa-
ton that generates such pseudo-Anosov braids with three
prongs at the boundary puncture.

There are eleven diffeomorphism types of train tracks
to consider for this case (see Figure 9). There are fifty ar-
rows in the automaton, which are too many to be drawn
in a figure in this paper. See [Song 05a] for details.

By the same kind of computer-aided search as before,
in the set of closed paths in the folding automaton up to
length 12 ≥ (λ5)4 + (4 − 1), we conclude that λ5 is the
minimum dilatation factor for pseudo-Anosov braids in
this automaton.

The dilatation is achieved by σ1σ2σ3σ4σ1σ2.

Remark 3.8. In [Zhirov 95], λ5 is proved to be the min-
imum dilatation factor for a pseudo-Anosov homeomor-
phism with an orientable invariant foliation on a closed

genus-2 surface. The proof in [Zhirov 95] seems to have
a gap. To complete the proof one needs to show that
the golden ratio (1 +

√
5)/2 ≈ 1.61803, the largest zero

of x4 − 3x2 + 1, cannot be a dilatation factor for such a
pseudo-Anosov homeomorphism. In [Franks and Rykken
99], it is proved that such a pseudo-Anosov homeomor-
phism with quadratic dilatation factor is a lift of an
Anosov homeomorphism via a branched covering. Lem-
mas 3.6 and 3.7 follow from [Zhirov 95] by taking double
covers branched at odd-prong singularities.

By collecting all the results, we conclude this section
by restating and proving the main theorem, Theorem 1.2:

Theorem 3.9. The 5-braid σ1σ2σ3σ4σ1σ2 attains the min-
imum dilatation of pseudo-Anosov 5-braids.

Proof: Let f : F0,6 → F0,6 be a pseudo-Anosov homeo-
morphism on a 6-times punctured sphere with a punc-
tured point fixed by f . Let F be its invariant measured
foliation. Since F has exactly six punctures, the formula
2 = χ(F0,0) =

∑
k(1 − k/2)nk, where nk denotes the

number of k-prong singularities, says that no singularity
of F can have more than four prongs.

Here is a list of possible types of F according to its
singularity type:

1. six punctured 1-prong singularities and one unpunc-
tured 4-prong singularity: n1 = 6, n4 = 1;

2. six punctured 1-prong singularities and two unpunc-
tured 3-prong singularities: n1 = 6, n3 = 2;

3. five punctured 1-prong singularities and one punc-
tured 3-prong singularity: n1 = 5, n3 = 1;

4. five punctured 1-prong singularities, one punctured
2-prong singularity, and one unpunctured 3-prong
singularities: n1 = 5, n2 = 1, n3 = 1;

5. four punctured 1-prong singularities and two punc-
tured 2-prong singularities: n1 = 4, n2 = 2.

Case 5 is, by capping off 2-prong singularity punctures,
that of a pseudo-Anosov homeomorphism on a four-times
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FIGURE 9. Train tracks for pseudo-Anosov 5-braids with a 3-pronged boundary puncture.

punctured sphere, which lifts to an Anosov homeomor-
phism on a torus via branched double covering. Therefore
in this case, λ(f) ≥ (3 +

√
5)/2 > λ5.

Case 4 reduces to case 3 by capping off the punctured
2-prong singularity and puncturing at the 3-prong singu-
larity.

For cases 1 and 3 we have λ(f) ≥ λ5 by Lemmas 3.6
and 3.7 or by Remark 3.8.

Finally, case 2 is covered by Theorem 3.5, so that we
have λ(f) > 2.01 > λ5. In fact, this is the only part of
the proof that actually requires a computer-aided search
if one uses Zhirov’s result [Zhirov 95].

Collecting all of these, we conclude that λ(f) ≥ λ5 ≈
1.72208. It is easily checked that β = σ1σ2σ3σ4σ1σ2

realizes this dilatation λ(β) = λ5.

4. IMPLEMENTATION

To search for the minimum-dilatation pseudo-Anosov
homeomorphism on a given surface, we first need to gen-
erate a collection of folding automata. For 5-braids it is
possible to build the necessary folding automata manu-
ally. On surfaces with more punctures and greater genus,
we also need a computer program, genauto, to generate
the folding automata. This paper will not cover the de-
tails of its implementation. The following is pseudocode
for genauto.

Algorithm 4.1. genauto

input: Genus g and the number of punctures n.

output: Folding automata on Fg,n.

step 1. Generate the finite set of diffeomorphism types
of embedded train tracks τi ⊂ Fg,n.

step 2. For each τi, compute all the elementary folding
maps fij : τi → τ ′

ij from τi if any. Compute isomor-
phisms hij : τ ′

ij → τk from the train track τ ′
ij to one

in the set {τi}.

step 3. For each τi, compute the isomorphisms
gi� : τi → τi if any.

step 4. The elementary folding maps hij ◦ fij and the
isomorphisms gi� form the arrows of the folding au-
tomata. Compute their transition matrices after la-
beling each edge of all the train tracks τi.

Note that for step 1 one needs to solve the isomor-
phism problem for embedded train tracks. Once step 1
is done, implementing the other steps is more straight-
forward.

By running genauto, we obtain the folding automata
as a collection of connected directed graphs with each
arrow labeled by a transition matrix. The goal is to enu-
merate in the folding automata all the closed paths rep-
resenting pseudo-Anosov mapping classes with an upper
bound for the dilatation.

In this paper we deal with 5-braids using simplified
folding automata. We ignore infinitesimal edges when
computing transition matrices. Therefore a pseudo-
Anosov braid is represented by a closed path in a folding
automaton whose associated transition matrix is Perron–
Frobenius.
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The following is pseudocode for our program fbrmin.
See [Song 05a] for details.

Algorithm 4.2. fbrmin

input: A directed graph G with arrows labeled by tran-
sition matrices, an upper bound λ for the minimum
dilatation, and a set W of subwords that are to be
avoided during the search.

output: The list of closed paths in G representing
pseudo-Anosov braids with dilatation less than λ.

step 1. Set maxnorm = �λn + n − 1, where n is
the dimension of the transition matrices, and set
archive = {}, in which closed paths with small di-
latation are to be stored.

step 2. Set tmp1 to be the set of length-one paths in G.

step 3. For each i from 2 to maxnorm,

a. Compute childrenpathsi by appending paths
in tmp1 to paths in tmpi−1, in all the ways pos-
sible in G.

b. Compute tmpi, the subset of childrenpathsi

consisting of paths β without any subword from
the avoided-word set W, with transition matrix
Mβ such that |Mβ | ≤ maxnorm, and Mβ has
at least one row and one column whose row
(column) sum is less than 3.

c. Take the subset selectedcansi of tmpi consist-
ing of closed paths representing pseudo-Anosov
braids with dilatation less than λ, and append
it to archive.

step 4. Return archive (= ∪iselectedcansi).

In step 3b, we use Lemmas 1.3 and 3.3 to trim out
much of unnecessary computation (see Remark 3.4).

When the row sums of a transition matrix Mβ all ex-
ceed 3, then the spectral radius of Mβ is greater than 3.
In this case the same holds for every transition matrix
of the form Mβ·γ = MβMγ , since Mγ ≥ P for some per-
mutation matrix P . Therefore, since we are looking for
transition matrices with spectral radius less than 3, we
can safely remove such paths β · γ from consideration, as
done in step 3b.

For computational aspects, the proof of Theorem 3.5
using the automaton in Figure 7 is the main part, which
consumes most of the time and memory. On a 2.40-GHz

machine, it took 1000 seconds of time and 150 megabytes
of memory. During the search, each of roughly 85,000
matrices was actually tested for its largest eigenvalue.

We do not know how far the same kind of computa-
tion would work for more-complicated surfaces. We ex-
pect that at least the case for 6-braids, hence for genus-
2 closed surfaces, can be done on a personal computer
without too much difficulty.
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