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This paper revisits the Taylor method for the numerical integra-
tion of initial value problems of Ordinary Differential Equations
(ODEs). The main goal is to present a computer program that
outputs a specific numerical integrator for a given set of ODEs.
The generated code includes a function to compute the jet of
derivatives of the solution up to a given order plus adaptive se-
lection of order and step size at run time. The package pro-
vides support for several extended precision arithmetics, includ-
ing user-defined types. The paper discusses the performance of
the resulting integrator in some examples, showing that it is very
competitive in many situations. This is especially true for inte-
grations that require extended precision arithmetic. The main
drawback is that the Taylor method is an explicit method, so it
has all the limitations of these kind of schemes. For instance, it
is not suitable for stiff systems.

1. INTRODUCTION

In this paper, we revisit one of the oldest numerical proce-
dures for the numerical integration of ODEs—the Taylor
method. Consider the initial value problem{

x′(t) = f(t, x(t)),
x(a) = x0,

(1–1)

where, for simplicity, we assume that f is analytic on
its domain of definition and that x(t) is defined for t ∈
[a, b]. We are interested in approximating the function
x(t) on [a, b]. The idea of the Taylor method is very
simple: given the initial condition x(t0) = x0 (t0 = a),
the value x(t0 + h) is approximated by the Taylor series
of the solution x(t) at t = t0,

x0 = x(t = 0),

xm+1 = xm + x′(tm)h +
x′′(tm)

2!
h2 + · · ·

+
x(p)(tm)

p!
hp, m = 0, . . . ,M − 1,

(1–2)
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where tm = a + mh and h = (b − a)/M . We refer to
[Hairer et al. 00] for a discussion of the basic properties of
the method. For practical implementation one needs an
effective method to compute the values of the derivatives
x(j)(tm). One procedure to obtain them is to differentiate
the first equation in (1–1) with respect to t, at the point
t = tm. Hence,

x′(tm) =f(tm, x(tm)),

x′′(tm) =ft(tm, x(tm)) + fx(tm, x(tm))x′(tm),

and so on. Therefore, the first step in applying this
method is, for a given f , to compute these derivatives
up to a suitable order. Then, for each step of the in-
tegration (see (1–2)), we have to evaluate these expres-
sions to obtain the coefficients of the power series of x(t)
at t = tm. Usually these expressions are very cumber-
some, so it takes a significant amount of time to evaluate
them numerically. This, combined with the initial effort
to compute the derivatives of f , is the main drawback of
this approach to the Taylor method.

This difficulty can be overcome by means of the
so-called automatic differentiation [Beda et al. 59,
Wengert 64, Moore 66, Rall 81, Griewank and Corliss 91,
Bischof et al. 92, Berz et al. 96, Griewank 00]. This is
a procedure that allows for fast evaluation of the deriv-
atives of a given function, up to arbitrarily high orders.
As far as we know, these ideas were first used in celestial
mechanics problems [Steffensen 56, Steffensen 57] (see
also [Broucke 71]). We give a brief account of automatic
differentiation in Section 2

A drawback of this method is that f has to belong
to a special class. Fortunately, this class is large enough
to contain the functions that appear in many applica-
tions. We also note that the algorithm that computes
these derivatives by automatic differentiation has to be
coded separately for different systems. This coding can
be either done by a human (see, for instance, [Broucke 71]
for an example with the N -body problem) or by another
program (see [Beda et al. 59, Gibbons 60, Chang and
Corliss 94] for general-purpose computer programs). An
alternative procedure for applying the Taylor method can
be found in [Savageau and Voit 87] and [Irvine and Sav-
ageau 90].

The main goal of this paper is to present software that,
given a function f (belonging to a suitable class), gener-
ates code to compute the jet of derivatives of the solution
of x′ = f(t, x) at a given point (tm, xm). The order of the
jet is given at run time. The software also generates code

to compute, adaptively, an order and step size and to
add the resulting Taylor series to predict a new point for
the solution. Therefore, the output is a complete time-
stepper with automatic order and step size control. The
generated code is ANSI C, but we also provide a Fortran
77 wrapper for the main call to the time-stepper.

A software package that performs a similar task is
ATOMFT, that can be freely downloaded from the
Internet at http://www.eng.mu.edu/corlissg/FtpStuff/
Atom3 11/. ATOMFT is written in Fortran 77, it reads
Fortran-like statements of the system of ODEs and writes
a Fortran 77 program that numerically solves the system
using Taylor series.

One of the nicest characteristics of the Taylor method
is the possibility of using interval arithmetic to derive
bounds for the total error of the numerical integration.
These ideas are used in ATOMFT to compute a step
size that guarantees a prescribed accuracy, but using the
standard floating point of the computer instead of inter-
val arithmetic. We note that most of the algorithms for
step size control are based on the asymptotic behavior of
the error, and they do not provide true bounds for the
truncation error of the method. On the other hand, the
derivation of the time-step in ATOMFT is a substantial
part of the computing time, while an estimation based
on the asymptotic behavior of the error is usually much
faster.

Here, we implement a step size control based on an
asympotic estimate of the error. The main reason for this
selection is that we want to compete against the “usual”
numerical integrators—which use similar step size control
techniques. Moreover, as we will see later, our software
allows the user to plug in a user-defined step size control,
so it is not difficult to implement different strategies.

For an efficient numerical integration, we need some
knowledge of the order p ∈ N up to which the deriva-
tives have to be computed and an estimate of the step
size h, in order to have a truncation error below a given
threshold ε. Since we have to select the value of two pa-
rameters (p and h), we can specify a second condition
besides the size of the truncation error. Here, we chose
to minimize the number of operations needed to advance
the independent variable t in one unit [Simó 01]. We
also code the algorithms to do these tasks so that the
output of the program is, in fact, a complete numerical
integrator—with automatic order and step size control—
for the initial value problem (1–1).

We have tested this Taylor integrator against some
well-known integration methods. The results show that
the Taylor method to integrate is very competitive with



Jorba and Zou: A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods 101

the standard double precision arithmetic of the com-
puter. However, the main motivation for writing this
software is to address the need of highly accurate compu-
tations in some problems of dynamical systems and me-
chanics (see, for instance, [Mart́ınez and Simó 99, Simó
and Valls 01, Simó 02]). Methods whose order is not very
high (less than, say, 16) can be extremely slow for com-
putations requiring extended precision arithmetic. This
is one of the strong points of the software presented here.
Note that the Taylor method does not need to reduce the
step size to increase accuracy; it can increase the order
(see Section 3.3). As we will see, this allows a great re-
duction in the total number of arithmetic operations per-
formed during numerical integration. Another advantage
of our package is that it does not require expert knowl-
edge of programming. All it needs for input is a system
of ODEs in a natural mathematical form.

As with any explicit scheme, the Taylor method is
not suitable for stiff equations, because, in this case, the
errors can grow too fast. However, there are modifi-
cations of the Taylor method to deal with these situa-
tions [Barton 80, Jalbert and Zahar 85, Kirlinger and
Corliss 92, Corliss et al. 97]. These modifications are not
considered in our software.

In this paper, we present the main details of our im-
plementation of the software. We tried to produce an
efficient package, in the sense that the produced Tay-
lor integrator be as fast as possible. Moreover, we also
included support for multiple precision arithmetic. We
conducted several tests to compare the efficiency and ac-
curacy of the generated Taylor routine against other nu-
merical integrators.

There are several papers that focus on computer im-
plementations of the Taylor method in different con-
texts (see, for instance, [Barton et al. 70, Corliss and
Chang 82, Chang and Corliss 94, Hoefkens 01]). A good
survey is [Nedialkov et al. 99] (see also [Corliss 95]).

The package has been released under the GNU Public
License, so anybody with Internet access is free to use
and to redistribute it. To obtain a copy, see [Zou and
Jorba 01].

We note that our version of the package is written
to run under the GNU/Linux operating system. We do
not expect major problems running it under any version
of Unix, but we do not plan to write ports for other
operating systems.

The paper is split as follows: Section 2 contains a
survey about automatic differentiation, Section 3 is de-
voted to the selection of step size and truncation degree,

Section 4 gives some details about the software, and Sec-
tion 5 provides some tests and comparisons.

2. A SHORT SUMMARY ON AUTOMATIC
DIFFERENTIATION

Before starting with the discussion of the package, we will
summarize the main rules of automatic differentiation.

Automatic differentiation is a recursive procedure that
computes the value of the derivatives of certain functions
at a given point (see [Moore 66, Rall 81]). The functions
considered are those that can be obtained by sum, prod-
uct, quotient, and composition of elementary functions
(elementary functions include polynomials, trigonomet-
ric functions, real powers, exponentials, and logarithms).

2.1 Rules of Automatic Differentiation

To simplify the discussion, let us introduce the follow-
ing notation: if a : t ∈ I ⊂ R �→ R denotes a smooth
function, we call its normalized nth derivative

a[n](t) =
1
n!

a(n)(t), (2–1)

where a(n)(t) denotes the nth derivative of a with respect
to t. In what follows, we focus on the computation of the
values a[n](t).

Assume now that a(t) = F (b(t), c(t)) and that we
know the values b[j](t) and c[j](t), j = 0, . . . , n, for a
given t. The next proposition gives the nth derivative of
a at t for some functions F .

Proposition 2.1. If the functions b and c are of class Cn,
and α ∈ R \ {0}, we have:

(1) If a(t) = b(t) ± c(t), then

a[n](t) = b[n](t) ± c[n](t).

(2) If a(t) = b(t)c(t), then

a[n](t) =
n∑

j=0

b[n−j](t)c[j](t).

(3) If a(t) =
b(t)
c(t)

, then

a[n](t) =
1

c[0](t)


b[n](t) −

n∑
j=1

c[j](t)a[n−j](t)


.

(4) If a(t) = b(t)α, then

a[n](t) =
1

nb[0](t)

n−1∑
j=0

(nα − j(α + 1)) b[n−j](t)a[j](t).
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(5) If a(t) = eb(t), then

a[n](t) =
1
n

n−1∑
j=0

(n − j) a[j](t)b[n−j](t).

(6) If a(t) = ln b(t), then a[n](t) =

1
b[0](t)


b[n](t) − 1

n

n−1∑
j=1

(n − j)b[j](t)a[n−j](t)


.

(7) If a(t) = cos c(t) and b(t) = sin c(t), then

a[n](t) = − 1
n

n∑
j=1

jb[n−j](t)c[j](t),

b[n](t) =
1
n

n∑
j=1

ja[n−j](t)c[j](t).

Proof: Item (1) is obvious. Item (2) follows from Leib-
niz’s formula:

a[n](t) =
1
n!

a(n)(t)

=
1
n!

n∑
j=0

(
n

j

)
b(n−j)(t)c(j)(t)

=
n∑

j=0

b[n−j](t)c[j](t).

To prove Item (3), apply Item (2) to a(t)c(t) = b(t).
For Item (4), take logarithms and derivatives to ob-
tain a′(t)b(t) = αa(t)b′(t) and then use Item (2). To
prove Item (5), take logarithms and derivatives to obtain
a′(t) = a(t)b′(t) and use Item (2). For Item (6), take
derivatives to obtain a′(t)b(t) = b′(t) and use Item (2).
Finally, for Item (7), take derivatives to obtain a′(t) =
−b(t)c′(t) and b′(t) = a(t)c′(t), and then use Item (2).

Remark 2.2. It is possible to derive similar formulas for
other functions, such as inverse trigonometric functions.

Corollary 2.3. The number of arithmetic operations
needed to evaluate the normalized derivatives of a func-
tion up to order n is O(n2).

Although these methods only allow for the derivation
of a reduced subset of the set of analytic functions, we
note that they cover the situations found in many appli-
cations.

2.2 An Example: The Van der Pol Equation

These rules can be applied recursively so that we can
obtain recursive formulas for the derivatives of a function

described by combinations of these basic functions. As
an example, we apply them to the Van der Pol equation,

x′ = y
y′ = (1 − x2)y − x

}
. (2–2)

To this end we decompose the right-hand side of these
equations in a sequence of simple operations:

u1 = x
u2 = y
u3 = u1u1

u4 = 1 − u3

u5 = u4u2

u6 = u5 − u1

x′ = u2

y′ = u6




. (2–3)

Then, we apply the formulas given in Proposition 2.1
(Items (1) and (2)) to each of the equations in (2–3) to
derive recursive formulas for u

[n]
j , j = 1, . . . , 6,

u
[n]
1 (t) = x[n](t),

u
[n]
2 (t) = y[n](t),

u
[n]
3 (t) =

n∑
i=0

u
[n−i]
1 (t)u[i]

1 (t),

u
[n]
4 (t) = −u

[n]
3 (t), n > 0,

u
[n]
5 (t) =

n∑
i=0

u
[n−i]
4 (t)u[i]

2 (t),

u
[n]
6 (t) = u

[n]
5 (t) − u

[n]
1 (t),

x[n+1](t) =
1

n + 1
u

[n]
2 (t),

y[n+1](t) =
1

n + 1
u

[n]
6 (t).

The factor 1
n+1 in the last two formulas comes from the

definition given in Equation (2–1). Then, we apply, re-
cursively, these formulas for n = 0, 1, . . ., up to a suitable
degree p, to obtain the jet of normalized derivatives for
the solution at a given point of the ODE. Note that it is
not necessary to select the value of p in advance.

Three of the tasks of the software we present are to
read the system of ODEs specified as in (2–2), to decom-
pose it into a sequence of basic operations, and to apply
the formulas in Proposition 2.1 to this decomposition.
This results in an ANSI C routine that, given an initial
condition x0 and a degree p, returns the jet of normalized
derivatives of the solution at the pont x0 up to degree p.

3. DEGREE AND STEP SIZE CONTROL

The power expansion of the solution x(t) at t = tm will
have very different radii of convergence for different tm,
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and an efficient integration algorithm must take this into
account. This means that, at each step (i.e., for each m),
we have to compute suitable values for the order p = pm

and the step size h = hm.
Since two parameters (order and step size) are needed

to achieve a given level of accuracy, we also try to min-
imize the total number of arithmetic operations to go
from t = a to t = b, so that the resulting method is as
fast as possible.

3.1 On the Optimal Selections

Let us denote by {x[j]
m (tm)}j the jet of normalized deriva-

tives at tm of the solution of (1–1) that satisfies xm(tm) =
xm. Then, if h = t − tn is small enough, we have

xm(t) =
∞∑

j=0

x[j]
m (tm)hj .

Therefore, we want to select a sufficiently small value hm

and a sufficiently large value pm such that the values

tm+1 ≡ tm + hm, xm+1 ≡
pm∑
j=0

x[j]
m (tm)hj

m,

satisfy
‖xm(tm+1) − xm+1‖ ≤ ε.

On the other hand, to minimize the global number of op-
erations of the numerical integration we want to choose a
step size hm as large as possible and an order pm as small
as possible. To determine such values, we need some as-
sumptions about the analytical properties of the solution
x(t). The following result can be found in [Simó 01].

Proposition 3.1. Assume that the function z �→ x(tm + z)
is analytic on a disk of radius ρm. Let Am be a positive
constant such that

|x[j]
m | ≤ Am

ρj
m

, ∀ j ∈ N. (3–1)

Then, if the required accuracy ε tends to 0, the values of
hm and pm that give the required accuracy and minimize
the global number of operations tend to

hm =
ρm

e2
and pm = −1

2
ln
(

ε

Am

)
− 1. (3–2)

Remark 3.2. It is important to note that the values in (3–
2) are optimal only when the bound in (3–1) cannot be
improved. If the value Am can be reduced—or if x(t) is
an entire function—the previous values are not optimal,

in the sense that a larger hm and/or a smaller pm could
still deliver the required accuracy.

Remark 3.3. Note that the optimal step size does not
depend on the level of accuracy. The optimal order is,
in fact, the order that guarantees the required precision
once the step size has been selected.

There are strategies to use step sizes that are larger
than the radius of convergence of the series (see [Corliss
and Chang 82]), but they only work for some singularities
of x(t) and require some computational effort (although
this effort can pay off when the solution is close enough to
one of the considered singularities). As mentioned before,
we implemented a more straightforward algorithm based
on Proposition 3.1.

3.2 Estimations of Order and Step Size

The main drawback of Proposition 3.1 is that it requires
information that we cannot obtain easily, like the radius
of convergence of the Taylor series or the value Am. In
this section we first describe, schematically, the numerical
implementation and then we justify it.

Let us denote by εa and εr the absolute and relative
tolerances for error. If εr‖xm‖∞ ≤ εa we try to control
the absolute error using εa; otherwise we try to control
the relative error using εr. Note that, in any case, we are
controlling the absolute error by max{εa, εr‖xm‖∞}.

First, we compute the order pm for the Taylor method
as follows: we define εm as

εm =
{

εa if εr‖xm‖∞ ≤ εa,
εr otherwise, (3–3)

and then,

pm =
⌈
−1

2
ln εm + 1

⌉
, (3–4)

where 	·
 stands for the ceiling function. If we compare
this with Proposition 3.1, we see that it is as if the value
Am is 1 and that pm is two units larger. This is rigorously
justified in Proposition 3.4.

To derive the step size, we distinguish the same two
cases as before: if εr‖xm‖∞ ≤ εa, we define

ρ(j)
m =

(
1

‖x[j]
m ‖∞

) 1
j

, 1 ≤ j ≤ p, (3–5)

and, if εr‖xm‖∞ > εa,

ρ(j)
m =

(
‖xm‖∞
‖x[j]

m ‖∞

) 1
j

, 1 ≤ j ≤ p. (3–6)
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In both cases, we estimate that the radius of convergence
is the minimum of the last two terms,

ρm = min
{

ρ(p−1)
m , ρ(p)

m

}
, (3–7)

and the estimated time-step is

hm =
ρm

e2
. (3–8)

The next proposition bounds the truncation error cor-
responding to order pm and step hm. This is especially
important in the general case Am �= 1. Using the pre-
vious notations and definitions, we prove the following
proposition.

Proposition 3.4.

(1) If εr‖xm‖∞ ≤ εa, we have

‖x[pm−1]
m hpm−1

m ‖∞ ≤ εa, ‖x[pm]
m hpm

m ‖∞ ≤ εa

e2
.

(2) If εr‖xm‖∞ > εa, we have

‖x[pm−1]
m hpm−1

m ‖∞
‖xm‖∞ ≤ εr,

‖x[pm]
m hpm

m ‖∞
‖xm‖∞ ≤ εr

e2
.

Proof: From Equation (3–4), it follows that e2(pm−1) ≥
ε−1
m .

(1) This is equivalent to using Equation (3–5) in Equa-
tion (3–7). Therefore,

‖x[pm−1]
m hpm−1

m ‖∞ ≤ ‖x[pm−1]
m ρpm−1

m ‖∞
e2(pm−1)

≤ εa.

A similar reasoning shows the second inequality.

(2) In this case we use Equation (3–6) in Equation (3–7).
So,

‖x[pm−1]
m hpm−1

m ‖∞
‖xm‖∞ ≤ ‖x[pm−1]

m ρpm−1
m ‖∞

‖xm‖∞e2(pm−1)
≤ εr,

and the the second inequality follows easily.

Remark 3.5. Note that the term of order pm − 1 in
the Taylor series has a contribution of order εm while
the term of order pm (the last term to be considered)
has a contribution of order εm/e2. This shows that the
proposed strategy is similar to the more straightforward
method of looking for an hm such that the last terms in
the series are of the order of the error wanted.

Remark 3.6. Note that, although the formula for order
uses Am = 1, its real value is taken into account in For-
mulas (3–5) and (3–6). This is the reason why Proposi-
tion 3.4 holds when Am �= 1.

If the solution is entire—therefore, the bound (3–1)
is far from optimal—then the computed values for pm

and hm still satisfy the accuracy requirements without
needing to be the ones that minimize the global number
of operations (see Remark 3.2).

These results have been used to implement two step
size controls.

3.2.1 First step size control. This is equivalent to us-
ing Formulas (3–3) and (3–4) for the order and (3–5),
(3–6), and (3–7) for the radius of convergence. Since
these calculations are based on asymptotic estimates, we
add a safety factor to Formula (3–8) to derive the step
size:

hm =
ρm

e2
exp

(
− 0.7

pm − 1

)
.

For instance, for pm = 8 the safety factor is 0.90 and for
pm = 16, is 0.95. These are typical safety factors used in
many step size controls.

3.2.2 Second step size control. This is a correction of
the previous method that avoids overly large step sizes
that could lead to cancellations when adding the Taylor
series. A natural solution is to look for a step size such
that the resulting series has all the terms decreasing in
modulus. However, if the solution x(t) has some inter-
mediate Taylor coefficients that are very small, this tech-
nique could lead to very drastic (and unnecessary) step
reductions. Therefore, we have used a weaker criterion:
let h̄m be the step size control obtained in Section 3.2.1
and let us define z as

z =
{

1 if εr‖xm‖∞ ≤ εa,
‖xm‖∞ otherwise.

Let hm ≤ h̄m be the largest value such that

‖x[j]
m ‖∞hj

m ≤ z, j = 1, . . . , p.

We note that, in many cases, it is enough to take hm =
h̄m to meet this condition.

3.3 High Accuracy Computations

An important property of high order Taylor integrators
is their suitability for computations requiring high accu-
racy. For instance, assume that we are solving an IVP
like (1–1) and that, at a given step, we use a step size
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h 
 1 and an order p to obtain a local error ε 
 1. The
number of operations needed to compute all the deriva-
tives is O(p2) (see Corollary 2.3). Since the number of
operations needed to sum the power series is only O(p),
the total operation count for a single step of the Taylor
method is still O(p2). Hence, if we want to increase the
accuracy to, say, ε� (� ≥ 2) we can simply increase the
order of the Taylor method to �p; so the number of oper-
ations is increased by a factor �2. Note that, if we want
to achieve the same level of accuracy not by increasing
the order but by reducing the step size h, we have to
use a step size of h�. This means that we have to use
1/h�−1 steps (each of size h�) to compute the orbit af-
ter h units of time; so the total number of operations is
now increased by a factor of 1/h�−1, usually much larger
than �2.

Hence, it requires much less work to increase the or-
der than to reduce the step size. (This observation was
already implicit in Proposition 3.1, where it was shown
that the optimal step size is independent of the level of
accuracy required.) Therefore, fixed order methods are
strongly penalized for high accuracies, compared with
varying order methods. For this reason, if the required
accuracy is high enough, the Taylor method—with vary-
ing order—is one of the best options.

4. SOFTWARE IMPLEMENTATION

Taylor is a translator, it reads a system of ODEs, in its
natural form, from an input file and generates a set of
C routines that implements the Taylor method for the
given system. Taylor supports a tiny language based on
the following statements.

id = expr;

diff(v, t) = expr;

Here t is the independent variable and v is a state vari-
able. We use the first statement to define either a con-
stant, or a shorthand notation for a complex expression
used in the differential equations. It is normally used to
help the translator factor out common expressions, so it
may generate smaller and faster codes. Variable names
defined this way cannot be redefined, i.e., the symbols
appearing on the left hand side must be unique. We use
the second statement to define a differential equation; if
the system of ODEs is autonomous, we can simply use
v’ = expr; instead. The order that statements are in-
put is not important.

Expressions are generated from numbers, the indepen-
dent variable, the state variables, external variables, and

using elementary functions: sin, cos, tan, arctan, sinh,
cosh, tanh, roots (

√
), exp, and log, the four arith-

metic operators, and function composition. A branching
construct if(bexpr) {expr} else {expr} is also sup-
ported, here, bexpr is a boolean expression as defined in
the C programming language.

4.1 The Parser

Taylor is written using compiler design tools Lex and
Yacc. While these tools are standard in the software en-
gineering world, their use in scientific computing is much
less visible. In the following, we discuss the implementa-
tion of Taylor and give a brief account of these tools. A
detailed exposition can be found in [Aho et al. 86].

Taylor works in several phases with each phase pass-
ing its output to the next phase. The first phase is the
lexical phase. Here characters from the input stream are
grouped into lexical units, called tokens, by a scanner
(lexical anaylizer). Regular expressions are used to de-
fine patterns that will be recognized by the scanner. The
scanner is implemented as a finite state automata. Our
scanner is generated by Lex, a scanner generator devel-
oped by M. E. Lesk and E. Schmidt of AT&T Bell Labor-
tories. Lex produces a C procedure yylex() that the
parser calls repeatedly in order to fetch the next token
from the input stream. The Lex input file contains three
sections separated by %%. An excerpt of our input file
looks like the following.

/* 1. definitions/declarations */

%{

#include "Header.h"

#include "y.tab.h"

extern Node current_id;

%}

%%

/* 2. regular expressions and actions */

[ \t\n] {

/* white spaces */

;

}

diff {

/* keyword */

return(DIFF);

}

[A-Za-z][A-Za-z0-9_]* {

/* identifier */

current_id = install_id(yytext);

return(ID);

}

[0-9]+ {

/* integer const*/

yylval.ntype = build_int(yytext);

return(INTCON);

}

"+" {

/* sum operator */

yylval.code = PLUS_EXPR;
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return(’+’);

}

%%

/* 3. Supporting C functions */

The first section contains definitions that will be used
by the actions in the second section and/or supporting
routines in the third section. This section must be brack-
eted with %{ and %} markers and is copied to the Lex
output without modification. In our example, the vari-
able current_id is used in an action rule, so we declare
it here. Header file Header.h contains type definitions
and forward declarations; y.tab.h is generated by Yacc,
it contains definitions of symbolic token names DIFF, ID,
and INTCON.

The second section contains regular expressions for
each token that will be recognized, and their associated
actions. In our example, white spaces (blanks, tabs, and
newlines) are ignored. Strings of one or more digits are
recognized and installed as integer constants, and are re-
turned to the parser as a symbolic name INTCON. The
reserved word diff is returned to the parser as DIFF. Al-
phanumeric identifiers are installed in the symbol table
and returned as ID. The literal ‘+’ is returned as a sum
operator PLUS_EXPR.

The third section is optional. It normally contains C
code used in the action rules in standalone Lex applica-
tions. For our application, the supporting functions are
implemented in separate files.

Lex input is compiled with the unix command
lex file.l. This command generates a file lex.yy.c
which defines the C function yylex().

The next phase is syntax analysis. Here a parser
groups tokens into syntactical units and verifies that the
input is syntactically valid according to a set of context-
free grammar rules. The output of the parser is the parse
tree, a graphical representation of the input. Our parser
is generated by Yacc, a parser generator developed by
S. C. Johnson at AT&T Bell Laboratories in the early
1970s. The Yacc parser is implemented as a pushdown
automata with two stacks. The Yacc input file consists of
three sections separated by %% markers. The first section
contains token declarations and specifies the grammar
start symbol. This section may specify the precedence
and associativity of operators. In the event that the stack
type is a union, the entire collection of possible data types
must be declared in this section using the %union direc-
tive; and the data type for nonterminal symbols must be
declared using the %type directive. C code may also be
included in this section bracketed by %{ and %}. Here is
part of the first section of our Yacc input file.

%{

#include <stdio.h>

#include "Header.h"

extern int yylex();

Node current_id;

%}

%start program

%union { Node ntype; enum node_code code; }

%token ID INTCON FLOATCON DIFF

%nonassoc IF ELSE

%left <code> ’+’ ’-’ ’*’ ’/’ OR AND EQ NEQ LE GE LT GT

%right <code> ’^’ UNARY

%type <ntype> ID INTCON FLOATCON

%type <ntype> idexpr id term expr bexpr decl_id

declare_one declrs

The second section of the input file contains context-
free grammar rules in Backus Naur Form, separated by
“;”. The left-hand side of a production is entered left-
justified, followed by a “:”, then followed by the right-
hand side of the production. Actions associated with a
rule are then entered in braces. A simplified version of
our grammer looks like the following.

program:

/* empty */

| stmts ’;’

;

stmts:

stmt

| stmts ’;’ stmt

;

stmt:

derivative

| define

;

derivative:

id ’\’’ ’=’ expr

{ record_one_equation($1, NULL, $4);}

| DIFF ’(’ id ’,’ id ’)’ ’=’ expr

{ record_one_equation($3, $5, $8);}

;

define:

id ’=’ expr

{ define_one_variable($1, $3);}

;

id:

ID

{ $$ = current_id; }

;

expr:

term

| expr ’^’ expr

{ $$ = build_op(EXP_EXPR,$1,$3); }

| expr ’*’ expr

{ $$ = build_op(MULT_EXPR,$1,$3); }

| expr ’/’ expr

{ $$ = build_op(DIV_EXPR,$1,$3); }

| expr ’+’ expr

{ $$ = build_op(PLUS_EXPR,$1,$3); }

| expr ’-’ expr

{ $$ = build_op(MINUS_EXPR,$1,$3); }

| ’-’ expr %prec UNARY

{ $$ = build_op(NEGATE_EXPR, $2, NULL); }

;

term:

ID

{ $$ = current_id;}

| INTCON
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| FLOATCON

| ’(’ expr ’)’

{ $$ = $2; }

| idexpr ’(’ expr ’)’

{ $$ = build_op(CALL_EXPR, $1, $3); }

;

The third section of the Yacc input file contains C code.
As in the case of Lex, this section is optional. Supporting
C functions are normally defined in separate files.

The Yacc input file is compiled using the command
yacc -vd file.y. This command generates two files,
y.tab.h and y.tab.c. The first file contains the list
of tokens included in the file.y that defines the scan-
ner. The second file contains the C code for the parser
yyparse(). This file has to be compiled and linked with
lex.yy.c and other supporting files.

To illustrate the parsing process, let’s look at a con-
crete example:

x′ = x(1 − x2 − y2) + y
y′ = y(1 − x2 − y2) − x

}
. (4–1)

The input file to taylor contains just two lines.
x’ = x*(1-x^2-y^2) + y;

y’ = y*(1-x^2-y^2) - x;

The parsing process starts with a call to yyparse(),
the parser. The parser repeatedly calls the scanner
yylex() to fetch tokens from the input stream and to
construct the parse tree implictly. As the parser runs, it
builds an internal representation of the input structure.
The internal representation is based on the right-hand
side of the grammer rules. When a right-hand side is
recognized, it is reduced to the corresponding left-hand
side. When the entire input is reduced to the start sym-
bol of the grammer, the parsing is complete and the input
is accepted.

In our example, the scanner breaks the input into the
following list of tokens,

x ’ = x * ( 1 - x ^ 2 - y ^ 2 ) + y ;

y ’ = x * ( 1 - x ^ 2 - y ^ 2 ) - x ;

and the parser records two equations when the parser
returns. A graphical representation of the parsed input
is shown in Figure 1.

The next phase is optimization. At this stage, the
parse tree is analyzed and modified using semantics that
preserve transformations. The crucial tasks performed at
this phase are:

• Identify and mark constant expressions. Constant
expressions are trivial to handle when computing
high order derivatives. In our example, terminal
nodes marked ‘1’ and ‘2’ are all marked as constants.
Note however, we do not fold constants because of
the loss of precision when the resulting code is linked
with multi-precision libraries.
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FIGURE 1. Parse tree for Equation (4–1).

• Eliminate common subexpressions. Here the task of
searching for common subexpressions is done almost
entirely at the “lexical level.” Algebraic simplifica-
tions are not implemented except for the trivial com-
mutative substituations ab = ba, a + b = b + a. For
example, the expressions 5x2 + 3 and 3 + 5x2 are
considered the same, while 2x2 + 3, 2x2 + 2 + 1, and
x2 +x2 +3 are considered different. At this step, we
traverse the right branch of the parse tree for each
differential equation and annotate nodes by their
defining subexpressions. For nonterminal nodes,
temporary variables are introduced with their defin-
ing expressions recorded as their attributes. The
pool of temporary variables are then compared pair-
wisely using their defining expressions. If two vari-
ables are found to be the same, one is eliminated.
This process continues until no redundant variables
are found. For our example, the following new tem-
porary variables are introduced.

v01=x^2; v02=1-v01; v03=y^2; v04=v02-v03;

v05=v04*x; v06=v05+y; v07=x^2; v08=1-v07;

v09=y^2; v10=v08-v09; v11=v10*y; v12=v11-x;

It is then discovered that v01 and v07 are equivalent,
hence v07 is eliminated. All reference to variable
v07 is replaced by v01. After this replacement, the
search for redundant variables starts over again. It
then finds the following variables are equivalent: v02
and v08, v03 and v09, v4 and v10, in that order. In
the end, four temporary variables are eliminated.

• Introduce auxiliary variables for some elementary
functions. For example, a new variable v = cos(x) is
added to the symbol table if sin(x) appears on the
parse tree.

• Build dependency graphs among all the variables
and order the variables according to the dependency
graph. In our example, the proper order of variables
is: x,y,v01,v02,v03,v04,v05,v06,v11,v12.

The following user controlled “optimization” is also per-
formed at this stage.
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• Expand power functions as series of products. This
procedure is controlled by the -expandpower com-
mand line switch. For example, y = x7 is replaced
by u = x ∗ x, v = u ∗ u, w = u ∗ v, and y = x ∗ w if
taylor is invoked with the option -expandpower 7.
One reason to expand a power function using prod-
ucts is to avoid the singularity of Item 4 in Proposi-
tion 2.1 at the origin.

The output of this phase is an ordered list of “three vari-
able code” like that in Equation (2–3).

The final phase is code generation. We apply formulas
from Section 2 to all the “three variable code” produced
by the optimizer, in order to generate procedures that
compute Taylor coefficients sequentially. In our example,
the list of “three variable codes” are:

v01=x^2; v02=1-v01; v03=y^2; v04=v02-v03;

v05=v04*x; v06=v05+y; v11=v04*y; v12=v11-x;

The original ODE system becomes x’=v06; y’=v12;.

4.2 Extended arithmetic

When taylor generates the code for the jet of deriv-
atives and/or the step size control, it declares all the
real variables with a special type called MY FLOAT, and
each mathematical operation is substituted by a suitable
macro call (the name of these macros is independent from
the arithmetic).

The definition of the type MY FLOAT and the body of
the macros is contained in a header file. This file is pro-
duced by invoking taylor with the flag -header plus a
flag specifying the arithmetic wanted. For instance, to
multiply two real numbers (z = xy), taylor outputs the
code

MultiplyMyFloatA(z,x,y);

If we call taylor with the -header flag and without
specifying the desired arithmetic, it assumes we want the
standard double precision and it generates a header file
with the lines,

typedef double MY_FLOAT;

to define MY FLOAT as double. We also get the line

/* multiplication r=a*b */

#define MultiplyMyFloatA(r,a,b) (r=(a)*(b))

but, if we use the flag -gmp to ask for the GNU multiple
precision arithmetic (see below), we get

#define MY_FLOAT mpf_t

and

/* multiplication r=a*b */

#define MultiplyMyFloatA(r,a,b) mpf_mul(r,(a), (b))

Here, mpf mul is the gmp function that multiplies the two
numbers a and b and stores the result in r. Then, the C

preprocessor substitutes the macros by the corresponding
calls to the arithmetic library.

The package includes support for several extended pre-
cision arithmetics: doubledouble [Briggs 02], dd real,
dq real [Bailey et al. 05], and gmp (the GNU Multiple
Precision Library) [GMP 05]. Although these libraries
do not contain implementations of trigonometric func-
tions and other transcendental functions, we note that
they can be defined by means of differential equations.
Therefore, if an ODE includes some of these functions,
we can enlarge the system of ODEs by adding the differ-
ential equation for the special function and integrating
the whole system.

None of these floating point libraries is included in our
package. They can be downloaded from the internet and
are only needed if extended precision is required.

Note that, to use an arithmetic different from the ones
provided here we only have to modify the header file.
For more details, see the manual that comes with the
software.

4.3 Using the Package

Here we describe briefly how to use the taylor program
in a concrete example, the Restricted Three-Body Prob-
lem (RTBP for short). This is a well-known problem in
celestial mechanics, that boils down to describeing the
solutions of the differential equations

ẋ = px + y,
ẏ = py − x,
ż = pz,

ṗx = py − 1−µ
r3

P S
(x − µ) − µ

r3
P J

(x − µ + 1),

ṗy = −px −
(

1−µ
r3

P S
+ µ

r3
P J

)
y,

ṗz = −
(

1−µ
r3

P S
+ µ

r3
P J

)
z,

(4–2)

where µ is a mass parameter, r2
PS = (x − µ)2 + y2 + z2,

and r2
PJ = (x−µ+1)2+y2+z2. For a more complete de-

scription of the problem see, for instance, [Szebehely 67]
or [Meyer and Hall 92].

An input file for this vector field is shown in Figure 2.
Although its syntax was already explained in Sections
4.1 and 4.2, we briefly describe it as an example. First
of all, anything between /* and */ is ignored, so we can
use them to put comments in the file. Next, we have
some lines that define numerical constants, plus some
with operations using the variables of the system. The
variables of the equation are labeled as x1, x2, and so on,
and the independent variable is labeled as t. Finally, the
last six lines define the differential equations.

With the exception of eliminating common expres-
sions, taylor does not perform any kind of optimization
on the input description of the vector field. If you are
concerned about the efficiency of the code generated by
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t e(x) e(y) e(z) e(px) e(py) e(pz)

0.2401192324190174 0.00 0.00 -1.00 1.00 -1.00 0.00

0.4952158876100076 0.00 1.00 -1.00 0.00 -2.00 -0.50

0.7653659470347371 0.00 1.00 -1.50 0.00 -1.50 1.00

1.0000000000000000 0.00 1.00 -0.50 0.00 -1.50 2.00

TABLE 1. Local relative error for an orbit of the RTBP. The first column denotes the time, and the remaining ones, the
relative error for each coordinate in multiples of the machine precision. See the text for more details.

taylor, you should apply other kinds of optimizations
“by hand” in your input file (for instance, to simplify al-
gebraic expressions in order to minimize the number of
operations).

A second point, upon which we want to comment, is
the use of the exponent −3.0/2 in the expressions. There
are several ways of introducing such an exponent. If we
use −1.5 as the exponent, the program uses the exp and
ln functions to define it (this is true for any real expo-
nent). If we use −3.0/2, we can use the translator’s flag
-sqrt to force the program to use the square root func-
tion instead of the exp and ln functions. Without this
flag, the value −3.0/2 is treated as −1.5.

The input file supports more features than the ones
shown here (such as the use of extern variables to receive
parameters from the user’s programs); for details check
the package documentation.

To produce a numerical integrator for this vector field,
assume that we have the code of Figure 2 in the file
rtbp.in. Then, you can type

taylor -name rtbp -o rtbp.c -step -jet -sqrt rtbp.in

taylor -name rtbp -o taylor.h -header

The first line outputs the file rtbp.c containing the code
for the step size control and the jet of derivatives. The
second line produces the header file needed by rtbp.c;
the user may also want to include it in the calling rou-
tine, since it contains the prototype for the call to the
integrator. There are more options to control the output
of taylor, see the documentation for more details.

/* ODE specification: rtbp */
mu=0.01;
umu=1-mu;
r2=x1*x1+x2*x2+x3*x3;
rps2=r2-2*mu*x1+mu*mu;
rps3i=rps2^(-3./2);
rpj2=r2+2*(1-mu)*x1+(1-mu)*(1-mu);
rpj3i=rpj2^(-3./2);

diff(x1, t)= x4+x2;
diff(x2, t)= x5-x1;
diff(x3, t)= x6;
diff(x4, t)= x5-(x1-mu)*(umu*rps3i)-(x1+umu)*(mu*rpj3i);
diff(x5, t)=-x4-x2*(umu*rps3i+mu*rpj3i);
diff(x6, t)=-x3*(umu*rps3i+mu*rpj3i);

FIGURE 2. Input file for the restricted three-body problem.

5. SOME TESTS AND COMPARISONS

To show the main features of taylor, we selected three
vector fields. In the first example (the RTBP) we per-
formed a detailed study of error propagation, including
comparisons with different floating point arithmetics. In
Section 5.2 we show an example requiring extended preci-
sion arithmetic, and in Section 5.3 we compare the speed
of the Taylor integrator with some common methods. We
will also compare the speed of generation of the jet of
derivatives with ADOL-C, a public domain package for
automatic differentiation.

5.1 The Restricted Three-Body Problem

We started by doing some numerical integrations of the
RTBP (see Section 4.3). It is well-known that the solu-
tions of the equations in (4–2) have a preserved quantity,

H =
1
2
(p2

x + p2
y + p2

z) + ypx − xpy − 1 − µ

rPS
− µ

rPJ
.

This function is known as the Hamiltonian function of the
RTBP, and it plays the role of the system’s mechanical
energy.

For our experiment, we used µ = 0.01 and initial val-
ues x1=-0.45, x2=0.80, x3=0.00, x4=-0.80, x5=-0.45,
and x6=0.58. This setup produces a stable orbit that
seems to lay in a region almost filled up with quasiperi-
odic motions. In particular, the trajectory stays away
from the singularities of the vector field.

5.1.1 Local error. First, we perform a numerical inte-
gration with the standard double precision of the com-
puter, for 1 unit of time, using the error thresholds
εr = εa = 10−16, with the step size algorithm explained
in Section 3.2.2 (in this case, the order of the Taylor ex-
pansion is 20). To check the accuracy, we performed the
same integration with extended arithmetic (GMP), using
the same time-step but with a higher order Taylor series
(typically, two times the degree used in the double pre-
cision integration). To measure the error, we computed
the relative difference between these two approximations.
For instance, for the x coordinate, the operations we im-
plemented were,

e(x) = 1 − x̃

x
, (5–1)
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FIGURE 3. Error of a numerical integration of the RTBP. The horizontal axis denotes the number of intersections with
the Poincaré section z = 0. (a) The first 100 intersections. (b) 10,000 intersections corresponding to a total integration
time of 62837.969279 units. See the text for more details.

where x is the extended precision approximation and x̃
is the double precision result. All of the computations
in (5–1) were done using double precision. Due to the
high level of accuracy, and since we computed the rela-
tive error (in double precision), we recorded the results
as multiples of the machine precision eps. In our case
(an Intel-based computer), eps = 2−52 ≈ 2.22 × 10−16.
Moreover, when evaluating (5–1) (and only for this case)
we forced the compiler to produce code such that the
result of each arithmetic operation is stored in memory,
this way we avoided using the extra precision available
in the registers of the processor.

The results are shown in Table 1: the first column is
the time and the remaining columns are the relative error
for each coordinate, in multiples of eps. The “halved”
factors (0.50, 1.50, etc.) are due to the fact that, due
to the roundoff, the smallest (non-zero) number we can
obtain from the subtraction in (5–1) is 1

2eps.
A heuristic justification for this level of accuracy is

the following. Let us first assume that the Taylor series
has a general term that is decreasing in modulus. Then,
it is well known that the sum of such a series can be
calculated up to machine precision. Moreover, the prop-
agation of the round off error in the recurrences used to
derive the Taylor coefficients x[j] introduces an increas-
ing relative error in them. Note that, this does not imply
that the absolute error of the general term x[j]hj is in-
creasing and, in fact, if h is small enough, this absolute
error is decreasing. Since we are adding a series with a
general term that is decreasing in modulus, we do not
need full accuracy of all the terms to achieve machine
precision (roughly speaking, we only need an accuracy of
a few digits for the last term of the series).

If the series is not decreasing we cannot, in princi-
ple, justify this phenomenon. However, we note that for
h small enough, the series is decreasing from the first
nonzero coefficient on.

5.1.2 Global error. An interesting thing occurs in the
behavior of the error in longer integrations. To examine
this, we performed two tests.

The first test is based on a computation of the local
error for a very long time span. We note that, in such a
test, there is an extra source of error in the time parame-
terization of the orbit. Even if we force the same time-
step in both integrations, the different level of precision
introduces an extra time-shift that adds a small error to
the comparison. For this reason, during the integration,
we computed the sequence of intersections of the orbit
with z = 0 (the initial condition is already given in this
section). Then, for each intersection, we computed the
sup norm of the difference between the double and ex-
tended arithmetic results to obtain the graphic shown in
Figure 3. In this case, we followed a quasiperiodic orbit in
a region that is almost completely filled by quasiperiodic
orbits, each with their own frequencies. This implies that
two neighboring orbits should separate at linear speed.

Since the Hamiltonian function H is constant on each
orbit, a second test is simply to check for its preservation.
Although the level of preservation of H does not need
to be equal to the error of the integration, checking its
preservation is a common test for a numerical integrator.
We selected εa = εr = 10−16, with an integration time
of 106 units. A first version of the results is shown in
Figure 4, where the horizontal axis denotes the time and
the vertical axis is the difference between the actual and
the initial value of H, in multiples of eps ≈ 2.22× 10−16.
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ε = 10−14 ε = 10−15 ε = 10−16 ε = 10−17 ε = 10−18

-4 0 0 0 0 0

-3 45 2 7 5 6

-2 32,904 21,155 21,377 21,372 21,662

-1 772,723 745,668 760,755 768,334 777,760

0 1,970,571 2,084,758 2,134,729 2,157,287 2,174,276

1 765,519 744,438 760,183 767,596 776,776

2 32,444 21,174 21,576 21,696 21,949

3 42 6 5 3 5

4 0 0 0 0 0

τ -6.0613 -0.9160 -0.1383 -0.0735 -0.3141

TABLE 2. Local variation of the energy for several error thresholds εa = εr ≡ ε, during 106 units of time. The first column
denotes multiples of the machine precision eps and the remaining columns contain the number of integration steps for
which the local variation of energy is equal to the multiple of eps in the first column. The last row is an statistical index
to test for zero mean, see the text for details.

t e(x) e(y) e(z) e(px) e(py) e(pz)

1.0000000000000000 0.50 -2.50 -1.00 -0.50 6.50 -5.50

TABLE 3. Local relative error (in multiples of the machine precision) for an orbit of the RTBP, after a unit of time, using
gmp with 256 bits of mantissa. The meaning of the columns is the same as in Table 1. See the text for more comments.

Although this plot seems to indicate the presence of a
bias in the values of H, we want to point out that the
smallness of the drift in H compared to the length of the
integration time does not allow us to consider this bias
meaningful from a statistical point of view.

Let us discuss this point in detail. Let Hj be the
value of H at step number j of the numerical integra-
tion and, instead of considering Hj − H0, let us focus
on the local variation Hj − Hj−1. In Table 2 we show
a summary of the results for the same trajectory as in
Figure 4, but for several local thresholds for the error.
To do a standard statistical analysis, let us assume that

FIGURE 4. Long term behavior of the energy for local
thresholds εr = εa = 10−16. Horizontal axis: time. Ver-
tical axis: relative variation of the value of the Hamil-
tonian, in multiples of the machine precision.

the sequence of errors Hj − Hj−1 is given by a sequence
of independent, identically distributed random variables;
we are interested in knowing if its mean value is zero or
not. Therefore, we apply the following test of significance
of the mean. The null hypothesis assumes that the true
mean is equal to zero. If k denotes a multiple of eps and
νk the number of times that this deviation has occurred
(in our case, νk = 0 if k > 4), we define

n =
∑
|k|≤4

νk,

m =
1
n

∑
|k|≤4

kνk,

s =

√√√√ 1
n2

∑
|k|≤4

(k − m)2νk,

where s stands for the standard error of the sample mean
m. Under the previous assumptions (independence and
equidistribution of the observations), the value τ = m

s
must behave as a N(0, 1) standard normal distribution.
To test the null hypothesis (i.e., zero mean) with a confi-
dence level of 95%, we check for the condition |τ | ≤ 1.96.
The last row of Table 2 shows the value of τ for the dif-
ferent integrations. It is clear that for ε = 10−14 we must
reject that the drift has zero mean. It is also clear that
this hypothesis cannot be rejected in the other cases.

For the case ε = 10−14 the main source of error is
truncation that, from a statistical point of view, does
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(a) (b)

FIGURE 5. Long term behavior of the energy for local thresholds εr = εa = 10−16. (a) Different optimization levels in an
Intel processor (from top to bottom, -O2, -O0, and -O1 options). (b) Different processors (from top to bottom, AMD,
Sun, and HP processors). See the text for more details.

not behave as if the drift has zero mean. When the lo-
cal threshold is reduced, then the main source of error
turns out to be the round off of the underlying arith-
metic, which under the standard statistical tests,, looks
like a zero mean random process.

A natural question is whether the Taylor method, with
a sufficiently small local threshold (like 10−16 in the pre-
vious example), can compete with a symplectic integra-
tor in the preservation of the geometrical structure of
the phase space of a Hamiltonian system. From a local
point of view, we note that the Taylor method can de-
liver machine precision so it is not possible to be “more
symplectic.” However, one has to be more careful when
extending this reasoning to long term integrations, since
it is possible that there exist little biases that are only
visible in very long integrations. A deeper study is in
progress.

5.1.3 On the influence of the underlying arithmetic.
For an example of the effect of the arithmetic, we show
the different behavior of the energy. We used the same
trajectory of the RTBP as before, and we computed
the relative variation of the energy. The results for
εr = εa = 10−16 using standard double precision arith-
metic on different hardware are shown in Figure 5. Both
graphics show that the error behavior seems to be domi-
nated by the “noise” of the floating point arithmetic. The
differences between the AMD and Intel processors seem
to come from hardware differences in the evaluation of
the funcions ln and exp used in the step size control.

5.1.4 Extended precision calculations. We use the
same example as in the previous section. To generate
code to be linked with the gmp library, we just need to
pass the command line switch -gmp to Taylor.

As a first test, we computed the local error of a nu-
merical integration of the RTBP, as done in Section 5.1.1.
We selected a 256 bits mantissa (this means that the ma-
chine precision is eps = 2−256 ≈ 8.636168 × 10−78) and
the value 10−80 for both the relative and absolute error
thresholds. By this method, we selected a step size near
0.2 and order 94. To obtain the exact solution, we used
a mantissa of 512 bits and an error threshold of 10−155.
The local error of the solution after one unit of time (this
required four calls to the Taylor integrator) is shown in
Table 3. Comparing this with Table 1, we see that the
relative error here is a little bit larger.

We also tested the variation of the value of the Hamil-
tonian for a long time integration, for different local
thresholds. Figure 6 shows the difference between the
initial value of the Hamiltonian and its value at each
step of integration, for mantissas of 128 (left) and 256
(right) bits. The differences are shown in multiples of
the machine precision of each arithmetic. The lower
curve on these plots corresponds to the largest thresh-
old (εa = εr = 10−36 and εa = εr = 10−75 for the left
and right plot, respectively) where the main source of
error is the truncation of the Taylor series. The remain-
ing curves correspond to smaller thresholds for which the
error mainly comes from the roundoff of the gmp arith-
metic. We clearly see the different behavior of these two
sources of error, as well as the drift introduced by the
roundoff of the arithmetic.

We also tested the preservation of the Hamiltonian
for a different extended arithmetic, the qd library. The
results are shown in Figure 7. Again, we used the
dd real type (two doubles) for Figure 7(a) and qd real
type (four doubles) for (b). For this arithmetic, it does
not make sense to use the machine precision as a unit
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(a) (b)

FIGURE 6. Long term behavior of the Hamiltonian for several integrations with gmp arithmetic. The horizontal axis
displays the time and the vertical axis shows the variation of the Hamitonian with respect to its initial value. (a) Results
for gmp arithmetic with a 128 bits mantissa, and several local thresholds εa = εr = ε as shown in the graphic. (b) Results
for gmp arithmetic with a 256 bits mantissa. See the text for more details.

 

 

 

 

(a) (b)

FIGURE 7. Long term behavior of the Hamiltonian for several integrations with qd arithmetic. The horizontal axis
displays the time and the vertical axis shows the variation of the Hamitonian with respect to its initial value. (a) Results
for dd real arithmetic (nearly 32 decimal digits), and several local thresholds εa = εr = ε as shown in the graphic. (b)
Results for the qd real arithmetic (nearly 64 decimal digits). See the text for more details.

for the error.1 Hence, we simply multiplied the differ-
ences in the Hamiltonian by 1032 (dd real) and 1064

(qd real). In Figure 7(a), the bottom curve corresponds
to εa = εr = 10−30, the largest error threshold, where
the effect of the truncation dominates the error. The
remaining curves show the behavior of the round off er-
ror of the arithmetic. In Figure 7(b), the upper curve
corresponds to the largest error threshold (in this case,
εa = εr = 10−61) and shows the effect of the truncation

1A dd real number is defined as the sum of two doubles. There-
fore, the sum 1 + ε is always different from 1 as long as ε can be
represented in a double.

error. The remaining curves show the drift due to the
round off of the arithmetic.

5.2 Computation of Small Quantities

Here we illustrate one of the uses of extended arithmetic:
the computation of small quantities defined as the differ-
ence of very close numbers.

Let us consider the dynamical system

ẍ − sin(x) = µ sin
(

t

ε

)
, (5–2)

where µ and ε are small parameters. When µ = 0, then
x = 0 and x = 2π are hyperbolic points such that the
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stable and unstable manifolds of x = 0 coincide with the
unstable and stable manifolds of x = 2π. For small µ > 0,
the points x = 0 and x = 2π become hyperbolic periodic
orbits and their invariant manifolds do not coincide but
intersect transversally (for a general discussion and ref-
erences see, for instance, [Delshams and Seara 97]).

It is usual to take the section t = 0 (mod 2πε) so that
(5–2) becomes a conservative two-dimensional map, with
hyperbolic fixed points near x = 0 and x = 2π. Due to
the symmetries of the problem, the unstable manifold of
x = 0 transversally intersects the stable manifold of x =
2π at x = π. Here we compute the intersection angle of
these manifolds for µ = ε = 0.04. The methods used here
will be quite simple, since the only goal is to illustrate
the capabilities provided by taylor. More sophisticated
tools are described in [Delshams and Ramı́rez-Ros 99].

First, we used taylor to produce a time-stepper for
Equation (5–2). Then, it was not difficult to write the
two-dimensional map defined by the stroboscopic section
t = 0 (mod 2πε). The differential of this map is given
by the numerical integration of the variational flow of
Equation (5–2), again by means of the Taylor method.
We ask taylor to call the dq library for the arithmetic,
using the qd real type (it provides nearly 64 decimal dig-
its). Then, it was not difficult to code a Newton method
to obtain the two hyperbolic fixed points near x = 0 and
x = 2π, and the eigenvalues and eigenvectors of the dif-
ferential of the map at these points (in fact, due to the
symmetries of the problem, it is enough to perform these
computations for one of them). The next step was to use
the eigenvalues as a (linear) approximation to the mani-
folds and to grow them until they cut the line x = π. At
this point we used two different procedures.

(a) We obtained a table of values of the two manifolds
on a mesh of points xj around x = π, and used
numerical differentiation (with 3 steps of extrapola-
tion) to approximate the intersection angle between
the two manifolds.

(b) We computed an initial point p, at an approxi-
mated distance of 10−25 from the fixed point, that
is mapped on the line x = π after a certain number
of iterates. Then we used the corresponding eigen-
vector at the fixed point as the tangent vector to the
manifold at the initial point p. Then we iterated this
point and the vector to obtain an approximation to
the tangent vector of the manifolds at x = π.

The agreement between the two approaches allowed us
to conclude that the intersection angle is

2.769781155284039017022 × 10−17

(we only write the digits common to the two approaches).
We note that the computation is extremely simple pro-

vided one has an efficient procedure to integrate Equa-
tion (5–2) in extended precision.

5.3 Speed

There are plenty of numerical methods in the literature,
and we do not plan to survey all of them but simply
to compare our implementation of the Taylor method
against a few well known methods. A shared character-
istic of these methods is the free availability of an imple-
mentation program, which is the one we used. These pro-
grams are coded in FORTRAN 77, which adds an extra
difficulty to the comparisons, since the observed differ-
ences may come from the different compilers. Therefore,
to help the readers with these comparisons, our package
includes the code for all of the examples, so that they
can be run on any combination of compiler/computer for
comparisons.

Our tests were done using a GNU/Linux workstation,
with an Intel Pentium III processor running at 500 MHz.
We used the GNU compilers gcc and g77, version 2.95.4.

The methods considered are dop853, an explicit
Runge-Kutta code of order 8, and odex, an extrapo-
lation method of varying order based on the Gragg-
Bulirsh-Stoer algorithm. Both methods are docu-
mented in [Hairer et al. 00] and the code we used can
be downloaded from http://www.unige.ch/math/folks/
hairer/software.html. We note that the extrapolation
methods are similar to the Taylor method in the sense
that they can use arbitrarily high orders, so they are the
natural methods against which to make comparisons.

For the tests, we used three vector fields: the RTBP,
the Lorenz system, and a periodically forced pendulum.
The equations for the Lorenz system are

ẋ = 10(y − x),
ẏ = x(28 − z) − y,

ż = xy − 8
3
z,

and the equations for the forced pendulum are

ẋ = y,

ẏ = − sin(x) − 0.1y + 0.1 sin(t).

The RTBP (see equations in (4–2)) has been coded as in
Figure 2 so that, in all the cases, the vector field has the
same number of operations. As before, we used the same
formulas to code the vector fields for dop853, odex, and
taylor.

One possibility for comparison, is to set the same
threshold for all the methods and then compare the
speeds. Note that, since the algorithms for the step size
selection are completely different, one of them could be
more “conservative” than the others and predict (unnec-
essarily) smaller step sizes so that the comparisons would
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Lorenz

dop583 odex taylor

ε time error ε time error ε time error

1.e-10 7.01 5.9e-03 1.e-10 8.73 6.2e-02 1.e-10 7.61 3.1e-06

1.e-11 8.91 5.0e-04 1.e-11 10.11 3.3e-03 1.e-11 7.99 4.4e-07

1.e-12 11.65 4.3e-05 1.e-12 11.54 2.0e-04 1.e-12 8.40 4.8e-08

1.e-13 15.31 3.7e-06 1.e-13 12.74 5.8e-06 1.e-13 8.80 3.3e-08

1.e-14 20.19 1.2e-06 1.e-14 15.04 6.4e-06 1.e-14 9.22 3.4e-08

1.e-15 26.76 8.9e-07 1.e-15 17.81 3.7e-06 1.e-15 9.75 9.2e-09

1.e-16 35.51 9.5e-07 1.e-16 50.47 1.9e-06 1.e-16 10.75 7.5e-09

Periodically forced pendulum

dop583 odex taylor

ε time error ε time error ε time error

1.e-10 0.62 3.4e-11 1.e-10 1.49 6.9e-10 1.e-10 0.38 2.8e-13

1.e-11 0.78 3.6e-12 1.e-11 1.70 4.9e-11 1.e-11 0.42 2.1e-14

1.e-12 1.03 3.1e-13 1.e-12 1.93 1.7e-12 1.e-12 0.44 7.6e-15

1.e-13 1.38 2.7e-14 1.e-13 2.17 9.1e-14 1.e-13 0.47 1.2e-15

1.e-14 1.83 2.3e-15 1.e-14 2.36 4.4e-15 1.e-14 0.48 8.7e-16

1.e-15 2.45 2.1e-15 1.e-15 2.68 3.1e-15 1.e-15 0.52 5.8e-16

1.e-16 3.24 3.2e-15 1.e-16 3.09 1.1e-14 1.e-16 0.59 3.8e-16

RTBP

dop583 odex taylor

ε time error ε time error ε time error

1.e-10 1.43 1.1e-09 1.e-10 1.74 1.8e-09 1.e-10 1.68 6.2e-12

1.e-11 1.84 9.4e-11 1.e-11 2.02 9.2e-11 1.e-11 1.86 4.6e-13

1.e-12 2.44 8.6e-12 1.e-12 2.43 2.4e-11 1.e-12 2.08 4.4e-14

1.e-13 3.24 8.0e-13 1.e-13 2.74 3.7e-13 1.e-13 2.27 7.2e-15

1.e-14 4.32 7.5e-14 1.e-14 3.14 1.5e-13 1.e-14 2.50 4.2e-15

1.e-15 5.73 9.9e-15 1.e-15 3.71 2.4e-13 1.e-15 2.82 1.7e-15

1.e-16 7.63 2.0e-15 1.e-16 4.85 1.3e-13 1.e-16 3.26 5.8e-15

TABLE 4. Speed comparison between dopri853, odex, and taylor. The selected threshold for the error is ε (both relative
and absolute thresholds have been set to the same value), computer time is given in seconds, and the error is the absolute
error at the end point of the integration. To have a measurable computer time, we repeated the same integration 1,000
times. See the text for more details.

be meaningless. For this reason we proceeded in the fol-
lowing way: given an initial condition, we computed the
corresponding orbit during, say, 16 units of time and
compared the final point with the true value to obtain
the real absolute error.2 In Table 4 we show the com-
puter time and final error for the three methods, using
different thresholds for the step size control. To have a
measurable running time, the program repeated the same
calculation 1,000 times.

Therefore, we ignore the column labelled ε (the error
threshold used for the step size control), and we only
compare the computing time needed to achieve a pre-
scribed accuracy (this is equivalent to comparing the ac-
curacy obtained for a fixed computing time). The results
clearly show the effectiveness of the Taylor method for
these examples.

2The true value was obtained from a Taylor method integration
using the gmp arithmetic with mantissas of 128 and 256 bits.

5.3.1 A simple comparison with ADOL-C. ADOL-C
is a public domain package for automatic differentiation.
The main differences between the automatic differentia-
tion of our package and ADOL-C are:

(a) ADOL-C is a general purpose package, while taylor
is specifically designed for the numerical integration
of ODEs.

(b) The input of ADOL-C is a C/C++ function, with
some restrictions in the grammar used, while taylor
has its own input grammar, that is a little bit more
restrictive.

(c) ADOL-C does not include code for the step size con-
trol. This means that ADOL-C can only be used to
generate the Taylor coefficients and the user must
supply code for the order and step size control.

For this reason, we only tested the speed of the gen-
eration of the Taylor coefficients.
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degree Lorenz Pendulum RTBP

ADOL-C 40 92.82 140.57 403.22

Taylor 40 3.59 3.43 14.75

ADOL-C 20 24.44 34.82 87.99

Taylor 20 1.13 1.07 4.65

ADOL-C 10 9.13 11.58 26.20

Taylor 10 0.41 0.39 1.62

TABLE 5. Time (in seconds) to compute 100,000 times
the jet of derivatives for the Lorenz system, a periodically
forced pendulum, and the RTBP.

As before, the tests were done on an Intel Pentium
III running at 500 MHz, using ADOL-C version 1.8.7.
The examples considered were the RTBP, the Lorenz sys-
tem, and a periodically forced pendulum. To measure the
time, we computed the jet of derivatives 100,000 times.
The results are displayed in Table 5, and clearly show the
efficiency of taylor.

6. CONCLUSIONS

In this paper we discuss a new publicly available imple-
mentation of the classical Taylor method for the numer-
ical solution of ODEs. This program reads the differen-
tial equations from a file which contains the differential
equations in its natural mathematical form and outputs a
complete Taylor integrator (including adaptive selection
of degree and step size) for the given system. One of the
strong points of the package is its support for extended
precision arithmetic.

The package has been tested against freely available
implementations of two well-known numerical integra-
tors. We do not claim that the results from these tests
can be extrapolated to any example, but simply that
taylor can be very competitive in many situations, es-
pecially when high accuracy is needed.
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