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We study a construction of the Mathieu group M12 using a game
reminiscent of Loyd’s “15-puzzle.” The elements of M12 are re-
alized as permutations on 12 of the 13 points of the finite pro-
jective plane of order 3. There is a natural extension to a “pseu-
dogroup” M13 acting on all 13 points, which exhibits a limited
form of sextuple transitivity. Another corollary of the construc-
tion is a metric, akin to that induced by a Cayley graph, on both
M12 and M13. We develop these results, and extend them to
the double covers and automorphism groups of M12 and M13,
using the ternary Golay code and 12 × 12 Hadamard matrices.
In addition, we use experimental data on the quasi-Cayley met-
ric to gain some insight into the structure of these groups and
pseudogroups.

1. INTRODUCTION

Sam Loyd’s classic 15-puzzle consists of 15 numbered tiles
placed in a 4 × 4 square grid, with one square, the hole,
left empty. To solve the puzzle, one slides the tiles around
the grid until they are in a specified order. Each sequence
of slides induces a permutation in the symmetric group
S16. The permutations arising from closed sequences of
slides—that is, sequences that return the hole to its ini-
tial location—form a subgroup of the symmetric group
S15, with the group operation given by concatenation of
sequences. This subgroup is known to be the alternating
group A15 (see [Archer 99]).

We study an analogous game, first mentioned in [Con-
way 87], in which the 4 × 4 grid of Loyd’s puzzle is re-
placed by P3, the projective plane of order 3. In the “ba-
sic game,” we place numbered counters on 12 of the 13
points of P3, leaving a hole at the thirteenth point. The
elementary move, analogous to sliding an adjacent tile
to the empty square in Loyd’s puzzle, is a double trans-
position taking place in a line containing the hole. The
basic P3-game group Gbas consists of the permutations
of the 12 counters coming from closed move sequences.
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We shall prove that Gbas is isomorphic to the Mathieu
group M12.

We give the name M13 to the set of permutations
induced by arbitrary (not necessarily closed) move se-
quences. This is a subset of S13, but is not a group, be-
cause concatenation of arbitrary move sequences is not
always allowed. Specifically, a move sequence moving the
hole from p to q may be followed by one taking the hole
from r to s if and only if q = r.

The P3-game can be extended in two ways. First, we
can make the counters two-sided and modify the defini-
tion of a move to flip certain counters. We study this
“signed game” in Section 3. The group Gsgn resulting
from this change is the nontrivial double cover 2M12 of
the Mathieu group (see [Conway 85, pp. 31–32]), realized
as the automorphism group of the ternary Golay code
C12. The set 2M13 of all reachable signed permutations
is thus a double cover of M13.

A second way to extend the basic game is to place
a second set of counters on the lines of P3. We study
this “dualized game” in Section 4. This approach
yields another proof (using Hadamard matrices) that the
group Gbas is isomorphic to M12; in addition, we obtain
a concrete interpretation of an outer automorphism of
M12.

Among groups, M12 is unique in having a faithful and
sharply quintuply transitive action on a 12-element set.
Our construction of M13 suggests the following question:
does M13 have a sextuply transitive “action” on the 13-
element set P3? In general, the answer is no, but M13

does exhibit some limited forms of sextuple transitivity,
which we describe in Section 5.

In Section 6, we study the quasi-Cayley metric on M12

and its extensions, in which the distance d(σ, τ) between
two permutations is the minimum number of moves of
the basic or signed game needed to realize σ−1τ . We
programmed a computer to generate lists of all positions
of each of the versions of the P3-game. The data in these
lists provides a starting point for investigation of various
aspects of the structure of the groups and pseudogroups.
For instance, the nine-element tetracode (see, e.g., [Con-
way 99, p. 81]) appears as the subgroup of M12 consisting
of the starting position of the basic game, together with
the eight positions at maximal distance from it.

The construction of M13 was first given by the first
author in [Conway 87]; see also [Conway 97]. The lat-
ter article includes some examples of analogous “games”
played on geometric structures other than P3. It would
be interesting to look for further examples along these
lines.

Much of the material of this paper comes from the
third author’s undergraduate thesis [Martin 96], written
under the direction of the second author.

2. THE BASIC AND SIGNED P3-GAMES

2.1 Finite Projective Planes

We begin by reviewing the definitions and facts we will
need concerning P3.

Let P = {p, q, . . . } be a finite set of points, and
L = {�,m, . . . } a finite set of lines. Each line may be
regarded as a set of points; we write L(p) for the set of
lines containing a point p.

Definition 2.1. Let n ≥ 2. The pair (P,L) is a projective
plane of order n if the following conditions hold:

1. |P| = |L| = n2 + n+ 1.

2. |L(p)| = |�| = n+ 1 for every p ∈ P and � ∈ L.

3. Two distinct points p, q determine a unique line pq,
that is, L(p) ∩ L(q) = {pq}.

4. Two distinct lines �,m determine a unique point,
that is, |� ∩m| = 1. (We often write � ∩m for the
unique intersection point.)

The most familiar example of a finite projective plane
is the classical projective plane P2(Fn), where n is a prime
power. This projective plane is defined as follows. Let
Fn be the a field of n elements, and let P and L be
respectively the sets of 1- and 2-dimensional vector sub-
spaces of (Fn)3, with incidence given by inclusion. Then
P2(Fn) = (P,L) is a projective plane of order n.

An oval (respectively hyperoval) in a projective plane
of order n is a set of n + 1 (respectively n + 2) points,
no three of which are collinear. For example, a smooth
conic in a classical projective plane is an oval. Also, there
is no such thing as a “hyperhyperoval,” for the following
reason. Let S be a set of n+ 3 or more points in a pro-
jective plane of order n, and p ∈ S. There are n+1 lines
containing p, so by the pigeonhole principle there exist
two distinct points in S \ {p} that are collinear with p.

For the rest of the paper, we shall be exclusively con-
cerned with the classical projective plane P2(F3), and
will use the abbreviated notation P3 for this plane. Note
that P3 has 13 points, each lying on 4 lines, and 13 lines,
each containing 4 points. By elementary counting, P3

has 13 · 12 · 9 · 4 = 5616 ordered ovals.
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Proposition 2.2. We have the following facts:

1. Up to isomorphism, P3 is the unique finite projective
plane of order 3.

2. The automorphism group Aut(P3) acts sharply tran-
sitively on ordered ovals; in particular, |Aut(P3)| =
13 · 12 · 9 · 4 = 5616.

3. P3 contains no hyperovals.

These facts are well known (see, e.g., [Cameron 91]).
We prove them here by constructing an explicit labeling
for the points and lines of P3, which we will use in the
proofs of Proposition 3.1 and Theorem 5.3.

Proof: Let P3 be a projective plane of order 3. Let
O = (q1, q2, q3, q4) be an ordered oval in P3. We will
show that each point and each line of P3 is determined
uniquely as a function of q1, q2, q3, q4. This will show
that if P′

3 is any other projective plane of order 3, and
(q′1, q

′
2, q

′
3, q

′
4) is an ordered oval in P′

3, then there is a
unique isomorphism from P3 to P′

3 sending (q1, q2, q3, q4)
to (q′1, q

′
2, q

′
3, q

′
4). In particular, it will follow that all pro-

jective planes of order 3 are isomorphic, with an auto-
morphism group of order 13 · 12 · 9 · 4. We already know
one, namely the classical projective plane over F3; and we
know that its automorphism group contains PGL3(F3),
a group of order (26 · 24 · 18)/2 = 13 · 12 · 9 · 4. Hence P3

is the unique projective plane of order 3, and PGL3(F3)
is its full automorphism group. Along the way, we will
show that P3 has no hyperovals.

The points of P3 include:

• the four points q1, q2, q3, q4;

• the three points r1 = q1q2 ∩ q3q4, r2 = q1q3 ∩ q2q4,
r3 = q1q4 ∩ q2q3; and

• the six points sij (1 ≤ i < j ≤ 4) lying on just one
of the secant lines qiqj to O.

(Recall that a secant to an oval is a line determined by
two of its points; thus each secant qiqj to O contains two
qi’s, one ri, and one other point, which we call sij .) This
accounts for all 4 + 3 + 6 = 13 points, and in particular
shows that there are no hyperovals.

We have accounted for six lines, namely the secants to
O. There are also the four tangents to O, the lines that
pass through exactly one of its points. The tangent to
O at q1 intersects each of the lines q2q3, q2q4, q3q4 in a
point not on any other secant, which is that line’s fourth

point. We have thus identified the four points on each
tangent. Three additional lines remain to be identified.

We claim that r1, r2, r3 are not collinear, and thus that
the lines through pairs in r1, r2, r3 complete the roster of
lines of P3. Consider for instance s12, the fourth point on
q1q2. It lies also on the tangents at q3 and q4. The points
on these three lines are s12 itself; q1, q2, r1; q3, s14, s24;
q4, s13, s23. Hence the remaining line through s12 goes
through r2, r3, and s34. This identifies the line r2r3 and
shows that it does not contain r1. Likewise, we find that
the line r1r2 contains s14 and s23, while r1r3 contains s13
and s24.

We have now identified all 13 points and all 13 lines
of P3 and their incidence relation, as desired. To sum-
marize, the lines are

{q1, q2, r1, s12}, {q1, q3, r2, s13}, {q1, q4, r3, s14},
{q2, q4, r2, s24}, {q2, q3, r3, s23}, {q3, q4, r1, s34},
{q1, s23, s24, s34}, {q2, s13, s14, s34} {q3, s12, s14, s24},
{q4, s12, s13, s23}, {r1, r2, s14, s23}, {r1, r3, s13, s24},
{r2, r3, s12, s34}.

(2–1)

The definition of P3 is self-dual in the sense that in-
terchanging the terms “point” and “line” preserves the
definition. One can label the points by {0, 1, . . . , 12} and
the lines by {0, 1, . . . , 12} such that the lines containing
the point x have the same labels as the points of the line
x. For future reference, we give one such labeling:

0 = {0, 1, 2, 3}, 1 = {0, 4, 5, 6}, 2 = {0, 9, 10, 11},
3 = {0, 7, 8, 12}, 4 = {1, 4, 8, 9}, 5 = {1, 6, 7, 11},
6 = {1, 5, 10, 12}, 7 = {3, 5, 8, 11}, 8 = {3, 4, 7, 10},
9 = {2, 4, 11, 12}, 10 = {2, 6, 8, 10}, 11 = {2, 5, 7, 9},
12 = {3, 6, 9, 12}.

(2–2)

2.2 The Basic P3-Game and M13

We now describe a “game” similar to Loyd’s 15-puzzle,
but played on the projective plane P3 rather than a
square grid. Throughout the discussion, we use the self-
dual labeling (2–2).

To start the game, we place counters numbered
1, . . . , 12 on the respective points of P3, leaving a hole
at the point 0. A move of the game is defined as follows.
Suppose that the hole is a point p and that � = {p, q, r, s}
is a line of P3. Then the move [p, q] consists in moving
the counter on q to p and interchanging the counters on
r and s. This notation is justified because the pair {r, s}
is uniquely determined by the points p and q, by the def-
inition of a projective plane of order 3. Moreover, the
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move [p, q] transfers the hole from p to q, so the next
move must be of the form [q, t] for some t. In general,
a sequence of moves can be given by specifying the path
traversed by the hole:

[p0, p1, . . . , pn] = [pn−1, pn] ◦ · · · ◦ [p1, p0]. (2–3)

By convention, the move [p, p] is trivial, so there are 12
nontrivial legal moves playable from each position of the
game.

The move [p, q] may be regarded as inducing the per-
mutation (p q)(r s) ∈ S13, and a move sequence such as
that of (2–3) induces the permutation

(pn−1 pn)(qn rn) · · · (p0 p1)(q1 r1),

where qi, ri are the other two points on the line pi−1pi

for each i (assuming that the sequence contains no trivial
moves). Here multiplication proceeds from right to left,
as is usual for permutations.

Example 2.3. Consider the path [0, 6, 12, 1, 8, 0]. Since
the points 0 and 6 are collinear with 4 and 5, the first
move [0, 6] induces the permutation (0 6)(4 5). The per-
mutation induced by the entire path is

(0 8)(7 12) · (1 8)(4 9) · (1 12)(5 10) · (6 12)(3 9)

· (0 6)(4 5) = (1 7 12 6 8)(3 4 10 5 9).

Two paths are called equivalent if they induce the same
permutation. We readily check that if p, q, r are collinear
then the paths [p, q, r] and [p, r] are equivalent. It follows
that every path is equivalent to a path of equal or shorter
length in which no three consecutive points are collinear;
we say that such a path is nondegenerate.

We say that a path [p0, . . . , pn] is closed if p0 = pn.
The set of permutations induced by closed move se-
quences with p0 = pn = 0 is a subgroup of the symmetric
group SP\{0} = S12. We call this subgroup the basic P3-
game group Gbas, and denote its identity element by 1.

The permutations realized by move sequences taking
the hole from p to q constitute a double coset of Gbas in
SP , namely [0, q]Gbas [p, 0]. In the case that p = q, this
double coset is a group, which we call the q-conjugate
of Gbas.

We denote byM13 the set of all (not necessarily closed)
move sequences with p0 = 0. This name will be justified
when we prove that Gbas is isomorphic to the Mathieu
group M12. Note that M13 is not a group: the moves
available in a given position depend on the location of the

hole, so concatenation of move sequences is not always
allowed. Rather, M13 is a disjoint union of cosets of Gbas

in SP = S13.

2.3 The Signed P3-Game

We now describe the signed P3-game, an extension of
the P3-game in which each counter has two distinguish-
able sides. Suppose that the hole is at p ∈ P and that
� = {p, q, r, s} ∈ L. The move [p, q] of the signed game
moves the counter on q to p and interchanges the coun-
ters on r and s, but it also flips over the counters on r

and s. Now a move sequence may be regarded as induc-
ing a signed permutation on P (that is, an element of the
wreath product Z/2Z � SP).

Example 2.4. The path [0, 6, 12, 1, 8, 0] induces the per-
mutation

(0 8)(7 12) · (1 8)(4 9) · (1 12)(5 10) · (6 12)(3 9)

· (0 6)(4 5) = (1 7 12 6 8)(3 4 10 5 9).

Here the underlines denote flips; thus the counters flipped
by the move sequence are 1, 7, 9, and 10. Ignoring all the
flips is tantamount to removing all the underlines from
the calculation, which recovers the unsigned permutation
of Example 2.3.

Much of the terminology of the previous section (such
as “closed” and “degenerate”) carries over to the signed
game. The group of signed permutations of P \ {0} in-
duced by closed move sequences is called the signed P3-
game group, denoted by Gsgn; and the set of signed per-
mutations induced by the move sequences with p0 = 0 is
called 2M13.

3. THE SIGNED GAME, THE GOLAY CODE,
AND THE MATHIEU GROUP

In this section, we prove the main results that the basic
P3-game group Gbas is isomorphic to the Mathieu group
M12, and that the signed game group Gsgn is the non-
trivial double cover 2M12.

Let F3 = {0, 1,−1} be the field of order 3, and let
X be a 13-dimensional vector space over F3 with basis
{xp | p ∈ P}. We will write elements of X in the form
v =

∑
p vpxp, where vp ∈ F3. Define a scalar product on

X by
v · w =

∑
p∈P

vpwp. (3–1)

The support of the vector v is

Supp(v) = {p ∈ P | vp �= 0}
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and its weight is

wt(v) = |Supp(v)|.
We will refer to vector subspaces of X as codes, and to
their elements as codewords. The minimal weight of a
code X ′ is

wtmin(X ′) = min {wt(c) | c ∈ X ′, c �= 0} .
Let C ⊂ X be the linear span of the 13 vectors

h� =
∑
p∈�

xp,

where � ranges over L, and define

C′ =
{
c ∈ C∣∣∑

p

cp = 0
}
,

a codimension-1 subcode of C. (Note that C′ �= C because
h� /∈ C′.) We will show that for each p ∈ P, there is a
copy Cp of the ternary Golay code [Conway 99, p. 85]
occurring naturally as a subcode of C. First, we set forth
some useful properties of C and C′.

Proposition 3.1. Let c ∈ C. Then:

1.
∑

p∈P c
2
p =

(∑
p∈P cp

)2
.

2. wt(c) ≡ 0 or 1 (mod 3).

3. c ∈ C′ iff wt(c) ≡ 0 (mod 3).

4. For each � ∈ L, ∑
p∈P

cp =
∑
p∈�

cp.

5. C′ = C⊥, the orthogonal complement of C with respect
to the scalar product (3–1).

6. dim C = 7 and dim C′ = 6.

7. wtmin(C) = 4 and wtmin(C′) = 6. Moreover, the
weight-4 codewords in C are precisely {±h� | � ∈ L}.

Proof:

1. It suffices to show that∑
p∈P

cpdp =
(∑

p∈P
cp

)(∑
p∈P

dp

)
(3–2)

for all c, d ∈ C. Since this identity is bilinear in
c and d, we need only consider the case c = h�,
d = hm, when both sides evaluate to 1 (whether or
not � = m).

2. Since the square of each nonzero element of F3 is 1,
we have

wt(c) ≡
∑
p∈P

c2p (mod 3).

By part (1), the right-hand side is a square in F3,
hence either 0 or 1.

3. This follows from the definition of C′, together with
the previous two parts.

4. It suffices to verify the desired identity for the gen-
erators h�. Indeed, let c = hm; then both sides of
the identity are equal to 1 whether � and m are the
same or different.

5. If c ∈ C′, then the right-hand side of (3–2) is zero for
every d ∈ C; it follows that C ⊂ (C′)⊥. To prove the
reverse inclusion, let w ∈ (C′)⊥. If Supp(w) inter-
sects some line � in more than two points, then we
can reduce wt(w) by adding h� or −h� to w. Repeat-
ing this process, we eventually obtain a codeword
w′ ∈ C⊥

0 that is congruent to w modulo C (since
h� ∈ C ⊂ (C′)⊥) and such that Supp(w′) intersects
no line in more than two points. By Proposition 2.2,
P3 contains no hyperovals, so wt(w′) ≤ 4.

Suppose that wt(w′) �= 0. Then there is a line � dis-
joint from Supp(w′) and another line m intersecting
Supp(w′) in exactly one point. The vector h� − hm

belongs to C0 but is not orthogonal to w, which
is impossible since C ⊂ (C′)⊥. Hence wt(w′) = 0,
w′ = 0, and w ∈ C.

6. By part (5), dim C′ + dim(C′)⊥ = 13 = 2dim C − 1.
Hence dim C′ = 6 and dim C = 7.

7. Clearly wt(h�) = 4 for every line �. Let c ∈ C be
a codeword of minimal nonzero weight. If Supp(c)
meets no line of P3 in more than two points, then
c = 0 by the argument of (5). In particular, wt(c) �=
1. By part (2), wt(c) /∈ {2, 5}. If wt(c) ∈ {3, 4},
then |Supp(c) ∩ �| ≥ 3 for some line �. But then
the weight of c can be reduced by adding or sub-
tracting h�. Since c is of minimal weight, this is a
contradiction unless c = ±h�. Hence wtmin(C) = 4.
By part (3), we have wtmin(C′) ≥ 6. In fact,
wtmin(C′) = 6 because wt(h� − hm) = 6 for � �= m.

Note that |C| = 37 = 2187, which is small enough that
all the assertions of Proposition 3.1 could also be checked
by an easily feasible but unenlightening computation.
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For each p ∈ P, define a subcode{
c ∈ C | cp = −

∑
q∈P

cq

}
,

and let Gp be the restriction of Cp to the coordinates
P \ {p} (that is, the image of Cp modulo the subspace
spanned by xp).

Proposition 3.2. Gp is isomorphic to the ternary Golay
code C12 for every p ∈ P.

Proof: Cp � C because h� /∈ Cp for all �. The kernel of
the restriction map φ : Cp → Gp can contain only vectors
of weight less than or equal to 1, but wtmin(Cp) = 4, so
kerφ = 0. Thus φ is a bijection and dimGp = dim Cp = 6.

For all c ∈ Cp,

wt(φ(c)) ≡
∑
q �=p

c2q (mod 3) = −c2p +
∑
q∈P

c2q

= −c2p +
(∑

q∈P
cq

)2
≡ 0 (mod 3);

and for all c, d ∈ Cp,

φ(c) · φ(d) =
∑
q �=p

cqdq = −cpdp +
∑
q∈P

cqdq

= −cpdp +
(∑

q∈P
cq

)(∑
q∈P

dq

)
= 0

by (3–2). Hence Gp ⊆ G⊥
p , whence Gp is self-dual since

it has dimension 6 = 12/2. Moreover, wtmin(Gp) ≥
wtmin(C) = 4 (which implies that wtmin(Gp) ≥ 6 because
Gp ⊆ G⊥

p ). Therefore Gp
∼= C12 [Conway 99, p. 436].

Suppose � = {p, q, r, s}. Let the move [p, q] of the
signed P3-game act linearly on X by [p, q] ·w = w′, where

w′
p = wq, w′

r = −ws, w′
t = wt for t /∈ �,

w′
q = −wp − wq, w′

s = −wr. (3–3)

Proposition 3.3. For all p, q ∈ P, [p, q] · Cp = Cq.

Proof: Let � = {p, q, r, s} as above. Since the linear
transformation (3–3) is invertible, it suffices to prove the
inclusion [p, q] · Cp ⊂ Cq. Let c ∈ Cp and d = [p, q] · c. By
part (4) of Proposition 3.1,

cp = −
∑
t∈P

ct = −
∑
t∈�

ct = −cp − cq − cr − cs,

which implies that cp = cq +cr +cs, since we are working
over F3. Hence

c− d =
∑
t∈�

(ct − dt)xt

= (cp − cq)(xp + xq) + (cr + cs)(xr + xs)

= (cp − cq)h� .

So c− d ∈ C and d ∈ C. Moreover,∑
t∈P

dt =
∑
t∈�

dt = dp + dq + dr + ds

= −cp − cs − cr = cp + cq = −dq.

Therefore d ∈ Cq.

A move sequence [p0, . . . , pn] acts on X by the compo-
sition of the linear transformations (3–3) associated with
the moves [pi, pi+1]. It follows from Proposition 3.3 that
the linear transformation associated with [p0, . . . , pn] re-
stricts to an isomorphism of C0 with Cpn

. In particular,
if p0 = pn = 0, then σ induces an automorphism of the
code C0. Accordingly, Gsgn is naturally isomorphic to a
subgroup of Aut(G0).

Proposition 3.4. Gbas is isomorphic to a subgroup of M12.

Proof: The center Z of Aut(G0) has order two (it contains
the identity map and its negative), and Aut(G0)/Z ∼=
M12 (see [Conway 99, p. 85]). On the other hand, the
permutation −1 corresponding to the closed path

[0, 10, 7, 0, 4, 1, 2, 4, 3, 5, 6, 3, 0] (3–4)

flips each of the 12 counters without changing its
location. Clearly −1 is central and has order 2.
Hence Gsgn/{1,−1} is isomorphic to a subgroup of
Aut(G0)/Z ∼= M12. On the other hand, Gsgn/{1,−1} =
Gbas, because taking the quotient by −1 is equivalent to
ignoring flips.

We see now that a permutation σ in M12 (respectively
M13) has two lifts σ1, σ2 in 2M12 (respectively 2M13),
both of which are equivalent to σ as unsigned permuta-
tions and such that σ−1

1 ◦ σ2 = −1.
To establish the reverse inclusion, we used a com-

puter program (in C) to generate a list of all per-
mutations arising from closed move sequences. (The
source code appears in [Martin 96], and is available online
at http://www.math.harvard.edu/˜elkies/M13.) Rather
than reproduce the entire list here, we use the presenta-
tion of M12 as a subgroup of the symmetric group S12
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with generators given in cycle notation by

α = (1 6 4 2 11 3 8 9 10 7 5),

γ = (1 12)(2 9)(3 4)(5 6)(7 8)(10 11),

δ = (4 5)(2 11)(3 7)(8 9)

(3–5)

(see [Conway 99, p. 273]; we have changed the labeling
of the points to conform with (2–2)). Indeed, the move
sequences

[0, 11, 7, 9, 8, 3, 0], [0, 12, 1, 9, 0, 3, 8, 4, 0],

and
[0, 1, 7, 0, 3, 6, 0, 1, 7, 0]

induce the permutations α, γ, and δ respectively. Com-
bining this with Proposition 3.4 and the known identifica-
tion of 2M12 with Aut(G0) [Conway 85], we have proved
the following theorem:

Theorem 3.5.

1. The basic P3-game group Gbas is isomorphic to the
Mathieu group M12, acting sharply quintuply transi-
tively on P \ {0}.

2. The signed game group Gsgn is isomorphic with
2M12, with Z the two-element normal subgroup and
Gsgn/Z ∼= M12.

4. THE DUALIZED GAME

We can extend the P3-game in another way by placing a
second set of counters on the lines of P3. This version of
the game provides a second proof that the game group is
M12, realized as the group of automorphisms of a 12×12
Hadamard matrix (that is, an orthogonal matrix all of
whose entries are ±1). In addition, interchanging the
roles of points and lines gives a concrete interpretation
of the outer automorphisms of M12.

We began the basic P3-game by placing 12 numbered
counters on the points P \ {0}. In the dualized game,
we place in addition 12 numbered “line-counters” on the
lines L \ {0}. The move sequences of the dualized game
are defined similarly to those of the basic game, with
the proviso that the point-hole must always lie on the
line-hole. Specifically, suppose that the point-hole and
line-hole are located at p and � respectively, with L(p) =
{�,m, n, k} and � = {p, q, r, s}. The point-move [p, q] is
defined as in the basic game; dually, the line-move [�,m]
consists in moving the line-counter on m to the hole at �

and interchanging the line-counters on n and k. Thus a
move sequence has the general form

([p0, . . . , pn], [�0, . . . , �n]) (4–1)

= [�n−1, �n] ◦ [pn−1, pn] ◦ · · · ◦ [�0, �1] ◦ [p0, p1]

subject to the conditions pi, pi+1 ∈ �i and �i, �i+1 ∈
L(pi+1) for all i. Each move sequence induces a pair of
permutations σ = (σP , σL), where σP acts on the point-
counters and σL acts on the line-counters.

It is easy to verify that for every move sequence
([p0, . . . , pn], [�0, . . . , �n]) of the dualized game, the point-
path [p0, . . . , pn] is nondegenerate if and only if the line-
path [�0, . . . , �n] is. As before, every move sequence is
equivalent to one in which both paths are nondegener-
ate.

A move sequence of the dualized game is called closed
if it returns both the point-hole and the line-hole to their
initial locations. The group of permutations induced by
closed moves is called the dualized P3-game group, writ-
ten Gdual. In fact, we shall show that Gdual

∼= Gbas, and
indeed that the point-permutation of an element of Gdual

determines the line-permutation uniquely and vice versa.

Example 4.1. As in Examples 2.3 and 2.4, consider the
path [0, 6, 12, 1, 8, 0]. For this to be the point-path of a
closed move sequence in the dualized game, the corre-
sponding line-path can only be[

0 6, 6 12, 12 1, 1 8, 8 0
]

=
[
0, 1, 12, 6, 4

]
.

The moves of the dualized game may be interpreted
as automorphisms of a 12 × 12 Hadamard matrix H.
An automorphism of H may be defined as a pair (σ, τ)
of signed permutation matrices such that σHτ = H.
The group Aut(H) of all automorphisms is isomorphic
to 2M12 [Conway 85, p. 32]. In what follows, we con-
struct an isomorphism of Gdual with Aut(H).

Define a modified incidence matrix E = (eij) for P3,
with rows i indexed by P and columns j indexed by L,
by

eij =

{
−1, i ∈ j,

+1, i /∈ j.

Labeling the points and the lines of P3 self-dually, as
in (2–2), makes E into a symmetric matrix. Each row
of E contains four −1’s and nine +1’s, and each pair
of distinct rows agree in exactly seven columns, so the
scalar product Er · Es of two rows of E is

Er · Es =
∑

j

erjesj =

{
13, r = s,

1, r �= s.
(4–2)
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Next, for all pairs p, � with p ∈ �, define a 12× 12 matrix
Hp,�, with rows indexed by P \{p} and columns indexed
by L \ {�}, by

(
Hp,�

)
ij

=

{
−eij , i ∈ � and j ∈ L(p),
eij , otherwise.

(4–3)

Proposition 4.2. Let p ∈ P and � ∈ L(p). Then H = Hp,�

is a Hadamard matrix.

Proof: The matrixH can be made symmetric by choosing
a self-dual labeling in which p and � have the same label.
Thus, to prove the proposition, it is enough to show that
for each pair of distinct points r, s ∈ P \ {p}, the scalar
product Hr ·Hs of the corresponding rows of H is zero.

If r /∈ � and s /∈ �, then er� = es� = 1, so

Hr ·Hs =
∑

j∈L\{�}
erjesj = −er�es� +

∑
j∈L

erjesj

= −1 + Er · Es = 0.

If r ∈ � and s ∈ �, then er� = es� = −1, so

Hr ·Hs =
∑

j∈L(p)\{�}
(−erj)(−esj) +

∑
j∈L\L(p)

erjesj

=
∑

j∈L\{�}
erjesj = 0

by the previous case. Finally, suppose that r ∈ � and
s /∈ �. Then er� = −1 and es� = 1, so

Hr ·Hs = −
∑

j∈L(p)\{�}
erjesj +

∑
j∈L\L(p)

erjesj .

Moreover,

1 =
∑
j∈L

erjesj = −1 +
∑

j∈L\L(p)

erjesj +
∑

j∈L(p)\{�}
erjesj

by (4–2). Combining these two observations, we obtain

Hr ·Hs = 2
(
1 −

∑
j∈L(p)\{�}

erjesj

)
. (4–4)

Since pr = �, the three erj ’s appearing on the right-hand
side of (4–4) all equal +1. On the other hand, ps �= �,
so ps is one of the other lines in L(p). Thus one of the
three esj ’s is −1 and the other two are +1. Therefore the
expression in (4–4) vanishes.

We now associate a signed permutation matrix with
each move sequence of the dualized game. For p ∈ P and

� = {p, q, r, s} ∈ L(p), let B = (bij) be a 12 × 12 matrix,
with rows indexed by P \ {p} and columns indexed by
L \ {�}. The point-move [p, q] acts on B, producing a
matrix [p, q]·B with rows indexed by P\{q} and columns
indexed by L \ {�}, whose (i, j) entry is

([p, q] ·B)ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bqj , i = p,

−brj , i = s,

−bsj , i = r,

bij , otherwise.

(4–5)

The line-move [�,m] acts on the columns of B in a similar
way, producing a matrix with rows indexed by P \ {p}
and columns indexed by L\{m}. More generally, we may
associate a signed permutation matrix with each move se-
quence of the dual game by composing those correspond-
ing to its constituent moves. Note that the actions of
point- and line-moves commute.

Proposition 4.3. Let σ = (σP , σL) be a move sequence
of the dualized game, with the point-hole initially at p ∈
P and the line-hole initially at � ∈ L(p). Let Hp,� be
the Hadamard matrix defined in (4–3). Then σ(Hp,�) =
Hσ(p),σ(�).

Proof: It is sufficient to consider the case that σ is a
single point-move. The proof for line-moves is identi-
cal, and the general case will then follow by composition.
Suppose therefore that � = {p, q, r, s} and σ = [p, q]. The
definition (4–3) may be rewritten as

(Hp,�)ij =

{
−eij , i ∈ {q, r, s} and j ∈ L(p) \ {�},
+eij , i ∈ P \ � and j ∈ L \ L(p),

so that

(σ(Hp,�))ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Hp,�)qj , i = p,

−(Hp,�)sj , i = r,

−(Hp,�)rj , i = s,

(Hp,�)ij , otherwise,

and

(Hq,�)ij =

{
−eij , i ∈ � and j ∈ L(q),
+eij , otherwise.

We will show that (σ(Hp,�))ij = (Hq,�)ij for all i, j.
First, if i /∈ �, then

(σ(Hp,�))ij = (Hp,�)ij = eij = (Hq,�)ij .
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Second, suppose that i = p. In this case

(σ(Hp,�))pj = (Hp,�)qj

=

{
−eqj , j ∈ L \ L(p),
+eqj , otherwise

=

{
−1, j ∈ L(p) ∪ L(q) \ {�},
+1, otherwise

=

{
−epj , j ∈ L(q) \ {�},
+epj , otherwise

= (Hq,�)pj .

Finally, suppose that i = r (the case i = s is analogous).
Then

(σ(Hp,�))rj = −(Hp,�)sj

=

{
+esj , j ∈ L(p) \ {�},
−esj , otherwise

=

{
+1, j ∈ L(p) ∪ L(s) \ {�},
−1, j ∈ L(q) ∪ L(r) \ {�}

=

{
−erj , j ∈ L(q) \ {�},
+erj , otherwise

= (Hq,�)rj .

Corollary 4.4. Gdual
∼= Gbas (∼= M12).

Proof: Proposition 4.3 implies that for each closed move
σ of the dualized game, the pair of (unsigned) permu-
tations (σP , σL) is an automorphism of the Hadamard
matrix H = Hp,�. That is, we have an injective group
homomorphism from Gdual to Aut(H)/{±1} ∼= M12. On
the other hand, the permutations (3–5) generate a sub-
group of Gdual that is isomorphic to M12.

Denote by Aut(M12) the group of automorphisms of
M12, and by Inn(M12) the normal subgroup of inner au-
tomorphisms (that is, automorphisms given by conjuga-
tion). Then Inn(M12) ∼= M12 since M12 is simple and
nonabelian, and the quotient Aut(M12)/ Inn(M12) has
order two [Conway 85, p. 31]. The dualized game allows
us to describe an outer automorphism (and thus the full
automorphism group) of M12 explicitly. Consider the
map

θ : Gdual → Gdual, (4–6)

(σP , σL) �→ (σL, σP ).

Proposition 4.5. The map θ is an outer automorphism of
Gdual

∼= M12.

Proof: The map θ respects concatenation of paths, so it
is a group homomorphism Gdual → Gdual. It is clearly
surjective, hence an automorphism. It remains only to
show that θ is not conjugation by any element of Gdual.

Consider the point-paths π1 = [0, 1, 4, 0], π2 =
[0, 2, 10, 0], and π3 = [0, 3, 12, 0], whose induced permu-
tations are respectively

α1 = (1 4)(2 3)(5 6)(8 9), α2 = (1 3)(2 10)(6 8)(9 11),

α3 = (1 2)(3 12)(6 9)(7 8).

By the labeling (2–2), for each i, the line-path corre-
sponding to πi is its reverse, so θ(αi) = α−1

i = αi (be-
cause each αi is an involution). Therefore, if θ is con-
jugation by some permutation σ, then σ must commute
with each αi. A Maple computation (which is not hard
to check by hand) reveals that the intersection of the
S12-centralizers of the αi’s contains exactly one noniden-
tity element, namely

σ = (1 6)(2 9)(3 8)(4 5)(7 12)(10 11).

(In fact, this permutation commutes with every fixed
point of the automorphism θ.) Now consider the point-
path [0, 1, 5, 0], whose associated line-path is [0, 6, 1, 0].
The induced point- and line-permutations are respec-
tively (1 5)(2 3)(4 6)(10 12) and (1 6)(2 3)(4 5)(7 11).
Then θ interchanges these two permutations; however,
they are not conjugates under σ. It follows that θ is not
conjugation by any element of S12, so a fortiori not by
any element of M12; that is, θ is an outer automorphism.

Corollary 4.6. 〈Gdual, θ〉 = Aut(Gdual) = Aut(M12).

5. M13 AND SEXTUPLE TRANSITIVITY

5.1 Multiply Transitive Groups

We recall some basic terminology. Let G be a (finite)
group acting on a (finite) set X; that is, there is a group
homomorphism fromG to SX , the group of permutations
of X. The action is called faithful if this homomorphism
is one-to-one and transitive if the action has a single orbit.
More generally, the action is k-transitive if |X| ≥ k and
for any two k-tuples of distinct elements of X, say p =
(p1, . . . , pk) and q = (q1, . . . , qk), there exists g ∈ G such
that g · pi = qi for all i. If the element g is unique, then
the action is sharply k-transitive. Note that a group G
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with a faithful, sharply k-transitive action on an r-set
must have cardinality r!/(r − k)!.

Groups with highly transitive actions are quite un-
usual: by the classification of finite simple groups, the
only groups with a sharply quintuply transitive action
are M12, S5, S6, and A7, and there are no sharply
sextuply transitive groups other than S7 and A8. In
particular—and this does not require the classification
theorem—it is not possible to continue Mathieu’s con-
struction of M11 and M12 to a transitive subgroup of
S13 other than A13 and S13 itself. Yet we have obtained
the pseudogroup M13 by a method similar to this con-
struction. Realized as the game group Gbas, M12 acts
faithfully and sharply 5-transitively on the 12-element
set P \ {0}. Meanwhile, M13 “acts” on the 13-element
set P, and |M13| = 13|M12|, just what the order of a
sharply sextuply transitive group ought to be.

We are thus led to consider the question, is the “ac-
tion” of M13 on P sextuply transitive? That is, given
two sextuples p = (p1, . . . , p6) and q = (q1, . . . , q6) of
points of P3, does there exist some σ ∈ M13 such that
σ(pi) = qi for all i? (Here and from now on, “sextuple”
means “ordered sextuple of distinct elements.” In addi-
tion, we wish to include the possibility that 0 ∈ p, so
“counter” really means “counter or hole.”) Since M13 is
not a group, there are actually two distinct questions:

1. Fix a sextuple p of counters. Is it true that for
all sextuples q of points of P3, there exists some
σ ∈ M13 such that σ(p) = q? If so, we call p a
universal donor.

2. Fix a sextuple q of points of P3. Is it true that for all
sextuples p of counters, there exists some σ ∈ M13

such that σ(p) = q? If so, we call p a universal
recipient.

We will examine the questions separately. In each
case, our computational data was invaluable as a source
of educated guesses about sextuple transitivity. We start
by making an elementary observation that will be quite
useful in both cases.

Lemma 5.1. Let p be a sextuple of counters. Then p is
a universal donor if and only if for all σ, τ ∈ M13 with
σ �= τ , we have σ(p) �= τ(p). Similarly, if q is a sextuple
of points, it is a universal recipient if and only if σ �= τ

implies σ−1(q) �= σ−1(q).

Proof: This follows from the pigeonhole principle, to-
gether with the observation that |M13| equals 13!/7!, the
number of sextuples of points in P3.

5.2 Sextuple Transitivity on Counters

We consider the question of when a sextuple p of counters
is a universal donor. Note that the property is invariant
under permuting the order of the pi. Thus, for ease of
notation, we frequently treat p as a set: for instance, we
write p ∩ � rather than {pi | 1 ≤ i ≤ 6} ∩ �.

Theorem 5.2. A sextuple of counters p = (p1, . . . , p6) is
a universal donor if and only if pi = 0 for some i.

Proof: Suppose first that pi = 0 for some i. Let q =
(q1, . . . , q6) be an arbitrary sextuple of points. Note that
the move [0, qi] takes the hole from pi to qi. The qi-
conjugate of Gbas acts quintuply transitively on P \{qi},
hence contains a permutation σ such that(

σ ◦ [0, qi]
)
(pj) = qj

for all j �= i. That is, σ ◦ [0, qi] is the desired element of
M13 taking p to q.

Now suppose that 0 �∈ p. The set P−p−{0} has cardi-
nality six. Since P3 has no hyperhyperovals (as discussed
in Section 2.1), there is some line � that meets P−p−{0}
in at least three points; that is, the set A = (p∪ {0})∩ �
has at most one element. We consider three cases; in
each case, we will exhibit two moves σ, τ ∈M13 that act
equally on the counters of p; by Lemma 5.1, such a pair
will suffice to show that p is not a universal donor:

Case1: A = {0}. Then � ∩ p = ∅, so [0, q] fixes each
counter in p for any point q ∈ � other than 0. Thus
we may take σ = 1 and τ = [0, q].

Case2: A = {pi} for some i. Let q be any point on �

other than pi. Playing the move [0, pi] results in a
position in which � contains no counters of p; there-
fore, we may take σ = [0, pi] and τ = [0, pi, q].

Case3: A = ∅. Let q, r be distinct points on �. Similarly
to Case 2, we may take σ = [0, q] and τ = [0, q, r].

5.3 Sextuple Transitivity on Points

We now consider the question of when a sextuple q of
points is a universal recipient. As before, we shall make
no notational distinction between the ordered sextuple q
and its underlying set.
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Theorem 5.3. A sextuple of points q = (q1, . . . , q6) is a
universal recipient if and only if it contains some line
of P3.

Proof: Suppose that q contains a line �. Let p be a
sextuple of counters; our goal is to find σ ∈ M13 taking
p to q. If 0 ∈ p, then p is a universal donor by Theorem
5.2, so we are done. Suppose now that 0 /∈ p. Without
loss of generality we may suppose that � = {q1, q2, q3, q4},
and that the line m = q5q6 meets � at q1. Let x be the
fourth point on this line.

By quintuple transitivity, the q1-conjugate of Gbas

contains a move τ such that τ(pi) = qi for 2 ≤ i ≤ 6.
Consider the move υ = τ ◦ [0, q1]; note that υ(p1) /∈ q. If
υ(p1) �= x, then

σ = [q1, υ(p1)] ◦ τ ◦ [0, q1]

is the desired move of M13 taking p to q.
On the other hand, suppose υ(p1) = x. The move

sequence [q1, q2, x, q3, q4, x] induces the permutation

ρ = (r2 s2)(r3 s3)(r4 s4)(q1 x),

where xqi = {x, qi, ri, si} for i = 2, 3, 4. Hence the move

σ = ρ ◦ υ ∈M13

takes pi to qi for all i, as desired.
For the “only if” direction of the theorem, suppose

that q does not contain any line. We will show that
there are two distinct elements of M13 that carry the
same ordered sextuple of counters to the points qi. It will
follow by Lemma 5.1 that q is not a universal recipient.

If �∩q = ∅ for some line �, then our task is easy. Let
p1, p2 ∈ �. Then [0, p2] and [p1, p2]◦ [0, p1] are elements of
M13 carrying the same set of counters to q. By Lemma
5.1, q is not a universal recipient.

The more difficult case is that in which q meets every
line, but does not contain any line. Since P3 has no
hyperhyperovals, we may assume that q1, q2, q5 lie on a
common line � (the reason for this apparently strange
choice will be clear momentarily). Let y be the fourth
point on �. Then y /∈ q, and for q to meet every line,
each of the points q3, q4, q6 must lie on a different line in
L(y) \ {�}. Thus each of the lines q3q6, q4q6, q3q4 meets
� in a point other than y. Without loss of generality we
may assume that

q1 ∈ q3q6, q2 ∈ q4q6, q5 ∈ q3q4.

In particular, the points q1, q2, q3, q4 form an oval. Thus
we may adopt the labeling (2–1), with

q5 = q1q2 ∩ q3q4 = r1, q6 = q1q3 ∩ q2q4 = r2, y = s12.

If s12 = 0, then the paths

[s12, r2, s23] and [s12, r3, r1, s14]

induce the respective permutations

σ = (s12 s23 r2)(r3 s34)(r1 s14),

τ = (s12 s14 r1 r3)(r2 s34 s23)(s13 s24).

Both of these elements of M13 fix q1, q2, q3, q4, and move
the counters originally located at s14, s23 respectively to
r1 = q5 and r2 = q6. Therefore, by Lemma 5.1, q is
not a universal recipient. On the other hand, if s12 �= 0,
then we need only preface the moves σ, τ given above by
moving the hole to s12. That is, the moves [0, s12, r2, s23]
and [0, s12, r3, r1, s14] move the same ordered sextuple of
counters to the points q.

6. METRIC PROPERTIES

6.1 The Basic Game

Let G be a group generated by a finite set X. The Cayley
graph of G with respect to X is the graph whose vertices
are the elements of G, with g, g′ connected by an edge if
g = xg′ for some x ∈ X. We define the Cayley graph Γ
of M13 analogously: the vertices are the 13!/7! positions
of the basic game, and two positions are connected by an
edge if one may be obtained from the other by a single
move [p, q].

We may use the Cayley graph to define a metric on
M13, as follows: d(σ, τ) is the length of the shortest path
in Γ with endpoints σ and τ , that is, the minimal number
of moves needed to go from σ to τ . Note that no two
elements of M12 are adjacent in Γ. Indeed, d(σ, τ) ≥ 3
for σ �= τ ∈ M12, because a two-move path returning
the hole to the starting position must be of the form
[p, q] ◦ [q, p] = 1. Also, a path from σ to τ with length
exactly d(σ, τ) must be nondegenerate. The depth of σ is
defined as d(σ) = d(σ,1). We also define

[M12]k = # {σ ∈M12 | d(σ) = k} ,
[M13]k = # {σ ∈M13 | d(σ) = k} . (6–1)

We can find these numbers from the computer-
generated table of move sequences.
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Proposition 6.1. The depth distributions for M12 and M13

are given by the following table:

k 0 1 2 3 4
[M12]k 1 0 0 54 540
[M13]k 1 12 108 918 7344

k 5 6 7 8 9
[M12]k 5184 25173 55044 9036 8
[M13]k 57852 344925 733500 90852 8

We can explain some of the “shallower” numbers with-
out resorting to computation. The unique element at
depth 0 is obviously the identity. There are no moves in
M12 at depths 1 and 2 because there are no nondegener-
ate closed paths having those lengths.

Let [0, p, q, 0] be a nondegenerate closed path of length
3. For nondegeneracy, we must have p �= 0 and q /∈ 0p,
so there are 12 · 9 = 108 such paths. The permutation
induced by each path has cycle-shape 24 (that is, it is
a quadruple transposition). This permutation has order
2, so the path [0, q, p, 0] is equivalent. This is the reason
that [M12]3 = 108/2 = 54.

Let [0, p, q, r, 0] be a nondegenerate closed path of
length 4. For nondegeneracy, we must have p �= 0, q /∈ 0p,
and r /∈ pq ∪ q0, so there are 12 · 9 · 6 = 648 such paths.
If {0, p, r} are collinear, then the cycle-shape of the in-
duced permutation is 24; otherwise it is 33. In the first
case, the path [0, r, q, p, 0] is equivalent. There are 216
paths with {0, p, r} collinear, so 108 of them are redun-
dant. Since 648−108 = 540 = [M12]4, there are no other
equivalences among paths of this length.

The computer data may also be used to tabulate the
nondegenerate closed paths of length k inducing the iden-
tity permutation. There are no such paths of length
k < 6, and the paths of length k = 6, 7, 8 are unique
up to automorphisms of P3. For k = 6, all such paths
have the form

[0, p, q, 0, p, q, 0],

where 0, p, q are noncollinear. For k = 7, all paths have
the form

[0, p, r, q, p, r, q, 0]

where 0, p, q are collinear and r does not lie on their com-
mon line. For k = 8, all paths have the form

[0, p, q, r, p, q, r, p, 0],

where {0, p, q, r} is an oval. In particular, the number
of length-8 paths inducing the identity is the number of
ordered ovals beginning with 0, which is 12 · 9 · 4 = 432.

Note that by Proposition 2.2, this is the cardinality of
the stabilizer of a point in Aut(P3) = PGL2(F3).

A striking feature of the depth distribution is that
there are only eight permutations at maximal depth.
These permutations are

(1 3 2)(4 6 5)(7 8 12), (1 3 2)(4 5 6)(9 11 10),
(1 2 3)(7 8 12)(9 11 10), (4 5 6)(7 8 12)(9 10 11),

(6–2)
and their inverses. They may be produced respectively
by the paths

[ 0, 12, 1, 0, 9, 6, 11, 10, 5, 0 ] , [ 0, 1, 10, 0, 6, 12, 7, 4, 8, 0 ] ,
[ 0, 12, 1, 0, 9, 5, 6, 11, 4, 0 ] , [ 0, 12, 10, 0, 3, 4, 2, 1, 5, 0 ] ,

and their reverses. Together with the identity, these eight
permutations form an elementary abelian group T . No-
tice that the orbits of the action of T on P \ {0} are
the sets � \ {0} for � ∈ L(0). For any two distinct ele-
ments σ, τ ∈ T , there is exactly one line � ∈ L(0) such
that σ(p) = τ(p) for all p ∈ �. Thus T is the tetracode
[Conway 99, p. 81]. The elements of T are at maximal
distance not only from the identity but from each other
(because T is a group).

Since d(σ) ≤ 9 for all σ ∈M13, there is a much better
algorithm than brute-force search for “solving” the basic
game—that is, finding a short path producing a given
permutation σ ∈ M13. It suffices to consider the case
σ ∈ M12, since we can always start by moving the hole
to 0.

Algorithm 6.2.

1. Check whether σ ∈ N , using the table (6–2). If so,
we are done. If not, then d(σ) ≤ 8.

2. Create a list L1 of all elements of M13 of depth less
than or equal to 4, together with paths realizing
them. (An upper bound for the size of this list is
12 · 93 = 8748, the number of paths [0, p1, . . . , p4]
with no three consecutive points collinear.)

3. Create a list L2 = {σ−1 ◦ τ | τ ∈ L1} of all elements
of M13 at distance less than or equal to 4 from σ.

4. Since d(σ) ≤ 8, we must have L1∩L2 �= 0, i.e., there
are permutations τ and τ ′ such that τ = σ−1τ ′.
Thus σ = τ ′τ−1, and we can construct a path re-
alizing σ by concatenating those for τ ′ and τ−1.

6.2 The Signed Game

We now study the Cayley graph Γ+ of the signed game,
whose vertices are the 2(13!/7!) positions of the signed
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game and whose edges are given by signed moves. As be-
fore, we can define distance, depth, and numbers [2M12]k
and [2M13]k.

Let σ ∈ M13, and let σ1, σ2 be the two lifts of σ in
2M13. Then it is easy to see that

d(σ) = min(d(σ1), d(σ2)). (6–3)

Proposition 6.3. The depth distributions for 2M12 and
2M13 are given by the following table:

k 0 1 2 3 4 5 6
[2M12]k 1 0 0 54 540 5184 25821
[2M13]k 1 12 108 918 7344 57852 356949

k 7 8 9 10 11 12
[2M12]k 85230 72351 898 0 0 1
[2M13]k 1192770 843291 11674 108 12 1

The unique element at maximal depth is −1, the per-
mutation that flips every counter in place (see Proposi-
tion 3.4). The subgroup {1,−1} of 2M12 is central, so
every σ ∈ 2M13 has a unique “antipode” −σ = −1 · σ,
which moves the counters to the same locations as σ but
reverses all orientations, and is uniquely maximally dis-
tant from σ. Thus Γ+ may be visualized as a “globe” in
which pairs of poles represent antipodal permutations.

The depth distributions for 2M12 and 2M13 are the
same as those for M12 and M13 for all depths less than
or equal to 5. Indeed, let k be the smallest number such
that [2M13]k > [M13]k. By (6–3) and the pigeonhole
principle, there must be two elements σ1, σ2 ∈ 2M13 at
depth less than or equal to k that are lifts of the same
σ ∈ M13. Then σ−1

1 σ2 is a path of length less than or
equal to 2k that induces the permutation −1 in some
conjugate of 2M12, which implies that d(−1) ≤ 2k. We
must therefore have k ≥ 6.

We also note that the depth distributions of 2M12 and
2M13 are “symmetric near the poles”: there are the same
numbers of permutations at depths 0, 1, 2 as at depths
12, 11, 10 respectively. However, the symmetry breaks
down further from the poles: fewer elements of 2M13 lie
at depths 3, 4, 5 than at depths 9, 8, 7 respectively. We
may partially explain this phenomenon by noting that

d(σ) + d(−σ) ≥ 12, (6–4)

for all σ ∈ 2M13, for otherwise −1 = −σ ◦ σ−1 could be
obtained by a path of length strictly less than 12. More-
over, equality holds in (6–4) if and only if some minimal
path from σ to −σ has 1 as an intermediate position,

which is not always the case. Thus the mean depth of a
permutation is greater than 6.

Once again, these facts are based on the computa-
tional observation that −1 is the unique element at depth
12. This observation is also of use in explaining the sym-
metry of the depth distribution near the poles.

Proposition 6.4. Let σ ∈ 2M13, with d(σ) ∈ {1, 2}. Then
d(−σ) = 12 − d(σ).

Proof: Suppose that d(σ) = 1; then σ is realized by a
move sequence [0, p], with p �= 0. Recall from the path of
(3–4) that −1 is realized by a length-12 move sequence
[0, . . . , 5, 6, 3, 0]. Since Aut(P3) acts doubly transitively
on P, we may choose α ∈ Aut(P3) such that α(0) = 0
and α(3) = p. Applying α to the move sequence realizing
−1, we obtain

[0, . . . , α(5), α(6), p, 0], (6–5)

which induces the signed permutation α◦−1◦α−1 = −1.
Therefore, the path

[0, . . . , α(5), α(6), α(3) = p, 0, p]

induces the permutation −σ. Deleting the last two
moves, we obtain an equivalent path of length 11. So
d(σ) ≤ 11. The opposite inequality follows from (6–4).

Similarly, if d(σ) = 2, then σ is realized by a move
sequence [0, p, q], with 0, p, q noncollinear. By Proposi-
tion 2.2 (2), Aut(P3) acts transitively on noncollinear
triples of points, so we may choose α ∈ Aut(P3) such
that α(0) = 0, α(3) = p, and α(6) = q. By the same
argument as before, −σ is realized by the move sequence

[0, . . . , α(5), α(6) = q],

which has length 10.
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