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Several authors have considered the infinite parametric family of
simplest quartic fields Kt = Q(ξ). In this paper, we explicitly
give all generators of power integral bases in the ring of integers
ZK of Kt assuming that t2+16 is not divisible by an odd square.
We use a well known general algorithm for calculating power
integral bases in quartic fields.

1. INTRODUCTION

Consider an algebraic number field K of degree n with
ring of integers ZK and discriminant DK . An interest-
ing problem in algebraic number theory is to decide if
there exist integral bases of type {1, α, α2, ..., αn−1}, i.e.,
power integral bases, and to find all elements α with this
property.

The index of a primitive element α ∈ ZK is defined as
I(α) = (Z+

K : Z+[α]).
As it is well known, α generates a power integral basis

if and only if I(α) = 1.
Let {1, ω2, ..., ωn} be an arbitrary integral basis of K.

Then, the discriminant of the linear form l(x) = x1 +
x2ω2 + ... + xnωn is equal to

DK/Q(l(x)) =
∏

1≤i<j≤n

(l(i)(x) − l(j)(x))2

= I(x2, ..., xn)2DK ,

where I(x2, ..., xn) is the index form corresponding to the
integral basis {1, ω2, ..., ωn}.

Obviously α = x1 + ω2x2 + ... + ωnxn ∈ ZK has index
1 if and only if

I(x2, ..., xn) = ±1 (x2, . . . , xn ∈ Z). (1–1)

K. Győry [Győry 76] gave the first effective upper
bounds for the solutions of index form equations using
Baker’s method. In the last decade, several algorithms
were constructed for solving certain types of index form
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equations. For details and several connected results see
I. Gaál [Gaál 02].

The purpose of the present paper is to give all gen-
erators of power integral bases in the family of simplest
quartic fields using the result of H. K. Kim and J. S. Kim
[Kim and Kim 03] on integral bases of these fields and
the procedure of I. Gaál, A. Pethő, and M. Pohst [Gaál
et al. 93] for calculating power integral bases in quartic
fields.

2. SIMPLEST QUARTIC FIELDS

For t ∈ Z \ {0,±3} let

Pt(x) = x4 − tx3 − 6x2 + tx + 1. (2–1)

Let ξ = ξt be a root of Pt(x), then each field in the in-
finite parametric family of number fields Kt = K = Q(ξ)
is called a simplest quartic field. The simplest quartic
field K is a totally real cyclic number field of degree 4.
If t = 0 or t = ±3 then Pt(x) is reducible over Q, see
M. N. Gras [Gras 77/78].

Power integral bases in the polynomial order Z[ξt] of
Kt were described by G. Lettl and A. Pethő [Lettl and
Pethő 95]. For finding all generators of power integral
bases in the ring of integers of the simplest quartic fields
we need the following lemma.

Note that Q(α) = Q(−α) (α an algebraic integer),
that is we can assume that t > 0 and t �= 3. In the
following, we also assume that t2+16 is not divisible by an
odd square. Further, denote by v2(t) the 2-adic valuation
of t. Recently, the integral basis of K was explicitly given.

Lemma 2.1. [Kim and Kim 03] An integral basis of K =
Kt is given as follows.

ZK =




Z[1, ξ, ξ2, 1+ξ3

2 ] if v2(t) = 0,
Z[1, ξ, 1+ξ2

2 , ξ+ξ3

2 ] if v2(t) = 1,
Z[1, ξ, 1+ξ2

2 , 1+ξ+ξ2+ξ3

4 ] if v2(t) = 2,
Z[1, ξ, 1+2ξ−ξ2

4 , 1+ξ+ξ2+ξ3

4 ] if v2(t) ≥ 3.

The main result of our paper is the following theorem.

Theorem 2.2. The ring of integers ZK of the simplest
quartic field K = Kt (where t2 + 16 is not divisible by
an odd square) admits power integral bases only for t = 2
and t = 4. In these cases, all generators of power integral
bases are the following:

• t = 2, α = x · ξ + y · 1+ξ2

2 + z · ξ+ξ3

2 , where
(x, y, z) = (4, 2,−1), (−13,−9, 4), (−2, 1, 0),
(1, 1, 0), (−8,−3, 2), (−12,−4, 3), (0,−4, 1),
(6, 5,−2), (−1, 1, 0), (0, 1, 0); and

• t = 4, α = x · ξ + y · 1+ξ2

2 + z · 1+ξ+ξ2+ξ3

4 ,
where (x, y, z) = (3, 2,−1), (−2,−2, 1),
(4, 8,−3), (−6,−7, 3), (0, 3,−1), (1, 3,−1).

3. PROOF OF THEOREM 2.2

Let t ∈ Z+ \ {3}, ξ = ξt be a root of Pt(x) in (2–1),
K = Kt = Q(ξ) be a simplest quartic field, and let
{1, ω2, ω3, ω4} be an integral basis of K as in Lemma 2.1.
For simplicity, we omit t, but all the formulas implicitly
depend on t. Let I(x, y, z) be the index form correspond-
ing to the integral basis {1, ω2, ω3, ω4}. Assume that α =
x0ω2 + y0ω3 + z0ω4 has index 1, i.e., I(x0, y0, z0) = ±1.
We can represent α in the form

α =
a + x1ξ + y1ξ

2 + z1ξ
3

g
.

Note that this implies a one-to-one correspondence be-
tween (x0, y0, z0) and (x1, y1, z1). Set

F (u, v) = u3 + 6u2v + (−t2 − 4)uv2

+ (−24 − 2t2)v3

= (u + 2v)(u2 + 4uv − v2t2 − 12v2),

Q1(x1, y1, z1) = x2
1 + tx1y1 − 6y2

1 + (t2 + 12)x1z1

− 5ty1z1 + (t2 + 37)z2
1 ,

Q2(x1, y1, z1) = y2
1 − x1z1 + ty1z1 − 6z2

1 .

By I. Gaál, A. Pethő and M. Pohst [Gaál et al. 93, Gaál
et al. 96] (see also [Gaál 02]) there is a (u, v) ∈ Z2 with

F (u, v) = ± g6

I(ξ)
= i,

such that Q1(x1, y1, z1) = u and Q2(x1, y1, z1) = v.
According to Lemma 2.1 we have to consider the fol-

lowing cases.

Case I. Set {1, ω2, ω3, ω4} = {1, ξ, ξ2, 1+ξ3

2 } and
v2(t) = 0.

In this case, g = 2 and I(ξ) = 2, i.e., i = ±25 = 32.
Using the factorization of F (u, v) we have the follow-
ing solutions (t, u, v) to equation F (u, v) = i: (t, u, v) =
(1,∓12,±2), (1,±4,±2), (5,±22,±5), (5,±42,∓5).

Case II. Set {1, ω2, ω3, ω4} = {1, ξ, 1+ξ2

2 , ξ+ξ3

2 } and
v2(t) = 1.
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u v p q k x1 y1 z1 x0 y0 z0

2 1 ±1 0 ±1 ±59 ±31 ∓7 ±4 ±2 ∓1

2 1 ±6 ∓1 ±4 ±22 ±9 ∓4 ±13 ±9 ∓4

2 1 ±4 ∓1 ±4 ±4 ∓1 0 ±2 ∓1 0

2 1 ±2 ±1 ±4 ±2 ±1 0 ±1 ±1 0

2 1 0 ±1 ±4 ±14 ±3 ∓2 ±8 ±3 ∓2

2 1 ±4 0 ±16 ±59 ±31 ∓7 ±4 ±2 ∓1

2 1 ±12 ∓2 ±16 ±22 ±9 ∓4 ±13 ±9 ∓4

2 1 ±8 ∓2 ±16 ±4 ∓1 0 ±2 ∓1 0

2 1 ±4 ±2 ±16 ±2 ±1 0 ±1 ±1 0

2 1 0 ±2 ±16 ±14 ±3 ∓2 ±8 ±3 ∓2

TABLE 1. Solutions in Case II.

In this case, g = 2 and I(ξ) = 4, i.e., i = ±24 =
16. Using similar calculations as above, we have so-
lutions (t, u, v) to equation F (u, v) = i: (t, u, v) =
(2,±2,±1), (2,±6,∓1).

Case III. {1, ω2, ω3, ω4} = {1, ξ, 1+ξ2

2 , 1+ξ+ξ2+ξ3

4 } and
v2(t) = 2.

In this case, g = 4 and I(ξ) = 8, i.e., i = ±29 = 512.
Using similar calculations as above, we have for solutions
(t, u, v) to equation F (u, v) = i: (t, u, v) = (4,±4,±2),
(4,±12,∓2), (4,±10,±3), (4,±22,∓3), (t,±8, 0).

Case IV. {1, ω2, ω3, ω4} = {1, ξ, 1+2ξ−ξ2

4 , 1+ξ+ξ2+ξ3

4 }
and v2(t) ≥ 3.

In this case, g = 4 and I(ξ) = 16, i.e., i = ±28 = 256.
Using similar calculations as above, we have solutions
(t, u, v) to equation F (u, v) = i: (t, u, v) = (8,±2,±1),
(8,±6,∓1), (16,±14,±1), (16,±18,∓1).

For all solutions (u, v) ∈ Z2 to F (u, v) = i,
we solve the system of equations Q1(x1, y1, z1) = u,

Q2(x1, y1, z1) = v is solved in (x1, y1, z1) by using similar
calculations and applying the ideas in [Gaál et al. 96]. We
obtain that, in each case the equation Q2(p, q) = k2 · v is
equal to a constant multiple of the equation Q1(p, q) =
k2 · u, where k ∈ Z+ is divisor of certain coefficients.

To give a sense of these calculations we detail two char-
acteristic examples from the previous cases.

Case II. (t, u, v) = (2,±2,±1). Solving equation

Q1(p, q) = 2(p4 + 8p3q + 4p2q2 − 48pq3 + 16q4)

= k2 · u

as a Thue equation, using Kash [Daberkow et al. 97]
for all k with k|16, we find the solutions (p, q) ∈ Z2

listed in Table 1. The table also contains the corre-
sponding (x1, y1, z1) ∈ Z3 and (x0, y0, z0) ∈ Z3. Note

that in the present case, there are always suitable solu-
tions (x0, y0, z0) to I(x0, y0, z0) = ±1 that correspond to
(x1, y1, z1).

Among the possible solutions (t, u, v) to F (u, v) = i,
listed in Cases I–IV, there is a special one, namely, in
Case III, (u, v) = (±8, 0) is a solution for any t ∈ Z.

Case III. (t, u, v) = (t,±8, 0). In this case the equation

Q1(p, q) = 64(p4 − tp3q − 6p2q2 + tpq3 + q4)

= k2 · u,
(3–1)

(where k ∈ Z with k|8) is a parametric Thue equation
in (p, q) ∈ Z2. If k2 = 1 or k2 = 4, then there are no
solutions (p, q) to Equation (3–1).

If k2 = 16, then we have to solve the equation

p4 − tp3q − 6p2q2 + tpq3 + q4 = ±2, (3–2)

and if k2 = 64, then we have to solve the equation

p4 − tp3q − 6p2q2 + tpq3 + q4 = ±8. (3–3)

If we consider Equations (3–2) and (3–3) modulo 2 (and
repeat the process a few times), then it is easily seen that
these equations have no solutions in (p, q).
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et de discriminant donné, III.” Publ. Math. (Debrecen)
23 (1976), 141–165.

[Kim and Kim 03] H. K. Kim and J. S. Kim. “Computation
of the Different of the Simplest Quartic Fields.” Manu-
script, 2003.
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