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A symmetric subset of the reals is one that remains invariant
under some reflection x �→ c − x. We consider, for any 0 <

ε ≤ 1, the largest real number ∆(ε) such that every subset of
[0, 1] with measure greater than ε contains a symmetric subset
with measure ∆(ε). In this paper we establish upper and lower
bounds for ∆(ε) of the same order of magnitude: For example,
we prove that ∆(ε) = 2ε − 1 for 11

16
≤ ε ≤ 1 and that 0.59ε2 <

∆(ε) < 0.8ε2 for 0 < ε ≤ 11
16

.

This continuous problem is intimately connected with a cor-
responding discrete problem. A set S of integers is called a
B∗[g] set if for any given m there are at most g ordered pairs
(s1, s2) ∈ S × S with s1 + s2 = m; in the case g = 2, these
are better known as Sidon sets. Our lower bound on ∆(ε) im-
plies that every B∗[g] set contained in {1, 2, . . . , n} has cardi-
nality less than 1.30036

√
gn. This improves a result of Green for

g ≥ 30. Conversely, we use a probabilistic construction of B∗[g]

sets to establish an upper bound on ∆(ε) for small ε.

1. INTRODUCTION

A set C ⊆ R is symmetric if there exists a number c

(the center of C) such that c + x ∈ C if and only if
c − x ∈ C. Given a set A ⊆ [0, 1) of positive measure, is
there necessarily a symmetric subset C ⊆ A of positive
measure? The main topic of this paper is to determine
how large, in terms of the Lebesgue measure of A, one
may take the symmetric set C. In other words, for each
ε > 0 we are interested in

∆(ε) := sup

⎧⎨
⎩ δ :

every measurable subset of [0, 1) of

measure ε contains a symmetric

subset of measure δ

⎫⎬
⎭ .

(1–1)
It is not immediately obvious, although it turns out to
be true, that ∆(ε) > 0.

We have dubbed this sort of question “continuous
Ramsey theory,” and we direct the reader to later in this
section for problems with a similar flavor.
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We determine a lower bound for ∆(ε) using tools and
methods from harmonic analysis, some of which were
spurred by ideas from nonstandard analysis and the the-
ory of wavelets. We also construct sets without large
symmetric subsets using results from probabilistic num-
ber theory. These two lines of attack complement each
other, and our bounds on ∆(ε) yield new results in ad-
ditive number theory as well.

The following theorem, proved in Sections 2.1 and 3.4,
states some fundamental properties of the function ∆(ε).

Theorem 1.1. The function ∆(ε) is continuous and in
fact satisfies the Lipschitz condition

|∆(x) − ∆(y)| ≤ 2|x − y|

for all x, y ∈ (0, 1]. Furthermore, the function ∆(ε)/ε2 is
increasing on (0, 1], and hence limε→0+ ∆(ε)/ε2 exists.

We turn now to stating our quantitative bounds for
∆(ε). The lower bound ∆(ε) ≥ 1

2ε2, which we call the
trivial lower bound on ∆(ε) (see Lemma 2.2 below), is
not so far from the best we can derive. In fact, the bulk
of this paper is devoted to improving the constant in
this lower bound from 1

2 to 0.591389. Moreover, we are
able to establish a complementary upper bound for ∆(ε)
using results on an analogous problem in combinatorial
number theory.

Figure 1 shows the precise upper and lower bounds we
obtain for ∆(ε)/ε2 as functions of ε, which we present as
Theorem 1.2.

Theorem 1.2. We have:

i. ∆(ε) = 2ε− 1 for 11
16 ≤ ε ≤ 1, and ∆(ε) ≥ 2ε− 1 for

1
2 ≤ ε ≤ 11

16 ;

ii. ∆(ε) ≥ 0.591389ε2 for all 0 < ε ≤ 1;

iii. ∆(ε) ≥ 0.5546ε2 + 0.088079ε3 for all 0 < ε ≤ 1;

iv. ∆(ε) ≤ 96
121ε2 < 0.79339ε2 for 0 < ε ≤ 11

16 ;

v. ∆(ε) ≤ πε2

(1+
√

1−ε)2
= π

4 ε2 + O(ε3) for all 0 < ε ≤ 1.

Note that π
4 < 0.7854. The upper bound in part (v)

of the theorem is superior to the one in part (iv) in the
range 0 < ε < 11

96 (8
√

6π − 11π) .= 0.0201. The five parts
of the theorem are proved separately in Proposition 3.10,
Proposition 2.15, Proposition 2.18, Corollary 3.14, and
Proposition 3.15.
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FIGURE 1. Upper and lower bounds for ∆(ε)/ε2.

Perhaps surprisingly, the upper bounds given in The-
orem 1.2(iv)–(v) are derived from number-theoretic con-
siderations. A set S of integers is called a B∗[g] set
if for any given m there are at most g ordered pairs
(s1, s2) ∈ S × S with s1 + s2 = m. We shall use con-
structions of large B∗[g] sets to derive upper bounds on
∆(ε) in Section 3.4. Conversely, our bounds on ∆(ε) im-
prove the best known upper bounds on the size of B∗[g]
sets for large g, as we show in [Martin and O’Bryant 07].
See the article [O’Bryant 04] of the second author for a
survey of B∗[g] sets.

We note that the difficulty of determining ∆(ε) is in
stark contrast to the analogous problem in which we con-
sider subsets of the circle T := R/Z instead of subsets of
the interval [0, 1). In this analogous setting, we com-
pletely determine the corresponding function ∆T(ε); in
fact, we show (Corollary 3.7) that ∆T(ε) = ε2 for all
0 < ε ≤ 1. As it turns out, the methods that allow the
proof of the upper bound ∆T(ε) ≤ ε2, namely construc-
tions of large B∗[g] sets in Z/NZ, are also helpful to us
in constructing the large B∗[g] sets themselves.

Schinzel and Schmidt [Schinzel and Schmidt 02] con-
sider the problem of bounding

B := sup
f

‖f ∗ f‖1

‖f ∗ f‖∞ ,

where the supremum is taken over all nonnegative func-
tions supported on [0, 1]; they showed that 4/π ≤ B <

1.7373. The proof of Theorem 1.2(ii) improves the value
1.7373 to 1.691.

We remark briefly on the phrase “continuous Ramsey
theory.” A “coloring theorem” has the following form:

Given some fundamental set R colored with
a finite number of colors, there exists a
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highly structured monochromatic subset, pro-
vided that R is sufficiently large.

The prototypical example is Ramsey’s theorem itself:
However one colors the edges of the complete graph Kn

with r colors, there is a monochromatic complete sub-
graph on t vertices, provided that n is sufficiently large in
terms of r and t. Another example is van der Waerden’s
theorem: However one colors the integers {1, 2, . . . , n}
with r colors, there is a monochromatic arithmetic pro-
gression with t terms, provided that n is sufficiently large
in terms of r and t.

In many cases, the coloring aspect of a Ramsey-type
theorem is a ruse, and one may prove a stronger state-
ment in the following form:

Given some fundamental set R, any large sub-
set of R contains a highly structured subset,
provided that R itself is sufficiently large.

Such a result is called a “density theorem.” For example,
van der Waerden’s theorem is a special case of the den-
sity theorem of Szemerédi: Every subset of {1, 2, . . . , n}
with cardinality at least δn contains a t-term arithmetic
progression, provided that n is sufficiently large in terms
of δ and t.

Ramsey theory is the study of such theorems on differ-
ent types of structures. By “continuous Ramsey theory”
we refer to Ramsey-type problems on continuous mea-
sure spaces. In particular, this paper is concerned with a
density-Ramsey problem on the structure [0, 1) ⊆ R with
Lebesgue measure. The type of substructure we focus on
is a symmetric subset.

Other appearances of continuous Ramsey theory in the
literature are in the work of [Świerczkowski 58] (see also
[Guy 94, problem C17], [Banakh et al. 00], [Schinzel and
Schmidt 02], and [Chung et al. 02]). In all cases, there is
an analogous discrete-Ramsey-theory problem. However,
see [Chung et al. 02] for an interesting example in which
the quantities involved in the discrete setting do not tend
in the limit to the analogous quantity in the continuous
setting.

2. LOWER BOUNDS FOR ∆(ε)

We give easy lower bounds for ∆(ε) and prove that ∆(ε)
is continuous in Section 2.1. Section 2.2 makes explicit
the connection between ∆(ε) and harmonic analysis. Sec-
tion 2.3 gives a simple, but quite good, lower bound on
∆(ε). In Section 2.4, we give a more general form of the
argument of Section 2.3. Using an analytic inequality

established in Section 2.5, we investigate in Section 2.6
the connection between ‖f ∗ f‖∞ and the Fourier coeffi-
cients of f , which, when combined with the results of Sec-
tion 2.3, allows us to show that ∆(ε) ≥ 0.591389ε2. The
bound given in Section 2.3 and improved in Section 2.6
depends on a kernel function with certain properties; in
Section 2.7 we discuss how we chose our kernel. In Sec-
tion 2.8, we use a different approach to derive a lower
bound on ∆(ε) that is superior for 3

8 < ε < 5
8 .

2.1 Easy Bounds for ∆(ε)

We now turn our attention to the investigation of the
function ∆(ε) defined in (2–2). In this section we es-
tablish several simple lemmas describing basic properties
of ∆.

Let λ denote Lebesgue measure on R. We find the
following equivalent definition of ∆(ε) easier to work with
than the definition given in (1–1): If we define

D(A) := sup{λ(C) : C ⊆ A, C is symmetric}, (2–1)

then

∆(ε) := inf{D(A) : A ⊆ [0, 1), λ(A) = ε}. (2–2)

Lemma 2.1. ∆(ε) ≥ 2ε − 1 for all 1/2 ≤ ε ≤ 1.

Proof: For A ⊆ [0, 1), the centrally symmetric set A ∩
(1 − A) has measure equal to

λ(A) + λ(1 − A) − λ(A ∪ (1 − A))

= 2λ(A) − λ(A ∪ (1 − A)) ≥ 2λ(A) − 1.

Therefore D(A) ≥ 2λ(A)− 1 from the definition (2–1) of
the function D. Taking the infimum over all subsets A of
[0, 1) with measure ε yields ∆(ε) ≥ 2ε− 1 as claimed.

While this bound may seem obvious, it is in many situ-
ations the state of the art. As we show in Proposition 3.10
below, ∆(ε) actually equals 2ε − 1 for 11

16 ≤ ε ≤ 1; and
∆(ε) ≥ 2ε − 1 is the best lower bound of which we are
aware in the range 0.61522 ≤ ε < 11

16 = 0.6875.
One is tempted to try to sharpen the bound ∆(ε) ≥

2ε−1 by considering the symmetric subsets with center 1
3 ,

1
2 , or 2

3 , for example, instead of merely 1
2 . Unfortunately,

it can be shown that given any ε ≥ 1
2 and any finite set

{c1, c2, . . . , cn}, one can construct a sequence Sk of sets,
each with measure ε, that satisfies

lim
k→∞

(
max

1≤i≤n
{λ (Sk ∩ (2ci − Sk))}

)
= 2ε − 1.
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Thus, no improvement is possible with this sort of argu-
ment.

Lemma 2.2. (Trivial lower bound.) ∆(ε) ≥ 1
2ε2 for all

0 ≤ ε ≤ 1.

Proof: Given a subset A of [0, 1) of measure ε, let A(x)
denote the indicator function of A, so that the integral
of A(x) over the interval [0, 1) equals ε. If we define
f(c) :=

∫ 1

0
A(x)A(2c − x) dx, then f(c) is the measure

of the largest symmetric subset of A with center c, and
we seek to maximize f(c). But f is clearly supported on
[0, 1), and so

D(A) = max
0≤c≤1

f(c) ≥
∫ 1

0

f(c) dc

=
∫ 1

0

∫ 1

0

A(x)A(2c − x) dc dx

=
∫ 1

0

A(x)
(∫ 2−x

−x

A(w)
dw

2

)
dx

=
1
2

∫ 1

0

A(x) dx

∫ 1

0

A(w) dw = 1
2ε2,

since A(w) is supported on [0, 1] ⊆ [−x, 2 − x]. Since A

was an arbitrary subset of [0, 1) of measure ε, we have
shown that ∆(ε) ≥ 1

2ε2.

It is obvious from the definition of ∆ that ∆(ε) is an
increasing function; the next lemma shows that ∆(ε)/ε

is also an increasing function. Later in this paper (see
Proposition 3.12), we will show that ∆(ε)/ε2 is an in-
creasing function.

Lemma 2.3. ∆(ε) ≤ ∆(x)
x ε for all 0 ≤ ε ≤ x ≤ 1. In

particular, ∆(ε) ≤ ε.

Proof: If tA := {ta : a ∈ A} is a scaled copy of a set
A, then clearly D(tA) = tD(A). Applying this with any
set A ⊆ [0, 1) of measure x and with t = ε

x ≤ 1, we see
that ε

xA is a subset of [0, 1) with measure ε, and so by
the definition of ∆ we have ∆(ε) ≤ D( ε

xA) = ε
xD(A).

Taking the infimum over all sets A ⊆ [0, 1) of measure x,
we conclude that ∆(ε) ≤ ε

x∆(x). The second assertion of
the lemma follows from the first assertion with the trivial
value ∆(1) = 1.

Let
S ⊕ T := (S \ T ) ∪ (T \ S)

denote the symmetric difference of S and T . While
this operation is more commonly denoted with a triangle

rather than with ⊕, we would rather avoid any potential
confusion with the function ∆ featured prominently in
this paper.

Lemma 2.4. If S and T are two sets of real numbers, then
|D(S) − D(T )| ≤ 2λ(S ⊕ T ).

Proof: Let E be any symmetric subset of S, and let c

be the center of E, so that E = 2c − E. Define F =
E ∩ T ∩ (2c− T ), which is a symmetric subset of T with
center c. We can write λ(F ) using the inclusion–exclusion
formula

λ(F ) = λ(E) + λ(T ) + λ(2c − T ) − λ(E ∪ T )

− λ(E ∪ (2c − T )) − λ(T ∪ (2c − T ))

+ λ(E ∪ T ∪ (2c − T )).

Rearranging terms, and noting that T ∪ (2c − T ) ⊆ E ∪
T ∪ (2c − T ), we see that

λ(E) − λ(F ) ≤ −λ(T ) − λ(2c − T ) + λ(E ∪ T )

+ λ(E ∪ (2c − T )).

Because reflecting a set in the point c does not change
its measure, this is the same as

λ(E) − λ(F )

≤ −λ(T ) − λ(T ) + λ(E ∪ T ) + λ(E ∪ (2c − T ))

= −λ(T ) − λ(T ) + λ(E ∪ T ) + λ((2c − E) ∪ T )

= 2
(
λ(E ∪ T ) − λ(T )

)
≤ 2

(
λ(S ∪ T ) − λ(T )

)
= 2λ(S \ T ) ≤ 2λ(S ⊕ T ).

Therefore, since F is a symmetric subset of T ,

λ(E) ≤ λ(F ) + 2λ(S ⊕ T ) ≤ D(T ) + 2λ(S ⊕ T ).

Taking the supremum over all symmetric subsets E of S,
we conclude that D(S) ≤ D(T ) + 2λ(S ⊕ T ). If we now
exchange the roles of S and T , we see that the proof is
complete.

Lemma 2.5. The function ∆ satisfies the Lipschitz con-
dition |∆(x) − ∆(y)| ≤ 2|x − y| for all x and y in [0, 1].
In particular, ∆ is continuous.

Proof: Without loss of generality assume that y < x.
In light of the monotonicity ∆(y) ≤ ∆(x), it suffices to
show that ∆(y) ≥ ∆(x) − 2(x − y). Let S ⊆ [0, 1) have
measure y. Choose any set R ⊆ [0, 1) \ S with measure
x − y, and set T = S ∪ R. Then S ⊕ T = R, and so by
Lemma 2.4, D(T )−D(S) ≤ 2λ(R) = 2(x−y). Therefore
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D(S) ≥ D(T )−2(x−y) ≥ ∆(x)−2(x−y) by the definition
of ∆. Taking the infimum over all sets S ⊆ [0, 1) of
measure y yields ∆(y) ≥ ∆(x) − 2(x − y) as desired.

2.2 Notation

There are many ways to define the basic objects of
Fourier analysis; we follow [Folland 84]. Unless specif-
ically noted otherwise, all integrals are over the circle
group T := R/Z; for example, L1 denotes the class of
functions f for which

∫
T
|f(x)| dx is finite. For each in-

teger j, we define f̂(j) :=
∫

f(x)e−2πijx dx, so that for
any function f ∈ L1, we have f(x) =

∑∞
j=−∞ f̂(j)e2πijx

almost everywhere. We define the convolution f ∗g(c) :=∫
f(x)g(c − x) dx, and we note that f̂ ∗ g(j) = f̂(j)ĝ(j)

for every integer j; in particular, f̂ ∗ f(j) = f̂(j)2.
We define the usual Lp-norms

‖f‖p :=
( ∫ |f(x)|p dx

)1/p

and

‖f‖∞ := lim
p→∞ ‖f‖p = sup

{
y : λ({x : |f(x)| > y}) > 0

}
.

With these definitions, Hölder’s inequality is valid: If
p and q are conjugate exponents, that is, 1

p + 1
q = 1,

then ‖fg‖1 ≤ ‖f‖p‖g‖q. We also note that ‖f ∗ g‖1 =
‖f‖1‖g‖1 when f and g are nonnegative functions; in
particular, ‖f ∗ f‖1 = ‖f‖2

1 = f̂(0)2. We shall also
employ the �p-norms for bi-infinite sequences: If a =
{aj}j∈Z, then ‖a‖p :=

(∑
j∈Z

|aj |p
)1/p and ‖a‖∞ :=

limp→∞ ‖a‖p = supj∈Z
|aj |. Although we use the same

notation for the Lp- and �p-norms, no confusion should
arise, since the object inside the norm symbol will be ei-
ther a function on T or its sequence of Fourier coefficients.
With this notation, we recall Parseval’s identity∫

f(x)g(x) dx =
∑

f̂(j)ĝ(−j)

(assuming that the integral and sum both converge); in
particular, if f = g is real-valued (so that f̂(−j) is the
conjugate of f̂(j) for all j), this becomes ‖f‖2 = ‖f̂‖2.
The Hausdorff–Young inequality, ‖f̂‖q ≤ ‖f‖p whenever
p and q are conjugate exponents with 1 ≤ p ≤ 2 ≤ q ≤ ∞,
can be thought of as a generalization of this latter version
of Parseval’s identity. We also require the definition

m‖a‖p =
( ∑

|j|≥m

|a(j)|p
)1/p

(2–3)

for any sequence a = {aj}j∈Z, so that 0‖a‖p = ‖a‖p, for
example.

We note that for any fixed sequence a = {aj}j∈Z, the
�p-norm ‖a‖p is a decreasing function of p. To see this,
suppose that 1 ≤ p ≤ q < ∞ and a ∈ �p. Then |aj | ≤
‖a‖p for all j ∈ Z, whence |aj |q−p ≤ ‖a‖q−p

p (since q−p ≥
0) and so |aj |q ≤ ‖a‖q−p

p |aj |p. Summing both sides over
all j ∈ Z yields ‖a‖q

q ≤ ‖a‖q−p
p ‖a‖p

p = ‖a‖q
p, and taking

qth roots gives the desired inequality ‖a‖q ≤ ‖a‖p.
Finally, we define a “pdf,” short for “probability den-

sity function,” to be a nonnegative function in L2 whose
L1-norm (which is necessarily finite, since T is a finite
measure space) equals 1. Also, we single out a special
type of pdf called an “nif,” short for “normalized indica-
tor function,” which is a pdf that takes only one nonzero
value, that value necessarily being the reciprocal of the
measure of the support of the function. (We exclude the
possibility that an nif takes the value 0 almost every-
where.) Specifically, we define for each E ⊆ T the nif

fE(x) :=

{
λ(E)−1, x ∈ E,

0, x �∈ E.

Note that if f is a pdf, then 1 = f̂(0) = f̂(0)2 = ‖f‖2
1 =

‖f ∗ f‖1.
We are now ready to reformulate the function ∆(ε) in

terms of this notation.

Lemma 2.6. We have
1
2
ε2 inf

g
‖g ∗ g‖∞ ≤ 1

2
ε2 inf

f
‖f ∗ f‖∞ = ∆(ε),

the first infimum being taken over all pdfs g that are sup-
ported on

[− 1
4 , 1

4

]
, and the second infimum being taken

over all nifs f whose support is a subset of
[− 1

4 , 1
4

]
of

measure ε
2 .

Proof: The inequality is trivial, since every nif is a pdf;
it remains to prove the equality.

For each measurable A ⊆ [0, 1), define EA :={
1
2 (a − 1

2 ) : a ∈ A
} ⊆ [− 1

4 , 1
4

]
. The sets A and EA differ

only by translation and scaling, so that λ(A) = 2λ(EA)
and D(A) = 2D(EA). Thus

∆(ε) := inf{D(A) : A ⊆ [0, 1), λ(A) = ε}

= ε2 inf
{

D(A)
λ(A)2

: A ⊆ [0, 1), λ(A) = ε

}

= ε2 inf
{

2D(EA)
(2λ(EA))2

: A ⊆ [0, 1), λ(A) = ε

}

=
1
2
ε2 inf

{
D(E)
λ(E)2

: E ⊆ [− 1
4 , 1

4

]
, λ(E) = ε

2

}
.

For each E ⊆ [− 1
4 , 1

4

]
with λ(E) = ε

2 , the function fE(x)
is an nif supported on a subset of

[− 1
4 , 1

4

]
with measure ε

2 ,
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and it is clear that every such nif arises from some set E.
Thus, it remains only to show that D(E)

λ(E)2 = ‖fE ∗ fE‖∞,
i.e., that D(E) = λ(E)2‖fE ∗ fE‖∞.

Fix E ⊆ [− 1
4 , 1

4

]
, and let E(x) be the indicator func-

tion of E. Note that fE(x) = λ(E)−1E(x). The maximal
symmetric subset of E with center c is E ∩ (2c−E), and
this has measure

∫
E(x)E(2c − x) dx. Thus

D(E) := sup{λ(C) : C ⊆ E, C is symmetric}

= sup
c

(∫
E(x)E(2c − x) dx

)

= sup
c

(∫
λ(E)fE(x)λ(E)fE(2c − x) dx

)

= λ(E)2 sup
c

(∫
fE(x)fE(2c − x) dx

)
= λ(E)2 sup

c
fE ∗ fE(2c)

= λ(E)2 ‖fE ∗ fE‖∞ ,

as desired.

The convolution in Lemma 2.6 may be taken over R

or over T, the two settings being equivalent since f ∗ f is
supported on an interval of length 1. In fact, the reason
we scale f to be supported on an interval of length 1

2

is so that we may replace convolution over R, which is
the natural place to study ∆(ε), with convolution over
T, which is the natural place to do harmonic analysis.

2.3 The Basic Argument

We begin the process of improving upon the trivial lower
bound for ∆(ε) by stating a simple version of our method
that illustrates the ideas and techniques involved.

Proposition 2.7. Let K be any continuous function on T

satisfying K(x) ≥ 1 when x ∈ [− 1
4 , 1

4

]
, and let f be a pdf

supported on
[− 1

4 , 1
4

]
. Then

‖f ∗ f‖∞ ≥ ‖f ∗ f‖2
2 ≥ ‖K̂‖−4

4/3.

Proof: We have

1 =
∫

f(x) dx ≤
∫

f(x)K(x) dx =
∑

j

f̂(j)K̂(−j)

by Parseval’s identity. Hölder’s inequality now gives 1 ≤
‖f̂‖4‖K̂‖4/3, which we restate as the inequality ‖K̂‖−4

4/3 ≤
‖f̂‖4

4.
Now ‖f̂‖4

4 =
∑

j |f̂(j)|4 =
∑

j |f̂ ∗ f(j)|2 = ‖f ∗ f‖2
2

by another application of Parseval’s identity. Since

(f ∗ f)2 ≤ ‖f ∗ f‖∞(f ∗ f), integration yields ‖f ∗ f‖2
2 ≤

‖f ∗ f‖∞‖f ∗ f‖1 = ‖f ∗ f‖∞. Combining the last three
sentences, we see that ‖K̂‖−4

4/3 ≤ ‖f̂‖4
4 = ‖f ∗ f‖2

2 ≤
‖f ∗ f‖∞ as claimed.

This reasonably simple theorem already allows us to
give a nontrivial lower bound for ∆(ε). The step function

K1(x) :=

{
1, 0 ≤ |x| ≤ 1

4 ,

1 − 2π4

π4+24ζ( 4
3 )3(5+24/3−28/3) , 1

4 < |x| ≤ 1
2 ,

has ‖K̂1‖−4
4/3 = 1 + π4

8 (24/3−1)3
ζ( 4

3 )3
> 1.074 (the elab-

orate constant used in the definition of K1 was chosen
to minimize ‖K̂1‖4/3). A careful reader may complain
that K1 is not continuous. The continuity condition is
not essential, however, since we may approximate K1 by
a continuous function L with ‖L‖4/3 arbitrarily close to
‖K1‖4/3.

Green [Green 01] used a discretization of the kernel
function

K2(x) :=

{
1, 0 ≤ |x| ≤ 1

4 ,

1 − α + α
(
40(2x − 1)4 − 3

2

)
, 1

4 < |x| ≤ 1
2 ,

with a suitably chosen α to get ‖K̂2‖−4
4/3 > 8

7 > 1.142.

We get a slightly larger value of ‖K̂‖−4
4/3 in the follow-

ing corollary with a much more complicated kernel. See
Section 2.7 for a discussion of how we came to find our
kernel.

Corollary 2.8. If f is a pdf supported on
[− 1

4 , 1
4

]
, then

‖f ∗ f‖2
2 ≥ 1.14915.

Consequently, ∆(ε) ≥ 0.574575ε2 for all 0 ≤ ε ≤ 1.

Proof: Set

K3(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if 0 ≤ |x| ≤ 1
4 ,

0.6644 + 0.3356
(

2
π tan−1

(
1−2x√
4x−1

))1.2015

,

if 1
4 ≤ |x| ≤ 1

2 .

(2–4)
The function K3(x) is pictured in Figure 2.

We do not know how to rigorously bound ‖K̂3‖4/3,
but we can rigorously bound ‖K̂4‖4/3, where K4 is a
piecewise linear function “close” to K3. Specifically, let
K4(x) be the even piecewise linear function with corners
at

(0, 1),
(

1
4
, 1
)

,

(
1
4

+
t

4 × 104
,K3

(1
4

+
t

4 × 104

))
,
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FIGURE 2. The function K3(x).

t = 0, 1, . . . , 104. We calculate (using Proposition 2.16
below) that ‖K̂4‖4/3 < 0.9658413. Therefore, by Propo-
sition 2.7 we have

‖f ∗ f‖2
2 ≥ (0.9658413)−4 > 1.14915.

Using Lemma 2.6, we now have ∆(ε) > 1
2ε2(1.14915) >

0.574575ε2.

The constants in the definition (2–4) of K3(x) were nu-
merically optimized to minimize ‖K̂4‖4/3 and otherwise
have no special significance. The definition of K3(x) is
certainly not obvious, and there are much simpler kernels
that do give nontrivial bounds. In Section 2.7 below, we
indicate the experiments that led to our choice.

We note that the function

b(x) :=

{
4/π√

1−16x2 , − 1
4 < x < 1

4 ,

0, otherwise,

has
∫

b = 1 and ‖b ∗ b‖2
2 < 1.14939. Although b is not a

pdf (it is not in L2), it provides strong evidence that the
bound on ‖f ∗ f‖2

2 given in Corollary 2.8 is not far from
best possible.

This bound on ‖f ∗ f‖2
2 may be nearly correct, but

the resulting bound on ‖f ∗ f‖∞ is not: We prove below
that ‖f ∗ f‖∞ ≥ 1.182778, and believe that ‖f ∗ f‖∞ ≥
π/2. We have tried to improve the argument given in
Proposition 2.7 in the following four ways:

1. Instead of considering the sum
∑

j f̂(j)K̂(−j) as a
whole, we separate the central terms from the tails
and establish inequalities that depend on the two
in distinct ways. This generalized form of the above
argument is expounded in the next section. The suc-
cess of this generalization relies on certain inequal-
ities restricting the possible values of these central
coefficients; establishing these restrictions is the goal
of Sections 2.5 and 2.6. The final lower bound de-
rived from these methods is given in Section 2.6.

2. We have searched for more advantageous kernel
functions K(x) for which we can compute ‖K̂‖4/3

in an accurate way. A detailed discussion of our
search for the best kernel functions is in Section 2.7.

3. The application of Parseval’s identity can be re-
placed with the Hausdorff–Young inequality, which
leads to the conclusion ‖f ∗ f‖∞ ≥ ‖K̂‖−q

p , where
p ≤ 4

3 and q ≥ 4 are conjugate exponents. Nu-
merically, the values (p, q) = (4

3 , 4) appear to be
optimal. However, Beckner’s sharpening [Beckner
75] of the Hausdorff–Young inequality leads to the
stronger conclusion ‖f ∗ f‖∞ ≥ C(q)‖K̂‖−q

p , where
C(q) = q

2 (1− 2
q )q/2−1 = q

2e + O(1). We have not ex-
perimented to see whether a larger lower bound can
be obtained from this stronger inequality by tak-
ing q > 4.

4. Notice that we used the inequality ‖g‖2
2 ≤ ‖g‖∞‖g‖1

with the function g = f ∗ f . This inequality is
sharp exactly when the function g takes only one
nonzero value (i.e., when g is an nif), but the con-
volution f ∗ f never behaves that way. Perhaps
for these autoconvolutions, an analogous inequality
with a stronger constant than 1 could be established.
Unfortunately, we have not been able to realize any
success with this idea, although we believe Conjec-
ture 2.9 below. If true, the conjecture implies the
bound ∆(ε) ≥ 0.651ε2.

Conjecture 2.9. If f is a pdf supported on
[− 1

4 , 1
4

]
, then

‖f ∗ f‖∞
‖f ∗ f‖2

2

≥ π

log 16
,

with equality only if either f(x) or f(−x) equals
√

2
4x+1

on the interval |x| ≤ 1
4 .

We remark that Proposition 2.7 can be extended from
a twofold convolution in one dimension to an h-fold con-
volution in d dimensions.

Proposition 2.10. Let K be any continuous function on
Td satisfying K(x̄) ≥ 1 when x̄ ∈ [− 1

2h , 1
2h

]d, and let f

be a pdf supported on
[− 1

2h , 1
2h

]d. Then

‖f∗h‖∞ ≥ ‖f∗h‖2
2 ≥ ‖K̂‖−2h

2h/(2h−1).

Every subset of [0, 1]d with measure ε contains a symmet-
ric subset with measure (0.574575)dε2.
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Proof: The proof proceeds as above, with the conjugate
exponents

(
2h

2h−1 , 2h
)

in place of
(

4
3 , 4

)
, and the ker-

nel function K(x1, x2, . . . , xd) = K(x1)K(x2) · · ·K(xd)
in place of the kernel function K(x) defined in the proof
of Corollary 2.8. The second assertion of the proposition
follows on taking h = 2.

2.4 The Main Bound

We now present a more subtle version of Proposition 2.7.
Recall that the notation n‖a‖p was defined in (2–3). We
also use z to denote the real part of the complex num-
ber z.

Proposition 2.11. Let m ≥ 1. Suppose that f is a pdf
supported on

[− 1
4 , 1

4

]
and that K is even, continuous,

satisfies K(x) = 1 for − 1
4 ≤ x < 1

4 , and m‖K̂‖4/3 > 0.
Set M := 1 − K̂(0) − 2

∑m−1
j=1 K̂(j)f̂(j). Then

‖f ∗ f‖2
2 =

∑
j∈Z

|f̂(j)|4 (2–5)

≥ 1 +
(

M

m‖K̂‖4/3

)4

+ 2
m−1∑
j=1

|f̂(j)|4.

Proof: The equality follows from Parseval’s formula

‖f ∗ f‖2
2 =

∑
j

|f̂ ∗ f(j)|2 =
∑

j

|f̂(j)|4.

As in the proof of Proposition 2.7, we have

1 =
∫

f(x)K(x) dx =
∑

j

f̂(j)K̂(−j)

=
∑

|j|<m

f̂(j)K̂(−j) +
∑

|j|≥m

f̂(j)K̂(−j).

Since K is even, K̂(−j) = K̂(j) is real, and since f is
real-valued, f̂(−j) = f̂(j). We have

1 = K̂(0) + 2
m−1∑
j=1

K̂(j)f̂(j) +
∑

|j|≥m

f̂(j)K̂(j),

which we can also write as M =
∑

|j|≥m f̂(j)K̂(j). Tak-
ing absolute values and applying Hölder’s inequality, we

have

|M | ≤
∑

|j|≥m

|f̂(j)K̂(j)|

≤
⎛
⎝ ∑

|j|≥m

|f̂(j)|4
⎞
⎠

1/4 ⎛
⎝ ∑

|j|≥m

|K̂(j)|4/3

⎞
⎠

3/4

=

⎛
⎝ ∑

|j|≥m

|f̂(j)|4
⎞
⎠

1/4

m‖K̂‖4/3,

which we recast in the form

∑
|j|≥m

|f̂(j)|4 ≥
(

M

m‖K̂‖4/3

)4

.

We add
∑

|j|<m |f̂(j)|4 to both sides and observe that

f̂(0) = 1 and |f̂(j)| ≥ |f̂(j)| to finish the proof of the
inequality.

With xj := f̂(j), the bound of Proposition 2.11 be-
comes

1 +
(1 − K̂(0) − 2

∑m−1
j=1 K̂(j)xj

m‖K̂‖4/3

)4

+ 2
m−1∑
j=1

x4
j .

This is a quartic polynomial in the xj , and consequently
it is not difficult to minimize, giving an absolute lower
bound on ‖f ∗ f‖2

2. This minimum occurs at

xj =
(K̂(j))1/3

(
1 − K̂(0) − 2

∑j−1
i=1 K̂(i)xi

)
j‖K̂‖4/3

4/3

,

where (K̂(j))1/3 is the real cube root of K̂(j). A substi-
tution and simplification of the resulting expression then
yields

min
xj∈R

⎧⎨
⎩1 +

(1 − K̂(0) − 2
∑m−1

j=1 K̂(j)xj

m‖K̂‖4/3

)4

+ 2
m−1∑
j=1

x4
j

⎫⎬
⎭

= 1 +

(
1 − K̂(0)

1‖K̂‖4/3

)4

,

which is nothing more than the bound that Proposi-
tion 2.11 gives with m = 1. Moreover,

1 +

(
1 − K̂(0)

1‖K̂‖4/3

)4

= sup
0≤α≤1

∥∥(α + (1 − α)K)∧
∥∥−4

4/3

(the details of this calculation are given in Section 2.7),
so that Proposition 2.11, by itself, does not give a bound
on ‖f ∗ f‖2

2 different from that given by Proposition 2.7.
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However, we shall obtain additional information on
f̂(j) in terms of ‖f ∗ f‖∞ in Section 2.6 below, and this
information can be combined with Proposition 2.11 to
provide a stronger lower bound on ‖f ∗ f‖∞ than that
given by Proposition 2.7.

Corollary 2.12. Let f be a pdf supported on
[− 1

4 , 1
4

]
, and

set x1 := f̂(1). Then

‖f ∗ f‖2
2 ≥

∑
j∈Z

|f̂(j)|4

≥ 1 + 2x4
1 + (1.53890149 − 2.26425375x1)4.

Proof: Set

K5(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if |x| ≤ 1
4 ,

1 −
(
1 − (

4( 1
2 − x)

)1.61707
)0.546335

if 1
4 < |x| ≤ 1

2 .

Denote by K6(x) the even piecewise linear function with
corners at

(0, 1),
(

1
4
, 1
)

,

(
1
4

+
t

4 × 104
,K5

(
1
4

+
t

4 × 104

))
,

t = 1, . . . , 104. We find (using Proposition 2.16)
that K̂6(0) .= 0.631932628, K̂6(1) .= 0.270776892, and
2‖K̂6‖4/3

.= 0.239175395. Apply Proposition 2.11 with
m = 2 to finish the proof.

2.5 Some Useful Inequalities

Hardy, Littlewood, and Pólya [Hardy et al. 88] call a
function u(x) symmetric decreasing if u(x) = u(−x) and
u(x) ≥ u(y) for all 0 ≤ x ≤ y, and they call

f sdr(x) := inf {y : λ ({t : f(t) ≥ y}) ≤ 2|x|}

the symmetric decreasing rearrangement of f . For exam-
ple, if f is the indicator function of a set with measure µ,
then f sdr is simply the indicator function of the interval
(−µ

2 , µ
2 ). Another example is any function f defined on

an interval [−a, a] that is periodic with period 2a
n , where

n is a positive integer, and that is symmetric decreasing
on the subinterval

[− a
n , a

n

]
; then f sdr(x) = f( x

n ) for all
x ∈ [−a, a]. In particular, on the interval

[− 1
4 , 1

4

]
, we

have cossdr(2πjx) = cos(2πx) for any nonzero integer j.
We shall need the following result [Hardy et al. 88, The-
orem 378]:∫

f(x)u(x) dx ≤
∫

f sdr(x)usdr(x) dx.

We say that f̄ is more focused than f (and f is less
focused than f̄) if for all z ∈ [

0, 1
2

]
and all r ∈ T we have∫ r+z

r−z

f ≤
∫ z

−z

f̄ .

For example, f sdr is more focused than f . In fact, we
introduce this terminology because it refines the notion
of symmetric decreasing rearrangement in a way that is
useful for us. To give another example, if f is a non-
negative function, set f̄ to be ‖f‖∞ times the indicator
function of the interval

[
− 1

2‖f‖∞
, 1

2‖f‖∞

]
; then f̄ is more

focused than f .

Lemma 2.13. Let u(x) be a symmetric decreasing func-
tion, and let h, h̄ be pdfs with h̄ more focused than h.
Then for all r ∈ T,∫

h(x − r)u(x) dx ≤
∫

h̄(x)u(x) dx.

Proof: Without loss of generality we may assume that
r = 0, since if h̄(x) is more focused than h(x), then it is
also more focused than h(x − r). Also, without loss of
generality we may assume that h, h̄ are continuous and
strictly positive on T, since any nonnegative function in
L1 can be L1-approximated by such functions.

Define H(z) =
∫ z

−z
h(t) dt and H̄(z) =

∫ z

−z
h̄(t) dt, so

that H(1
2 ) = H̄( 1

2 ) = 1, and note that the more-focused
hypothesis implies that H(z) ≤ H̄(z) for all z ∈ [

0, 1
2

]
.

Now, h is continuous and strictly positive, which implies
that H is differentiable and strictly increasing on

[
0, 1

2

]
since H ′(z) = h(z) + h(−z). Therefore H−1 exists as
a function from [0, 1] to

[
0, 1

2

]
. Similar comments hold

for H̄−1.
Since H ≤ H̄, we see that H̄−1(s) ≤ H−1(s) for all

s ∈ [0, 1]. Then, since H−1(s) and H−1(s) are positive
and u is decreasing for positive arguments, we conclude
that u(H−1(s)) ≤ u(H̄−1(s)), and so∫ 1

0

u(H−1(s)) ds ≤
∫ 1

0

u(H̄−1(s)) ds. (2–6)

On the other hand, making the change of variables s =
H(t), we see that∫ 1

0

u(H−1(s)) ds =
∫ H−1(1)

0

u(t)H ′(t) dt

=
∫ 1/2

0

u(t)(h(t) + h(−t)) dt

=
∫

T

u(t)h(t) dt,
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since u is symmetric. Similarly,
∫ 1

0
u(H̄−1(s)) ds =∫

T
u(t)h̄(t) dt, and so inequality (2–6) becomes∫
u(t)h(t) dt ≤ ∫

u(t)h̄(t) dt as desired.

2.6 The Full Bound

To use Proposition 2.11 to bound ∆(ε), we need to de-
velop a better understanding of the central Fourier coef-
ficients f̂(j) for small j. In particular, we wish to apply
Proposition 2.11 with m = 2, i.e., we need to develop the
connections between ‖f ∗ f‖∞ and the real part of the
Fourier coefficient f̂(1).

We turn now to bounding |f̂(j)| in terms of ‖f ∗ f‖∞.
The guiding principle is that if f ∗ f is very concentrated
then ‖f ∗ f‖∞ will be large, and if f ∗ f is not very con-
centrated then |f̂(j)| will be small. Green [Green 01,
Lemma 26] proves the following lemma in a discrete set-
ting, but since we need a continuous version, we include
a complete proof.

Lemma 2.14. Let f be a pdf supported on
[− 1

4 , 1
4

]
. For

j �= 0,

|f̂(j)|2 ≤ ‖f ∗ f‖∞
π

sin
(

π

‖f ∗ f‖∞

)
.

Proof: Let f1 : T → R be defined by f1(x) := f(x − x0),
with x0 chosen such that f̂1(j) is real and positive (clearly
f̂1(j) = |f̂(j)| and ‖f ∗ f‖∞ = ‖f1 ∗ f1‖∞). Set h(x) to
be the symmetric decreasing rearrangement of f1 ∗ f1,
and h(x) := ‖f ∗ f‖∞I(x), where I(x) is the indicator
function of

[
− 1

2‖f∗f‖∞
, 1

2‖f∗f‖∞

]
. We have

|f̂(j)|2 = f̂1(j)2 = f̂1 ∗ f1(j)

=
∫

f1 ∗ f1(x) cos(2πjx) dx

≤
∫

h(x) cos(2πx) dx

by the inequality (2.5). We now apply Lemma 2.13 to
obtain

|f̂(j)|2 ≤
∫

h(x) cos(2πx) dx

=
∫ 1/(2‖f∗f‖∞)

−1/(2‖f∗f‖∞)

‖f ∗ f‖∞ cos(2πx) dx

=
‖f ∗ f‖∞

π
sin

(
π

‖f ∗ f‖∞

)
,

which completes the proof of the lemma.

With this technical result in hand, we can finally es-
tablish the lower bound on ∆(ε) given in Theorem 1.2(ii).

Proposition 2.15. ∆(ε) ≥ 0.591389ε2 for all 0 ≤ ε ≤ 1.

The gist of the proof of Proposition 2.15 is that if
‖f ∗ f‖∞ is small, then f̂(1) is small by Lemma 2.14,
and so ‖f∗f‖2

2 is not very small by Corollary 2.12, whence
‖f ∗ f‖∞ is not small. If ‖f ∗ f‖∞ < 1.182778, then we
get a contradiction.

Proof: Let f be a pdf supported on
[− 1

4 , 1
4

]
, and assume

that
‖f ∗ f‖∞ < 1.182778. (2–7)

Set x1 := f̂(1). Since f is supported on
[− 1

4 , 1
4

]
, we see

that x1 > 0. By Lemma 2.14,

0 < x1 < 0.4191447. (2–8)

However, we already know from Corollary 2.12 that

‖f ∗ f‖∞ ≥ ‖f ∗ f‖2 (2–9)

≥ 1 + 2x4
1 + (1.53890149 − 2.26425375x1)4.

Routine calculus shows that there are no simultaneous so-
lutions to the inequalities (2–7), (2–8), and (2–9). There-
fore ‖f∗f‖∞ ≥ 1.182778, whence Lemma 2.6 implies that
∆(ε) ≥ 0.591389ε2.

2.7 The Kernel Problem

Let K be the class of functions K ∈ L2 satisfying K(x) ≥
1 on

[− 1
4 , 1

4

]
. Proposition 2.7 suggests the problem of

computing

inf
K∈K

‖K̂‖p = inf
K∈K

( ∞∑
j=−∞

|K̂(j)|p
)1/p

.

In Proposition 2.7 the case p = 4
3 arose, but in using the

Hausdorff–Young inequality in place of Parseval’s iden-
tity we are led to consider 1 < p ≤ 4

3 . Also, we assumed
in Proposition 2.7 that K was continuous, but this as-
sumption can be removed by taking the pointwise limit
of continuous functions.

Since similar problems occur in [Cilleruelo et al. 02]
and in [Green 01], we feel that it is worthwhile to de-
tail the thoughts and experiments that led to the kernel
functions chosen in Corollaries 2.8 and 2.12.

Our first observation is that if G ∈ K, then so is
K(x) := 1

2 (G(x)+G(−x)), and since |K̂(j)| = |Ĝ(j)| ≤
|Ĝ(j)|, we know that ‖K̂‖p ≤ ‖Ĝ‖p. Thus, we may re-
strict our attention to the even functions in K.

We also observe that |K̂(j)| decays more rapidly if
many derivatives of K are continuous. This suggests that
we should restrict our attention to continuous K, perhaps
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even to infinitely differentiable K. However, computa-
tions suggest that the best functions K are continuous
but not differentiable at x = 1

4 (see in particular Fig-
ure 3).

In the argument of Proposition 2.7 we used the in-
equality

∫
f ≤ ∫

fK, which is an equality if we take K

to be equal to 1 on
[− 1

4 , 1
4

]
, instead of merely at least

1. In light of this, we should not be surprised if the op-
timal functions in K are exactly 1 on

[− 1
4 , 1

4

]
. This is

supported by our computations.
Finally, we note that if Ki ∈ K, and αi > 0 with∑
i αi = 1, then

∑
i αiKi(x) ∈ K also. This is particu-

larly useful with K1(x) := 1. Specifically, given any K2 ∈
K with known ‖K̂2‖p (we stipulate ‖K2‖1 = K̂(0) ≤ 1 to
avoid technicalities), we may easily compute the α ∈ [0, 1]
for which ‖K̂‖p is minimized, where

K(x) := αK1(x) + (1 − α)K2(x).

We have

‖K̂‖p
p = (α + (1 − α)K̂2(0))p + (1 − α)p

1‖K̂‖p
p

= (1 − (1 − α)M)p + (1 − α)pN, (2–10)

where we have set M := 1 − K̂2(0) and N := 1‖K̂‖p
p.

Taking the derivative with respect to α, we obtain

p(1 − α)p−1

(
M
( 1

1 − α
− M

)p−1

− N

)
,

the only root of which is α = 1 − Mq/p

Mq+Nq/p (where 1
p +

1
q = 1). It is straightforward (albeit tedious) to check by
substituting α into the second derivative of the expression
(2–10) that this value of α yields a local maximum for
‖K̂‖p

p. The maximum value attained is then calculated

to equal N
(
Mq + Nq/p

)1−p, which is easily computed
from the known function K2.

Notice that when p = 4
3 (so q = 4), applying Proposi-

tion 2.7 with our optimal function K yields

‖f ∗ f‖2
2 ≥ ‖K̂‖−4

4/3 =
(
N
(
M4 + N3

)−1/3
)−3

=
M4 + N3

N3
= 1 +

(1 − K̂2(0))4

1‖K̂‖4
4/3

,

whereupon we recover the conclusion of Proposition 2.11
with m = 1.

Haar wavelets provide a convenient basis for
L2

([− 1
2 , 1

2

])
. We have numerically optimized the co-

efficients in various spaces of potential kernel functions
K spanned by short sums of Haar wavelets to minimize
‖K‖4/3 within those spaces. The resulting functions are

shown in Figure 3. This picture justifies restricting our
attention to continuous functions that are constant on[− 1

4 , 1
4

]
, and also implies that the optimal kernels are

nondifferentiable at ± 1
4 , indeed that their derivatives be-

come unbounded near these points.
For computational reasons, we further restrict atten-

tion to the class of continuous piecewise-linear even func-
tions whose vertices all have abscissas with a given de-
nominator. Let

ζ(s, a) :=
∞∑

k=0

(k + a)−s

denote the Hurwitz zeta function. If v is a vector, de-
fine Λp(v) to be the vector whose coordinates are the
pth powers of the absolute values of the corresponding
coordinates of v.

Proposition 2.16. Let T be a positive integer, n a nonneg-
ative integer, and p ≥ 1 a real number. For each integer
0 ≤ t ≤ T , define xt := 1

4 + t
4T , and let yt be an arbitrary

real number, except that y0 = 1. Let K(x) be the even
function on T that is linear on

[
0, 1

4

]
and on each of the

intervals [xt−1, xt] (1 ≤ t ≤ T ), satisfying K(0) = 1 and
K(xt) = yt (0 ≤ t ≤ T ). Then

n‖K̂‖p = (2Λp(dA) · z)1/p,

where d is the T -dimensional vector d = (y1 − y0, y2 −
y1, . . . , yT −yT−1), A is the T ×4T matrix whose (t, k)th
component is

Atk = cos(2π(n + k − 1)xt) − cos(2π(n + k − 1)xt−1),

and z is the 4T -dimensional vector

z = (8Tπ2)−p
(
ζ(2p, j

4T ), ζ(2p, j+1
4T ), . . . , ζ(2p, j+4T−1

4T )
)
.

Proof: Note that

K̂(−j) = K̂(j) =
∫ 1/2

−1/2

K(u) cos(2πju) du

= 2
∫ 1/4

0

cos(2πju) du

+ 2
T∑

t=1

∫ xt

xt−1

(mtu + bt) cos(2πju) du,

where mt and bt are the slope and y-intercept of the
line going through (xt−1, yt−1) and (xt, yt). If we define
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FIGURE 3. Optimal kernels generated by Haar wavelets.

C(j) := π2j2

2T K̂(j), then integrating by parts we have

C(j) =

(
π2j2

T

(
1

2πj
sin(2πju)

∣∣∣∣∣
1/4

0

)

+
π2j2

T

T∑
t=1

(
mtu + bt

2πj
sin(2πju)

∣∣∣∣∣
xt

xt−1

))

+

(
π2j2

T

T∑
t=1

mt

(2πj)2
cos(2πju)

∣∣∣∣∣
xt

xt−1

)
. (2–11)

The first term of this expression is

πj

2T

(
sin

(
π j

2

)
+

T∑
t=1

(
(mtxt + bt) sin(2πjxt)

− (mtxt−1 + bt) sin(2πjxt−1)
))

=
πj

2T

(
sin

(
π j

2

)
+

T∑
t=1

(mtxt + bt) sin(2πjxt)

−
T−1∑
t=0

(mt+1xt + bt+1) sin(2πjxt)
)

.
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Since mt+1xt+bt+1 = yt = mtxt+bt and x0 = 1
4 , xT = 1

2 ,
this entire expression is a telescoping sum whose value is
zero. Equation (2–11) thus becomes

C(j) =
π2j2

T

T∑
t=1

mt

(2πj)2
cos(2πju)

∣∣∣∣
xt

xt−1

=
T∑

t=1

(yt − yt−1) (cos(2πjxt) − cos(2πjxt−1))

(2–12)

using mt = yt−yt−1
xt−xt−1

= 4T (yt − yt−1). Each xt is rational
and can be written with denominator 4T , so we see that
the sequence of normalized Fourier coefficients C(j) is
periodic with period 4T .

We proceed to compute n‖K̂‖p with n positive and
p ≥ 1:

(
n‖K̂‖p

)p

=
∑
|j|≥n

|K̂(j)|p = 2
∞∑

j=n

|K̂(j)|p

= 2
∞∑

j=n

∣∣∣∣C(j)
2T

π2j2

∣∣∣∣
p

= 2
(

2T

π2

)p ∞∑
j=n

|C(j)|p
j2p

.

Because of the periodicity of C(j), we may write this as(
n‖K̂‖p

)p

= 2
(

2T

π2

)p
⎛
⎝n+4T−1∑

j=n

|C(j)|p
∞∑

r=0

(4Tr + j)−2p

⎞
⎠

= 2
(

2T

(4T )2π2

)p
⎛
⎝n+4T−1∑

j=n

|C(j)|pζ (2p, j
4T

)⎞⎠ ,

(2–13)

which concludes the proof.

Proposition 2.16 is useful in two ways. The first is
that only d depends on the chosen values yt. That is, the
vector z and the matrix A may be precomputed (assum-
ing that T is reasonably small), enabling us to compute
n‖K̂‖p quickly enough as a function of d to numerically
optimize the yt. The second use is through (2–13). For
a given K, we set yt = K(xt), whereupon C(j) is com-
puted for each j using the formula in (2–12). Thus we
can use (2–13) to compute n‖K̂1‖p with arbitrary accu-
racy, where K1 is almost equal to K. We have found
that with T = 10000 one can generally compute n‖K̂1‖p

quickly.

In performing these numerical optimizations, we have
found that “good” kernels K(x) ∈ K have a very negative
slope at x = 1

4

+. See Figure 3, for example, where the
“N = 2j − 1” picture denotes the step function K for
which ‖K̂‖4/3 is minimal among all step functions whose
discontinuities all lie within the set 1

2j+2 Z.
Viewing graphs of these numerically optimized kernels

suggests that functions of the form

Kd1,d2(x) =

{
1, |x| ≤ 1

4 ,

1 − (1 − (4(1
2 − x))d1)d2 , 1

4 < |x| ≤ 1
2 ,

which have slope −∞ at x = 1
4

+, may be very good.
(Note that the graph of K2,1/2(x) between 1

4 and 3
4 is

the lower half of an ellipse.) More good candidates are
functions of the form

Ke1,e2,e3(x) =

{
1, |x| ≤ 1

4 ,(
2
π tan−1

(
(1−2x)e1

(4x−1)e2

))e3

, 1
4 < |x| ≤ 1

2 ,

where e1, e2, and e3 are positive. We have used a func-
tion of the form Kd1,d2 in the proof of Corollary 2.12 and
a function of the form Ke1,e2,e3 in the proof of Corol-
lary 2.8.

2.8 A Lower Bound for ∆(ε) around ε = 1
2

We begin with a fundamental relationship between f̂(1)
and f̂(2).

Lemma 2.17. Let f be a pdf supported on
[− 1

4 , 1
4

]
. Then

2
(f̂(1)

)2 − 1 ≤ f̂(2) ≤ 2(f̂(1)) − 1.

Proof: To prove the first inequality, set Lb(x) =
b cos(2πx) − cos(4πx) (with b ≥ 0) and observe that for
− 1

4 ≤ x ≤ 1
4 , we have Lb(x) ≤ 1 + b2

8 . Thus

1 + b2

8 ≥
∫

f(x)Lb(x) dx =
2∑

j=−2

f̂(j)L̂b(−j)

= bf̂(1) −f̂(2).

Rearranging, we arrive at f̂(2) ≥ b(f̂(1)) − 1 − b2

8 .
Setting b = 4f̂(1), we find that f̂(2) ≥ 2(f̂(1))2 − 1.

As for the second inequality, since

L2(x) := 2 cos(2πx) − cos(4πx)

is at least 1 for − 1
4 ≤ x ≤ 1

4 , we have

1 ≤
∫

f(x)L(x) dx =
2∑

j=−2

f̂(j)L̂(−j)

= 2(f̂(1)) −f̂(2).



158 Experimental Mathematics, Vol. 16 (2007), No. 2

Rearranging, we arrive at f̂(2) ≤ 2(f̂(1)) − 1.

From the inequality f̂(2) ≤ 2f̂(1)−1 (Lemma 2.17)
one easily computes that max{|f̂(1)|, |f̂(2)|} ≥ 1

3 , and
with Lemma 2.14 this gives

1
9
≤ ‖f ∗ f‖∞

π
sin

(
π

‖f ∗ f‖∞

)
.

This yields ‖f ∗ f‖∞ ≥ 1.11, a nontrivial bound. If one
assumes that f is an nif supported on a subset of

[− 1
4 , 1

4

]
with large measure, then one can do much better than
Lemma 2.17. The following proposition establishes the
lower bound on ∆(ε) given in Theorem 1.2(iii).

Proposition 2.18. Let f be an nif supported on a subset
of

[− 1
4 , 1

4

]
with measure ε/2. Then

‖f ∗ f‖∞ ≥ 1.1092 + 0.176158 ε

and consequently

∆(ε) ≥ 0.5546ε2 + 0.088079ε3.

In particular, ∆( 1
2 ) ≥ 0.14966.

Proof: For ε ≥ 5
8 , this proposition is weaker than

Lemma 2.1, and for ε ≤ 3
8 it is weaker than Proposi-

tion 2.15, so we restrict our attention to 3
8 < ε < 5

8 .
Let b > −1 be a parameter and set

Lb(x) := cos(4πx) − b cos(2πx).

If we define F := max{f̂(1),−f̂(2)}, then∫
f(x)Lb(x) dx = f̂(2) − bf̂(1) ≥ −(b + 1)F

on the one hand, and∫
f(x)Lb(x) dx ≤

∫
f sdr(x)Lb

sdr(x) dx

=
∫ ε/4

−ε/4

2
ε Lb

sdr(x) dx

on the other, where Lb
sdr(x) is the symmetric decreasing

rearrangement of Lb(x) on the interval
[− 1

4 , 1
4

]
. Thus

F ≥ −1
b + 1

2
ε

∫ ε/4

−ε/4

Lb
sdr(x) dx.

The right-hand side may be computed explicitly as a
function of ε and b and then the value of b chosen in
terms of ε to maximize the resulting expression. One
finds that for ε < 5

8 , the optimal choice of b lies in the

interval 2 < b < 4, and the resulting lower bound for F

is

F ≥ 3 cos( πε
4 )+sin( πε

4 )−
√

3+4 cos( πε
2 )+2 cos(πε)−sin( πε

2 )

πε cos( πε
4 )+πε sin( πε

4 ) .

From Lemma 2.14 we know that F 2 ≤
‖f∗f‖∞

π sin
(

π
‖f∗f‖∞

)
. We compare these bounds

on F to conclude the proof. Specifically,

F 2 ≤ ‖f ∗ f‖∞
π

sin
(

π

‖f ∗ f‖∞

)
(2–14)

≤ 3
5π

+

(
6 + 5

√
3π
) (‖f ∗ f‖∞ − 6

5

)
12π

,

where the expression on the right-hand side of this equa-
tion is from the Taylor expansion of x

π sin(π
x ) at x0 = 6

5 ,
and

F 2 ≥
(

3 cos( πε
4 )+sin( πε

4 )−
√

3+4 cos( πε
2 )+2 cos(πε)−sin( πε

2 )

πε cos( πε
4 )+πε sin( πε

4 )

)2

≥ −8(−3−√
2+

√
3+

√
6)

π2

+
(96(−3−√

2+
√

3+
√

6)−4(9
√

2−10
√

3+
√

6)π)(ε− 1
2 )

3π2 ,
(2–15)

where the expression on the right-hand side is from the
Taylor expansion of the middle expression at ε0 = 1

2 .
Comparing (2–14) and (2–15) gives a lower bound on ‖f ∗
f‖∞, say ‖f∗f‖∞ ≥ c1+c2ε with certain constants c1, c2.
It is easily checked that c1 > 1.1092 and c2 > 0.176158,
concluding the proof of the first asserted inequality. The
second inequality then follows from Lemma 2.6.

3. UPPER BOUNDS FOR ∆(ε)

3.1 Inequalities Relating ∆(ε) and R(g, n)

A symmetric set consists of pairs (x, y) all with a fixed
midpoint c = x+y

2 . If there are few pairs in E × E with
a given sum 2c, then there will be no large symmetric
subset of E with center c. We take advantage of the
constructions of large integer sets whose pairwise sums
repeat at most g times to construct large real subsets of
[0, 1) with no large symmetric subsets. More precisely, a
set S of integers is called a B∗[g] set if for any given m

there are at most g ordered pairs (s1, s2) ∈ S × S with
s1 + s2 = m. (In the case g = 2, these are better known
as Sidon sets.) Define

R(g, n) := max
{|S| : S ⊆ {1, 2, . . . , n}, S is a B∗[g] set

}
.

(3–1)

Proposition 3.1. For any integers n ≥ g ≥ 1, we have
∆
(

R(g,n)
n

)
≤ g

n .
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Proof: Let S ⊆ {1, 2, . . . , n} be a B∗[g] set with |S| =
R(g, n). Define

A(S) :=
⋃
s∈S

[
s − 1

n
,
s

n

)
, (3–2)

and note that A(S) ⊆ [0, 1] and that the measure of A(S)
is exactly R(g, n)/n. Thus it suffices to show that the
largest symmetric subset of A(S) has measure at most g

n .
Notice that the set A(S) is a finite union of intervals,

and so the function λ
(
A(S) ∩ (2c − A(S))

)
, which gives

the measure of the largest symmetric subset of A(S) with
center c, is piecewise linear. (Figure 4 contains a typical
example of the set A(S) portrayed in dark gray below the
c-axis, together with the function λ

(
A(S)∩ (2c−A(S))

)
shown as the upper boundary of the light-gray region
above the c-axis, for S = {1, 2, 3, 5, 8, 13}.) Without loss
of generality, therefore, we may restrict our attention to
those symmetric subsets of A(S) whose center c is the
midpoint of endpoints of any two intervals

(
s−1
n , s

n

)
. In

other words, we may assume that 2nc ∈ Z.
Suppose u and v are elements of A(S) such that u+v

2 =
c. Write u = s1

n − 1
2n +x and v = s2

n − 1
2n +y for integers

s1, s2 ∈ S and real numbers x, y satisfying |x|, |y| < 1
2n .

(We may ignore the possibility that nu or nv is an integer,
since this is a measure-zero event for any fixed c.) Then
2nc = n(u + v) = s1 + s2 − 1 + n(x + y), and since
2nc, s1, and s2 are all integers, we see that n(x + y) is
also an integer. But |n(x + y)| < 1, so x + y = 0 and
s1 + s2 = 2nc + 1.

Since S is a B∗[g] set, there are at most g solutions
(s1, s2) to the equation s1 + s2 = 2nc + 1. If it happens
that s1 = s2, the interval

(
s1−1

n , s1
n

)
(a set of measure

1
n ) is contributed to the symmetric subset with center
c. Otherwise, the set

(
s1−1

n , s1
n

) ∪ (
s2−1

n , s2
n

)
(a set of

measure 2
n ) is contributed to the symmetric subset with

center c, but this counts for the two solutions (s1, s2)
and (s2, s1). In total, then, the largest symmetric subset
having center c has measure at most g

n . This establishes
the proposition.

Using Proposition 3.1, we can translate lower bounds
on ∆(ε) into upper bounds on R(g, n), as in Corollary 3.2.

Corollary 3.2. If δ ≤ inf0<ε<1 ∆(ε)/ε2, then R(g, n) ≤
δ−1/2√gn for all n ≥ g ≥ 1.

We remark that we may take δ = 0.591389 by Theo-
rem 1.2(ii), and so this corollary implies that R(g, n) ≤
1.30036

√
gn. This improves the previous best bound on

R(g, n) (given in [Green 01]) for g ≥ 30 and n large.

Proof: Combining the hypothesized lower bound ∆(ε) ≥
δε2 with Proposition 3.1, we find that

δ

(
R(g, n)

n

)2

≤ ∆
(

R(g, n)
n

)
≤ g

n
,

which is equivalent to R(g, n) ≤ δ−1/2√gn.

We have been unable to prove or disprove that

lim
g→∞ lim

n→∞
R(g, n)√

gn
=
(

inf
0<ε<1

∆(ε)
ε2

)−1/2

,

i.e., that Corollary 3.2 is best possible as g → ∞. At
any rate, for small g it is possible to do better by taking
advantage of the shape of the set A(S) used in the proof
of Proposition 3.1. This is the subject of the companion
paper [Martin and O’Bryant 07] of the authors.

Proposition 3.1 provides a one-sided inequality linking
∆(ε) and R(g, n). It will also be useful for us to prove a
theoretical result showing that the problems of determin-
ing the asymptotics of the two functions are, in a weak
sense, equivalent. In particular, the following proposition
implies that the trivial lower bound ∆(ε) ≥ 1

2ε2 and the
trivial upper bound R(g, n) ≤ √

2gn are actually equiva-
lent. Further, any nontrivial lower bound on ∆(ε) gives
a nontrivial upper bound on R(g, n), and vice versa.

Proposition 3.3. ∆(ε) = inf
{

g
n : n ≥ g ≥ 1, R(g,n)

n ≥ ε
}

for all 0 ≤ ε ≤ 1.

Proof: That ∆(ε) is bounded above by the right-hand
side follows immediately from Proposition 3.1 and the
fact that ∆ is an increasing function. For the comple-
mentary inequality, let S ⊆ [0, 1) with λ(S) = ε. Basic
Lebesgue measure theory tells us that given any η > 0,
there exists a finite union T of open intervals such that
λ(S⊕T ) < η, and it is easily seen that T can be chosen to
meet the following criteria: T ⊆ [0, 1), the endpoints of
the finitely many intervals that T comprises are rational,
and λ(T ) > ε. Choosing a common denominator n for
the endpoints of the intervals that T comprises, we may
write T =

⋃
m∈M

[
m−1

n , m
n

)
(up to a finite set of points)

for some set of integers M ⊆ {1, . . . , n}; most likely we
have greatly increased the number of intervals of which
T consists by writing it in this manner, and M contains
many consecutive integers. Let g be the maximal num-
ber of solutions (m1,m2) ∈ M × M to m1 + m2 = k as
k varies over all integers, so that M is a B∗[g] set and
thus |M | ≤ R(g, n) by the definition of R. It follows that
ε < λ(T ) = |M |/n ≤ R(g, n)/n. Now, T is exactly the
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FIGURE 4. A(S), and the function λ(A(S) ∩ (2c − A(S))), with S = {1, 2, 3, 5, 8, 13}.

set A(M) as defined in (3–2); hence D(T ) = g
n as we saw

in the proof of Proposition 3.1. Therefore by Lemma 2.4,

D(S) ≥ D(T ) − 2η =
g

n
− 2η

≥ inf
{

g

n
: n ≥ g ≥ 1,

R(g, n)
n

≥ ε

}
− 2η.

Taking the infimum over appropriate sets S and noting
that η > 0 was arbitrary, we derive the desired inequality
∆(ε) ≥ inf

{
g
n : n ≥ g ≥ 1, R(g,n)

n ≥ ε
}

.

3.2 Probabilistic Constructions of
B∗[g] (mod n) Sets

We begin by considering a modular version of B∗[g] sets.
A set S is a B∗[g] (mod n) set if for any given m there
are at most g ordered pairs (s1, s2) ∈ S×S with s1+s2 ≡
m (mod n) (equivalently, if the coefficients of the least-
degree representative of

(∑
s∈S zs

)2 (mod zn − 1) are
bounded by g). For example, the set {0, 1, 2, 4} is a B∗[3]
(mod 7) set, and {0, 1, 3, 7} is a B∗[2] (mod 12) set. Note
that 7 + 7 ≡ 1 + 1 (mod 12), so that {0, 1, 3, 7} is not
a “modular Sidon set” as defined by some authors, for
example [Graham and Sloane 80] or [Guy 94, Problem
C10].

Just as we defined R(g, n) to be the largest possi-
ble cardinality of a B∗[g] set contained in [0, n), we de-
fine C(g, n) to be the largest possible cardinality of a
B∗[g] (mod n) set. The mnemonic is “R” for the Real
problem and “C” for the Circular problem. We demon-
strate the existence of large B∗[g] (mod n) sets via a
probabilistic construction in this section, and we give a
similar probabilistic construction of large B∗[g] sets in
Section 3.3.

We rely upon the following two lemmas, which are
quantitative statements of the central limit theorem.

Lemma 3.4. Let p1, . . . , pn be real numbers in the range
[0, 1], and set p = (p1 + · · · + pn)/n. Define mutually
independent random variables X1, . . . , Xn such that Xi

takes the value 1 − pi with probability pi and the value
−pi with probability 1 − pi (so that the expectation of
each Xi is zero), and define X = X1 + · · · + Xn. Then
for any positive number a,

Pr[X > a] < exp
(−a2

2pn
+

a3

2p2n2

)

and

Pr[X < −a] < exp
(−a2

2pn

)
.

Proof: These assertions are Theorems A.11 and A.13 of
[Alon and Spencer 00].

Lemma 3.5. Let p1, . . . , pn be real numbers in the range
[0, 1], and set E = p1+· · ·+pn. Define mutually indepen-
dent random variables Y1, . . . , Yn such that Yi takes the
value 1 with probability pi and the value 0 with probability
1 − pi, and define Y = Y1 + · · · + Yn (so that the expec-
tation of Y equals E). Then Pr[Y > E + a] < exp

(−a2

3E

)
for any real number 0 < a < E/3, and Pr[Y < E − a] <

exp
(−a2

2E

)
for any positive real number a.

Proof: This follows immediately from Lemma 3.4 upon
defining Xi = Yi − pi for each i and noting that E = pn

and that a3

2E2 < a2

6E under the assumption 0 < a < E/3.

We now give the probabilistic construction of large
B∗[g] (mod n) sets. We write that f � g (and g � f) if
lim inf f/g is at least 1.
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Proposition 3.6. For every 0 < ε ≤ 1, there is a se-
quence of ordered pairs (nj , gj) of positive integers such
that C(gj ,nj)

nj
� ε and gj

nj
� ε2.

Proof: Let n be an odd integer. We define a random
subset S of {1, . . . , n} as follows: for every 1 ≤ i ≤ n, let
Yi be 1 with probability ε and 0 with probability 1 − ε

with the Yi mutually independent, and let S := {i : Yi =
1}. We see that |S| =

∑n
i=1 Yi has expectation E = εn.

Setting a =
√

εn log 4, Lemma 3.5 gives

Pr
[|S| < εn −

√
εn log 4

]
<

1
2
.

Now for any integer k, define the random variable

Rk := #{1 ≤ c, d ≤ n : c + d ≡ k (mod n),

Yc = Yd = 1}
=

∑
c+d≡k (mod n)

YcYd ,

so that Rk is the number of representations of k (mod n)
as the sum of two elements of S. Observe that Rk is the
sum of n − 1 random variables taking the value 1 with
probability ε2 and the value 0 otherwise, plus one random
variable (corresponding to c ≡ d ≡ 2−1k (mod n)) tak-
ing the value 1 with probability ε and the value 0 other-
wise. Therefore the expectation of Rk is E = (n−1)ε2+ε.
Setting a =

√
3((n − 1)ε2 + ε) log 2n, and noting that

a < E/3 when n is sufficiently large in terms of ε, Lemma
3.5 gives

Pr
[
Rk > (n−1)ε2 +ε+

√
3((n − 1)ε2 + ε) log 2n

]
<

1
2n

for each 1 ≤ k ≤ n.
The random set S is a B∗[g] (mod n) set with |S| >

εn − √
εn log 4 and g ≤ E + a = (n − 1)ε2 + ε +√

3((n − 1)ε2 + ε) log 2n unless |S| < εn − √
εn log 4 or

R1 > E +a or R2 > E +a or . . . or Rn > E +a. For any
events Ai,

Pr[A1 or A2 or · · · ] <
∑

i

Pr[Ai],

and consequently,

Pr
[|S| < εn −

√
εn log 4 or R1 > E + a or R2 > E + a

or . . . or Rn > E + a
]

<
1
2

+ n · 1
2n

= 1.

Therefore, there exists a B∗[g] (mod n) set S ⊆
{1, . . . , n}, with g ≤ E + a = (n − 1)ε2 + ε +√

3((n − 1)ε2 + ε) log 2n � ε2n, with |S| ≥ εn −√
εn log 4 � εn. This establishes the proposition.

Define ∆T(ε) to be the supremum of those real num-
bers δ such that every subset of T with measure ε has
a subset with measure δ that is fixed by a reflection
t �→ c − t. The function ∆T(ε) stands in relation to
C(g, n) as ∆(ε) stands to R(g, n). However, it turns out
that ∆T is much easier to understand.

Corollary 3.7. Every subset of T with measure ε contains
a symmetric subset with measure ε2, and this is best pos-
sible for every ε:

∆T(ε) = ε2

for all 0 ≤ ε ≤ 1.

Proof: In the proof of the trivial lower bound for ∆(ε)
(Lemma 2.2), we saw that every subset of [0, 1] with mea-
sure ε contains a symmetric subset with measure at least
1
2ε2. The proof is easily modified to show that every sub-
set of T with measure ε contains a symmetric subset with
measure ε2. This shows that ∆T(ε) ≥ ε2 for all ε. On
the other hand, the proof of Proposition 3.1 is also easily
modified to show that ∆T

(C(g,n)
n

) ≤ g
n , as is the proof

of Lemma 2.5 to show that ∆T is continuous. Then, by
virtue of Proposition 3.6 and the monotonicity of ∆T, we
have ∆T(ε) ≤ ε2.

3.3 Probabilistic Constructions of B∗[g] Sets

We can use the probabilistic methods employed in Sec-
tion 3.2 to construct large B∗[g] sets in Z. The proof is
more complicated because it is to our advantage to en-
dow different integers with different probabilities of be-
longing to our random set. Although all of the constants
in the proof could be made explicit, we are content with
inequalities having error terms involving big-O notation.

Proposition 3.8. Let γ ≥ π be a real number and n ≥ γ an
integer. There exists a B∗[g] set S ⊆ {1, . . . , n}, where
g = γ +O(

√
γ log n), with |S| ≥ 2

√
γn
π +O(γ +(γn)1/4).

Proof: Define mutually independent random variables
Yk, taking only the values 0 and 1, by

Pr{Yk = 1} = pk :=

⎧⎪⎨
⎪⎩

1, 1 ≤ k < γ
π ,√

γ
πk , γ

π ≤ k ≤ n,

0, k > n.

(3–3)

(Notice that pk ≤ √
γ

πk for all k ≥ 1.) These random
variables define a random subset S = {k : Yk = 1} of the
integers from 1 to n. We shall show that with positive



162 Experimental Mathematics, Vol. 16 (2007), No. 2

probability, S is a large B∗[g] set with g not much bigger
than γ.

The expected size of S is

E0 :=
∑

1≤j≤n

pj =
∑

1≤j<γ/π

1 +
∑

γ/π≤j≤n

√
γ

πj
(3–4)

=
γ

π
+
∫ n

γ/π

√
γ

πt
dt + O(1) = 2

√
γn

π
− γ

π
+ O(1).

If we set a0 :=
√

2E0 log 3, then Lemma 3.5 tells us that

Pr[|S| < E0 − a0] < exp
(−a2

0

2E0

)
=

1
3
.

Now for any integer k ∈ [γ, 2n], let

Rk :=
∑

1≤j≤n

YjYk−j = 2
∑

1≤j<k/2

YjYk−j + Yk/2,

the number of representations of k as k = s1 + s2

with s1, s2 ∈ S. (Here we adopt the convention that
Yk/2 = pk/2 = 0 if k is odd.) Notice that in this lat-
ter sum, Yk/2 and the YjYk−j are mutually independent
random variables taking only the values 0 and 1, with
Pr[YjYk−j = 1] = pjpk−j . Thus the expectation of Rk is

Ek := 2
∑

1≤j<k/2

pjpk−j + pk/2

≤ 2
∑

1≤j<k/2

√
γ

πj

√
γ

π(k − j)
+
√

γ

πk/2

≤ 2γ

π

∫ k/2

0

√
1

t(k − t)
dt +

√
2γ

πk

= γ +

√
2γ

πk
< γ + 1, (3–5)

using the inequalities pk ≤ √
γ

πk and k ≥ γ.
If we set a =

√
3(γ + 1) log 3n, then Lemma 3.5 tells

us that

Pr[Rk > γ + 1 + a] < Pr[Rk > Ek + a] < exp
(−a2

3Ek

)

< exp
( −a2

3(γ + 1)

)
=

1
3n

for every k in the range γ ≤ k ≤ 2n. Note that Rk ≤ γ

trivially for k in the range 1 ≤ k ≤ γ. Therefore, with
probability at least 1 − 1

3 − (2n − γ) 1
3n = γ

3n > 0, the
set S has at least E0 − a0 = 2

√
γn
π + O

(
γ + (γn)1/4

)
elements and satisfies Rk ≤ γ + 1 + a for all 1 ≤ k ≤ 2n.
Setting g := γ + 1 + a = γ + O(

√
γ log n), we conclude

that any such set S is a B∗[g] set. This establishes the
proposition.

Schinzel and Schmidt [Schinzel and Schmidt 02] con-
jectured that among all pdfs supported on

[
0, 1

2

]
, the

function

f(x) =

{
1√
2x

, x ∈ [0, 1
2 ],

0, otherwise,

has the property that ‖f ∗ f‖∞ is minimal. We have

f ∗ f(x) =

⎧⎪⎨
⎪⎩

π
2 , x ∈ [0, 1

2 ],
π
2 − 2 arctan

√
2x − 1, x ∈ [12 , 1],

0, otherwise,

and so ‖f ∗f‖∞ = π
2 . We have adapted the function f for

our definition (3–3) of the probabilities pk; the constant
π
2 appears as the value of the last integral in (3–5). If
Schinzel’s conjecture were false, then we could immedi-
ately incorporate any better function f into the proof of
Proposition 3.8 and improve the lower bound on |S|.

Theorem 3.9. For any δ > 0, we have

R(g, n) >

(
2√
π
− δ

)√
gn

if both g
log n and n

g are sufficiently large in terms of δ.

Proof: In the proof of Proposition 3.8, we saw that γ ≤ g

and g = γ + O(
√

γ log n); this implies that

γ = g + O(
√

g log n) = g

(
1 + O

(√
log n

g

))
.

Therefore the size of the constructed set S was at least

2
√

γn
π + O(γ + (γn)1/4)

= 2

√
gn
π

(
1 + O

(√
log n

g

))
+ O

(
g + (gn)1/4

)
= 2

√
gn
π

(
1 + O

(√
log n

g +
√

g
n

))
.

This establishes the theorem.

3.4 Deriving the Upper Bounds

In this section we turn the lower bounds on R(g, n) es-
tablished in Section 3.3 into upper bounds for ∆(ε). Our
first proposition verifies the statement of Theorem 1.2(i).

Proposition 3.10. ∆(ε) = 2ε − 1 for 11
16 ≤ ε ≤ 1.

Proof: We already proved in Lemma 2.1 that ∆(ε) ≥
2ε − 1 for all 0 < ε ≤ 1. Recall from Lemma 2.5 that
the function ∆ satisfies the Lipschitz condition |∆(x) −
∆(y)| ≤ 2|x − y|. Therefore to prove that ∆(ε) ≤ 2ε − 1
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for 11
16 ≤ ε ≤ 1, it suffices to prove simply that ∆

(
11
16

) ≤
3
8 .

For any positive integer g, it was shown by the authors
[Martin and O’Bryant 06, Theorem 2(vi)] that

R(g, 3g − �g/3� + 1) ≥ g + 2 �g/3� + �g/6� .

We combine this with Proposition 3.1 and the monotonic-
ity of ∆ to see that

g

3g − �g/3� + 1
≥ ∆

(
R(g, 3g − �g/3� + 1)

3g − �g/3� + 1

)

≥ ∆
(

g + 2 �g/3� + �g/6�
3g − �g/3� + 1

)
.

Since ∆ is continuous by Lemma 2.5, we may take the
limit of both sides as g → ∞ to obtain ∆

(
11
16

) ≤ 3
8 as

desired.

Remark 3.11. In light of the Lipschitz condition |∆(x)−
∆(y)| ≤ 2|x − y|, the lower bound ∆(ε) ≥ 2ε − 1 for
all 0 < ε ≤ 1 also follows easily from the trivial value
∆(1) = 1.

Proposition 3.12. The function ∆(ε)/ε2 is increasing on
(0, 1].

Proof: The starting point of our proof is the inequality
[Martin and O’Bryant 06, Theorem 2(v)]

R(g, x)C(h, y) ≤ R(gh, xy).

With the monotonicity of ∆(ε) and Proposition 3.1, this
gives

∆
(

R(g, x)
x

C(h, y)
y

)
≤ ∆

(
R(gh, xy)

xy

)
≤ gh

xy
.

Choose 0 < ε < ε0. Let gi, xi be such that R(gi,xi)
xi

→ ε0

and gi

xi
→ ∆(ε0), which is possible by Proposition 3.3.

By Proposition 3.6, we may choose sequences of integers
hj and yj such that C(hj ,yj)

yj
� ε

ε0
and hj

yj
�

(
ε
ε0

)2 as
j → ∞. This implies

R(gi, xi)
xi

C(hj , yj)
yj

� ε and
gi

xi

hj

yj
� ∆(ε0)

( ε

ε0

)2

,

so that, again using the monotonicity and continuity
of ∆,

∆(ε0)
ε2

ε2
0

� gihj

xiyj
≥ ∆

(
R(gi, xi)

xi

C(hj , yj)
yj

)
� ∆(ε)

as j → ∞. This shows that ∆(ε)
ε2 ≤ ∆(ε0)

ε2
0

as desired.

We can immediately deduce two nice consequences of
this proposition.

Corollary 3.13. limε→0+
∆(ε)
ε2 exists.

Proof: This follows from the fact that the function
∆(ε)/ε2 is increasing and bounded below by 1

2 on (0, 1]
by the trivial lower bound (Lemma 2.2).

Corollary 3.14. ∆(ε) ≤ 96
121ε2 for 0 ≤ ε ≤ 11

16 .

Proof: This follows from the value ∆
(

11
16

)
= 3

8 calculated
in Proposition 3.10 and the fact that the function ∆(ε)/ε2

is increasing.

The corollary above proves part (iv) of Theorem 1.2,
leaving only part (v) yet to be established. The following
proposition finishes the proof of Theorem 1.2.

Proposition 3.15. ∆(ε)
ε2 ≤ π

(1+
√

1−ε)2
for all 0 < ε ≤ 1.

Proof: Define α := 1−√
1 − ε, so that 2α−α2 = ε. If we

set γ = πα2n in the proof of Proposition 3.8, then the sets
constructed are B∗[g] sets with g = πα2n + O(

√
n log n)

and have size at least

E0 − a0 = 2

√
πα2n2

π
− πα2n

π
+ O(1 + a0)

= (2α − α2)n + O((γn)1/4) = εn + O(
√

n)

from (3–4).
Therefore, for these values of g and n,

∆
(R(g, n)

n

)
≥ ∆

(εn + O(
√

n)
n

)
→ ∆(ε)

as n goes to infinity, by the continuity of ∆. On the other
hand, we see by Proposition 3.1 that

ε−2∆
(

R(g, n)
n

)
≤ g

ε2n
=

πα2n + O(
√

n log n)
ε2n

=
πα2

(2α − α2)2
+ O

(√
log n
ε2n

)

=
π

(2 − α)2
+ o(1) → π

(1 +
√

1 − ε)2

as n goes to infinity. Combining these two inequalities
yields ∆(ε)

ε2 ≤ π
(1+

√
1−ε)2

as desired.

4. SOME REMAINING QUESTIONS

We group the problems in this section into three cate-
gories, although some problems do not fit clearly into
any of the categories and others fit into more than one.
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4.1 Properties of the Function ∆(ε)

The first open problem on the list must of course be the
exact determination of ∆(ε) for all values 0 ≤ ε ≤ 1. In
the course of our investigations, we have come to believe
the following assertion.

Conjecture 4.1. ∆(ε) = max
{
2ε − 1, π

4 ε2
}

for all 0 ≤
ε ≤ 1.

Notice that the upper bounds given in Theorem 1.2
are not too far from this conjecture, the difference be-
tween the constants 96

121

.= 0.79339 and π
4

.= 0.78540 in
the middle range for ε being the only discrepancy. In
fact, we believe it might be possible to prove that the ex-
pression in Conjecture 4.1 is indeed an upper bound for
∆(ε) by a more refined application of the probabilistic
method employed in Section 3.3. The key would be to
show that the various events Rk > γ + 1 + a are more or
less independent of one another (as it stands, we have to
assume the worst—that they are all mutually exclusive—
in obtaining our bound for the probability of obtaining a
“bad” set).

There are some intermediate qualitative results about
the function ∆(ε) that might be easier to resolve. It
seems likely that ∆(ε) is convex, for example, but we
have not been able to prove this. A first step toward
clarifying the nature of ∆(ε) might be to prove that

|∆(x) − ∆(y)|
|x − y| � max{x, y}.

Also, we would not be surprised to see accomplished an
exact computation of ∆(1

2 ), but we have been unable to
make this computation ourselves. We do at least obtain
∆( 1

2 ) ≥ 0.14966 in Proposition 2.18. Note that Conjec-
ture 4.1 would imply that ∆(1

2 ) = π
16

.= 0.19635.
We do not believe that there is always a set with mea-

sure ε whose largest symmetric subset has measure pre-
cisely ∆(ε). In fact, we do not believe that there is a set
with measure ε0 := inf{ε : ∆(ε) = 2ε − 1} whose largest
symmetric subset has measure ∆(ε0), but we do not even
know the value of ε0. In Proposition 3.10, we showed
that ε0 ≤ 11

16 , but this was found by rather limited com-
putations and is unlikely to be sharp. The quantity 96

121

in Theorem 1.2(iv) is of the form 2ε0−1
ε2
0

, and thus any

improvement in the bound ε0 ≤ 11
16 would immediately

result in an improvement to Theorem 1.2(iv). We remark
that Conjecture 4.1 implies that ε0 = 2

2+
√

4−π

.= 0.68341,
which in turn would allow us to replace the constant
96
121

.= 0.79339 in Theorem 1.2(iv) by π
4

.= 0.78540.

4.2 Artifacts of Our Proof

Let K be the class of functions K ∈ L2(T) satisfying
K(x) ≥ 1 on

[− 1
4 , 1

4

]
. How small can we make ‖K̂‖p for

1 ≤ p ≤ 2? We are especially interested in p = 4
3 , but a

solution for any p may be enlightening.
To give some perspective to this problem, note that a

trivial upper bound for infK∈K ‖K̂‖p can be found by tak-
ing K to be identically equal to 1, which yields ‖K̂‖p = 1.
One can find functions that improve upon this trivial
choice; for example, the function K defined in (2–4) is an
example in which ‖K̂‖4/3

.= 0.96585. On the other hand,
since the �p-norm of a sequence is a decreasing function
of p, Parseval’s identity immediately gives us the lower
bound

‖K̂‖p ≥ ‖K̂‖2 = ‖K‖2 ≥
(∫ 1/4

−1/4

12 dt
)1/2

=
1√
2

.= 0.70711,

and of course 1√
2

is the exact minimum for p = 2.
We remark that Proposition 2.7 and the function b(x)

defined after the proof of Corollary 2.8 provide a stronger
lower bound for 1 ≤ p ≤ 4

3 . By direct computation we
have 1.14939 > ‖b ∗ b‖2

2, and by Proposition 2.7 we have
‖b ∗ b‖2

2 ≥ ‖K̂‖−4
4/3 for any K ∈ K. Together these imply

that ‖K̂‖p ≥ ‖K̂‖4/3 > 0.96579. In particular, for p = 4
3

we know the value of infK∈K ‖K̂‖4/3 to within one part in
ten thousand. The problem of determining the actual in-
fimum for 1 < p < 2 seems quite mysterious. We remark
that Green [Green 01] considered the discrete version of
a similar optimization problem, namely the minimization
of ‖K̂‖p over all pdfs K supported on

[− 1
4 , 1

4

]
.

As mentioned at the end of Section 2.3, we used the
inequality ‖g‖2

2 ≤ ‖g‖∞‖g‖1, which is exact when g takes
on one nonzero value, i.e., when g is an nif. We apply this
inequality when g = f ∗f with f supported on an interval
of length 1

2 , which usually looks very different from an
nif. In this circumstance, the inequality does not seem to
be best possible, although the corresponding inequality
in the exponential-sums approach of [Cilleruelo et al. 02]
and in the discrete Fourier approach of [Green 01] clearly
is best possible. Specifically, we ask for a lower bound on

inf
f :R →R≥0

‖f ∗ f‖∞‖f ∗ f‖1

‖f ∗ f‖2
2

that is strictly greater than 1. We know that this infimum
is at most π

log 16

.= 1.1331, and in fact, Conjecture 2.9
would imply that the infimum is exactly π

log 16 .



Martin and O’Bryant: The Symmetric Subset Problem in Continuous Ramsey Theory 165

4.3 The Analogous Problem for Other Sets

More generally, for any subset E of an abelian group
endowed with a measure, we can define

∆E(ε) := inf{D(A) : A ⊆ E, λ(A) = ε},

where D(A) is defined in the same way as in (2–1). For
example, ∆[0,1](ε) is the function ∆(ε) we have been con-
sidering throughout this paper, and ∆T(ε) was considered
in Section 3.2.

Most of the work in this paper generalizes easily from
E = [0, 1] to E = [0, 1]d. We have had difficulties, how-
ever, in finding good kernel functions in higher dimen-
sions. That is, we need functions K(x̄) such that

∑
j̄∈Zd

∣∣K̂(
j̄
)∣∣4/3

is as small as possible, while K(x̄) ≥ 1 if all components
of x̄ are less than 1

4 in absolute value. This restricts K on
one-half of the space in one dimension, one-quarter of the
space in two dimensions, and only 2−d of the space in d

dimensions. For this reason one might expect that better
kernels exist in higher dimensions, but the computational
difficulties have prevented us from finding them.
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