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The arithmetic–geometric mean algorithm for calculating elliptic
integrals of the first type was introduced by Gauss. The analo-
gous algorithm for abelian integrals of genus 2 was introduced
by Richelot (1837) and Humbert (1901). We present the analo-
gous algorithm for abelian integrals of genus 3.

1. INTRODUCTION

The arithmetic–geometric mean (AGM) was discovered
by Lagrange in 1785 and independently by Gauss in 1791.
It is described as follows: given two positive numbers a
and b, define M(a, b) as the limit of the following conver-
gent sequences:

a0 : = a, b0 = b,

an+1 =
an + bn

2
, bn+1 =

√
anbn.

During the period 1791–1799, Gauss discovered a relation
between the AGM and elliptic curves:

Theorem 1.1. (Gauss.) [Cox 84], [Bost and Mestre 88].
For each pair of positive real numbers in the AGM double
sequence an > bn > 0, define

en1 :=
1
3
(a2
n + b2n), en2 := en1 − b2n, en3 := en1 − a2

n.

Denote by En the elliptic curve given by the equation

y2
n = 4(xn − en1)(xn − en2)(xn − en3).

Then the sequence

0→ {0, (en1, 0)−∞} → En → En+1 → 0

of abelian groups is exact for all n. Moreover, identifying
En, En+1 with their respective Picard groups, the map
En → En+1 is given by dxn

yn
�→ dxn+1

yn+1
.
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It is easy to see that we create in this way a sequence
of 2-isogenous elliptic curves. Gauss generalized the def-
inition of the AGM to the complex numbers; in this case
there is a choice involved in taking the square root. Gauss
described the resulting correspondence [Cox 84] for the
description.

Recall that the real points in the Picard group of a
curve that is defined over R are the divisor classes that
are invariant under the action of the group Gal(C/R) (see
[Gross and Harris 81, Sections 1–5]). Gauss proved that
if the 2-torsion points of Pic(E) are real, then there is
a unique α ∈ Pic(E)[2] such that the 2-torsion points of
Pic(E′

α) are real. Applying this property iteratively, one
gets an algorithm for calculating elliptic integrals (see
[Cox 84, Bost and Mestre 88]) of the form∫ e2

e3

dx√
(x− e1)(x− e2)(x− e3)

.

This iterative algorithm is applied in numerical evalua-
tions of certain types of abelian integrals (see [Borwein
and Borwein 88]).

In genera higher than 1 one can hope for an isogeny be-
tween the Jacobians of the curves. Before stating results
in higher genera, we recall some facts on polarized abelian
varieties. A pair (A,Θ), where A is an abelian variety and
Θ is an effective divisor of A, is called a polarized abelian
variety. The divisor Θ is called the theta divisor of the
polarized abelian variety, and the map A→ Pic0(A) de-
fined by a �→ T−1

a (Θ)−Θ, where Ta is the translation by
a, is called the polarization of the pair (A,Θ).

Since the kernel of the polarization is a finite abelian
group whose dimension as a Z module is bounded by
twice the genus of A, we describe its isomorphism type
by two copies of a monotonic sequence of genus(A)
natural numbers. We will abuse notation and denote,
for instance, the sequence (2, 2, 2, 2, 1, 1), (2, 2, 2, 2, 1, 1)
by 2412.

If the polarization type is trivial, we say that the po-
larization is principal; in this case (principal polarization)
we say that A is a principally polarized abelian variety
or PPAV. The translates of Θ that contain 0 are called
the theta characteristics of A. The theta characteristics
are called even or odd if their multiplicity at 0 is even
or odd. The theta characteristics of an abelian variety
A induce a symplectic structure on the F2-vector space
A[2] (the group of 2-torsion points in A) in the following
way: Let θ be a theta characteristic of A. Then the map

q : A[2]→ F2,

a �→ h0(θ + a) + h0(θ) (mod 2),

is a quadratic form over F2. The quadratic form q induces
the following symplectic pairing on the group A[2]:

〈a, b〉 = q(a+ b)− q(a)− q(b) (mod 2).

This pairing is called the Weil pairing. If G is a subgroup
of A[2], we will use the notation

G⊥ := {a ∈ A[2]|〈a, g〉 = 0 for all g ∈ G}.

If A is a PPAV and G is a subgroup of the group A[2],
then Pic0(A/G) is naturally isomorphic to Pic0(A)/G⊥,
whence the abelian variety A/G is principally polarized
only if G is 0, A[2], or a maximal isotropic group of A[2]
with respect to the Weil pairing. Finally, recall that a
Jacobian of a smooth curve C is principally polarized by
the theta divisor ΘC , the image of Symg−1 C in Jac(C)
under the Abel map.

The dimension of the moduli space of principally po-
larized abelian varieties of genus g is g(g+1)/2, while the
dimension of the moduli space of curves of genus g ≥ 2
is 3g − 3. Thus if C is a general curve of genus g ≤ 3
and L is a maximal isotropic subgroup of Jac(C)[2], then
Jac(C)/L is a Jacobian of some curve C ′. This motivates
the following questions:

• Is this an algebraic correspondence?

• Does there exist a curve C ′ for every pair C,L in
genera 2, 3 (and not only generically)?

• If C is a real curve, are there “distinguished” maxi-
mal subgroups?

• What is the situation for genera higher then 3?

In the case g = 2, the first three questions were set-
tled by Richelot [Richelot 37] and Humbert [Humbert 01].
Both Richelot and Humbert observed that for curves of
genus 2 with six real Weierstrass points there are dis-
tinguished maximal isotropic subgroups; they used the
distinguished maximal groups to describe an iterative in-
tegration algorithm for differentials on the components
of real curves of genus 2 with six real Weierstrass points.
Richelot described algebraically the curve C ′ in terms of
the curve C, and Humbert described the isomorphism

H0(C,KC) −→ H0(C ′,KC′).

See [Donagi and Livné 99, Section 4] for a modern review
of the construction and [Bost and Mestre 88] for the re-
sulting integration identities and the iterative integration
algorithm resulting in the real case. Using modern tools
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(namely GAGA), the answer to the first question is im-
mediately positive in all genera. Donagi and Livné solved
the second question for genus g = 3, and answered nega-
tively the last question:

Theorem 1.2. [Donagi and Livné 99] Let C be a smooth
curve of genus g over a base field of characteristic differ-
ent from 2, 3. Let L ⊂ Jac(C)[2] be a maximal isotropic
subgroup (with respect to the Weil pairing).

(i) If g = 3 then there exists a curve C ′ such that
Jac(C ′) ∼= Jac(C)/L. The curve C ′ can be described
algebraically in terms of the curve C and the max-
imal isotropic subgroup L.

(ii) If g > 3, then generically there is no curve C ′ such
that Jac(C ′) ∼= Jac(C)/L.

The proof that Donagi and Livné presented for genus
3 is constructive in the set-theoretic sense. However, as
a basis for explicit work it has drawbacks: it is not clear
how to give coordinates to the spaces and functions in-
volved or how one can track the canonical classes.

The object of this paper is to extend Gauss’s origi-
nal work on curves of genus 1 to the case of genus 3.
In Section 2 we use the Coble–Recillas construction to
give an alternative construction to the one proposed in
[Donagi and Livné 99]; we describe the curve C ′ in terms
of the pair (C,L), where the curve C is a general curve.
In Section 3 we describe the isomorphism between the
canonical linear systems |KC | and |KC′ |.

In Section 4 we derive the formulas describing the
curve C ′ in terms of the curve C and the isomorphism
H0(C,KC) ∼= H0(C ′,KC′). We also show how to iter-
ate the construction. In Section 5 we concentrate on real
curves: assuming the curve C is a real M -curve (i.e.,
a real curve with four components), we present a distin-
guished maximal isotropic subgroup of Jac(C)[2]; we also
analyze the map between the first homology with integer
coefficients of the real part of Jac(C) and Jac(C ′). The
combined result of Sections 3 and 5 is an iterative inte-
gration algorithm on any of the components of C, where
C is an M -curve.

Although our construction is stated over the complex
numbers, it is mostly algebraic. The complex structure is
used in one crucial point: we use a result (due to Jordan
in [Jordan 70, Section 332], or see Harris’s modern ap-
proach in [Harris 79]) stating that the Galois group of the
bitangents of a smooth plane quartic over the complex
numbers is SP6(2). In the rest of the paper we require

only that the characteristic of the base field be the one
arising from the bigonal and trigonal constructions; the
characteristic of the base field K is not 2 or 3 (see the
discussion in the introduction to [Donagi and Livné 99]).

Some of the proofs in Sections 4 and 5 are computer-
aided proofs. The Mathematica and MAGMA programs
that generated the computer part of the proofs appear in
[Lehavi and Ritzenthaler 06].

We remark that the AGM has a nice application in the
area of curves over finite fields: Mestre observed that the
theta-function identities involved in the AGM over p-adic
fields can be used to study the number of points in curves
over finite fields. See [Mestre 00, Lercier and Lubicz 03]
for elliptic and hyperelliptic results and [Ritzenthaler 03]
for results on nonhyperelliptic genus-3 curves.

2. THE CONSTRUCTION

The idea behind our construction is to filter the level-2
data and perform the construction in three steps, us-
ing nonprincipally polarized abelian varieties to keep
track of the level data. Throughout this paper we fix
a generic curve C of genus 3, and a maximal isotropic
flag L = (〈α〉 = L1 � L2 � L3) with respect to
the Weil pairing on Jac(C)[2]. Let C ′ be a curve such
that Jac(C ′) ∼= Jac(C)/L3. The flag L induces a dual
isotropic flag L′ = (L′

1 � L′
2 � L′

3) in Jac(C ′)[2] in the
following way: L′

1 (respectively L′
2, respectively L′

3) is the
image of L⊥

2 (respectively L⊥
1 , respectively Jac(C)[2]) un-

der the map Jac(C)→ Jac(C)/L3. We denote by α (re-
spectively α′) the nontrivial element in L1 (respectively
L′

1). Using the Coble–Recillas construction we will in-
troduce ramified double covers Y −→ E and Y ′ −→ E′

such that there are natural isomorphisms

Prym(Y/E) ∼= Jac(C)/L⊥
1 ,

Prym(Y ′/E′) ∼= Jac(C ′)/L′
1
⊥
.

Using a bigonal construction (see [Donagi 92, pp. 68–
69] for an overview of the bigonal construction) we will
prove that the polarized abelian varieties Prym(Y ′/E′)
and Prym(Y/E) are dual to one another, up to finite data
arising from L2.

Before describing the geometry of the construction (in
Sections 2.5–2.10), we describe the finite symplectic alge-
bra involved: the level-2 structure of the curve C. Define
the following SP6(2) equivariant surjective map:

D : { unordered pairs of distinct
odd theta characteristics of C

} −→ Jac(C)[2] � {0},
{θ1, θ2} �→ θ1 − θ2
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(recall that the group SP6(2) acts on the odd theta
characteristics via the monodromy action; see [Harris
79]). Since the group SP6(2) acts transitively on the set
Jac(C)[2] � {0}, all the fibers of the map D are of the
same order:

(
28
2

)
/63 = 6. For any 2-torsion point γ in

Jac(C) we define the Steiner system

Σγ :=
⋃

x∈D−1(γ)

{x}.

Since the pairs in a fiber of the mapD do not intersect,
the order of all the Steiner systems is 12. In Propositions
2.1 and 2.2 below we discuss the relation between the
symplectic structure on the vector space Jac(C)[2] and
the combinatorics of the 63 Steiner systems.

Proposition 2.1. Let γ, γ′ be two distinct elements in
Jac(C)[2] � {0}. Then #(Σγ ∩ Σγ′) is 4 if 〈γ, γ′〉 = 0,
and 6 otherwise.

Proof: Since the group SP6(2) acts transitively on pairs
of distinct elements in Jac(C)[2]�{0} with the same Weil
pairing, the order of the set Σγ ∩ Σγ′ depends only on
the Weil pairing 〈γ, γ′〉. We denote the two possible in-
tersection orders by n0, n1. Any odd theta characteristic
sits on 28 − 1 = 27 different Σγ ’s, and the number of
γ ∈ Jac(C)[2] � {0, α} such that 〈γ, α〉 = 0 (respectively
1) is 30 (respectively 32). So we get

12 · 27 =
∑
α�=0

#{θ | θ ∈ Σα ∩ Σγ}

= #Σα
+ #{α | 〈γ, α〉 = 0}n0 + #{α | 〈γ, α〉 = 0}n1

= 12 + 30n0 + 32n1,

and the unique nonnegative integer solution of this equa-
tion is n1 = 6, n0 = 4.

Proposition 2.2. The following properties hold:

(i) Let γ be a 2-torsion point in Jac(C). Then the map

Dγ : {unordered pairs of distinct
classes in Σγ/γ

} −→ Jac(C)[2]/γ,

{ai, aj} �→ ai − aj ,

is an isomorphism on (γ⊥/γ) � {0}. Moreover, the
map Dγ maps the intersection pairing to the Weil
pairing.

(ii) Let H be an isotropic subgroup of Jac(C)[2] of or-
der 4. Then there is a unique theta characteristic
θ such that for all α ∈ H, θ + α is an odd theta

characteristic. Denoting the set {θ + α, α ∈ H} by
ΓH , one has ΓH =

⋂
γ∈H�{0} Σγ .

(iii) A maximal isotropic subgroup of Jac(C)[2] contain-
ing α is represented by a partition of Σα/α into
three pairs.

(iv) If seven Steiner systems intersect at mutually dis-
tinct 4-tuples, then there is a maximal isotropic sub-
group G ⊂ Jac(C)[2] such that these seven Steiner
systems are the Steiner systems of the nonzero ele-
ments of G.

Proof: Let Gγ ⊂ SP6(2) be the stabilizer of γ Then the
Gγ orbits of Jac(C)[2]/γ are the sets

{0}, (γ⊥/γ) � {0}, (Jac(C)[2] � γ⊥)/γ,

which are of orders 1, 15, 16 respectively. Since the map
Dγ is a nontrivial Gγ-equivariant map, and since the or-
der of the set of unordered pairs of distinct points in Σγ is(
6
2

)
= 15, the map Dγ is a one-to-one map on the projec-

tive space (γ⊥/γ)�{0}. By a similar counting argument
we prove the claim for the Weil pairing. The last three
assertions follow from Proposition 2.1.

Using the description of one maximal isotropic flag
in terms of odd theta characteristics, we describe the
combinatorics of two isotropic flags: L′ = (〈α′〉 = L′

1 �

L′
2 � L′

3) (see the beginning of Section 2) and L̃ = (〈α̃〉 =
L̃1 ⊂ L̃2 ⊂ L̃3) in Jac(C ′)[2] such that

L̃1⊕L′
3 = L′⊥

2 , L̃2⊕L′
3 = L′⊥

1 , L̃3⊕L′
3 = Jac(C ′)[2].

Such a description is essential for iterating the algorithm,
since the pair (C ′, L̃) should be the starting point of
the second iteration, playing the same role that the pair
(C,L) played in the first iteration. Note that L̃ is not
uniquely defined. For further uses, we will need the fol-
lowing lemma:

Lemma 2.3. For any subgroup H ⊂ L̃3 of order 4 one has
#ΓH ∩Σα′ = 0 if H = L̃2 and #ΓH ∩Σα′ = 2 otherwise.

Proof: Since we have L̃2 ⊂ L′⊥
1 , the Weil pairings of the

nontrivial elements in L̃2/L̃1, (L′
1 ⊕ L̃1)/L̃1 are all 0. By

Proposition 2.2 the intersection

D−1
α̃ (L̃2/L̃1) ∩D−1

α̃ ((L′
1 ⊕ L̃1)/L̃1)

is empty, whence the intersection

ΓL̃2
∩ Σα′ = ΓL̃2

∩ (Σα′ ∩ Σα̃) = ΓL̃2
∩ ΓL′

1⊕L̃1
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is also empty. Reasoning in the same way, for any sub-
group H ⊂ L̃3 of order 4 such that H 
= L̃2, we have that
H is not a subset of L′⊥

1 . By Proposition 2.2,

#(D−1
α̃ (H/L̃1) ∩D−1

α̃ ((L′
1 ⊕ L̃1)/L̃1)) = 1,

and therefore the cardinality of the intersection ΓH ∩Σα′

is 2.

We now move to the geometric part of the construc-
tion. Recall that C is a generic genus-3 curve and that
L = (〈α〉 = L1 � L2 � L3) is a full isotropic flag in
Jac(C)[2]. We start with the Coble–Recillas construc-
tion. Next we construct the double cover Y −→ E men-
tioned above and review its properties. Finally, we de-
scribe the AGM construction through the bigonal con-
struction.

Notation. If V → U is a cover without specific name
for the morphism, we denote the morphism by πV/U . In
the following diagram we summarize some constructions
and notation that will be introduced afterward. Note
that this diagram admits a symmetry with respect to
the vertical axis passing through the right term. These
symmetric objects, which are related to (C ′,L′) under
those constructions, will be indicated by ′.

W

����
��

��
�� /S

�������������

C

����������������������� Z

/σ

��

/i

������������� M

����
��

��
��

X

g13
��

/j

�����
���

���
�� Y

��
|KC + α|∗ E

���
��

��
��

�

P1

The left construction is the Coble–Recillas trigonal con-
struction, and the right construction is (half of) a bigonal
construction (see [Donagi 92, pp. 68–69]).

Let us recall some elements of the theory of the trigo-
nal construction (see, for instance, [Recillas 74, ?, Lehavi
05]). Define

W := C ×|KC+α|∗ C � ∆C

= {(p1, p2) ∈ C × C | p1 + p2 < KC + α}

(where by ∆C we denote the diagonal). The curve W
admits a natural involution, the switching of coordi-
nates, which we denote by S. The curve Z = W/S

can be viewed as the subset of Sym2(C) defined by
{p1 + p2 | p1 + p2 < KC + α}. The curve Z admits
three natural nontrivial involutions:

• σ : p1 + p2 �→ p3 + p4 such that p1 + p2 + p3 + p4 ∼
KC + α; define X := Z/σ.

• i : p1 +p2 �→ p3 +p4 such that p3 +p4 ∼ p1 +p2 +α;
define Y := Z/i.

• j = σ ◦ i; define F := Z/j.

Remark 2.4. The curve Z has a “theta divisor interpre-
tation”: the Abel map Sym2 C −→ Pic2 C induces an
isomorphism Z ∼= ΘC ∩ (ΘC + α) (see, e.g., [Lehavi 05,
3.1–3.4]). In particular, Z is generically a smooth curve
of genus 7. Note that the involution i is then d �→ d+α,
j is d �→ KC − d, and σ is d �→ KC + α− d.

Let us denote by ψ the morphism from Sym2(C) to
|KC | defined by sending p1+p2 to the line p1p2. Since the
supports of p1+p2 and j(p1+p2) as points on C ⊂ |KC |∗
lie on the same line, ψ induces a morphism from F = Z/j

to |KC | making the following diagram commutative:

Z
� � ��

/j

��

Sym2(C)

ψ

��
F

� � �� |KC |

It is classical that bitangents to C are in one-to-one
correspondence with odd theta characteristics. More-
over, if l is a bitangent corresponding to an element θ ∈
Σα, it defines a point on Z (still denoted by θ): indeed, if
l ·C = 2(p1 + p2) and if θ+α corresponds to a bitangent
with divisor 2(p3 +p4), one gets (p1 +p2)−(p3 +p4) ∼ α,
so

p1 + p2 + p3 + p4 ∼ 2(p1 + p2) + α ∼ KC + α.

Thus p1 + p2 < KC + α.
By definition of Z and j, the morphism j is rami-

fied exactly at the 12 elements of the Steiner system Σα.
Since Z is of genus 7, F is of genus 1, and by the preceding
embedding the 12 bitangents (viewed as points in |KC |)
are points on F . Note that F ⊂ |KC | is a cubic: the de-
gree of the map F −→ |KC | is 3, since deg(ψ) = 6, and
the map is nondegenerate because the points of ψ(Σα)
are not collinear.
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Since i is fixed-point-free and commutes with j, it
defines a fixed-point-free involution iF on F exchang-
ing the points θ, θ + α ∈ Σα. This involution de-
fines a point αF ∈ Pic0(F )[2] such that for all p ∈ F ,
p + αF ∼ iF (p). The quotient of F by the involution
iF is the curve E = X/j (because (Z/σ)/j = (Z/j)/i).
Hence E is naturally embedded in |KC |∗ by the image of
πF/E : p �→ p ∩ (p+ αF ).

Theorem 2.5. (A. Coble.) See [Coble 61, Sections 47–49]
or [Lehavi 05]. The images of the points of Σα ⊂ F under
the map πF/E sit on a unique conic Q ⊂ |KC |∗. They are
the intersection points of the bitangents θ, θ + α ∈ Σα.
The locus Q ∩ E is the ramification locus of the map
πY/E : Y → E.

The following results are mostly due to Coble and to
Recillas.

Proposition 2.6. Let αE be the unique nonzero element in
(πF/E)∗(Pic(F )[2]) ⊂ Pic(E)[2]. Given the double cover
Y −→ E and the 2-torsion point αE, one can recon-
struct the curve C and the linear system |KC +α| in the
following way. We have F � E/αE. The curve Z is iso-
morphic to the fibered product Y ×EF . This construction
induces two commuting involutions i, j on Z. Since the
double cover πF/E is unramified, the involutions i, j on
Z are fixed-point-free.

The genera of the curves Z,X, Y are then 7, 4, 4 re-
spectively. The curve X is a bielliptic curve of genus 4
that has only one g1

3 up to the bielliptic involution. Thus
we are back in the trigonal construction setting. Note that
C and the linear system |KC+α| are invariant under the
choice of the g1

3. On our way to (C ′,L′), we have now
expressed (Jac(C), α) in terms of the double cover Z/X.

The second step in the construction (see Theorem 2.9)
is to interpret the symplectic data through the quotient
i. Our main tool for analysis of nonprincipally polarized
abelian varieties is Lemmas 2.7 and 2.8 below.

Lemma 2.7. [Donagi and Livné 99, Lemma 1] Let
Ṽ −→ V be an admissible double cover of curves, and let
νṼ −→ νV be its partial normalization at r > 1 points
x1, . . . , xr ∈ V . Let g be the arithmetic genus of the
partial normalization νV , so the arithmetic genus of V
is g + r. Then Prym(Ṽ /V ) has a principal polarization,
Prym(νṼ /νV ) has a polarization of type 2g1r−1, and the
pullback map

ν∗ : Prym(Ṽ /V ) −→ Prym(νṼ /νV )

is an isogeny of degree 2r−1.

Lemma 2.8. (The monodromy argument.) Let V ′ −→ V

be a finite cover such that the Galois group of the Galois
closure of V ′/V is 2-transitive on the cover. Then the
only section of the cover V ′×V V ′ −→ V is the diagonal.

We will apply Lemma 2.8 with the covers A1
3 → A3

and AF3 → A3, where A1
3 (respectively AF3 ) is the moduli

space of PPAVs of dimension 3 with a 2-torsion point
(respectively with a maximal isotropic group).

Theorem 2.9. The quotient by i induces an isogeny of
abelian varieties:

φ : Prym(Z/X) −→ Prym(Y/E).

Identifying the principally polarized abelian varieties
Jac(C) and Prym(Z/X) as in [Donagi 92, Theorem 2.11],
the kernel of φ is α⊥.

Proof: The proof consists of three steps:

Step 1: The map φ : Prym(Z/X) −→ Prym(Y/E) is
an isogeny. To prove this claim it suffices to prove
that the induced map on the tangent spaces at 0 is
an isomorphism. We do this by considering the space
M := H0(Z,Ω1

Z) as a Gal(Z/E) module and calculating
the module decomposition to irreducible representations.
We denote by M− the irreducible representation corre-
sponding to the character whose kernel is the subgroup
〈−〉 ⊂ Gal(Z/E), and by M1 the irreducible represen-
tation corresponding to the trivial character. Using this
notation we have

H0(Z,Ω1
Z) = M1 ⊕Mi ⊕Mj ⊕Mσ, H0(E,Ω1

E) = M1,

H0(F,Ω1
F ) = M j

1 ⊕M j
i ⊕M j

j ⊕M j
σ = M1 ⊕Mj ,

H0(Y,Ω1
Y ) = M i

1 ⊕M i
i ⊕M i

j ⊕M i
σ = M1 ⊕Mi,

H0(X,Ω1
X) = Mσ

1 ⊕Mσ
i ⊕Mσ

j ⊕Mσ
σ = M1 ⊕Mσ.

However, since E and F are both of genus 1, the map
H0(F,Ω1

F ) −→ H0(E,Ω1
E) is an isomorphism. Thus we

have Mj = 0, and our claim holds.

Step 2: The kernel of the isogeny φ is a subset of
Prym(Z/X)[2]. Denoting by [2]A the multiplication by
2 on an abelian variety A, we have

πZ/Y ∗π
∗
Z/Y : Jac(Y ) −→ Jac(Y ) = [2]Jac(Y ).

Denote by µ∗, µ∗ the restrictions of maps πZ/Y ∗, π
∗
Z/Y

to the abelian varieties Prym(Y/E),Prym(Z/X) respec-
tively. Note that φ = µ∗. We have µ∗µ∗ = [2]Prym(Z/X).

Step 3: Computation of the kernel of φ. By applying
Lemma 2.7 to some degeneration of the cover Y/E along
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its ramification locus Q ∩E, one finds that the polariza-
tion type of the variety Prym(Y/E) is 2115. Thus, the
order of the kernel of φ is 32.

By [Donagi 92, Theorem 2.11], the norms in the
trigonal construction induce an isomorphism Jac(C) ∼=
Prym(Z/X). The kernel of φ can thus be identified with
β⊥ for some β ∈ Jac(C)[2]. The map (Jac(C), α) →
(Jac(C), β) gives a endomorphism of A1

3 and then a sec-
tion from A1

3 to A1
3 ×A3 A1

3. By Lemma 2.8 this section
maps into the diagonal component, so α = β.

Denote by q1, . . . , q6 the intersection points of E and
Q. In Proposition 2.2 we identified pairs of qi’s with
the nonzero points of the symplectic space α⊥/α. This
identification induces bijections between the sets of data
shown in Table 1.

We let {q1, q2}, {{q3, q4}, {q5, q6}} be the partition of
the qi’s that corresponds to the full isotropic flag L. De-
note by πE/P1 the linear system |q1 + q2| on the curve E
and by B the ramification locus of πE/P1 . Note that the
symmetric construction introduces a set B′. Using these
definitions we are ready to prove the correctness of our
construction:

Theorem 2.10. Let us assume that the ramification pat-
tern of the tower Y −→ E −→ P1 is generic. De-
note by H̃ −→ H −→ P1 the image of the tower
Y −→ E −→ P1 by the bigonal construction. Then the
tower Y ′ −→ E′ −→ P1 is the normalization of the tower
H̃ −→ H −→ P1. Moreover, there is a one-to-one corre-
spondence between points b ∈ Q∩E� {q1, q2} and points
b′ ∈ B′, given by

πE/P1(b) = πE′/P1(b′).

Proof: The ramification pattern of the bigonal construc-
tion on Y −→ E −→ P1 is the following (see [Donagi 92,
pp. 68–69]):

• If π−1
E/P1(a) = {q1, q2}, then Y/E is ramified over

both q1 and q2, π−1
H/P1(a) is a node, and over this

node the curve H̃ is a gluing of two ramified sheets
(symbolically, ⊂⊂ / = | ⊃⊂ /×) .

• If π−1
E/P1(a) = 2b for some b ∈ B, then Y/E is étale

over b, πH/P1 is étale over a, and H̃ is ramified over
one of the points in π−1

H/P1(a) and étale over the other
one (symbolically, ⊂⊂ / ⊂ | ⊂= / =).

• If π−1
E/P1(a) � q for some q ∈ Q ∩ E � {q1, q2}, then

Y/E is ramified over q and étale over the other point

in π−1
E/P1(a). Moreover, πH/P1 is ramified at a, and

H̃/H is étale over both branches (symbolically, ⊂=
/ = | ⊂⊂ / ⊂).

• In all other points the ramification patterns of the
towers Y/E/P1 and H̃/H/P1 are generic (i.e., un-
ramified).

Denote by νH̃, νH the normalizations of the curves
H̃,H respectively. By the Riemann–Hurwitz formula,
the genera of the curves νH̃, νH are 4, 1 respectively. The
ramification pattern over the points πE/P1(q3), πE/P1(q4),
πE/P1(q5), πE/P1(q6) in the tower Y −→ E −→ P1 is
⊂= / =. Thus, the partition {{q3, q4}, {q5, q6}} induces
a partition into two pairs of the four ramification points
of the map νH −→ P1, which induces a choice of a
2-torsion point in Pic0(νH). Applying the reconstruc-
tion technique from Proposition 2.6 to the double cover
νH̃ −→ νH and the 2-torsion point, we get a smooth
curve C ′′ of genus 3. We claim that we have the follow-
ing degrees for the isogenies:

Jac(C) 2→ Prym(H̃/H) 2→ Prym(νH̃/νH) 2→ Jac(C ′′).

By [Pantazis 86, Proposition 3.1], the abelian variety
Prym(H̃/H) is isomorphic to the dual of the abelian va-
riety Prym(Y/E). Since Prym(Y/E) is isomorphic to
Jac(C)/α⊥, we have (see the discussion on PPAVs) that
Prym(H̃/H) � Jac(C)/α. The second arrow is a conse-
quence of Lemma 2.7 for the normalization of H̃/H over
the point of type ⊃⊂ /×. The third arrow follows from
Theorem 2.9.

Thus we have obtained an isogeny of degree 23. By
our observation in the discussion on PPAVs, this isogeny
is given by a maximal isotropic group L ∈ Jac(C)[2].
In the same spirit as in the proof of 2.9 we can use the
monodromy argument of Lemma 2.8 for L3 and L to
prove that L = L3. Thus C ′′ � C ′, and we get

νH̃ � Y ′, νH � E′.

The ramification patterns prove the last assertion of the
theorem.

Remark 2.11. In the same way, one can describe anal-
ogous results for the other nongeneric ramification pat-
terns of the tower Y −→ E −→ P1, but this effort is
redundant: in Section 4 we will find a formula that gives
C ′ in terms of a generic pair (C,L); since C ′ is continu-
ous in the pair (C,L), the formula will be correct for all
pairs (C,L) for which the denominators in the formula
are non zero.
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Data on isotropic subgroups in
Jac(C)[2] that contain α.

Data on isotropic subgroups of α⊥/α Partitions of the points
{qi}i=1,...,6

Isotropic subgroups of order 4 Isotropic subgroups of order 2 2 + 4

Maximal Isotropic subgroups Maximal Isotropic subgroups 2 + 2 + 2

Full isotropic flags Full isotropic flags 2 + (2 + 2)

TABLE 1. Symplectic algebra and the Steiner system dictionary.

3. THE ISOMORPHISM BETWEEN THE
CANONICAL CLASSES

In this section we describe the isomorphism k :
|KC′ |∗ −→ |KC |∗ between the duals of the canonical
linear systems of the curves C and C ′. In Section 4,
this description is used to calculate the equation of the
canonical embedding of the curve C ′ in terms of the
canonical embedding of the curve C and to describe
k : H0(KC)→ H0(KC′).

We describe the isomorphism k by considering the
images and preimages (under the map k) of the sets
B,B′ (recall the definition following Theorem 2.9) and
the points defined below:

p := E ∩ q1q2 � {q1, q2}, p′ := E′ ∩ q′1q′2 � {q′1, q′2}.
The resulting description is encoded in the following the-
orem:

Theorem 3.1. The isomorphism k is completely deter-
mined by the following identities:

k(Q′ ∩ E′ � {q′1, q′2}) = B,

k(q′1q
′
2) = q1q2,

k(B′) = Q ∩ E � {q1, q2},
k(p′) = p,

where the identifications of Q′ ∩E′ � {q′1, q′2} with B and
of B′ with Q∩E�{q1, q2} are those from Theorem 2.10.

Proof: The theorem follows from Theorem 3.3 and two
applications of Theorem 3.2 below.

To describe the isomorphism k we present it as a com-
position of three isomorphisms. Denote by jY (respec-
tively JY ) the involution on the curve Y (respectively
the homology group H0(KY )) induced from the double
cover Y −→ E. Denote by H0(KY )odd (respectively
H0(KY )even) the odd (respectively even) part ofH0(KY )
with respect to the involution JY . We denote by |KY |odd

(respectively |KY |even) the projectivization of the vector
spaceH0(KY )odd (respectivelyH0(KY )even). We use the
analogous notation for subspaces of |KY ′ |. The involu-
tion JY induces an involution on the dual of the canonical

system |KY |∗. The fixed set under this involution is the
union of the projective plane |KY |∗odd and a point pY , the
projectivization of the space H0(KY )even.

By Theorem 2.10 we have a sequence of isogenies of
abelian varieties

Jac(C)
/α⊥
−→ Prym(Y/E) −→ Prym(Y ′/E′)

/α′⊥
←− Jac(C ′).

Taking the tangents spaces at 0 of these varieties, we get
the sequence of isomorphisms

H0(KC)
φ−→ H0(KY )odd

ψ−→ H0(KY ′)odd
φ′←− H0(KC′).

(3–1)
Taking the duals, inverses, and projectivizations of the
spaces and morphisms in (3–1), we get another sequence
of isomorphisms,

|KC |∗ φ−→ |KY |∗odd
ψ−→ |KY ′ |∗odd

φ′
←− |KC′ |∗.

By construction, these two morphisms have interpre-
tation in terms of the trigonal and bigonal constructions.
With the notation of the trigonal construction “dictio-
nary,” the morphism φ is induced by πW/Y ∗π

∗
W/C . In

the same way, denoting by M the normalization of the
Galois closure of the tower Y −→ E −→ P1, the isomor-
phism ψ is defined as the composition πM/Y ′∗ ◦ π∗

M/Y .
We discuss the morphism φ in Theorem 3.2 below.

Our analysis is based on the two views of the set
{qi}i=1,...,6 presented in Theorem 2.5:

• The qi’s are in natural one-to-one correspondence
with intersection points of pairs of bitangents that
lie in |KC |∗.

• The qi’s are in natural one-to-one correspondence
with the fixed points in Y of the involution jY , i.e.,
with the points of Y ∩ |KY |∗odd ⊂ |KY |∗.

We interpret the relation between these views using
the norms in the trigonal construction. If πV/U : V −→ U

is one of the covers arising in our construction, we denote
the ramification divisor of the map πV/U by RV/U . We
will make repetitive use of the following version of the
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Riemann–Hurwitz theorem (see [Hartshorne 77, Proposi-
tion IV.2.1]): Let ω be a differential on U . Then the zero
divisor of the differential π∗

V/Uω is π∗
V/U ((ω)0) +RV/U .

Theorem 3.2. The map φ : |KC |∗ −→ |KY |∗odd takes each
of the qi’s to the corresponding point in Y ∩ |KY |∗odd ⊂
|KY |∗. Moreover, this property defines φ.

Proof: To avoid confusion between the points of W,Z, Y
and divisors, we denote here a point of W by (p1, p2),
a point on Z by (p1 + p2), and a point of Y by {(p1 +
p2), (p3 + p4)} if p3 + p4 = j(p1 + p2) ∈ Z.

Let {p1+p2, p3+p4} be the pair of theta characteristics
in Σα that represent one of the qi’s (see the discussion fol-
lowing Theorem 2.9). Let ω ∈ H0(KC) be a differential
such that ω0 = 2(p1 + p2). Then

(π∗
W/C(ω))0 −RW/C
= π∗

W/C(ω0)

= 2((p1, p2) + (p2, p1) +
∑

1≤i≤2
3≤j≤4

(pi, pj)).

So (π∗
W/C(ω)) ≥ 2((p1, p2) + (p2, p1)) +RW/C .

By the properties of the trigonal construction (see
[Donagi 92, p. 74]) we have RW/C ≥ RW/Z . So we get

(π∗
W/C(ω)+Sπ∗

W/C(ω))0 ≥ 2((p1, p2)+ (p2, p1))+RW/Z .

The left summand is precisely the pullback of
πW/Z∗π

∗
W/C(ω), so we finally get

(πW/Z∗π
∗
W/C(ω))0 ≥ 2(p1 + p2).

Now,

πZ/Y ∗πW/Z∗π
∗
W/C(ω) = πW/Y ∗π

∗
W/C(ω)

= φ(ω) ∈ H0(KY )odd.

So by invariance under JY ,

(φ(ω))0 = (πW/Y ∗π
∗
W/C(ω))0 ≥ 2{(p1 + p2), (p3 + p4)}.

Since the qi’s are the intersection points of the two bi-
tangents supported by (p1, p2), (p3, p4), the last inequal-
ity implies

φ(qi) = {(p1 + p2), (p3 + p4)}.

Since the qi’s are six noncollinear points, this property
completely describes the map φ.

It remains to analyze the isogeny ψ induced from the
bigonal construction relating the double covers Y −→ E

and Y ′ −→ E′ (see the proof of Theorem 2.10). We
make the identifications of Theorem 3.2 (so ψ becomes
k). Since the linear system |p+ q1 + q2| spans the space
|KY |∗odd (and the same with the symmetric notation ′),
we reduce the description of the map Pψ to a description
of a natural isomorphism between these linear systems
on the curves E,E′.

Theorem 3.3. The isomorphism ψ is determined by the
following identities:

ψ(Q′ ∩ E′ � {q′1, q′2}) = B,

ψ(q′1q
′
2) = q1q2,

ψ(B′) = Q ∩ E � {q1, q2},
ψ(p′) = p,

where the identifications of Q′ ∩E′ � {q′1, q′2} with B and
of B′ with Q∩E�{q1, q2} are those from Theorem 2.10.

Proof: The theorem follows from the following two
claims:

1. Let t be a point in P1 and let ω be a differen-
tial in H0(KY )odd such that 1

2πY/E∗((ω)0) = p +
π∗
E/P1(t). Then the image of ω under ψ satisfies

1
2πY ′/E′∗((ψ(ω))0) = p′ + π∗

E′/P1(t).

2. Let b be a point in the set B ⊂ E and let q′i be
the corresponding point (in the sense of Theorem
2.10) in the set Q′ ∩ E′. Let ω be a differential in
H0(KY )odd such that πY ′/E′∗(ω)0 ≥ 2b. Then the
image of ω under ψ satisfies (ψ(ω))0 ≥ 2q′i.

As in the proof of Theorem 3.2, we make repetitive use
of the Riemann–Hurwitz theorem.

Proof of Claim 1: Let ω be a differential as in the first
claim above. Since the zero divisor of the differential ω
is moving with t, the intersection (π∗

M/Y (ω))0 ∩ RM/Y

is generically empty. By the definition of the bigonal
construction,

(ψ(ω))0 = (πM/Y ′∗π
∗
M/Y (ω))0

=
1
2
πM/Y ′∗((π

∗
M/Y (ω))0 −RM/Y )

=
1
2
πM/Y ′∗π

∗
M/Y (πY/P1

∗(t) + πY/E
∗(p)).

Then
1
2
πY ′/E′∗

(
(ψ(ω))0

)
=

1
2
(πM/E′∗π

∗
M/P1(t) + πM/E′∗π

∗
M/E(p))

= π∗
E/P1(t) + p′.
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Proof of Claim 2: Define the objects ω, b, q′i as in the
second claim above. By the definition of the point b we
have (π∗

M/Y (ω))0 ≥ π∗
M/P1(πE/P1(b)), whence

(ψ(ω))0 = (πM/Y ′∗π
∗
M/Y (ω))0

=
1
2
πM/Y ′∗((π

∗
M/Y (ω))0 −RM/Y ′)

≥ 1
2
πM/Y ′∗({t ∈ π∗

M/P1(πE/P1(b))|t 
∈ RM/Y ′}).

To prove the inequality (ψ(ω))0 ≥ 2qi it suffices to
show that RM/Y ′ ∩ π∗

M/Y ′RY ′/E′ = ∅. By the bigonal
construction dictionary (see Theorem 2.10), if the cover
Y −→ P1 is ramified over a point t, then the cover E′ −→
P1 is étale over t. Since the curve M can be defined as
the product E′×P1 Y , there are no multiple points in the
ramification divisor RM/P1 . This proves that RM/Y ′ ∩
π∗
M/Y ′RY ′/E′ = ∅.

4. A SMALL MATTER OF PROGRAMMING

In the previous sections we presented an explicit con-
struction of the AGM in genus 3. In this section we close
the gap between “explicit” and a formula. We tackle five
problems: describing the pair (C,α), describing the inter-
mediate data (E,Q), (E′, Q′) in terms of (C,L2), describ-
ing the pair (C ′,L′) in terms of the pair (C,L), describing
the isomorphism k : H0(C,KC) −→ H0(C ′,KC′), and
describing a flag L̃ in terms of E′, Q′,L′. We solve these
problems by a “coordinification” of the proof of Theorem
3.1. We identify the two spaces |KC |∗ and |KC′ |∗ under
the isomorphism k. We denote the coordinates on this
space by x, y, z (we describe a precise choice of coordi-
nates).

Notation. 4.1. To write the equations, we use the lexico-
graphic order on the dual coordinates of x, y, z. That is,
instead of writing ax2 + bxy+ cxz+ dy2 + eyz+ fz2, we
will write (a, b, c, d, e, f). When we talk about the cor-
responding curve, we will use the projective coordinates
(a : b : c : d : e : f). Finally, we will abuse notation by
using the name of a curve in P2 for its defining equation.

The data (C,α): Let us consider the natural bilinear
map

H0(KC + α)×H0(KC + α) −→ H0(2KC)

= H0(O|KC |(2)),

((as1 + bs2), (cs1 + ds2)) �→ acA1 + (bc+ ad)A3 + bdA2,

defined by the tensor multiplication of the sections si.
Identifying |KC + α| with P1, we also get a map

m : P1 × P1 → |2KC |.

We simplify the conics Ai by a special choice of our sec-
tions si: let θi, θi +α ∈ Σα for i = 1, 2; we assume below
that the pair (θi, θi + α) corresponds to the points qi by
Theorem 2.5. Note that the choice of a distinguished pair
{q1, q2} is equivalent to the choice of L2 in Jac(C)[2] as
described in the trigonal construction “dictionary.”

Let l1i (respectively l2i) denote the bitangents corre-
sponding to θi (respectively θi + α), and let Dji denote
the effective divisor of degree 2 such that 2Dji = (lji)0.
Then we have

KC + α ∼ D1i + σ(D1i) ∼ D1i + i ◦ j(D1i)

∼ D1i + i(D1i) ∼ D1i +D2i.

We denote by si the sections of H0(KC +α) correspond-
ing to D1i + D2i. With this choice of sections, we have
A1 = l11l21 and A2 = l12l22. We now fix the coordinates
(x : y : z) of |KC |∗ such that A1 = (y − z)(y + z) and
A2 = (x− z)(x+ z). The following proposition is now a
particular case of a classical result (see [Dolgachev 07]).

Proposition 4.2. The quartic C is given by A2
3 −A1A2 =

0. Assume that the quadrics A1, A2, A3 are respectively
given by

(0, 0, 0, 1, 0,−1), (1, 0, 0, 0, 0,−1), (a, b, c, d, e, f).

Then the coordinates of C ∈ |O|KC |∗(4)| are

(a2 : 2ab : 2ac : b2 + 2ad− 1 : 2bc+ 2ae : 1 + c2 + 2af

: 2bd : 2cd+ 2be : 2ce+ 2bf : 2cf : d2 : 2de : 1 + e2 + 2df

: 2ef : f2 − 1).

Below we find the equations for the intermediate data
(E,Q), (E′, Q′).

Theorem 4.3. Assume that the quadrics A1, A2, A3 are as
in Proposition 4.2. The coordinates of the curves E,E′ ∈
|O|KC |∗(3)| are

E = (0 : c : b : e : 2(a+ d+ f) : e : 0 : b : c : 0),

E′ = (−2ac : −2ae : b2 − c2 − 4af − 1− 4a2 : 2cd

: 4b(d− a) : 2be− 4ac− 2cf : 2de

: 1− b2 + 4d2 + e2 + 4df : 2e(2d+ f)− 2bc

: e2 − c2).
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The coordinates of the conics Q,Q′ ∈ |O|KC |∗(2)| are

Q = (0 : ce(b2 − 1 + 4ad)− 2b(c2d+ e2a)

: b(−2bcd− e+ b2e) + 2a(b2c+ ce2 − 2bef)− 4a2be

: 0 : b3c+ 2c2de+ 2b2(d− a)e− bc(1 + 4d2 + 4df)

: c2e2 + b2(c2 + e2)− 2bce(a+ d+ f)),

Q′ = (−a(e2 − c2) : 0 : (d− a)(c(a+ d+ f)− be)
: d(c2 − e2) : 2(a− d)(e(a+ d+ f)− bc)
: (d− a)(c2 − e2)).

The essence of the proof is to convert the problem
into a sequence of “steps” of the following form: find a
pencil that is spanned by two known forms and contains
another form that we have to calculate. We perform these
steps explicitly using a computer. Let us stress, though,
that in most cases, two of the three forms involved in the
computation are divisible by a known linear form. Thus,
the obstinate reader could still check the computations
below, up to and including Theorem 4.9, by hand.

The curve E: Recall (see the trigonal construction
“dictionary”) that to any point p1+p2 ∈ Z one associates
a point q ∈ E ⊂ |KC |∗ as p1p2∩p3p4, where i(p1 +p2) =
p3 +p4 ∈ Z. Denote by A the conic given by the product
of the lines p1p2 and p3p4. Note that the singular point
of A is q.

Lemma 4.4. There exists a unique pair of sections (up to
permutation) (t1, t2) ∈ H0(KC+α)⊗2 such that t1t2 = A.
Conversely, the singular point of each singular conic in
m(P1 × P1) is on E.

Proof: Let us prove the first assertion. By definition of
j, the zero divisor of A is 2KC ∼ p1 + p2 + j(p1 + p2) +
p3 + p4 + j(p3 + p4). Since p3 + p4 = i(p1 + p2), one gets

(A)0 = p1 +p2 + j ◦ i(p1 +p2)+ i(p1 +p2)+σ ◦ i(p1 +p2).

Since p1 +p2 +σ(p1 +p2) ∈ |KC +α| (respectively i(p1 +
p2) + σ ◦ i(p1 + p2) ∈ |KC + α|), the divisor defines a
unique section t1 (respectively t2) in H0(KC + α).

To account for the permutation of the two lines in
Lemma 4.4, we introduce the map

v2 : P1 × P1 → P2 � Sym2 P1

(λ, µ), (λ′, µ′) �→ (λλ′, µµ′, λµ′ + µλ′).

Let (X : Y : Z) be the coordinates in v2(P1×P1). Lemma
4.4 can be reformulated to say that the curve E can be

seen as the locus (x : y : z) of singular points in the net of
conics XA1 +Y A2 +ZA3. If M = X0A1 +Y0A2 +Z0A3

is such a conic, it is singular at q0 if and only if⎛
⎝ 0

0
0

⎞
⎠ =

⎛
⎝ Mx(q0)

My(q0)
Mz(q0)

⎞
⎠

=

⎛
⎝ (A1)x(q0) (A1)y(q0) (A1)z(q0)

(A2)x(q0) (A2)y(q0) (A2)z(q0)
(A3)x(q0) (A3)y(q0) (A3)z(q0)

⎞
⎠
t

×
⎛
⎝ X0

Y0

Z0

⎞
⎠ .

Denote by Jac(A1, A2, A3) the previous matrix. Thus the
curve E is given by det(Jac(A1, A2, A3)) = 0.

The curve Q: It is easy to check algebraically that the
point o := (0 : 0 : 1) lies on E (see Lemma 4.8 for a
geometric explanation). Let q̂1 := oq1 ∩ E � {o, q1} and
q̂2 := oq2 ∩ E � {o, q2}. Let

Q̂ := Nulls
(

4
∂A3

∂x

∂A3

∂y
− ∂A1

∂y

∂A2

∂x

)
.

Proposition 4.5. The cubics E, Qq̂1q̂2, Q̂q1q2 lie in the
same pencil. Moreover, p ∈ q̂1q̂2.

Proof: See Figure 1 for a “graphical demonstration.” Re-
call that the intersection points qi of Q∩E are the inter-
section points of the pairs of bitangents θi, θi +α. With
the notation of the previous proof, if p1+p2 is the divisor
associated to θi, the divisor associated to the product of
the two lines is 2(p1+p2)+2i(p1+p2). So t1 = t2, and the

FIGURE 1. The geometry of Proposition 4.5.
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points qi correspond to singular points of singular conics
of the form m((λ : µ), (λ : µ)), i.e.,

Q ∩ E = {(x : y : z) | Jac(A1, A2, A3)t · (λ2, µ2, 2λµ)t = 0

for one (λ : µ) ∈ P1}.
Since ∂A2

∂x = ∂A1
∂y = 0, the points of Q ∩ E are the (x :

y : z) coordinates for which the following system admits
a solution:

∂A2

∂x
µ2 + 2

∂A3

∂x
λµ = 0,

∂A1

∂y
λ2 + 2

∂A3

∂y
λµ = 0,

∂A1

∂z
λ2 +

∂A2

∂z
µ2 + 2

∂A3

∂z
λµ = 0,

(λ, µ) 
= (0, 0).

If λ = 0 (respectively µ = 0), this system admits q1
(respectively q2) as a solution. If λµ 
= 0, then a solution
satisfies(

∂A2

∂x
: −2

∂A3

∂x

)
= (λ : µ) =

(
−2

∂A3

∂y
:
∂A1

∂y

)
,

so it belongs to Q̂. Hence the intersection points of Q̂
and Q are E ·Q \ {q1, q2} = B′ (see Theorem 3.1).

It follows from the definition of q̂i that q̂i ∈ Q̂ for
i = 1, 2. We compute the intersections:

E · (Qq̂1q̂2) > (B′ + q1 + q2) + q̂1 + q̂2,

E · (Q̂q1q2) > (B′ + q̂1 + q̂2) + (q1 + q2 + p).

These three cubics thus have eight points in common, so
they lie in the same pencil. Moreover, their last intersec-
tion point is the same, too, so p ∈ q̂1q̂2.

The curve E′: For the purpose of describing the
isotropic subgroup L3, as well as for technical reasons,
we set the following notation: Denote by Qp the unique
conic such that Qp · E = 2p + B, and by Q′

p the unique
conic such that Q′

p · E′ = 2p+ B′ (the notation B,B′, p
was defined following Theorem 2.9 and at the beginning
of Section 3). Recall that under the identification of the
linear system given by k, we have E ∩Q ∩Q′

p = B′ and
E′ ∩Q′ ∩Qp = B.

Proposition 4.6. The plane cubics E, QTp(E), q1q2Q′
p

lie in the same pencil.

Proof: See Figure 2 for a “graphical demonstration.” As
in the previous proof, this follows after the intersections

E · (Q+ Tp(E)) > (B′ + q1 + q2) + 2p,

E · (q1q2Q′
p) > (q1 + q2 + p) + (B′ + p),

are calculated.

FIGURE 2. The geometry of Proposition 4.6.

Let J = ∪b∈B′pb; we compute the quartic defining J
using the following procedure:

1. Since p = (−e : c : 0), the lines passing through p

are given by linear forms cx+ ey − αz = 0 for some
α ∈ C. Thus J =

∏4
i=1(cx+ey−αi), where the αi’s

are defined by the property cxi + eyi = αi for each
of the four points (xi : yi : 1) ∈ B′.

2. Let Y = cx+ ey. Then Yi := cxi + eyi are the roots
of the polynomial R(Y ) =

(
Resultant(Q(x, (Y −

cx)/e, 1), Q′
p(x, Y − cx)/e, 1), x

)
. So by definition,

in affine coordinates, J = R(cx+ ey).

Proposition 4.7. The plane quartics E′Tp(Q′
p), Q

′
p
2
, J lie

in the same pencil.

FIGURE 3. The geometry of Proposition 4.7.
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Proof: See Figure 3 for a “graphical demonstration.” By
the definition of J,Q′

p we have

Q′
p
2 · J = 2(B′ + 4p)

and

Q′
p
2 · (E′ + Tp(Q′

p)) = 2((B′ + 2p) + 2p).

So the three quartics belong to the same pencil.

The curve Q′: We compute Q′ using Proposition 4.6
and symmetry. To compute the conic Qp, one notes that
Qp·E = 2p+B. By the definition of B following Theorem
2.9, b ∈ B if and only if Tb(E) · E = 2b + p. It is then
classical (see, for instance, [Salmon 79]) that Qp is the
polar conic of p with respect to E; recall that if p = (x0 :
y0 : z0) ∈ E, then the polar conic of p with respect to E
is given by the equation x0Ex + y0Ey + z0Ez = 0.

To complete the calculation of (C ′,L′) from (C,L) we
still have to make a final choice: the partition of the set
B′ to the two pairs {{q3, q4}, {q5, q6}}. Geometrically,
this is the choice of the singular conic q3q4 ∪ q5q6 among
the three singular conics in the pencil spanned by the
conics Q,Q′

p. We start with a lemma on the symmetric
situation:

Lemma 4.8. The following equality holds:

q′3q
′
4 ∩ q′5q′6 = p+ αE = o,

where the addition is in Pic(E).

Proof: To see the first equality, note that 2q′i+ p is a line
section of E ⊂ |KC |∗ for all i = 3, . . . , 6. By the proof of
Theorem 2.10 and the symmetry on the construction, we
also have q′3 − q′4 = q′5 − q′6 = αE . Setting õ := p + αE ,
we see that q3 +q4 + õ = 2q3 +p and q5 +q6 + õ = 2q5 +p

are both line sections. To see the second equality, note
that TpE ∩ ToE lies on E, which means that γ := p − o
is in Pic(E)[2]. However, by a monodromy argument on
maximal isotropic flags on Jac(C ′)[2] containing L′

2, we
have γ = αE .

In order to find an equation for (C ′, α′) in the form
A′2

3 = A′
1A

′
2, we apply a projective transformation to

mimic the form of the pair (E,Q). Denote by T a pro-
jective transformation of |KC |∗ that sends q′1, q

′
2, and

q3q4 ∩ q5q6 to the points (1 : 0 : 0), (0 : 1 : 0), and
(0 : 0 : 1) respectively. Define T (E′) = (e1, . . . , e10) and
T (Q′) = (d1, . . . , d6). Finally, define T2 to be the trans-
formation that operates by multiplication of the x-axis
by
√
e2/e9 and multiplication of the y-axis by

√
e4/e6.

Theorem 4.9. The coordinates of the quadratic forms
T (A′

1), T (A′
2) are given by

(0, 0, 0, e4/e6, 0,−1), (e2/e9, 0, 0, 0, 0,−1),

while the coordinates of the quadric form T (A′
3) are given

by

1
X

(
e2e6(e2d3 − e3d2), 2e2e3e4d6, 2e22e6d6,

e4(e2e6d5 − e3e9d2), 2e2e4e6d6,

− e6(−e2e5d6 + e2e6d5 + e2e9d3 − 2e3e9d2)
)
,

where X is given by√√√√√ 4e6e9(e6e2e5d6e3d2 + e26e
2
2d3d5 − e26e2e3d2d5

− e9e6e2d3e3d2 + e9e6e
2
3d

2
2 − e6e22e3d5d6

− e26e22d2d6 + e2e
2
3e4d

2
6 − e2e3e4e6d3d6)

.

Proof: Let us assume that we have taken A′
1 (respectively

A′
2) such that T2 ◦T (A′

1) (respectively T2 ◦T (A′
1)) is the

conic y2 − z2 (respectively x2 − z2). Let T2 ◦ T (A′
3) =

(a′, b′, c′, d′, e′, f ′). By Theorem 4.3, if we call (E2, Q2)
the data (E,Q) associated to these transformations of
A′

1, A
′
2, A

′
3, we have

E2 =
(
0 : c′ : b′ : 0 : e′ : 2(a′ + d′ + f ′) : e′ : 0 : b′ : c′ : 0

)
,

Q2 =
(
0 : c′e′(b′2 − 1 + 4a′d′)− 2b′(c′2d′ + e′2a′);

b′(−2b′c′d′ − e′ + b′2e′)

+ 2a′(b′2c′ + c′e′2 − 2b′e′f ′)− 4a′2b′e′ : 0;

b′3c′ + 2c′2d′e′ + 2b′2(d′ − a′)e′

− b′c′(1 + 4d′2 + 4d′f ′);

c′2e′2 + b′2(c′2 + e′2)− 2b′c′e′(a′ + d′ + f ′)
)
.

If we let T2 ◦ T (E′) = (0, ĉ, b̂, ê, ĝ, ê, 0, b̂, ĉ, 0) and T2 ◦
T (Q′) = (0, δ1, δ2, 0, δ3, δ4), there exists a constant ξ such
that

b′ = b̂/ξ, c′ = ĉ/ξ, e′ = ê/ξ, a′ + d′ + f ′ = ĝ/(2ξ),

and⎛
⎝ −2b̂ĉ2 −2b̂ê2 ĉê

−2b̂2ĉ 2b̂2ĉ+ 2cê2 − 2b̂êĝ b̂ê

2b̂2ê+ 2ĉ2ê− 2b̂ĉĝ −2b̂2ê b̂ĉ

⎞
⎠

×
⎛
⎝ d′ξ

a′ξ
4a′d′ξ2 − ξ2

⎞
⎠+ b̂2

⎛
⎝ ĉê

b̂ê

b̂ĉ

⎞
⎠

=
ĉ2ê2 + b̂2(ĉ2 + ê2)− b̂ĉêĝ

δ4

⎛
⎝ δ1

δ2
δ3

⎞
⎠ .
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By the geometry of the configuration and the coordi-
nates we chose, the only solutions a′, d′, ξ to the system
above arise from solutions of the quadric T2◦T (A′

3). Since
the quadric A′

3 is determined up to a sign, the matrix
equation above has only one solution, and this solution
determines a′, d′, ξ up to a choice of sign. We apply then
the transformation T−1

2 to obtain the expression of T (A3)
in terms of ei, di.

Remark 4.10. Note that the transformation T2 and the
square roots

√
e2/e9,

√
e4/e6 served merely as techni-

cal aids in the proof above, and indeed vanished in the
final result. The situation is different with the root we
take to distinguish between q′1 and q′2. Recall that when
performing the trigonal construction, one has to take a
degree-2 field extension in order to constructW ′ from the
tower Z ′/X ′/P1, and one has to construct W ′ in order
to construct C ′.

Since after distinguishing between q′1 and q′2 we can
construct C ′, the root we take when we distinguish be-
tween these points generates the field extension of the
function field of W ′ over the function field of Z ′. This
carries little significance when one is working over an
algebraically closed field, but in working over a nonalge-
braically closed field, it reflects the fact that in order to
find the isogeny Prym(Z/X) ∼= Jac(C) we may have to
make a degree-2 field extension of the base field.

Corollary 4.11. Let M be the moduli of a, b, c, d, e, f and
a root of the cubic form (in t) Hessian(tQ′

p +Q). Then:

• The space M is birational to a finite cover of the
moduli of (C,L) with monodromy group naturally
isomorphic to D4.

• The map T2 ◦ T is defined globally over M. More-
over, as a map on quadrics in x, y, z with parameters
in M, the map T2 ◦ T is an involution that lifts the
involution (C,L) −→ (C ′,L′).

• Using affine coordinates on |KC |∗ (by setting z = 1),
the map k is given by the formula

T2 ◦ T
(

l dx

∂(A′
1A

′
2 −A′

3
2)/∂y

)

= ±k−1
(

l dx

∂(A1A2 −A2
3)/∂y

)
,

where l is any linear form.

Proof: The first assertion follows from the choice of co-
ordinates we use (see Theorem 4.3) and the fact that the
singular conics in the pencil of conics spanned by Q′

p, Q

are in one-to-one correspondence with the roots of the
cubic Hessian(tQ′

p +Q). The dihedral group is the sym-
metry group acting on the nested partition of linear forms
{{x− z, x+ z}, {y − z, y + z}}.

The second assertion follows from the definition of T
and T2, and from Theorem 4.9.

It is well known that a basis of regular differentials
on a genus-3 nonhyperelliptic curve C can be given by(

l dx
∂(C)/∂y

)
. With the identifications we have made during

the construction on the coordinates

(x : y : z), (x′ : y′ : z′)

(see the beginning of Section 4), the map k with this
choice of bases is given by the transformation (T2 ◦ T )−1

up to a constant. However, since T2 ◦ T is an involution
onM, the square of this constant is 1.

Our final objective in this section is to show how one
iterates the construction. Following the discussion below
Proposition 2.2, we use a tilde (∼) to indicate the objects
related to (C ′, L̃).

Our first task is to find an α̃. By our analysis of the
symplectic pairings in Proposition 2.2 and following The-
orem 2.9, we have

#D−1
α′ (α̃) ∩ {q′1, q′2} = 0 ⇐⇒ α̃ ∈ L′⊥

2 � L′
2,

#D−1
α′ (α̃) ∩ {q′5, q′6} = 1 ⇐⇒ α̃ /∈ L′

3.

So we can assume that D−1
α′ (α̃) = {q′3, q′5}. The situation

can be represented as in Figure 4.

FIGURE 4. Calculation of data on the “new” curve.
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Thus, the four bitangents β′
31, β

′
32 (lying over q′3),

β′
51, β

′
52 (lying over q′5) in Γα′⊕α = Σα′ ∩ Σσ̃ (Proposi-

tion 2.1) can be grouped as (β′
31, β

′
52) and (β′

51, β
′
32) to

give a possible α̃ (the other grouping corresponds to an
α̃+α′). Let us set q̃3 = β′

31∩β′
52 and q̃5 = β′

51∩β′
32. Let

Ẽ, Q̃ be the cubic and conic associated to (C ′, α̃). We
define {q̃i}6i=1 = Q̃ ∩ Ẽ.

The second step is to find L̃2. By Proposition 2.2, a
maximal isotropic group that contains α′ (respectively
α̃) is equivalent to the partition of Σα′/α′ (respectively
Σα̃/α̃) into three pairs. There are three different maximal
isotropic spaces containing α′ ⊕ α̃, given by the nonzero
points in (α′ ⊕ α̃)⊥/(α′ ⊕ α̃). These maximal flags are
in bijection with partitions into two pairs of the points
{q′1, q′2, q′4, q′6}, and also with partitions into two pairs of
the points {q̃1, q̃2, q̃4, q̃6}.

One of the three maximal isotropic groups containing
α̃⊕α′ is α̃⊕L′

2. The two others correspond to α′⊕L̃2 for
the two different choices of L̃2. Thus, in order to choose
L̃2, we first choose the maximal isotropic group α′ ⊕ L̃2,
and in making this choice, we exclude the partition cor-
responding to the group α̃⊕ L′

2.
The partition of {q′1, q′2, q′4, q′6} that corresponds to

α′ ⊕ L̃2 is simply the partition {q′1, q′2}, {q′4, q′6}, but in
order to proceed we will have to find the corresponding
partition of {q̃1, q̃2, q̃4, q̃6}. To do this we will describe ex-
plicitly the natural isomorphism between the three parti-
tions into two pairs of these 4-tuples. This isomorphism
is geometric in nature, and to describe it we will inter-
pret these partitions as singular conics defined by the
partitions.

To describe the isomorphism we need some more no-
tation. If α1, α2 ∈ Jac(C ′)[2] such that 〈α1, α2〉 = 0, one
denotes by A3,αi

, Eαi
, Qαi

, p(αi) the elements A3, E,Q, p

relative to the construction starting from (C ′, αi). Also,
we denote by Eαi⊕αj

and Qp(αi),αj
the curve E′ and the

conic Q′
p constructed from the data (C ′, αi ⊂ αi ⊕ αj),

and by ′ the symmetric constructions. Note that

Eαi⊕αj
= E′

(αi⊕αj)⊥/L = Eαj⊕αi

for any maximal isotropic group L containing αi ⊕ αj .
However, Qp(αi),αj


= Qp(αj),αi
.

Lemma 4.12. The identification of a singular conic
through {q′1, q′2, q′4, q′6} (respectively {q̃1, q̃2, q̃4, q̃6}) with
a root of

Hessian(Qα′ + uQp(α′),α̃),

respectively

Hessian(Qα̃ + uQp(α̃),α′),

defines a natural transformation µ : P1 → P1 that fixes
∞ and maps the two triple of roots bijectively.

Proof: We have Eα′⊕α̃ = Eα̃⊕α′ . Let t be the translation
on Eα̃⊕α′ by p(α̃) − p(α′). Let sQp(α′),α̃

, sQα′ (respec-
tively sQp(α̃),α′ , sQα̃

) denote the sections of the bundle of
Eα′⊕α̃ defined by the divisor q′1+q′2+q′4+q′6 (respectively
q̃1, q̃2, q̃4, q̃6) and corresponding to the subscript objects.
Since Qp(α′),α̃ (respectively Qp(α̃),α′) is the polar conic of
p(α′) (respectively p(α̃)), there exists a ∈ K such that

t∗(sQp(α′),α̃
) = asQp(α̃),α′ .

Thus t maps the points {q′1, q′2, q′4, q′6} onto {q̃1, q̃2,
q̃4, q̃6}. Since t∗(sQα′ ) contains the points {q̃1, q̃2, q̃4, q̃6},
there are also two constants b, c such that t∗(sQα′ ) =
bsQα̃

+ csQp(α̃),α′ . Thus any section in the pencil
sQα′ + usQp(α′),α̃

is mapped through t onto bsQα̃
+

(au + c)sQp(α̃),α′ . Hence there is an affine transforma-
tion µ that maps a conic Qα′ + uQp(α′),α̃ to Qα̃′ +
µ(u)Qp(α̃),α′ . In particular, a singular conic is mapped
to a singular conic, which means that µ maps the three
roots of Hessian(Qα′ + uQp(α′),α̃) to the three roots of
Hessian(Qα̃ + uQp(α̃),α′).

To identify the transformation µ, we work on the
generic case C ′ given by (a′, b′, c′, d′, e′, f ′), and we are
looking for a continuous affine transformation. We as-
sume that the bitangents β′

31, β
′
32, β

′
51, β

′
52 are y − z,

y + z, x− z, x+ z respectively.
Denote by

T :=
1
2

⎛
⎝ −1 1 2

1 −1 2
1 1 0

⎞
⎠

the transformation that sends y − z, y + z, x − z, x + z

to y − z, x+ z, x− z, y + z respectively. This projective
transformation defines a linear transformation Tα̃ on the
coefficients of A3,α′ given by (a′, b′, c′, d′, e′, f ′) maps to
the coefficients of A3,α̃:

(1
4
(a′ − b′ − c′ + d′ + e′ + f ′),

1
2
(−a′ + b′ − d′ + f ′),

1
2
(−2a′ + c′ + 2d′ + e′),

1
4
(a′ − b′ + c′ + d′ − e′ − f ′),

1
2
(2a′ + c′ − 2d′ + e′), a′ + b′ + d′

)
.
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Using Theorem 4.3, we can compute the different objects
involved, and we obtain

µ(u) = (2a′ − c′ − 2d′ − e′) · (2a′ + c′ − 2d′ + e′)

· (2a′b′e′2 − 4a′c′d′e′ − b′2c′e′ + 2b′c′2d′ + c′e′)u

+ 2e′ · c′ · a′

· (4a′2b′ − 8a′b′d′ − 2a′c′e′ − b′c′2 + 4b′d′2 − be′2
− 2c′d′e′ + 2c′e′f ′).

Let us say a few words about the computation: We
are comparing the coefficients of two monic cubic forms
in u under the transformation u �→ (µ0u+ µ1). Thus we
get the equation

ε(u3 + a2u
2 + a1u+ a0) = (µ0u+ µ1)3 + b2(µ0u+ µ1)2

+ b1(µ0u+ µ1) + b0.

Comparing the u coefficients, we get a system of equa-
tions in µ0, µ1:

3µ1 + b2 − µ0a2 = 0,

3µ2
1 + 2b2µ1 + b1 − µ2

0a1 = 0,

µ3
1 + b2µ

2
1 + b1µ+ b0 − µ3

0a0 = 0.

We solve the system by finding the two solutions of
the first two equations and checking which of the two
solutions solves the third equation.

By a projective transformation one can send the bi-
tangents β′

31, β
′
32, β

′
51, β

′
52 to y − z, y + z, x − z, x + z

respectively. Using the previous lemma, one can then
identify the value u0 of u corresponding to α̃ + L′

2 (i.e.,
to the singular conic whose one component is q′1q

′
2) and

then exclude the singular conic Qα̃ + µ(u0)Qp(α̃),α′ . Let
us denote this one by q̃1q̃2 ∪ q̃4q̃6, and then L̃2 is repre-
sented, for instance, by q̃4q̃6.

The last task is to identify L̃3: by Lemma 2.3, it has
to contain one of the points q̃3, q̃5, so it is given by any
choice of a pair {q̃2, q̃5} or {q̃2, q̃3}.

5. REAL CURVES

In this section we show that if C is a real M -curve of
genus 3 (i.e., a curve with four components), then the
topology of the real structure induces a distinguished
isotropic flag L1 ⊂ L3 in Jac(C)[2] such that the curve
C ′ is an M -curve.

In Theorem 5.1 we establish a bijection between parti-
tions of the four components of the curve C into two pairs
and the set of full flags L containing the flag L1 ⊂ L3.

Following Proposition 5.2 we show how to find the
topologically distinguished flag L̃′ on the curve C ′ using
the data C ′,L′ (one calculates the pair (C ′,L′) from the
pair (C,L)) by taking square roots as described below
Corollary 4.11, thus getting an iterative process.

We will show that the choice of these square roots is
uniquely determined by the topology.

Finally, we describe the iterative integration algo-
rithm.

Let C be a real plane quartic with four components
C1, C2, C3, C4. We denote by JacR(C) the real part of
the Jacobian of the curve C, and by JacR(C)0 the 0-
component of JacR(C); see [Gross and Harris 81, p. 159].
Recall that since the degree of the curve C is even, each
of the Ci’s is null homotopic in PR2 (see, e.g., [Gross
and Harris 81]). Therefore, the set RP2 � Ci is a union
of a disk and a Möbius strip. Recall also that the quo-
tient JacR(C)[2]/ JacR(C)0[2] is naturally isomorphic to
the vector space F2[C1, C2, C3, C4]/F2, where F2 acts by
adding 1F2 to all the coordinates.

Let {{C1, C3}, {C2, C4}} be a partition of the four
components into two pairs. Denote by ci a point in the
trivial component of PR2 � Ci, and choose the infinity
line l∞ in PR2 such that the four points c1, c2, c3, c4 ad-
mit a cyclic order in PR2 � l∞ (formally, this means
that c1, c2, c3, c4 sit on an ellipse in PR2 � l∞ in the
order 1, 2, 3, 4). We assume that the order induced on
c1, c2, c3, c4 from the choice of the line l∞ is counterclock-
wise. Note that there is a natural isomorphism

H := H1(PR2 � {c1, c2, c3, c4},F2)
∼= F2[l∞]⊕ F2[C1, C2, C3, C4]/F2.

Since the bitangents are lines, the classes of the bitan-
gents in H have nontrivial l∞ coordinate. In fact, a much
stronger result holds:

Theorem 5.1. For any i ∈ {1, . . . , 4} there is a Steiner
system Σi such that the bitangents in Σi have exactly four
representatives in each of the following homology classes
in H:

l∞ + Ci, l∞ + Ci + Ci+1 (mod 4), l∞ + Ci−1 (mod 4).

Proof: All additions of indices in the proof are modulo
4. For any i < j consider a one-parameter degenera-
tion of the curve C to a curve Cij such that on Cij , the
ovals Ci, Ci−1 are connected with a node, and the ovals
Cj , Cj−1 are connected with a node; see Figure 5.
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FIGURE 5. The geometry of Theorem 5.1.

By [Beauville 77], the degeneration of each of the two
nodes degenerates a 2-torsion point in the Jacobian va-
riety Jac(C); we mark these points by γi, γj . Under the
degeneration from C to Cij , any of the six pairs of bitan-
gents in the Steiner system Σγi

degenerates to one dou-
ble line through the node corresponding to γi; the same
property holds also for j. Moreover, the intersection of
the Steiner systems Σγi

∩ Σγj
is then the quadruple line

through the two nodes of Cij .
Thus by Proposition 2.2, the Weil pairing 〈γi, γj〉 is 0,

and all the bitangents in Γγi⊕γj
have the same homology

class in H: if j = i + 1, this class is l∞ + Ci, and if
j = i+ 2, this class is l∞ + Ci + Ci+1.

Note that for any i there is a bitangent to the pair of
components Ci, Ci+1 in the homology class of l∞. Thus
the 24 bitangents from Theorem 5.1 together with these
4 bitangents exhaust the list of 28 bitangents of C. By
Proposition 2.2 we have also identified a distinguished
flag given by the following partition data:

• four bitangents in the class of l∞;

• four bitangents in each of the classes l∞, l∞ + C1 +
C3, l∞ +C2 +C4; by the combinatorial structure we
described and by Proposition 2.2, this is a Steiner
system;

• four bitangents in each of the classes in H with non-
trivial line coordinate except the class l∞ +C1 +C3.

Finally, recall (see [Huisman 02]) that since C is an
M -curve, the variety JacR(C)0 is naturally isomorphic
to a product of any three (= genus(C)) of the compo-
nents. Since the group JacR(C)0[2] is spanned by any two
subgroups of order 4 in it, and since four of the order-4
subgroups we built above sit in the product of three com-
ponents of the curve, the maximal group in the flag we
built is JacR(C)0[2]. Note that the quotient JacR(C)/L3

is the Jacobian of an M -curve if and only if this quotient
has 23 components, which means that L3 = JacR(C)0[2].
Thus the choice of a distinguished L3 we made above is
indeed the unique choice that will enable iteration.

Proposition 5.2. Denote by C ′ the M -curve whose Jaco-
bian is Jac(C)/L3, where L3 is chosen following The-
orem 5.1; denote by C ′

i the components of C ′. Then
H1(Jac(C)0

R
,Z) (respectively H1(Jac(C ′)0

R
,Z)) is gener-

ated by the Ci’s (respectively C ′
i’s). Moreover, the mor-

phism H1(Jac(C)0
R
,Z) → H1(Jac(C ′)0

R
,Z) induced from

the construction is a composition of two maps: multipli-
cation by 2, and an isomorphism that sends each of the
Ci’s to one of the C ′

j’s.

Proof: We start by proving that the deck group of the
space ofM -curves of genus 3 plus a choice of a component
covering the space of M -curves is either the alternating
group A4 or the symmetric group S4. To prove this claim
we consider a moduli point with many automorphisms:
the action of the automorphism group of

{(x : y : z :)|(x2 − z2) + (y2 − z2) = ε}

on the components is via the A4 action of projective au-
tomorphisms.

Using [Huisman 02] we have

H1(Jac(C)0
R
) ∼= Z[C1, C2, C3].

Applying the monodromy argument to the scenario
above, we have

∑
Ci = 0 in H1(Jac(C)0

R
). Thus we can

make the natural identifications

H1(Jac(C)0
R
,Z) ∼= Z[C1, C2, C3, C4]/

∑
Ci,

H1(Jac(C ′)0
R
,Z) ∼= Z[C ′

1, C
′
2, C

′
3, C

′
4]/
∑

C ′
i.

Note that the map Jac(C)0
R
→ Jac(C ′)0

R
is a covering

map whose kernel is isomorphic to F3
2. Since the first ho-

motopy group and the first homology groups of tori are
naturally isomorphic, and since the rank of the homo-
topy groups in our case is 3, it follows that the induced
map on the homology groups is indeed a composition of
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multiplication by 2 and some isomorphism I. To find the
isomorphism I we apply the monodromy argument from
above again: the isomorphism I is given by a matrix in

SL(Z4) whose class in SL(coker(Z4 x�→‖x‖1−→ Z)) is invari-
ant under the action of A4 on Z4. However, the only
class of this type is the identity class.

To complete the description of an iterative algorithm,
we have to solve two problems: initiating the algorithm
and performing an iterative step. In the discussion of
these problems we will apply several times the following
proposition.

Proposition 5.3. The symplectic-algebraic properties of a
configuration of bitangents to a real M -curve of genus 3
as points on the odd part of an affine symplectic space
are determined by the homotopy classes of the bitangents
in PR2 � {ci}4i=2 and the intersection pattern of the bi-
tangents with the components of C.

Proof: This follows from the following facts:

• Bitangents are continuous on families. Thus, the ho-
mology classes of bitangents in RP2 � {ci}41 is con-
stant on families.

• Level structure is continuous on families.

• The moduli space of M -curves is irreducible.

We will apply Proposition 5.3 several times to study
the configuration of bitangents arising from the discus-
sion following Corollary 4.11. We will describe real alge-
brogeometric data on the moduli of configurations of bi-
tangents that defines several nonzero real algebraic func-
tions. To show that some real configuration is associated
with a distinguished flag (in the sense of Theorem 5.1)
we will present one curve for which our function is pos-
itive on the distinguished configuration and negative on
the others. The conceptual calculations appear below.
The related numeric calculations appear in [Lehavi and
Ritzenthaler 06].

Initiating the algorithm: To initiate the algorithm one
essentially has to solve, in a Galois theory sense, the bi-
tangents of the curve C. Since the Galois group acting
on the bitangents is generically unsolvable, this problem
is generically unsolvable in radicals.

However, there are still other computationally useful
problems that we will answer: Determine whether on a
given M -curve of genus 3 and quadrics A1, A2, A3, the
flag L1 ⊂ L2 induced from A1, A2, A3 is a subflag of

a distinguished flag (in the sense of Theorem 5.1). To
check this, it suffices to verify that the curve C lies in one
component of PR2�Nulls(A1A2). It suffices to check this
on an infinitesimal neighborhood of the four bitangents
determined by the conics A1, A2.

Given an M -curve C in the form A1A2−A2
3 such that

the induced flag is a subflag of a distinguished flag, mark
the choice of the distinguished group L3. Note that the
quartic form (x2− z2)(y2− z2) separates the real projec-
tive plane into three positive components and four nega-
tive components. Thus, if the form A′

3, calculated as in
Theorem 4.9, is purely imaginary, then the curve C ′ is an
M -curve, and thus the choice of L3 is the distinguished
choice. Note also that A′

3 is purely imaginary if and only
if the expression under the square root in Theorem 4.9
is negative. By Proposition 5.3, it suffices to show one
example of a curve C with purely imaginary A′

3. We do
this in [Lehavi and Ritzenthaler 06].

Describing the iterative step: Recall that during the
calculation of the iterative step in the discussion following
Corollary 4.11, the field extensions were geometrically
described by several times making choices of the following
type: given three lines l1, l2, l3 and two pairs of points
pi1, pi2 ∈ li � (li ∩ (l3−i ∪ l3)), find a partition into two
pairs of the four points p11, p12, p21, p22 that is not the
one arising from the lines l1, l2.

This choice boils down to a positivity question: we
consider the pencil of conics throughput the four points
p11, p12, p21, p22. There are three singular conics in this
pencil, one of which is given by l1 ∪ l2. Moreover, l1 ∪ l2
cuts PR2 into two components, and the two nodes of
the two other singular conics in the pencil, which are
p11p21∪p22p12, p11p22∪p12p21, appear one in each of the
two components of PR2 � (l1 ∪ l2).

We calculate the choices that bring us to a distin-
guished configuration on C ′ (in the sense of Theorem
5.1 in [Lehavi and Ritzenthaler 06]). We plot in Fig-
ure 6 one step of the computation: finding the distin-
guished topological configuration of ΓL′

1⊕L̃1
(see the dis-

cussion following Corollary 4.11). The set ΓL′
2

is plotted
in dashed lines, and the set ΓL̃1⊕L′

1
is plotted in dotted

lines.
We conclude this section with a description of the in-

tegration algorithm. By Proposition 5.2 (and the previ-
ous sections in which we established the isomorphism of
the canonical linear systems) we know how to express C ′

and the differentials on it in terms of C and the differ-
entials on it; and we know how to express the integrals
of differentials on C on the Ci’s in terms of integrals of
differentials on C ′ on the C ′

i’s.
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FIGURE 6. Preparing the data for the second iteration.

Let us consider now the period matrices of the curves
in the iterations of the algorithm. In each iteration we
divide the period matrix by 2. Since the bitangents are
gradients of the theta functions (with characteristics) in
these period matrices, and since theta functions are expo-
nential in the period matrix of C, the distances between
the bitangents in each of the distinguished 4-tuples are
decreasing exponentially. That is, the limit curve of this
process is a union of four lines in PR2, and the conver-
gence rate of the curves to the configuration of four lines
is exponential. Using this method and Corollary 4.11 we
reduced the calculation of integrals of cycles on JacR(C)
to a calculation of integrals of rational functions on line
segments.

FIGURE 7. Two iterations.

In Figure 7, which is computed in the final step of
[Lehavi and Ritzenthaler 06], we plot two iterations of our

algorithm, where the canonical classes of the curves C,C ′

and the next curve in the iterative process are identified.
From a numerical-analytic point of view there is an

obstacle that we did not tackle in this paper: the stabil-
ity of the solution. From a theta-function-theoretic point
of view it is the stability, in the sense of singular values
decomposition, of the period matrix of C. From an al-
gebraic point of view it is the stability of the formulas
developed in Section 4.
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[Donagi and Livné 99] R. Donagi and R. Livné. “The
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Nombres Bordeaux 14 (2002), 249–256.

[Humbert 01] G. Humbert. “Sur la transformation ordinaire
des fonctions abeliennes.” J. de math. (5) 7 (1901), 359–
417.

[Jordan 70] M. C. Jordan. Traité des substitutions et des
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