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Holm [Holm 04, Holm 02] studied modules of higher-order dif-
ferential operators (generalizing derivations) on generic (central)
hyperplane arrangements. We use his results to determine the
Hilbert series of these modules. We also give a conjecture about
the Poincaré-Betti series; these are known for the module of
derivations through the work of Yuzvinsky [Yuzvinsky 91] and
Rose and Terao [Rose and Terao 91]

1. INTRODUCTION

The module of derivations D(1)(A) of a hyperplane ar-
rangement A ∈ Cn (henceforth called an n-arrangement)
is an interesting and much studied object [Orlik and
Terao 92, Kung 98, Józefiak and Sagan 93]. In particu-
lar, the question whether this module is free, for various
classes of arrangements, has received great attention.

On the other hand, the module of higher differential
operators D(m)(A) received their first incisive treatment
in the PhD thesis of Pär Holm [Holm 02]. The deepest
result in that work concerns so-called generic arrange-
ments, which are arrangements where every intersection
of s ≤ n hyperplanes in A has the expected codimen-
sion s. Holm gave a concrete generating set for D(m)(A),
proved an extension of Saito’s determinental criterion for
freeness of derivations, and used these results to tackle
the question of higher-order freeness for generic arrange-
ments, i.e., the question when is D(m)(A) a free module
(in which case we say that A is m-free). In brief, he
showed that

(i) all 2-arrangements are m-free for all m;

(ii) all n-arrangements with |A| ≤ n are m-free for
all m;
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(iii) if n ≥ 3, r > n, and m < r − n + 1, then A is not
m-free;

(iv) if n ≥ 3, r > n, and m = r−n+1, then A is m-free.

He conjectured that if n ≥ 3, r > n, and m > r − n+ 1,
then A is m-free.

For m = 1, (iii) becomes r > n ≥ 3. Yuzvinsky
[Yuzvinsky 91] and independently Terao and Rose [Rose
and Terao 91] showed that the modules of derivations of
generic arrangements are nonfree, with a minimal free
resolution of length n − 2. More precisely, they showed
that the graded Betti numbers are given by

βk,u =

⎧⎪⎨
⎪⎩

1, if k = 0 and u = 1,(
r

n−k
)(
r−n+k−2

k−1

)
, if u+ n− r − 1 = 0,

0, otherwise,

so that the Poincaré-Betti series can be expressed as

b+
[
tn−r−1(1 + bt)r−1

]� (1− t)n−r,
where t enumerates homological degree, b enumerates
ring degree, and � denotes Hadamard product of power
series.

This article contains a short exposé of various ways of
calculating modules of differential operators (on a com-
puter), a brief review of the work of Holm, and finally
some conjectures supported by extensive computer ex-
periments. The most important one is the conjectured
formula for the Poincaré-Betti series of D(m)(A) when
A is a generic n-arrangement with |A| = r, 3 ≤ n,
r ≥ m+ n:

P
(
D(An,r)(m)

)
= bm +

{
t−r+n−1

(
(1 + bt)m

−(bt)m
)(

1 + bt
)r−m}� (1− t)m−r+n−1.

2. TERMINOLOGY AND NOTATION

For basic terminology regarding hyperplane arrange-
ments, we refer to Orlik and Terao’s treatise [Orlik and
Terao 92]. For more details on the Grothendieck ring of
differential operators, see, for instance, the PhD thesis
by Holm [Holm 02], the articles [Holm 04, Tripp 97], or
the textbooks [Björk 79, Coutinho 95].

2.1 Notation

Let A be an affine central hyperplane arrangement in Cn

with |A| = r and with defining polynomial

p =
r∏
i=1

pi ∈ S = C[x1, . . . , xn].

We let D(S) denote the Weyl algebra of differential op-
erators on S. This is the set of all finite S-linear combi-
nations

δ =
∑
α∈Nn

cα∂
α, cα ∈ S. (2–1)

An element of D(S) can be regarded as a partial differ-
ential operator with polynomial coefficients, and, thus, it
induces an S-algebra endomorphism. We use the nota-
tion Q ∗ v to denote the action of Q ∈ D(S) on v ∈ S.
D(S) is an S-module in a natural way; the action is

given by
q
∑
α∈Nn

cα∂
α =

∑
α∈Nn

qcα∂
α.

If in (2–1) all α with cα �= 0 have total degree m, we say
that δ is a homogeneous mth-order operator and write
|δ| = m or δ ∈ D(m)(S). If, in addition, all cα occurring
in (2–1) are homogeneous polynomials of total degree v,
we say that δ is homogeneous of polynomial degree v.
Thus, D(S) is a bigraded S-module, where we use the
convention that xα∂β has bigrade (k,m) = (|α|, |β|).

Let m be a positive integer. We set

D(A) =

{
δ =

∑
α∈Nn

cα∂
α cα ∈ S, δ ∗ 〈p〉 ⊆ 〈p〉

}
,

D(m)(A) =

⎧⎨
⎩ δ =

∑
|α|=m

cα∂
α cα ∈ S, δ ∗ 〈p〉 ⊆ 〈p〉

⎫⎬
⎭ .

(2–2)

In particular, D(1)(A) is the much studied module of
derivations of A.

It is a fact that D(m)(A) is a graded S-module, where
the N-grading is given by polynomial degree. Holm [Holm
04] showed that

D(A) =
⊕
m≥0

D(m)(A).

Hence, the S-moduleD(A) is bigraded, and, hence, so are
all Tor modules. The S-module D(A) is not necessarily
finitely generated, but every D(m)(A) is. Consequently,
we can calculate the graded minimal free resolution

0← D(m)(A)←
⊕
i

β
(m)
1,i S(−i)← · · ·

←
⊕
i

β
(m)
�,i S(−i)← 0, (2–3)

where, by the Hilbert syzygy theorem, � ≤ n. We define
the Poincaré-Betti series and Hilbert series of D(m)(A)
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and of D(A) by

P(D(m)(A))(b, t) =
∑
j,i

β
(m)
j,i b

itj ,

P(D(A))(a, b, t) =
∑
m

amP(D(m)(A))(b, t),

H(D(A))(a, b) = (1− b)−nP(D(A))(a, b,−1),

H(D(m)(A))(b) = (1− b)−nP(D(m)(A))(b,−1).

(2–4)

2.2 Additional Notation

We define
((
a
b

))
=
(
a+b−1
b

)
, i.e.,

((
a
b

))
is the number of

multisets of weight b on an a-set.
If f(t) =

∑∞
i=0 cit

i is a formal power series in t, with
coefficients in some commutative ring, we set

[t�]f(t) = c�.

Definition 2.1. Let R be a commutative ring and let
f, g ∈ R[[t−1, t]] be two formal Laurent series, i.e.,

f =

( ∞∑
i=−∞

ait
i

)
, g =

( ∞∑
i=−∞

bit
i

)
.

We define the Hadamard product of f and g by

f � g =
∞∑

i=−∞
aibit

i.

2.3 Reminder

n is the dimension of the ambient space of A;

r denotes the number of hyperplanes in A;

m indicates the order of differential operators.

3. PREVIOUS WORK ON MODULES OF
DIFFERENTIAL OPERATORS

Derivations on Stanley-Reisner rings were studied by
Brumatti and Simis [Brumatti and Simis 95]. This
was generalized to higher-order differential operators
by Eriksson [Eriksson 98] and independently by Traves
[Traves 99] and Tripp [Tripp 97]. A major result is the
following: if J ⊂ S is generated by square-free mono-
mials, then D(J), the S-module of differential operators
preserving J , is generated by

{
xb∂a xb ∈ (J : (J : xa))

}
. (3–1)

Modules of derivations on hyperplane arrangement are
described in the classic textbook by Orlik and Terao [Or-
lik and Terao 92]. An important determinental criterion

by Saito characterizes those arrangements, called free,
for which the module of derivations is a free S-module.
When an arrangement is nonfree, it is of interest to cal-
culate a minimal free resolution of its module of deriva-
tions. For generic arrangements, this has been done by
Yuzvinsky [Yuzvinsky 91]. In particular, the numerical
character of the resolution, encoded in the Poincaré-Betti
series, is known.

This article gives a conjecture for the Poincaré-Betti
series of higher modules of differential operators of a
generic arrangement (unfortunately, we have no guess for
the maps in the minimal free resolution). It uses results
from [Holm 02], which consists of three parts, with the
following content:

• The first part, “Differential Operators on Hyper-
plane Arrangements,” published in [Holm 04], de-
scribes generators of D(A) and D(m)(A) for generic
arrangements. It contains a formula similar to (3–1).
This is proved by a short exact sequence arising from
extraction-deletion. Holm also shows that D(A) is
finitely generated as a C-algebra. We will use several
results from [Holm 04] in what follows.

• In the second part, “Gelfand-Kirillov Dimension of
a Class of Differential Operator Rings,” Holm cal-
culates the Gelfand-Kirillov dimension of the non-
commutative algebra of differential operators on a
certain kind of Noetherian C-algebra, including co-
ordinate rings of central hyperplane arrangements.

• In the third part, “Higher-Order Freeness of Hy-
perplane Arrangements,” Holm generalizes Saito’s
criterion to higher-order modules of differential op-
erators. He also shows that when r, the number
of hyperplanes in the arrangement, is no greater
than n, the dimension of the ambient space, then
if the arrangement is generic, its module of mth-
order differential operators is free (the arrangement
is then said to be m-free. The same is true for any
2-arrangement. On the other hand, Holm shows that
when r > n ≥ 3 and m < r − n + 1, the module
of mth-order differential operators on a generic ar-
rangement is not free. He shows that it is free for
m = r − n + 1 and conjectures that it continues to
be free for m > r − n+ 1.

4. CALCULATING MODULES OF DIFFERENTIAL
OPERATORS ON HYPERPLANE ARRANGEMENTS

We shall review some methods of calculating generators
of the S-module D(m)(A).
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4.1 The “Jacobian” Method

First, we describe the most straightforward method, a
slight variant of which is used in the Macaulay 2 [Grayson
and Stillman 02] package D-modules.m2 [Tsai and Leykin
02] by Harry Tsai and Anton Leykin.

Lemma 4.1. Let D(m)(S) � δ =
∑

|α|=m cα∂
α be homo-

geneous of polynomial degree v. Then δ ∈ D(m)(A) iff
δ ∗ (xβp) ∈ 〈p〉 for all |β| < v.

Corollary 4.2. Let m be a positive integer. Let G be a
row matrix whose entries are

{ ∂α |α| = m } ,
let H be a column matrix whose entries are{

xβ |β| < m
}
,

and let A be the matrix indexed by G and H where the
(∂α, xβ) entry is

∂α ∗ (xβp).

Let B = [A|pI], where I is the identity matrix of ap-
propriate dimension. Then, the syzygy module of the
columns of B correspond to D(m)(A). More precisely, if

[A|pI]
[
u
w

]
= 0,

then ∑
α

uα∂α ∈ D(m)(A),

and this is an isomorphism of S-modules.

Example 4.3. Suppose that S = C[x1, x2] and that p =
x1. For m = 2, the matrix A is

∂2
1 ∂1∂2 ∂2

2

1 0 0 0
x1 2 0 0
x2 0 1 0

,

so in order to calculate D(2)(A), we should calculate the
syzygies of the columns of

B =

⎛
⎝0 0 0 x1 0 0

2 0 0 0 x1 0
0 1 0 0 0 x1

⎞
⎠ .

A generating set is⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

−1/2x1

0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−x1

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

so D(2)(A) is generated by ∂2
2 , −1/2x1∂

2
1 , and −x1∂1∂2.

4.2 The Method of Intersecting Modules

The following results by Holm are proved in [Holm 04].

Theorem 4.4. [Holm 04] D(m)(p) = ∩ri=1D(m)(pi).

Holm also showed how to calculate Dm(pi). Let q ∈ S1

be a linear form and let H ⊂ Cn be its associated linear
variety (a hyperplane through the origin).

Definition 4.5. Let V be the C-vector space V =∑n
i=1 C∂i and define

VH =

{∑
i=1

bi∂i (b1, . . . , bn) ∈ H
}
.

Then, VH is a codimension-one subspace of V .

Lemma 4.6. [Holm 04] Let N be the module of derivations
annihilating q. Then, N = SVH , and if δ is any deriva-
tion such that δ ∗q = aq, a ∈ C∗, then D(1)(q) = N +Sδ.

Proposition 4.7. [Holm 04] Let M = {δ1, . . . , δn} be a
basis for V such that {δ1, . . . , δn−1} is a basis for Vh.
Then, N = {δ1, . . . , δn−1, qδn} generates D(1)(q), and

D(m)(q) =
∑

|α|=m
αn=0

Sδα +
∑

|α|=m
αn>0

Sqδα. (4–1)

The above results can be succinctly summarized as
follows: let A(p) be the n×n coordinate matrix of N , i.e.,
the matrix formed by the coordinate vectors of elements
of N , and let SmA(p) denote the mth symmetric power.
Let Bm(p) be the result of replacing any occurrence of qi

with i > 1, by q. In other words, if A(p) is regarded as
the matrix of an endomorphism

φ : Sn → Sn,

then SmA(p) is the matrix of the endomorphism

Smφ : SmSn → SmSn,

and Bm(p) is the matrix of the associated endomorphism
on SmT , where

T = S/(q − q2).

Example 4.8. (Example 4.3 continued.) If S = C[x1, x2]
and p = x1, then VH is spanned by ∂2. Hence, we can
take M = {∂2, ∂1} and N = {∂2, x1∂1}, so if we order
the monomials of degree two as x2

1, x1x2, x2, then

A =
[
0 x1

1 0

]
, S2A =

⎡
⎣0 0 x2

1

0 x1 0
1 0 0

⎤
⎦, B =

⎡
⎣0 0 x1

0 x1 0
1 0 0

⎤
⎦ .



Snellman: Differential Operators on a Generic Hyperplane Arrangement 449

Thus, we recover the result that D(2)(x1) is generated by

[∂2, ∂1∂2, ∂
2
2 ]B = [∂2

2 , x1∂1∂2, x1∂
2
1 ].

Now recall (see for instance [Adams and Loustaunau
94, Theorem 3.8.3]) the following method of computing
the intersection of submodules of free modules. Suppose
that M1, . . . ,M� are submodules of the free module Ss,
that e = [e1, . . . , es] is a basis of Ss, and that the matrix
Ai consists of the coordinate vectors (as column vectors)
for a generating set of Mi. Then, the truncations of the
syzygies of the matrix⎡

⎢⎢⎢⎣
Is A1 0 0 · · · 0
Is 0 A2 0 · · · 0
...

...
...

. . . · · · ...
Is 0 0 0 · · · As

⎤
⎥⎥⎥⎦

correspond to elements in ∩si=1Mi.

Example 4.9. We have that

D(2)(x1x2) = D(2)(x1) ∩ D(2)(x2).

With respect to the basis [∂1, ∂1∂2, ∂
2
2 ] for D(2)(S), the

matrices of D(2)(x1) and D(2)(x2) can be taken to be⎡
⎣x1 0 0

0 x1 0
0 0 1

⎤
⎦ and

⎡
⎣1 0 0

0 x2 0
0 0 x2

⎤
⎦ .

The syzygies of the matrix⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 x1 0 0 0 0 0
0 1 0 0 x1 0 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 x2 0
0 0 1 0 0 0 0 0 x2

⎤
⎥⎥⎥⎥⎥⎥⎦

are generated by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−x2

0
0
x2

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1

0
0
1
0
0
x1

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
x1x2

0
0
−x2

0
0
−x1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so the intersection of the two modules is generated by⎡
⎣ 0

0
−x2

⎤
⎦ ,

⎡
⎣−x1

0
0

⎤
⎦ ,

⎡
⎣ 0
x1x2

0

⎤
⎦ ,

and D(2)(x1x2) is generated by −x2∂2,−x1∂1, x1x2∂1∂2.

4.3 Calculating Modules of Differential Operators on
Generic Arrangements

Holm [Holm 02, Paper III, Theorem 5.8] generalizes
Saito’s criterion for freeness of arrangement as follows:

Theorem 4.10. (Holm-Saito criterion.) Let A be a cen-
tral arrangement in Cn consisting of r hyperplanes and
having defining polynomial p. Let m ≥ 1, sm =

((
n
m

))
,

and tm = sm−1. Then, if D(m)(A) is free, it has a basis
consisting of exactly sm differential operators.

Given operators θ1, . . . , θsm
∈ D(m)(A), we or-

der the n-multi-indices of weight m lexicographically as
α1, . . . , αsm and define the sm × sm coefficient matrix of
θ1, . . . , θsm

as

Mm(θ1, . . . , θsm
) =

⎛
⎜⎝

1
α1 !θ1 ∗ xα1 · · · 1

α1 !θsm
∗ xα1

...
...

...
...

...
1

αsm !θ1 ∗ xαsm · · · 1
αsm !θsm

∗ xαsm

⎞
⎟⎠ .

Then, detMm(θ1, . . . , θsm
) lies in the principal ideal gen-

erated by ptm . Furthermore, the following conditions are
equivalent:

(i) detMm(θ1, . . . , θsm
) = cptm for some c ∈ C \ {0};

(ii) θ1, . . . , θsm
is a basis for D(m)(A).

In [Holm 04], Holm gives a method for constructing
a (not necessarily minimal) generating set of D(m)(A),
when A is a generic n-arrangement.

4.3.1 The case r > n. Holm showed that for any pos-
itive m and for any central arrangement A, the modified
Euler derivation

εm =
∑

|α|=m

m!
α!
xα∂α

belongs to D(m)(A). He then proceeded to find other
generators as follows.

Recall the definition of V and of VH from Defini-
tion 4.5. We let Hi be the hyperplane associated with the
linear form pi and set Vi = VHi

. Choose a basis element
for each intersection of n−1 of the Vi (by genericity, this
intersection is one-dimensional) and let M = {δ1, . . . , δt},
with t =

(
r

n−1

)
, be the set of all of these. We define a

subset D of the derivations on S by

D = {P1δ1, . . . , Ptδt} ,
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where each Pi is the product of those pj that are not
annihilated by δi. If all the pj are annihilated by δi, we
set Pi = 1.

Holm [Holm 04] showed that D ⊂ D(1)(A), and, fur-
thermore, that:

Theorem 4.11. [Holm 04] Suppose P = p1 · · · pr is the
defining polynomial of a generic arrangement A. Let M
and D be as above and let I be the principal ideal on P .
Then,

D(m)(A) =
⊕
m≥0

⎛
⎝ ∑

|α|=m
(I : (I : Pα))δα + Sεm

⎞
⎠

as a bigraded S-module.

Here, the double colon ideal (I : (I : Pα)) is a principal
ideal in S, with the generator given by pi1 · · · pi� , the
product of those pj such that some δi with αi �= 0 does
not annihilate pj .

Example 4.12. Let p = xy(y − x) ∈ C[x, y] = S. Then,
the associated arrangement is generic. We get that

P1 = y(y − x), P2 = x(y − x), P3 = xy,

and
δ1 = ∂y, δ2 = ∂x, δ3 = ∂x + ∂y.

Hence, D(0)(I) = S, and D(1)(I) is generated by

y(y − x)∂y, x(y − x)∂x, xy(∂x + ∂y), x∂x + y∂y.

Since any product of distinct δi is equal to P = xy(x−y),
we have that for m ≥ 2

D(I)(m) = Sy(y − x)∂my + Sx(y − x)∂mx
+ Sxy(∂x + ∂y)m + Sεm + ID(m)(S).

4.3.2 The case r ≤ n. For the generic arrangement
An,r with r ≤ n, we can perform a linear change of
variables, so that pi = xi. Holm [Holm 02, Paper III,
Proposition 6.2] showed the following:

Proposition 4.13. [Holm 02] D(m)(x1 · · ·xr) is free with
basis

{xα∂α α ∈ Nn, |α| = m } ,
where xα is the monic generator of

√〈xα̃〉, the radical of
〈xα̃〉, and where

α̃ = (α1, . . . , αr, 0, . . . , 0) ∈ Nn.

4.3.3 The case n = 2. Holm [Holm 02, Paper III,
Proposition 6.7] notes that an arrangement A in C2 is
generic. Furthermore, he proves the following:

Proposition 4.14. [Holm 02] Let A be an arrangement in
C2, with defining polynomial p = p1 · · · pr ∈ C[x1, x2],
and let m be a positive integer. Let Pi = p/pi for 1 ≤
i ≤ r and define

δi =

{
∂2, if pi = ax1, a ∈ C∗,
∂1 + ai∂2, if pi = a(x2 − ax1), a ∈ C∗.

Let {
q1, . . . , q(( n

m ))
}

= { ∂α |α| = m } .

Then, D(m)(A) is free, minimally generated by
⎧⎪⎨
⎪⎩
{εm, P1δ

m
1 , . . . , Prδ

m
r } , if 1 ≤ m ≤ r − 2,{

P1δ
r−1
1 , . . . , Prδ

r−1
r

}
, if m = r − 1,

{P1δ
m
1 , . . . , Prδ

m
r , pqr, . . . , pqm} , if m ≥ r.

(4–2)

5. AN EXACT SEQUENCE

If A is an n-arrangement consisting of the hyperplanes
H1, . . . ,Hr, recall that the deleted arrangement A′ is
the arrangement in Cn consisting of the hyperplanes
H2, . . . ,Hr. The restricted arrangement A′′ is the ar-
rangement

H2 ∩H1, . . . , Hr ∩H1 ⊂ H1 � Cn−1.

Clearly, if A is generic, then so is A′ and A′′, and we can
write

A′
n,r = An,r−1, A′′

n,r = An−1,r−1.

We can perform a change of coordinates so that the
defining polynomial of H1 is xn. Then, multiplication
with xn gives an S-module homomorphism of degree 1

D(m)(An,r−1) ·xn−−→ D(m)(An,r),

and the natural projection

π : S = C[x1, . . . , xn]→ S′ =
S

xn
� C[x1, . . . , xn−1]

induces a degree 0 map of graded vector spaces,

D(m)(An,r)→ D(m)(An−1,r−1), (5–1)

by replacing every occurrence of xn by zero. The projec-
tion π can be used to give any S′-module the structure of
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an S-module (via extension of scalars), and so the map
(5–1) becomes an S-module homomorphism.

Theorem 5.1. [Holm 04] If m, r, n are positive integers
with n > 2 and An,r is a generic arrangement, then there
is a short exact sequence of graded S-modules

0→ D(m)(An,r−1)(−1)→ D(m)(An,r)
→ D(m)(An−1,r−1)→ 0. (5–2)

Corollary 5.2. If m, r, n are positive integers with n > 2,
then

H(D(m)(An,r))(b) = bH(D(m)(An,r−1))(b)

+H(D(m)(An−1,r−1))(b). (5–3)

6. THE HILBERT AND POINCARÉ-BETTI SERIES OF
D(m)(A) FOR GENERIC A

If A and A′ are two generic n-arrangements with |A| =
|A′| = r, then their Hilbert series and Poincaré-Betti
series coincide. We let An,r denote any generic n-
arrangement consisting of r hyperplanes.

6.1 Derivations, the Case m = 1

Yuzvinsky [Yuzvinsky 91] has given a minimal free reso-
lution of D(1)(An,r).

Theorem 6.1. [Yuzvinsky 91] Let r > n ≥ 3 and let An,r
be a generic n-arrangement with defining polynomial
p = p1 · · · pr ∈ S = C[x1, . . . , xn]. Define

D0 =
{
θ ∈ D(1)(An,r) θ(pr) = 0

}
.

Then, D(1)(An,r) = Sε1 ⊕ D0 as an S-module, and the
minimal free resolution of D0 has length r − 1 and is
(r−n+ 1)-linear. More precisely, the graded Betti num-
bers of D0 are given by

βk,u =

{(
r

n−k
)(
r−n+k−2

k−1

)
, if u+ n− r − 1 = 0,

0, otherwise.
(6–1)

Example 6.2. If n = 3 and r = 5, then the Poincaré-Betti
series of D0 is 4b3 + 2b4t, so the Poincaré-Betti series of
D(1)(A3,5) is b+ 4b3 + 2b4t.

We will give a compact formula for the Poincaré-Betti
series of derivations, a formula that will give a hint as to

what the Poincaré-Betti series of higher-order differential
operators might look like.

Lemma 6.3. Let r > n ≥ 3. Then,

P
(
D(1)(An,r)

)
(b, t) = b

+
[
tn−r−1(1 + bt)r−1

]� (1− t)n−r. (6–2)

Example 6.4. To continue with the previous example, if
n = 3 and r = 5, then (6–2) becomes

P
(
D(1)(A3,5)

)
= b+

[
t−3(1 + bt)4

]� (1− t)−2

= b+
[
t−3 + 4bt−2 + 6b2t−1 + 4b3 + b4t

]
� (1 + 2t+ 3t2 + . . . )

= b+ 4b3 + 2b4t.

6.2 The Case n = 2

Proposition 4.14 shows that, when n = 2, the Poincaré-
Betti series of D(m)(A2,r) is given by

P(D(m)(A2,r))(b, t) ={
rbr−1 + (m− r + 1)br, if r ≤ 2 or m > r − 2,
bm +mbr−1, otherwise.

(6–3)

It follows that the Hilbert series is

H(D(m)(A2,r))(b, t) =
{
rbr−1+(m−r+1)br

(1−b)2 , if r ≤ 2 or m > r − 2,
bm+mbr−1

(1−b)2 , otherwise.
(6–4)

Together with (5–3), the initial values (6–4) determine
H(D(m)(An,r))(b) for all n ≥ 2.

6.3 The Case r ≤ n

Proposition 4.13 yields the following:

Lemma 6.5. If r ≤ n, then

β
(m)
u,k (An,r) =

{
0, if u > 0,(
r
k

) ((
n−r+k
m−k

))
, if u = 0,
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P (D(An,r)) (a, b, t) =
(1− a+ ab)r

(1− a)n
,

H (D(An,r)) (a, b) =
(1− a+ ab)r

(1− a)n(1− b)−n ,

P
(
D(m)(An,r)

)
(b, t) = [am]

(1− a+ ab)r

(1− a)n
,

H
(
D(m)(An,r)

)
(b) = [am]

(1− a+ ab)r

(1− a)n(1− b)−n .

(6–5)

Proof: There are
(
r
k

)
different square-free γ ∈ Nn of

weight k such that

γr+1 = · · · = γn = 0.

For a fixed such γ, let g = g(γ) denote the number of
α ∈ Nn with ᾱ = γ. Then,

α �→ α− γ

gives a bijection between the set of multisets α on
{1, . . . , n}, with weight k and with supp(α̃) = γ, and
the set of multisets on

{r + 1, r + 2, . . . , n} ∪ supp(γ)

of weight m − k. So, g is independent of γ and is equal
to

((
n−r+k
m−k

))
. It follows that the number of minimal

generators of Dm(A) of polynomial degree k is given by(
r
k

) ((
n−r+k
m−k

))
.

To prove the second identity, we take advantage of the
fact that we may assume that the linear forms defining
the arrangement are the monomials x1, . . . , xr. For this
particular arrangement, the modules of differentials will
be multigraded, by giving the operator xα∂β the mul-
tidegree (α, β). We will calculate Poincaré-Betti series
with respect to this fine grading, then specialize to get
the desired series (which itself can not be given this fine
grading).

We start by calculating the generating function

G(a1, . . . , an, b1, . . . , bn),

where the sum is over all minimal generators of D(An,r),
and where xα∂β contributes aβ1

1 · · · aβn
n bα1

1 · · · bαn
n . Then,

as before, we are looking for all pairs (α, β) with α ⊂
{0, . . . , r} and supp(α̃) = β. Hence,

G(a1, . . . , an, b1, . . . , bn) =

∑
β⊆{1,2,...,r}

bβ

⎛
⎝ ∑

supp(γ)⊂β
aγ

⎞
⎠
⎛
⎝ ∑

supp(θ)⊆{r+1,...,n}
aθ

⎞
⎠

=
∑

β⊆{1,2,...,r}
aβbβ

n∏
i=r+1

(1− aj)−1

=
r∏
i=1

1− ai + aibi
1− ai

n∏
j=r+1

(1− aj)−1. (6–6)

Specializing gives

P (An,r)(a, b, t) = G(a, . . . , a, b, . . . , b)

=
(1− a+ ab)r

(1− a)n
. (6–7)

6.4 The Cases m = r − n + 1 and m > r − n + 1

As we have already noted, it is known that D(m)(An,r) is
free when r ≤ n or when n ≤ 2. Holm [Holm 02, Paper
III] showed that when r > n ≥ 3 and m = r − n + 1,
then D(m)(An,r) is a free module, minimally generated
by
(
r

n−1

)
differential operators of order polynomial degree

m. He conjectured that D(m)(An,r) is free when r > n ≥
3 and m ≥ r − n+ 1. More precisely, it is reasonable to
conjecture that (6–5) holds also for this range. This is
certainly true for the Hilbert series.

Lemma 6.6. For r ≤ m+ n− 1,

H(D(m)(An,r))(b) = [am]
(1− a+ ab)r

(1− a)n(1− b)n . (6–8)

Proof: This holds for n = 2 by (6–4). Furthermore, if
r ≤ m + n − 1, then r − 1 ≤ m + n − 1 and r − 1 ≤
m+n−1−1, so the assertion follows by induction, since

[am]
(1− a+ ab)r

(1− a)n(1− b)n = [am]
(1− a+ ab)r−1

(1− a)n(1− b)n

+ [am]
(1− a+ ab)r−1

(1− a)n−1(1− b)n−1
.

6.5 The Case r ≥ m + n

Holm [Holm 02, Paper III] showed that when r > n ≥ 3
and r ≥ m + n, then D(m)(An,r) is not a free module.
This is therefore the “interesting range.” We will eventu-
ally formulate a conjecture regarding the Poincaré-Betti
series of D(m)(An,r) for m,n, r in this range.

We will simplify the problem slightly by identifying a
direct summand of these modules. Recall the notations
of Theorem 4.11:
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r n = 3 n = 4 n = 5

5 2b4t + 7b3 - -
6 4b5t + 9b4 2b5t2 + 9b4t + 16b3 -
7 6b6t + 11b5 6b6t2 + 22b5t + 25b4 2b6t3 + 11b5t2 + 25b4t + 30b3

8 8b7t + 13b6 12b7t2 + 39b6t + 36b5 8b7t3 + 39b6t2 + 72b5t + 55b4

9 10b8t + 15b7 20b8t2 + 60b7t + 49b6

10 12b9t + 17b8

TABLE 1.

r n = 3 n = 4 n = 5

6 3b5t + 12b4 - -
7 6b6t + 15b5 3b6t2 + 15b5t + 31b4 -
8 9b7t + 18b6 9b7t2 + 36b6t + 46b5 3b7t3 + 18b6t2 + 46b5t + 65b4

9 12b8t + 21b7 18b8t2 + 63b7t + 64b6 111b5 + 128tb6 + 63t2b7 + 12t3b8

TABLE 2.

D = {P1δ1, . . . , Ptδt}
is a certain subset of D(1)(An,r) with the property that

{
Pαδ

α α ∈ Nt, |α| = m
} ∪ {εm}

generates D(m)(An,r), where Pα is the product of those
pi such that some δj with αj �= 0 do not annihilate pi.

Let Ξ(m)(An,r) be the module generated by
{
Pαδ

α α ∈ Nt, |α| = m
}
.

Then, Holm’s result can be stated as

D(m)(An,r) = Ξ(m)(A) + Sεm. (6–9)

Holm showed [Holm 02, Paper I, Lemma 5.27] that for
r ≤ n, εm ∈ Ξ(m)(A). Furthermore, we have:

Lemma 6.7. Suppose that r > n ≥ 3, r ≥ m + n. Then,
εm �∈ Ξ(m)(An,r), so

D(m)(An,r) = Ξ(m)(A)⊕ Sεm. (6–10)

Hence,

P
(
D(m)(An,r)

)
(b, t) = bm + P

(
Ξ(m)(An,r)

)
(b, t).

(6–11)

Proof: All Pi have degree r−n+1, so all Pα have degree
≥ r−n+ 1 > m, hence all Pαδα have polynomial degree
> m. But εm has polynomial degree m, hence can not be
expressed as an S-linear combination of the Pαδα. This
shows that εm �∈ Ξ(m)(A), which together with (6–9)
yields (6–10).

We tabulate P(Ξ(m)(An,r))(b, t) for m = 2, 3, 4 (these
Poincaré-Betti series were calculated using Macaulay 2
[Grayson and Stillman 02] and the method described in
the beginning of this paper).

For m = 2, the Poincaré-Betti series are as in Table 1.
We conjecture that

P(Ξ(2)(An,r)(b, t) =
[
tn−r−1(1 + 2bt)(1 + bt)r−2

]
� (1− t)n−r+1. (6–12)

For m = 3, we get the values given in Table 2. We
conjecture that

P(Ξ(3)(An,r))(b, t) =[
tn−r−1(1 + 3bt+ 3b2t2)(1 + bt)r−3

]� (1− t)n−r+2.
(6–13)

For m = 4 we get the values given in Table 3. We
conjecture that

P(Ξ(4)(An,r))(b, t) =[
tn−r−1(1 + 4bt+ 6b2t2 + 4b3t3)(1 + bt)r−4

]
� (1− t)n−r+3. (6–14)

Based on these computations, we make the following
conjecture, which by Yuzvinsky’s result is true for deriva-
tions, i.e., when m = 1.

r n = 3 n = 4

7 18b5 + 4tb6 -
8 52b5 + 22tb6 + 4t2b7 8b7t + 22b6

TABLE 3.
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Conjecture 6.8. Suppose that 3 ≤ n and r ≥ m+ n. Let
An,r be a generic n-arrangement with |An,r| = r. Then,

P
(

Ξ(m)(An,r)
)

={
t−r+n−1

(
(1 + bt)m − (bt)m

)(
1 + bt

)r−m}

� (1− t)m−r+n−1, (6–15)

and, hence,

P
(
D(m)(An,r)

)
=

bm +
{
t−r+n−1

(
(1 + bt)m − (bt)m

)(
1 + bt

)r−m}

� (1− t)m−r+n−1. (6–16)

Note that this conjecture implies that

(i) the homological dimension of the S-module
Ξ(m)(An,r) (and hence of D(m)(An,r)) is n− 2;

(ii) the minimal free resolution of Ξ(m)(An,r)) is (r−n)-
linear;

(iii) Ξ(m)(An,r) is minimally generated by

(
r

r − n+ 1

)
−
(

r −m
r − n+ 1−m

)
=

(
r

n− 1

)
−
(
r −m
n− 1

)

differential operators of polynomial degree r−n+1;
D(m)(An,r) is minimally generated by these differ-
ential operators and εm.

We now indicate a possible way of proving (6–15). The
short exact sequence (5–2), together with Lemma 6.7,
gives a short exact sequence

0→ Ξ(m)(An,r−1)(−1)→ Ξ(m)(An,r)
→ Ξ(m)(An−1,r−1)→ 0, (6–17)

which gives rise to a long exact sequence in homology (we
have omitted the shifts that are necessary to make the
morphisms below homogeneous of degree zero)

· · · → Tor1S(D(m)(An,r−1),C)→ Tor1S(D(m)(An,r),C)

→ Tor1S(D(m)(An−1,r−1),C) δ1−→ Ξ(m)(An,r−1)⊗S C

→ Ξ(m)(An,r)⊗S C→ Ξ(m)(An−1,r−1)⊗S C→ 0,
(6–18)

which controls the “deviation”

q(m,n, r) = P(Ξ(m)(An,r))− bP(Ξ(m)(An,r−1))

− (1 + bt)P(Ξ(m)(An−1,r−1)).

If all the connecting homomorphisms δi are zero, then
so is this deviation, and the Poincaré-Betti series can be
computed recursively using deletion-restriction. In the
“interesting range” 3 ≤ n < r and r ≥ m + n, assuming
the conjectured Formula (6–15) and using Lemma 6.9,
we get that q(m,n, r) = 0. This indicates (but does
not prove) that the connecting homomorphisms are zero.
Conversely, a proof of the vanishing of all connecting ho-
momorphisms would also prove (6–15).

Lemma 6.9. For 3 ≤ n < r and r ≥ m+ n, let

A =
{
t−r+n−1

(
(1 + bt)m − (bt)m

)(
1 + bt

)r−m}
,

(6–19)

B = b
{
t−r+n

(
(1 + bt)m − (bt)m

)(
1 + bt

)r−1−m}
,

(6–20)

C = (1 + bt){
t−r+n−1

(
(1 + bt)m − (bt)m

)(
1 + bt

)r−1−m}
.

(6–21)

It then holds that

A� (1− t)m−r+n−1 −B � (1− t)m−r+n

− C � (1− t)m−r+n−1 = 0. (6–22)

Proof: Let k = r − n and

U(r, k,m) =
[(

(1 + bt)m − (bt)m
)(

1 + bt
)r−m]

= t−k−1(1 + bt)r − tm−k−1(1 + bt)r−m.

Then, for � > 0, we have that

[x�] U(r, k,m) =

b�+k+1

[(
r

�+ k + 1

)
−
(

r −m
�−m+ k + 1

)]
,

[x�] bU(r − 1, k − 1,m) =

b�+k+1

[(
r − 1
�+ k

)
−
(
r − 1−m
�−m+ k

)]
,

[x�] U(r − 1, k,m) =

b�+k+1

[(
r − 1

�+ k + 1

)
−
(

r − 1−m
�−m+ k + 1

)]
,

[x�] bt U(r − 1, k,m) =

b�+k+1

[(
r − 1
�+ k

)
−
(
r − 1−m
�−m+ k

)]
.
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Since

(1− t)m−r+n−1 =
∞∑
�=0

((
m− r + n− 1

�

))
,

Equation (6–22) is equivalent to the identity

[(
r

�+ k + 1

)
−
(

r −m
�−m+ k + 1

)]((
m− k + 1

�

))

−
[(
r − 1
�+ k

)
−
(
r − 1−m
�−m+ k

)]((
m− k
�

))

−
[(

r − 1
�+ k + 1

)
−
(

r − 1−m
�−m+ k + 1

)]((
m− k + 1

�

))

−
[(
r − 1
�+ k

)
−
(
r − 1−m
�−m+ k

)]((
m− k + 1
�− 1

))
= 0,

(6–23)

which can be verified algorithmically.1

The case � = 0 is dealt with similarly.

7. ELECTRONIC SUPPLEMENTS

To help those interested in performing further ex-
periments, some Macaulay 2 [Grayson and Stillman
02] and Maple [Char et al. 91] code is included as
an electronic supplement to this article. It is avail-
able at http://www.expmath.org/expmath/volumes/14/
14.4/snellman/code.zip. An accompanying README file
describes how the code can be used.
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Jan Snellman, Linköpings Universitet, Linköping, SE-581 83 Sweden (Jan.Snellman@math.su.se)

Received September 14, 2004; accepted August 9, 2005.


