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Any stable map from a surface to the plane has an associated
graph. In the case of the sphere, such graphs are of tree type
[Hacon et al. 03]. We characterize the trees that can occur as
graphs of fold maps from the sphere to the plane. In order to
do so, we first determine the sets of integers that may occur as
winding numbers for the branch sets of these maps.

1. INTRODUCTION

By a well-known theorem of Whitney, critical points of
generic smooth maps from a smooth surface to the plane
are either fold points or (isolated) cusp points [Golubit-
sky and Guillemin 76]. The critical set of any stable map
from a closed smooth surface to the plane consists of
finitely many disjoint simple closed curves in the surface
(the critical curves) whose image (the branch set) con-
sists of closed curves with transversal intersections and
(isolated) cusps. With a view to classifying stable maps
modulo, for example, the action of diffeomorphisms of the
surface and the plane, one is interested in the existence
of relevant invariants.

For example, any stable map defines a graph whose
edges (respectively vertices) correspond to the critical
curves (respectively components of the complement of
the critical set). In the case of the sphere, the graph is a
tree. In [Hacon et al. 03] it is shown that any tree occurs
as the graph of a stable map of the sphere into the plane.
In the present work we study cuspless stable maps, clas-
sically known as fold maps (i.e., maps whose critical set
is immersed in the plane). Such maps determine a partic-
ular class of stable maps between smooth submanifolds,
whose study and classification, as well as the possible re-
lated homotopy principles, have captured the attention of
several authors [Ando 04, Ando 02, Eliashberg 70, Saeki
03, Sakuma 94].

In the case of fold maps of closed surfaces into the
plane, this study is closely related to that of immersions
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of surfaces with boundary into the plane, whose classifi-
cation up to image isotopy has been studied by L. Kauff-
man [Kauffman 79] and M. Yamamoto [Yamamoto 03].
In fact, for a given stable map, the surface is the union of
regions (a region being the closure of a connected compo-
nent of the complement of the critical curves and hence a
surface whose (nonempty) boundary consists of a number
of critical curves).

Since the map immerses the complement of the crit-
ical set, fold maps may be constructed by first immers-
ing the critical curves and then extending to immersions
of the regions, which, after smoothing along the critical
curves, piece together to give the desired map. Whether
a set of immersed curves bounds an immersed region de-
pends on the so-called Blank words associated with the
branch curves; see [Malta et al. 93], where an exposi-
tion of Blank and Troyer’s results [Blank 67, Troyer 73]
is given.

However, instead of using this criterion, it is usually
possible to assemble the immersed region directly as the
union of simpler immersed regions. For example, in the
proof of Theorem 4.3 (which characterizes the sets of in-
tegers that can occur as the winding numbers [Whitney
37] of a fold map of the sphere), the necessary immersed
regions are constructed explicitly as unions of immersed
annuli. On the other hand, to produce stable maps with
certain prescribed branch sets, as illustrated in Figure 6,
the required immersed regions may be constructed as
unions of immersed disks.

Here we are interested mainly in the specific case
of the sphere and, in particular, in which sets of inte-
gers can occur as winding numbers of the (immersed)
curves of the branch set. Observe that each branch curve
receives an orientation induced by the map from the
chosen orientations of the sphere and the plane. The
set of winding numbers is, in general, invariant only
by orientation-preserving diffeomorphisms (of the sphere
and the plane).

This procedure enables one to characterize those
trees that occur as graphs of fold maps (Theorem 4.3).
The resulting list of realizable pairs (graph, branch set)
provides a first step toward the classification of fold
maps of the sphere (modulo diffeomorphisms of the
sphere and the plane). Classification entails first the
determination of all possible pairs (graph, branch set)
and, for each such pair, all collections of immersed
planar regions fitting together along the branch curves
as above.

2.  STABLE MAPS AND THEIR INVARIANTS

We begin by recalling some definitions and basic results.
Two smooth maps f and g from a surface M to the
plane are said to be A-equivalent if there are orientation-
preserving diffeomorphisms, [ and k, such that lof = gok.
If both [ and k are isotopic to the identity, f and g are
said to be isotopic. A smooth map f is said to be stable
if all maps sufficiently close to f (in the Whitney C*°-
topology) are isotopic to f.

We denote by £(M,R?) the space of stable maps from
a surface M to the plane. As mentioned above, the criti-
cal set of a stable map consists of a finite number of dis-
joint embedded (critical) curves. Each curve consists of
fold points together with finitely many cusp points (i.e.,
points whose image is a cusp point of the branch set). If
f and g are A-equivalent, then there is a diffeomorphism
of the surface carrying the critical set of f to the critical
set of g and similarly for the branch sets of f and g.

There is also the corresponding notion of isotopy.
Clearly, any diffeomorphism invariant of the critical set or
of the branch set will be an A-invariant of f. The number
of connected components of the singular set and the topo-
logical type of its complement are invariants. This infor-
mation can be encoded in a weighted graph from which
the surface and the critical set may be reconstructed (up
to equivalence) as shown in [Hacon et al. 03].

The graph of a stable map is defined as follows: each
region (i.e., closure of a connected component of the com-
plement of the critical set) is represented by a vertex la-
beled by the genus of the region (in the case of a sphere
the labels are superfluous, since all the regions are planar,
i.e., of genus zero) and each critical curve is represented
by an edge joining the two vertices corresponding to the
(two) regions containing the critical curve in question.

Since the surface and the plane are both assumed to
be oriented, the graph is bipartite: there are two types
of vertices, corresponding to positive (respectively nega-
tive) regions whose orientation agrees (respectively does
not agree) with the orientation induced by the map from
the orientation of the plane. Any edge has two vertices,
one of each type, corresponding to the fact that any crit-
ical curve lies in the boundary of one positive and one
negative region. Thus the graph is bipartite.

Each critical curve is oriented positively (i.e., inherits
an orientation from the positive region to whose bound-
ary it belongs). Thus the branch set is oriented via
the map.



In [Hacon et al. 03] it was shown that the graph of
any stable map from the sphere to the plane is a tree.
Moreover, any tree may be realized as the graph of a
stable map from the sphere into the plane. The proof
is by induction on the number of edges of the graph,
and the inductive step consists in introducing an extra
branch curve by means of a transition of “lips” type. We
point out that this transition introduces two cusps, so
the resulting stable map is not cuspless.

We end this section by observing that there are three
obvious invariants: p, C, and D (respectively the number
of components of the singular set, the number of cusps,
and the number of double points). The invariants C, D
together with a fourth, less obvious, invariant, F', defined
by Aicardi and Ohmoto, provide a set of generators for
the cohomology group H®(E(M,R?);Z) of first-order in-
variants of Vassiliev type [Ohmoto and Aicardi 06]. Such
invariants are defined in terms of the codimension-one
transitions in the branch set.

Vassiliev’s technique is based on the consideration of
a convenient stratification on the discriminant set de-
fined by the complement of the stable maps in the set
of all smooth maps from a surface M to the plane and
assignment of (integer) indices to the various strata of
codimension one. Each stratum S receives a coorienta-
tion corresponding to the normal direction in which the
index of S increases as one passes through S.

In order to produce a well-defined invariant (the Vas-
siliev cycle), the indices must satisfy a compatibility con-
dition: the total increment of the indices along any closed
path encircling a codimension-two stratum must be zero.
The invariant associated with a given Vassiliev cycle is
defined to be zero for an arbitrarily chosen stable map
fo, and its value on any other stable map f is then
the total increment in the cocycle along a generic path
from fy to f.

3.  WINDING NUMBERS OF BRANCH SETS
OF FOLD MAPS

The branch sets of any fold map from a closed surface to
the plane consists of closed regular plane curves whose
winding (or rotation) numbers (also known as Whitney
indices [Whitney 37]) satisfy certain compatibility con-
ditions. These are based on well-known properties of re-
gions immersed in the plane [Chillingworth 72, Kauffman
79, Yamamoto 03, Whitney 37].

Proposition 3.1. The sum of the winding numbers of the
boundary curves of a surface immersed in the plane is
equal to the Euler characteristic of the surface.
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Since each branch curve of f lies on the boundary of
exactly one positive and one negative region, we have the
following corollary:

Corollary 3.2. The sum of the winding numbers of the
branch curves of a fold map is equal to the Euler char-
acteristic of each half (positive or negative) of the sur-
face and hence equals half the Euler characteristic of the
surface. Furthermore, the graph of any fold map of the
sphere is balanced.

A balanced graph is a bipartite graph having the same
number of positive/negative vertices. We observe in pass-
ing that there exist fold maps of surfaces (of higher genus)
whose graphs are not balanced.

Proof: The first part of the corollary follows immediately
from the proposition. As for the second part, the Euler
characteristic of the positive part of the surface is equal to
the sum of the Euler characteristics of the positive regions
and hence to twice the number of positive regions minus
the total number of branch curves (since each region,
being contained in the sphere, is a disk with holes, and
therefore its Euler characteristic is two minus the number
of boundary curves). The same goes for the negative half,
whence the result. O

Not every immersed curve can occur as a branch curve
of a fold map. In fact we have the following theorem.

Theorem 3.3. Any branch curve of a fold map of the
sphere has odd winding number (or equivalently, an even
number of double points).

Proof: Consider the graph of the map in which each edge
is indexed by one plus the winding number of the corre-
sponding branch curve (in particular, the index is even if
and only if the winding number is odd). In the case of a
sphere, the graph is a tree (as shown in [Hacon et al. 03]).
By the proposition, at each vertex the local sum of the
indices is even (in fact, equal to 2). Since the graph is a
tree, there is a vertex that belongs to just one edge. The
index of this edge is therefore even (in fact, equal to 2).
Removing this edge, we obtain a subtree for which the
local sums are also all even. By induction on the number
of edges of the tree, starting with the case of one edge,
the indices of the subtree are all even. In other words,
the winding numbers are all odd. O

Figure 1 displays representatives of the different Whit-
ney isotopy classes with odd winding number having min-
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FIGURE 1. Arnol’d’s basic curves having odd winding
number.

imal numbers of double points. Such curves are called
basic curves by Arnol’d [Arnol’'d 94b].

A (finite) set of (possibly repeated) integers
{z,y,2,...} is called compatible if
+D)+wW+)+(z+1)+---=2.

Thus the winding numbers of the boundary curves of
an immersed planar region are compatible in the above
sense.

4. STABLE MAPS WITH PRESCRIBED BRANCH SET

Given these necessary conditions, we next consider the
question of realizing a set of immersed curves as the
branch set of a fold map of the sphere with prescribed
graph. For the sphere, this question is answered in Theo-
rem 4.3, which characterizes graphs of such maps, as well
as the set of winding numbers of their branch sets.

Recall that in general, it is sufficient to construct the
immersed regions one by one and then assemble them to
produce a stable map. For the sphere these regions must
necessarily be planar regions, and the existence of an im-
mersed planar region with prescribed boundary depends
on the Blank words [Malta et al. 93] corresponding to
the immersed boundary curves. Thus it is sufficient to
partition the (oriented) curves into disjoint classes, each
of which is the boundary of an immersed planar region.
It is usually not necessary to use the Blank word; one
simply produces the desired immersed region as a union
of immersed disks as in Figure 2.

FIGURE 2. Unions of immersed disks.

As for the question of which sets of winding numbers
can occur, it will be shown below that (for the sphere) the
necessary conditions given above are, in fact, sufficient to
realize any set of compatible winding numbers.

Recall that for a fold map of the sphere, the winding
numbers of the branch curves are odd integers that sat-
isfy the following compatibility conditions, one for each
vertex v of the associated tree: With each edge vw (with
vertices v and w) we associate a variable I,,,. We write
C, for the sum of the I, for all edges uv containing v.
The compatibility condition is then C, = 2. For a fold
map of the sphere, we have a solution of the compatibil-
ity equations given by setting I,,, equal to one plus the
winding number of the branch curve corresponding to the
edge vw (all these integers being, in fact, even). We thus
have a system of 2n equations in 2n — 1 variables. Since
the number, n of positive vertices is equal to the number
of negative vertices, we have that

DC=2)=> Ly —2n=> (Cy—2),

where v runs over all positive vertices, w over all negative
vertices, and xy over all edges. Thus any equation is a
consequence of the rest.

Now fix a vertex x. For any vertex v define d, to be
the length of the (unique) path in the tree between v and
*. Thus d, =0, d, = 1 if v* is an edge, for any edge vw
we have that d, and d,, differ by one, and for any vertex
v # *x there is a unique edge vw such that d, = d,, + 1.
The equation C,, = 2 determines I, in terms of the other
variables, i.e., in terms of the I, for which d,, = d, + 1.
For the largest value of d,, C, is just I,,, for which
I,, = 2 is, of course, the unique solution. Thus the
equations C,, = 2 may be solved uniquely for successively
smaller values of d, up to and including d, = 1. The
remaining equation Cy = 2 is a consequence of the rest.
We observe that the solution consists entirely of even
integers, corresponding to the fact (already proved) that
the winding numbers must all be odd. We summarize
the above as the following lemma.

Lemma 4.1. A tree is balanced if and only if the compat-
ibility conditions C,, = 2 have a unique solution (which
necessarily consists only of even integers).

It remains to show that any compatible set of odd
integers is the set of winding numbers of an immersed
planar region. The region will be assembled from a set
of basic immersed disks by a connected sum (see Fig-
ure 2 for a typical example). Here, we observe that a
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FIGURE 3. Balanced trees.

connected sum of immersions can be obtained in a nat-
ural way by means of connected sums of their boundary
curves. The relations between connected sums of curves
and their stable isotopy invariants (Arnol’d’s invariants)
have been discussed in [Mendes de Jesus and Romero
Fuster 02]. From now on, all compatible sets will be as-
sumed to consist entirely of odd integers. We define the
sum {z,y,z,...} ® {u,v,w,...} of two compatible sets
to be the (compatible) set consisting of z4+u—1, y, 2, . ..,
and v, w, ..., provided that z and v have the same sign.
The total number of elements of X Y is the number of
elements of X plus the number of elements of ¥ minus
one.

By connecting (through a convenient bridge, as ex-
plained in [Mendes de Jesus and Romero Fuster 02]) one
of the curves a; in the image of the boundary of an im-
mersion Ry with a curve as of the image of the boundary
of an immersion Ry, we obtain a new set of plane curves
that can be seen as the images of the boundary of an
immersed region R3. If Xy, Xo, and X3 are the compat-
ible sets of integers obtained from the winding numbers
(plus one) of the images of the boundary curves of the
immersed regions R, R, and Rj3 as explained above,
we can easily see that X; @ Xo = X3, where the first
integers in the sets Xi, Xo, and X3 correspond to the
curves oy, ag, and oy @ as respectively.
between both sums is illustrated in Figure 4. We observe
that the requirement on the signs of the integers x and

This relation

u above is due to the fact that two plane curves can be
summed only if they have compatible orientations.

As a consequence, according to their relative positions,
we have two types of bridges: outer and inner. They lead
respectively to external and internal sums of curves (see
[Mendes de Jesus and Romero Fuster 02] for details). As
illustrated by the different examples of Figure 4, external
(respectively internal) sums of curves correspond to sums
of positive (respectively negative) integers.

Clearly, any compatible set consisting of just two inte-
gers must already be of the form {a,—a}. Now consider
a compatible set {z,y,
must be at least two numbers (z and y, say) of opposite
sign. The number x+y+1 is also odd, and {z,y, z,... } is
equal to {—z, 2 }d{z+y+1,2,...} if —z and x+y+1 have
the same sign, and is equal to {—y,y} ®{x+y+1,2,...}

z,...}. By compatibility, there
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)+ (1,-1) (1,-1,-1)
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1) + (-3,1,1)
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FIGURE 4. Sums of basic curves.

if —y and = + y + 1 have the same sign. By induction
on the number of elements of the set (starting with two-
element sets), we may write {x +y +1,z,...} as a sum
{a,—a} ® {b,—b} @ --- @ {k,—k}. Thus the original set
{z,y,2,...} can be written as a sum of two-element sets,
as desired.

As illustrated in Figure 4, any such connected sum
gives rise to an immersed planar region whose boundary
consists of basic curves with the required winding num-
bers. We thus have the following result.

Lemma 4.2. Fvery compatible set of odd integers occurs
as the set of winding numbers of the boundary of an im-
mersed planar region. Furthermore, we may insist that
all the boundary curves be sums of basic curves, as illus-
trated in Figure 1.

Figure 5 describes an inductive method for construct-
ing the image of the boundary of immersed regions hav-
ing k boundary components with total winding number i,
for all possible compatible integer sets (i1 +1, ..., i, + 1),
such that i = 41 + -+ - + 4. The following theorem sum-
marizes the above discussion.

Theorem 4.3. The graph of a fold map of the sphere is a
balanced tree. Conversely, any balanced tree is the graph
of a fold map of the sphere whose branch set consists of
unions of basic curves (as in Figure 5). A tree is balanced
if and only if its edges can be labeled with compatible even
mntegers.
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FIGURE 5. Basic curves in the boundary of immersed planar
regions.
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FIGURE 6. Different graphs for a branch set.

The above theorem characterizes those trees that can
occur as graphs of fold maps of the sphere. We observe
in passing that two maps can have the same branch set
but different graphs, as Figure 6 illustrates. One may also
ask which branch sets can occur. For maps of the sphere,
equivalence is the same as isotopy. Thus we may make
use of Arnol’d’s isotopy classification of stable immersed
plane curves (with at most five crossings) [Arnol’d 94a]
in order to list the different possibilities for the branch
sets.

If the branch set (of a stable map) consists of just
one immersed curve, then the curve bounds an immersed
disk. Arnol’d’s list [Arnol’d 94a] contains exactly six such
curves among the 110 representatives of stable isotopy
classes of closed connected plane curves with 4 < 3 and
D < 4, as can be verified by calculating Blank words
[Malta et al. 93]. These curves are listed in Figure 7.

It seems probable that to each curve there corresponds
just one class of stable maps. For six crossings or more,
this is no longer true. Consider, for example, the curve of
Figure 8, due to J. Milnor, which bounds two different im-

0@ZEE@E3

FIGURE 7. Branch sets with 4 = 1 and D < 4 bounding
immersed disks.

FIGURE 8. Two different extensions to the disk.

mersed disks. According to [Eliashberg and Mishaev 02],
this curve gives rise to two nonisotopic maps, depending
on whether the two immersed disks used to construct the
map are the same or not.

Taking into account Theorem 3.3 and the above con-
siderations, inspection of Arnol’d’s list of isotopy classes
of immersed plane curves leads to the following theorem.

Theorem 4.4. Figure 9 lists all possible branch sets of fold
maps from the sphere to the plane with p < 3 and D < 4.

Proof: As we have pointed out, there are only six curves
(with up to four double points) in Arnol’d’s list bound-
ing immersed disks. If we allow more than one compo-
nent in the branch set, the next case to be considered is
that of three components (since by Corollary 3.2 there
are as many positive regions as negative ones and hence
an odd number of components). For three components
only one tree occurs, namely the letter N. The other tree
(the letter Y) is not balanced. In this case, the possi-
ble branch sets are given by isotopy classes of immersed
curves X,Y, Z such that D < 4, X, and Z each bound
an immersed disk and each pair X,Y and Y, Z bounds

T~OF @6 ® ® &
NF-OF-O0® & ® @
“...9@
®® @@ ®
@ @é
@RS SH
.QO..

FIGURE 9. Graphs and branch sets for fold maps of the
sphere with © < 3 and D < 4.




an immersed annulus. Figure 9 lists a number of (non-
isotopic) branch sets with three components and at most
four crossings.

These were determined as follows. Since two of the
curves bound immersed disks, they must belong to the
set of six curves shown in Figure 7. The third curve must
be placed so as to lie on the common boundary of two
annuli. This means that its winding number must be
—1, which leaves us with 52 curves in Arnol’d’s list. The
restriction that D = 0, 2,4, together with an application
of Blank’s criterion extended to a disk with one hole (i.e.,
Troyer’s criterion [Troyer 73]; see also [Malta et al. 93]),
leads to the complete list. O

Not surprisingly, beyond this, listing all possibilities
rapidly becomes a daunting task. A further complication
is that there will be various inequivalent maps with the
same branch set, as in Figure 6.
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