
Numerical Verification of the Stark-Chinburg
Conjecture for Some Icosahedral Representations
Arnaud Jehanne, Xavier-Francois Roblot, and Jonathan Sands

CONTENTS

1. Introduction
2. The Stark-Chinburg Conjecture
3. Icosahedral Representations
4. Computations
References

2000 AMS Subject Classification: Primary 11Y40; Secondary 11R42

Keywords: Number fields, Stark conjectures, icosahedral Galois
representations, Artin L-functions

In this paper, we give 14 examples of icosahedral representa-
tions for which we have numerically verified the Stark-Chinburg
conjecture.

1. INTRODUCTION

Let K/k be a Galois extension of number fields, with Ga-
lois group G = Gal(K/k), and suppose ρ : G → GLn(C)
is a nontrivial irreducible representation of G. Stark’s
conjectures [Tate 84] aim to unravel the arithmetic in-
formation encoded in the leading coefficient of the Tay-
lor series for the Artin L-function L(s, ρ) of ρ at s = 0.
When G is abelian and one modifies the Artin L-function
by removing the factors in the Euler product at primes
in a finite set S which contains all of the infinite primes,
Stark formulated an especially precise conjecture for the
case of a first-order zero at 0 [Stark 80]. It states that the
exact value of this coefficient may be obtained from an
“L-function evaluator” element in K which is an S-unit
in the typical case. Rubin [Rubin 96], Popescu [Popescu
03], Burns [Burns 01], Sands [Sands 87], and others have
formulated similarly precise conjectures for abelian L-
functions with any order of zero at s = 0.

In the general nonabelian case with L(s, ρ) possessing
a zero at s = 0 of order r = r(ρ), the conjecture states
that the L-function coefficient equals an algebraic fac-
tor multiplied by the determinant of a regulator matrix
defined in terms of a set of r special units and the repre-
sentation ρ. But this algebraic factor is not fully specified
and in particular may be multiplied by any nonzero ratio-
nal factor without affecting the truth of the conjecture.
Hence the conjecture in this generality is considered to
be a conjecture “over Q,” as opposed to the more pre-
cise conjectures “over Z” mentioned above in the abelian
case.
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Chinburg [Chinburg 83] has formulated a conjecture
“over Z,” in the nonabelian case when the order of the
zero at 0 is r(ρ) = 1, the base field is k = Q, and the
dimension of the irreducible representation ρ is n = 2.
We will show that this conjecture is closely related to a
question of Stark appearing in [Stark 81], and hence we
will use the term “Stark-Chinburg conjecture.” Here, the
regulator matrix is 1 by 1, and involves a single special
unit, so we have the possibility of actually constructing
this special unit from the first derivatives at 0 of certain
Artin L-functions. This method of constructing S-units
while simultaneously gaining numerical confirmation of
the conjecture at hand appears in [Dummit et al. 97]
and [Roblot 00] for the abelian case. A difference in this
paper is that the extension field K is no longer a class
field which can be explicitly constructed from abelian L-
functions by means of the conjecture. We will choose
our nonabelian extension field K beforehand in order to
define the L-functions.

Irreducible two-dimensional representations are clas-
sified according to the isomorphism type of their im-
ages in PGL2(C), the four possible types being dihedral,
tetrahedral (A4), octahedral (S4), and icosahedral (A5).
Stark [Stark 81] has provided illuminating examples in
the dihedral cases; Chinburg [Chinburg 83] has confirmed
the conjecture numerically for five tetrahedral represen-
tations; and Fogel [Fogel 98] has confirmed it numerically
for eight octahedral representations with K of degree 48.
Our aim in this paper is to provide the first numerical
confirmation of the Stark-Chinburg conjecture for some
icosahedral representations. As we will see, the minimal
type of field K providing such an example is a complex
field of degree 240 over Q, while the Stark unit ε lies in
a subfield K+ of degree 120 admitting a real embedding.
This subfield K+ is Galois over a field M of degree 30.
We identify ε by obtaining its minimal polynomial
over M .

The outline of the article is the following: In Section 2,
we state the Stark-Chinburg conjecture, but also a ques-
tion of Stark related to the same situation. In Section
3, we look at Â5-extensions which provide the simplest
cases for testing the conjecture on icosahedral represen-
tations, where Â5 is a central extension of A5 by a cyclic
group of order 4 (see Section 3 for details). We briefly
explain how to construct those extensions and how to
compute the value of the derivative of the correspond-
ing L-functions at s = 0. Finally, in the last section,
we describe the computations performed, give some
remarks on the results obtained, and conclude with an
example.

2. THE STARK-CHINBURG CONJECTURE

2.1 Odd Representations

A standard formula [Tate 84, page 24] for the order r(ρ)
of the zero of L(s, ρ) at s = 0 calls for the choice of a
single prime w of K above each infinite prime v of k.
One then defines τv to be the generator of the decompo-
sition group of the prime w over v, which is thus either
the identity or a complex conjugation. Assuming that ρ

is a nontrivial irreducible representation, r(ρ) may then
be obtained by taking the dimension of the eigenspace
of ρ(τv) corresponding to the eigenvalue 1, and summing
over v. Now suppose that our representation ρ is as in
the Stark-Chinburg conjecture. Since k = Q, there is
a single infinite prime v = ∞. Since τ = τv has or-
der 1 or 2, all eigenvalues of ρ(τ) must be ±1. Since ρ

is two-dimensional and r(ρ) = 1, τ must be a complex
conjugation of order 2 and ρ(τ) must have eigenvalues
1 and -1. Thus, det ρ(τ) = −1, a condition which is de-
scribed by saying that ρ is “odd.” The associated charac-
ter ψ defined as the trace of ρ then clearly takes the value
ψ(τ) = 0. Conversely, it is easy to see that if ψ(τ) = 0,
for the character ψ of degree 2, then the corresponding
representation ρ is odd.

2.2 Regulators

For simplicity, in this section, we continue to assume
(with Stark and Chinburg) that k = Q. We also fix a
subfield K of C which is Galois over Q with group G,
and assume ρ is an irreducible nontrivial n-dimensional
representation of G = Gal(K/Q) with character ψ. Let
τ denote the restriction of complex conjugation to K,
which may be trivial, and ‖ ‖ denote the normalized ab-
solute value on K corresponding to the embedding of K
in C (this is the square of the usual one if K is complex).
Also let w be the infinite prime of K corresponding to
this absolute value, so the decomposition group of this
prime is Gw = 〈τ〉. Following Stark, we may assume by
conjugating the representation that ρ(τ) is diagonal and
the diagonal elements consist of a certain number a of 1s
followed by a certain number b = n − a of -1s. In [Stark
75, page 62], Stark introduces a regulator which we will
denote (with Tate) as R(ψ, ε); this also calls for a choice
of element ε ∈ K. Then

R(ψ, ε) = det

(∑
σ∈G

ρa(σ) log ‖εσ‖
)

,

where ρa(σ) denotes the a×a matrix in the top left corner
of ρ(σ).
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Like Tate and unlike Stark, our convention will be that
G acts on K on the left, so that εστ = σ(τ(ε)).

In this regulator, Stark uses a choice of a unit ε ∈ K∩R

for which the only relation among the conjugates εσ is∏
σ∈G/Gw

εσ = ±1. Such a unit is called a “Minkowski
unit,” since its existence is guaranteed by [Minkowski 00].

On the other hand, Tate’s regulator R(ψ,F ) ([Tate
84]) is attached to a choice of a Q[G]-isomorphism F .
Let U = UK denote the unit group of K, QU = Q ⊗Z

U , QY be the Q-vector space with basis consisting of
the infinite primes of K, and QX be the subspace of
elements whose coordinates in this basis sum up to 0.
There exists a Q[G]-isomorphism F : QX → QU (by
a theorem of Herbrand [Herbrand 30, Herbrand 31], in
general), and this is used to define R(ψ,F ). We will
not repeat the construction of this regulator found in
[Tate 84], but wish to note the important connection with
Stark’s regulator, described on page 41 there. The unique
Q[G]-homomorphism from QY to QU , which sends the
fixed infinite prime w of K to ε, induces an isomorphism
Fε : QX → QU , and

R(ψ,Fε) = |Gw|aR(ψ, ε).

Now we make the connection between a regulator of
the form R(ψ, π), for π in K and the conjecture consid-
ered in this paper. So assume that ρ is a two-dimensional
irreducible representation which is odd. As seen above,
we may take ρ(τ) =

(
1 0
0 −1

)
. So we now have a = 1, and

ρ1(σ) is the single entry in the top left corner of ρ(σ).
Using the fact that the absolute value ‖ ‖ is fixed by τ ,
it follows that

R(ψ, π) =
∑
σ∈G

ρ1(σ) log ‖πσ‖

=
1
2

∑
σ∈G

Tr
((

2 0
0 0

)
ρ(σ)

)
log ‖πσ‖

=
1
2

∑
σ∈G

Tr
({( 1 0

0 1

)
+

(
1 0
0 −1

)}ρ(σ)
)
log ‖πσ‖

=
1
2

∑
σ∈G

Tr ({ρ(1) + ρ(τ)}ρ(σ)) log ‖πσ‖

=
1
2

∑
σ∈G

Tr (ρ(σ) + ρ(τσ)) log ‖πσ‖

=
1
2

∑
σ∈G

(Tr(ρ(σ)) + Tr(ρ(τσ))) log ‖πσ‖

=
1
2

∑
σ∈G

(ψ(σ) + ψ(τσ)) log ‖πσ‖

=
1
2

∑
σ∈G

(ψ(σ) log ‖πσ‖ + ψ(τσ) log ‖πτσ‖)

=
∑
σ∈G

ψ(σ) log ‖πσ‖.

This computation reconciles the difference in appear-
ance between equations in [Stark 75] and [Stark 81] (see
the comment in the middle of page 263 of [Stark 81]).

2.3 Stark’s Nonabelian Question

The preceding computation relates specifically to the fol-
lowing question of Stark from [Stark 81].

Question 2.1. (Stark.) Suppose that K is a complex Ga-
lois extension of Q with group G, and W is the number
of roots of unity in K. Fix a rational integer f divis-
ible by the conductor of every character ψ of G which
corresponds to an odd irreducible representation ρ of di-
mension 2, and let L(s, ψ, f) be the Artin L-function of
ρ with the Euler factors at primes dividing f removed.
Is there an algebraic integer π in K such that

1. πσ/π is a unit for each σ ∈ G, and some power of π

is real,

2. πσ/πp is a W -th power in K whenever p is a prime
not dividing Wf times the discriminant of K and
whose associated Frobenius automorphisms are con-
jugate to σ in G, and

3. For every ψ corresponding to an odd irreducible rep-
resentation of dimension 2, we have

L′(0, ψ, f) =
−1
2W

∑
σ∈G

ψ(σ) log ||πσ||? (2–1)

Remark 2.2. From our preceding discussion, one can see
that condition (2–1) of Question 2.1 does indeed refine
the conjecture of [Stark 75], specifying that

L′(0, ψ, f) =
−1
2W

R(ψ, π) =
−1
4W

R(ψ,Fπ).

It is a question “over Z.”

Remark 2.3. Since ψ(στ) = ψ(τσ) and τ fixes the abso-
lute value ‖ ‖, it is clear that an affirmative answer to
the question would imply that

L′(0, ψ, f) =
−1
4W

∑
σ∈G

(ψ(σ) + ψ(στ)) log ‖πσ‖.
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In several cases where K is a class field of a real
quadratic field, Stark has confirmed numerically that
his question has an affirmative answer [Stark 76, Stark
80]. But the question itself does not suggest an effective
means of constructing the distinguished element π be-
cause it does not provide enough information about the
conjugates of π. However, the Stark-Chinburg conjecture
does provide such information about a special element of
K.

Stark’s contribution to this conjecture is as follows.
Fix a character ψ as in Stark’s question. The field E =
Q(ψ), obtained by adjoining to Q all the values of the
character ψ, is contained in a cyclotomic extension of Q.
We let Γ denote the abelian Galois group of E over Q.
Following the formulation of his question in [Stark 81],
Stark gave an argument which implies the following.

Proposition 2.4. Suppose the question has an affirma-
tive answer with π real. If d ∈ E has the property that∑

γ∈Γ dγψ(σ)γ ∈ Z for all σ ∈ G, then there exists a
positive real unit εf (d) ∈ K such that

∑
γ∈Γ

dγL′(0, ψγ , f) = − log(εf (d)) = −1
2

log ‖εf (d)‖.

Indeed, εf (d) can be defined by

εf (d)W =
∏
σ∈G

π
∑

γ∈Γ dγψ(σ)γσ.

Remark 2.5. When π is real, and therefore fixed by τ , it
is clear that we can also write

εf (d)2W =
∏
σ∈G

π
∑

γ∈Γ dγ(ψ(σ)+ψ(στ))γσ.

We now derive a strengthening of Proposition 2.4
which incorporates the conjugates of εf (d) and thus leads
to the conjecture formulated by Chinburg. First, we
record a preliminary step.

Lemma 2.6. In the setting of Stark’s nonabelian question,
let σ0 and σ be elements of G, and let ψ be an odd char-
acter of degree 2 corresponding to a representation ρ of
G. Then

(ψ(σ0) + ψ(σ0τ)) (ψ(σ) + ψ(στ)) =

ψ(σ0σ) + ψ(σ0στ) + ψ(σ0τσ) + ψ(σ0τστ).

Proof: We may again assume that ρ(τ) =
(

1 0
0 −1

)
. Then

(ψ(σ0) + ψ(σ0τ)) (ψ(σ) + ψ(στ))

= Tr (ρ(σ0)(ρ(1) + ρ(τ))) Tr (ρ(σ)(ρ(1) + ρ(τ)))

= Tr
(
ρ(σ0)

(
2 0
0 0

))
Tr

(
ρ(σ)

(
2 0
0 0

))
= (2ρ1(σ0))(2ρ1(σ)) = Tr

(
2ρ1(σ0)2ρ1(σ) 0

∗ 0

)
= Tr

((
2ρ1(σ0) 0

∗ 0

)(
2ρ1(σ) 0

∗ 0

))
= Tr

(
ρ(σ0)

(
2 0
0 0

)
ρ(σ)

(
2 0
0 0

))
= Tr (ρ(σ0) (ρ(1) + ρ(τ)) ρ(σ) (ρ(1) + ρ(τ)))

= ψ(σ0σ) + ψ(σ0στ) + ψ(σ0τσ) + ψ(σ0τστ).

Proposition 2.7. Assume that Stark’s question has an
affirmative answer with π real. Fix d ∈ E such that∑

γ∈Γ dγψ(σ)γ ∈ Z for all σ ∈ G. Define εf (d) as in
Proposition 2.4. Then for each σ0 ∈ G, we have∑
γ∈Γ

(d(ψ(σ0) + ψ(σ0τ)))γ
L′(0, ψγ , f) = − log ‖εf (d)σ−1

0 ‖.

Proof:∑
γ∈Γ

(d(ψ(σ0) + ψ(σ0τ)))γ
L′(0, ψγ , f)

=
−1
4W

∑
γ∈Γ

∑
σ∈G

dγ (ψ(σ0) + ψ(σ0τ))γ

× (ψ(σ) + ψ(στ))γ log ||πσ|| (by Remark 2.3)

=
−1
4W

∑
γ

∑
σ

dγ (ψ(σ0σ) + ψ(σ0στ))γ log ‖πσ‖

− 1
4W

∑
γ

∑
σ

dγ (ψ(σ0τσ) + ψ(σ0τστ))γ log ‖πσ‖

(by the lemma)

=
−1
4W

∑
γ

∑
σ

dγ (ψ(σ) + ψ(στ))γ log ‖πσ−1
0 σ‖

(on replacing σ by σ−1
0 σ)

− 1
4W

∑
γ

∑
σ

dγ (ψ(σ) + ψ(στ))γ log ‖π(σ0τ)−1σ‖

(on replacing σ by (σ0τ)−1σ)

=
−2W

4W
log ‖εf (d)σ−1

0 ‖ − 2W

4W
log ‖εf (d)τσ−1

0 ‖
by Remark 2.5

= − log ‖εf (d)σ−1
0 ‖

since the chosen absolute value is fixed by τ .

In the Stark-Chinburg conjecture, there is a further re-
striction on the choice of d which is formulated in terms
of the Dirichlet series for L(s, ψ). In return for this re-
striction, one gains in that the conjecture concerns the
primitive Artin L-series without Euler factors removed.
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2.4 Dirichlet Series

For this section, we need only assume that K/k is a fi-
nite Galois extension with group G, and that ρ is a rep-
resentation of G with character ψ. Artin’s expression for
his L-series involves the choice of a representative Frobe-
nius element σp ∈ G for each prime ideal p of k. That
is, one picks a prime ideal P of K above p and selects
σp ∈ G which acts as the Frobenius in the corresponding
residue field extension. Since ψ is a class function, ψ(σn

p )
is well-defined for p unramified in K/k. For ramified p,
define ψ(σn

p ) to be the average over the coset of σn
p by

the appropriate inertia group Ip = IP/p ⊆ G. Then for

(s) > 1,

L(s, ρ) = L(s, ψ) = exp

(∑
p

∞∑
n=1

ψ(σn
p )

nN(p)ns

)

=
∞∑

m=0

1
m!

(∑
p

∞∑
n=1

ψ(σn
p )

nN(p)ns

)m

=
∞∑

n=1

an

ns
,

which clearly shows that each an lies in Q(ψ), and that

ap = ψ(σp)

when p is a rational prime which is the norm of a first
degree prime p of k not ramifying in K.

On the other hand, one can express L(s, ρ) using the
eigenvalues λp,i (listed with multiplicity) for ρ(σp) acting
on the subspace Vp fixed by the inertia group Ip. These
eigenvalues are necessarily roots of unity and hence alge-
braic integers. Again for 
(s) > 1,

L(s, ρ) =
∏
p

det
(
I − N(p)−sρ(σp) |Vp

)−1

=
∏
p

∏
i

(
1 − λp,i N(p)−s

)−1

=
∏
p

∏
i

 ∞∑
j=0

λj
p,i

N(p)js


=

∞∑
n=1

an

ns
.

This expression clearly shows that each an is an algebraic
integer. Thus, we have supplied a proof of an important
fact.

Proposition 2.8. For any finite Galois extension K/k with
group G and any representation ρ of G with character ψ,
the Artin L-function L(s, ρ) = L(s, ψ) has a Dirichlet
series

∑ an

ns
whose coefficients an are algebraic integers

lying in Q(ψ), and ap = ψ(σp) when p is a rational prime

which is the norm of a first degree prime p of k not ram-
ifying in K.

2.5 The Stark-Chinburg Conjecture

Assume from now on that ρ is an irreducible two-
dimensional odd representation of the group G =
Gal(K/Q), with associated character ψ. The statement
of the conjecture involves the Dirichlet series expansion

L(s, ρ) = L(s, ψ) =
∑

n

an

ns

for 
(s) > 1.
For d ∈ E = Q(ψ) and Γ = Gal(E/Q), define the

function
fd(s) :=

∑
γ∈Γ

dγL(s, ψγ).

Thus, f ′
d(0) =

∑
γ∈Γ dγL′(0, ψγ), which acts as an analog

for the primitive L-function of the quantity in Proposi-
tion 2.4 in which the Euler factors for the primes dividing
f have been removed.

For 
(s) > 1, we also have the expression

fd(s) =
∑
n≥1

Ann−s

with An =
∑
γ∈Γ

(dan)γ = TrE/Q(dan) ∈ Q.

Conjecture 2.9. (Stark-Chinburg.) Assume that d ∈ E

is such that all the coefficients An are in fact rational
integers. Then there exists a unit ε(d) in K+ = K ∩ R,
the so-called Stark unit, such that, for all σ ∈ G

log ‖ε(d)σ−1‖ = f ′
d(ψ(σ)+ψ(στ))(0).

Furthermore, the real conjugates of ε(d) are positive.

Remark 2.10. Note that the unit ε(d), if it exists, is
unique and it is given by the formula

ε(d) = exp
{

f ′
d(ψ(1)+ψ(τ))(0)

}
.

Remark 2.11. The condition on d in the conjecture can
be restated as the requirement that d lie in the product
of the co-different and the inverse of the ideal generated
by the coefficients an.

This conjecture is to be compared with Proposition
2.7. It is stronger in as much as the L-functions are
primitive. However, in general, the conjecture places a
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slightly greater restriction on the choice of d ∈ E. For the
Čebatorev density theorem shows that, given any σ ∈ G,
there are infinitely many primes p such that σp = σ, and
Proposition 2.8 then gives ap = ψ(σ) for such a p. But
in many cases, including all examples arising as ours do
from G ∼= Â5, the set of possible d is the same in the
Stark-Chinburg conjecture as it is in Stark’s question.
Indeed, this happens whenever the character values gen-
erate the ring of integers OE of E as a Z-module. Propo-
sition 2.8 also shows that all an are in the set OE , and
we can easily deduce the following result.

Proposition 2.12. Suppose d ∈ E, and let D(E)−1 be
the co-different of E, defined by D(E)−1 = {d ∈ E |
TrE/Q(da) ∈ Z ∀a ∈ OE}. Then

d ∈ D(E)−1 ⇒ An = TrE/Q(dan) ∈ Z ∀n

⇒ TrE/Q(dψ(σ)) ∈ Z ∀σ ∈ G.

Also, if the values of ψ(σ) as σ ranges over G generate
OE as a Z-module, then the third condition implies the
first, so all three are equivalent.

To summarize, the Stark-Chinburg conjecture is a pre-
cise conjecture “over Z” designed to be a close analog for
primitive L-functions of a consequence of an affirmative
answer to Stark’s nonabelian question for imprimitive L-
functions. It should be noted that we have not stated
the most general form of the conjecture formulated by
Chinburg in [Chinburg 83]. The conjecture there applies
to a finite linear combination of L-functions for odd ir-
reducible two-dimensional characters such that the re-
sulting Dirichlet series has integral coefficients. For the
specific group G used in the computations in this paper,
all four characters of the appropriate type are conjugate,
and the two conjectures are equivalent in this case.

3. ICOSAHEDRAL REPRESENTATIONS

3.1 Minimal Icosahedral Representations

In this section, we briefly determine the minimal degree
of an extension K/Q supporting an icosahedral represen-
tation of the type appearing in Chinburg’s conjecture,
namely one for which the associated Artin L-function
L(s, ρ) has a first order zero at s = 1.

So suppose that ρ is an odd icosahedral representation
of G = Gal(K/Q). This means that the image of ρ(G)
in PGL2(C) is isomorphic to the alternating group A5

∼=
PSL2(F5), which has order 60 and can also be identified
with the group of symmetries of the icosahedron. By

minimality, we may assume that ρ is faithful, i.e., has
trivial kernel, so G ∼= ρ(G). We have an exact sequence

1 → A → ρ(G) → A5 → 1,

where the kernel A may be described as ρ(G)∩C∗, and is
therefore a finite cyclic group lying in the center of ρ(G).
We seek the minimal possible order for A.

The kernel A cannot have order 1, because A5 has no
irreducible representation of degree 2.

Let Cn denote the cyclic group of order |Cn| = n

and V4 denote a 2-Sylow subgroup of A5, isomorphic
to the Klein 4-group. If A has order 2, then ρ(G) rep-
resents an element of H2(A5, C2), which we will show
is isomorphic to C2. The group H2(A5, C2) has expo-
nent 2 since C2 does. Then by the restriction map,
H2(A5, C2) = H2(A5, C2)2 ⊂ H2(V4, C2). This last
group classifies central extensions of V4 by C2, of which
there are 8: one trivial class represented by C3

2 , three
classes represented by C2 ×C4, three classes represented
by D8, and one class represented by Q8. Of these,
the classes fixed by the action of A5 actually constitute
H2(A5, C2), by [Brown 94, III.10.3]. There are two fixed
classes: those of C3

2 and Q8. This gives two possibilities
for G ∼= ρ(G) when |A| = 2, namely G ∼= A5 × C2 and
G ∼= SL2(F5). Each irreducible character of A5 × C2 is
obtained as the product of an irreducible character of A5

and an irreducible character of C2, and thus cannot be
of degree 2.

On the other hand, SL2(F5) admits two conjugate
characters of degree 2, but these have value -2 on each
element of order 2 (see [Buhler 78, page 135] for the char-
acter table). Hence, r(ρ) = 0, in violation of the assump-
tion r(ρ) = 1. So |A| = 2 is impossible.

If |A| = 3, then ρ(G) represents an element of
H2(A5, C3) = 0. This time, the group H2(A5, C3) has ex-
ponent 3 and is isomorphic to a subgroup of H2(C3, C3).
The latter group classifies central extensions of C3 by
C3 of which there are: one trivial class represented by
C3 × C3 and two classes represented by C9. Thus,
H2(C3, C3) has order 3, while the only class fixed by
the action of A5 is the trivial one. So we must have
G ∼= A5 × C3. Again the irreducible characters of this
group are products and so none are of degree 2.

Thus, the minimal order for A is at least 4, and A must
be cyclic. The case of |A| = 4 is indeed realized by G ∼=
ESL2(F5) = {M ∈ GL2(F5) : det(M) = ±1}, for which
an odd irreducible representation ρ exists. One can show
that there is only one equivalence class of extensions of A5

by C4; a representative of this equivalence class is usually
denoted by Â5. (Just check that Q8 × C2 represents the
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# 1 2 3 4 5 6 7 8 9
|C| 1 30 12 20 12 20 30 20 12
κ

(
1 0
0 1

)
τ

(
0 1
1 1

) (
0 1
1 2

) (
0 1
1 4

) (
0 1
1 3

) (
0 1
4 0

) (
0 1
4 1

) (
0 1
4 2

)
order 1 2 20 12 20 12 4 6 5

ψ(κ) 2 0 −i1+
√

5
2 −i i1+

√
5

2 i 0 1
√

5−1
2

χ(κ) 1 −1 −1 −1 −1 −1 1 1 1

# 10 11 12 13 14 15 16 17 18
|C| 20 12 12 12 12 12 1 1 1
κ

(
0 1
4 4

) (
0 1
4 3

) (
0 2
2 2

) (
0 2
2 3

) (
0 2
3 1

) (
0 2
3 4

)
z z2 z3

order 3 10 5 10 20 20 4 2 4

ψ(κ) −1 1−√
5

2 − 1+
√

5
2

1+
√

5
2 i

√
5−1
2 i1−√

5
2 −2i −2 2i

χ(κ) 1 1 1 1 −1 −1 −1 1 −1

TABLE 1.

only nontrivial class in H2(V4, C4) that is fixed by the
action of A5.) We have chosen a convenient realization
ESL2(F5) ∼= Â5.

3.2 Â5 Extensions

From now on, we assume that K/Q is a Galois extension
of group G isomorphic to Â5. As mentioned in the last
section, the group Â5, hence also G, can be identified
with the group ESL2(F5) of a 2 × 2 matrix with coeffi-
cients in F5 and determinant ±1. This group is generated
by the two matrices:

(
0 1
1 0

)
and

(
2 1
3 2

)
. We choose such

an identification of G so that τ =
(

0 1
1 0

)
(recall that τ is

the complex conjugation in G). The center of G is cyclic
of order 4 and generated by z =

(
2 0
0 2

)
.

The group G has 18 conjugacy classes, listed in the
following table. For each conjugacy class C, we list its
cardinality |C|, a representative element κ ∈ C, the or-
der of κ, and the values ψ(κ) and χ(κ) where ψ is the
character of ρ and χ is the abelian character obtained by
composing ρ with the determinant map. (See Table 1.)

The field E generated over Q by the values of
ψ is Q(i,

√
5), an integral basis of E is given by{

1, i, 1+
√

5
2 , i1+

√
5

2

}
, and its Galois group Γ is generated

by γ1 and γ2 with

γ1(i) = −i, γ1(
√

5) =
√

5
γ2(i) = i, γ2(

√
5) = −√

5.

A Z-basis of D(E)−1 is
{

1
2 , i

2 , 5+
√

5
20 , i5+

√
5

20

}
. If d1 and

d2 are two elements of D(E)−1 for which Conjecture 2.9
is true, so the units ε(d1) and ε(d2) exist, then the con-
jecture is also true of md1 (m ∈ Z) and d1 + d2 simply
by taking

ε(md1) = ε(d1)m and ε(d1 + d2) = ε(d1)ε(d2).

Hence, Conjecture 2.9 is true for all d ∈ D(E)−1 if and
only if it is true for d = 1

2 , i
2 , 5+

√
5

20 , and i5+
√

5
20 .

Moreover, one can readily prove that iψ(σ) = ψ(z3σ)
for all σ ∈ G. Thus,

fid(ψ(σ)+ψ(στ))(s) = fd(ψ(z3σ)+ψ(z3στ))(s),

and the truth of Conjecture 2.9 for some d ∈ E implies
the truth of the conjecture for di simply by taking

ε(di) = ε(d)z.

We have proved the following

Lemma 3.1. Conjecture 2.9 is true if and only if it is true
for

d =
1
2

and d =
5 +

√
5

20
.

3.3 Computations of L′(0, ρ)

In order to test Conjecture 2.9, we have to compute the
value of L′(0, ργ) to a high accuracy. For this, we follow
the method used by Stark [Stark 77]. Recall that

L(s, ρ) =
∑
n≥1

ann−s

is the expansion as a Dirichlet series of the L-function for

(s) > 1. Let C be the conductor of ρ, then the function

ξ(s, ρ) =
(

C

4π2

)s/2

Γ(s)L(s, ρ)

satisfies the functional equation

ξ(s, ρ) = wξ(1 − s, ρτ ), (3–1)



426 Experimental Mathematics, Vol. 12 (2003), No. 4

where w, the so-called Artin Root Number, is a complex
number of modulus 1. Let

f(t, ρ) =
∑
n≥1

anexp
(
−2πn√

C
t

)
.

Then

ξ(s, ρ) =
∫ ∞

0

ts−1f(t, ρ)dt (3–2)

for 
(s) > 1, that is ξ is the Mellin transform of f . By
the inverse Mellin transform formula, we get

f(t, ρ) =
1

2iπ

∫
�(s)=σ

ξ(s, ρ)t−sds,

where σ is a real number > 1. Now, we have

f(t−1, ρ) =
1

2iπ

∫
�(s)=σ

ξ(s, ρ)tsds

=
1

2iπ

∫
�(s)=1−σ

ξ(1 − s, ρ)t1−sds

=
w−1t

2iπ

∫
�(s)=1−σ

ξ(s, ρτ )t−sds

(by the functional equation).

We now assume that ξ(s, ρτ ) is holomorphic over C (ac-
tually, we only need that there exists ε > 0 such that
ξ(s, ρτ ) is holomorphic on the half-plane 
(s) > −ε, but,
by the functional equation (3–1), this is equivalent to the
holomorphy of ξ(s, ρτ ) over C). Then, we have for two
numbers σ1 < σ2; see, for example, [Cohen 00, Lemma
10.3.5]:

lim
|T |→∞

∫ σ2+iT

σ1+iT

ξ(s, ρτ )t−sds = 0,

and thus we obtain

1
2iπ

∫
�(s)=1−σ

ξ(s, ρτ )t−sds =
1

2iπ

∫
�(s)=σ

ξ(s, ρτ )t−sds

= f(t, ρτ ),

and so
f(t−1, ρ) = w−1tf(t, ρτ ). (3–3)

For any fixed u > 0, we break the integral in (3–2) into
two pieces: the first one from 0 to u, the second one from
u to ∞. In the first integral, we replace t by t−1 and use
(3–3) to get:

ξ(s, ρ) = w−1

∫ ∞

u−1
t−sf(t, ρτ )dt +

∫ ∞

u

ts−1f(t, ρ)dt.

So finally,

L′(0, ρ) = ξ(0, ρ)

= w−1

∫ ∞

u−1
f(t, ρτ )dt +

∫ ∞

u

f(t, ρ)
dt

t

=
w−1

√
C

2π

∑
n≥1

an

n
exp

(
− 2πn

u
√

C

)

+
∑
n≥1

an

∫ ∞

u

exp
(
−2πn√

C
t

)
dt

t
.

We have proved the following result:

Proposition 3.2. Assume the L-function L(s, ρ) is holo-
morphic over C. Then there exists a complex number w

of modulus 1, such that, for any u > 0

L′(0, ρ) =
w−1

√
C

2π

∑
n≥1

an

n
exp

(
− 2πn

u
√

C

)

+
∑
n≥1

anEi
(

2πun√
C

)
,

where Ei(x) =
∫ +∞

x
e−tdt/t is the exponential integral

function.

Remark 3.3. The proposition requires the hypothesis that
L(s, ρ) is holomorphic over C, that is, that ρ satisfies the
Artin conjecture. This conjecture is not proved in gen-
eral, but it has been proved in all examples with which
we work in this paper using either results of Kiming and
Wang [Kiming and Wang 94], or the work of Buzzard,
Dickinson, Shepherd-Baron, and Taylor, which proves
the Artin conjecture for infinitely many icosahedral odd
representations [Buzzard et al. 01], or results of Jehanne
and Müller [Jehanne and Müller 00, Jehanne and Müller
01].

The formula given by Proposition 3.2 can be used to
compute approximations of L′(0, ρ), or of L′(0, ργ), if one
knows how to compute the coefficients an and the value
of the Artin Root Number w. The former can be com-
puted using the method of [Jehanne 01] (see also the
next section); the latter can be found (following Stark)
by computing the two sums in the formula for two differ-
ent values of u and solving the system. This also provides
a neat check of the computations since the complex num-
ber found must be of modulus 1.

3.4 Construction of Â5 Extensions

In this section, we explain how one can construct Â5

extensions with an odd irreducible degree 2 representa-
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K

K+ = K ∩ R

2 〈τ〉

N

4

S
5
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M = KF

4 〈z〉
2
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F ′′

2
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5
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K

6

��������������������

12

k

120

Q

5
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2

������������������

6

FIGURE 1. Some subfields of K.

tion with a quadratic determinant, that is representation
whose determinant is a quadratic character. Any such
extension K contains a quintic field K of A5-type. Fur-
thermore, since the representation is odd, K is a com-
plex field. A table of quintic complex fields of A5-type
of discriminant less than 40272 has been computed by
J. Basmaji [Basmaji 02] using the methods of [Basmaji
and Kiming 94].

Such an A5-type complex quintic field K yields two
projective representations corresponding to the two em-
beddings of A5 in PGL2(C). Let ρproj be one of these two
representations; methods to decide whether or not ρproj

has a lifting ρ of given conductor and determinant are
described in [Crespo 92] or [Jehanne 01]. Assume from
now on such a lifting exists and call it ρ. Then the set of
all liftings of ρproj is

E(ρ) = {ρ ⊗ ν with ν a Dirichlet character of GQ}.
Some of these ρ ⊗ ν may have the same conductor as
ρ. Also, det(ρ ⊗ ν) = det ρ if and only if ν2 = 1. In
particular, if det ρ is quadratic, then ρ ⊗ det ρ has the
same conductor and the same determinant as ρ.

By looking at a table of irreducible characters of
Â5 (which can be easily constructed from [Buhler 78]
page 135), we see that there are four characters of de-
gree 2, and that they are conjugate under the action of
Gal(Q(

√
5, i)/Q). The characters of ρ and ρ ⊗ det ρ are

conjugate by the complex conjugation, and the two other
representations correspond to the other embedding of A5

in PGL2(C).
To find all the representations with odd quadratic de-

terminant and conductor up to 3676, we use the table of
[Basmaji 02] and the following result, obtained by local
computations (for the computations of conductors, we
refer to [Kiming 94]).

Proposition 3.4. Let N be an A5-extension, let ∆ be the
discriminant of a quintic field contained in K, and let
C be the conductor of a representation ρ with quadratic
determinant corresponding to N . Then C ≥ √

∆.

Table 2 lists all icosahedral representations with odd
quadratic determinant and conductor up to 36762. For
each representation ρ, we read on this table: the conduc-
tor C, a polynomial for the corresponding quintic field,
and the square-free integer δ such that det(ρ) fixes the
field k = Q(

√
δ).

C polynomial defining K δ

1948 x5 − 7x3 − 17x2 + 18x + 73 −487

2083 x5 + 8x3 + 7x2 + 172x + 53 −2083

2336 x5 + 2x3 − 4x2 − 2x + 4 −73

2336 x5 + 2x3 − 4x2 − 2x + 4 −146

2707 x5 − x4 + 9x3 − 6x2 − 32x + 93 −2707

2863 x5 + 12x3 + 21x2 + 22x + 7 −409

2863 x5 + 12x3 + 21x2 + 22x + 7 −2863

3004 x5 − 8x3 + 10x2 + 160x + 128 −751

3203 x5 + 8x3 + 5x2 − 4x + 1 −3203

3547 x5 − 8x3 − 2x2 + 31x + 74 −3547

3548 x5 + 10x3 + 10x2 + 44x + 56 −887

3587 x5 + 3x3 + 24x2 − 20x + 131 −311

3587 x5 + 3x3 + 24x2 − 20x + 131 −3587

3676 x5 − 8x3 + 28x2 − 40x + 48 −919

TABLE 2. The first icosahedral representations with odd
quadratic determinant.

As mentioned above, we used the method described in
[Jehanne 01] to compute the coefficients of the L-series
of the representations. We briefly explain this method
(see also Figure 1). Let f(X) be one of the polynomials
in Table 2, and let K be the field defined by an arbitrary
(fixed) complex root x1 of f . Thus, K is a complex
quintic field of A5-type. Let N be the Galois closure
of K/Q, so Gal(N/Q) � A5, and let x2, . . . , x5 ∈ N be
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the other roots of f . Define θ by

θ = (x1 − x2)2(x2 − x3)2(x3 − x4)2(x4 − x5)2(x5 − x1)2

and let F = Q(θ). The field F is a degree 6 field with
Galois closure N . The degree 30 field M = KF will
play an important part in the computations (see the next
section). Then we define F ′′ = Q(

√
θδ). In [Jehanne

01], it is proved that there exists a quadratic extension
S of F ′′ such that its Galois closure is the field K for
which we are looking. Since we know the conductor, the
determinant, and the image in PGL2(C) of ρ, we know
the ramification of S/F ′′ and thus can construct a finite
set B of elements of F ′′ such that S = F ′′(

√
β) for some

β ∈ B. We then use an explicit criterion to decide which
element is the right one. Once the field S has been found,
we can use the explicit decomposition of prime ideals in S

(and possibly also some other subfields of K) to compute
the coefficients an of the L-function of ρ.

4. COMPUTATIONS

4.1 Numerical Determination of the Stark Unit

Let d be a fixed element of D(E)−1. In this section,
we explain how to find the conjectural Stark unit ε(d),
assuming from now on that it exists, using numerical
approximations. (Actually, due to Lemma 3.1, we have
only performed these computations for d = 1

2 and d =
5+

√
5

20 .)
As mentioned in the introduction, we find ε(d) by con-

structing its minimal polynomial over the field M . This
field has degree 30 and signature (2, 14). Also, it is a sub-
field of K+. More precisely, it is the subfield of K+ fixed
by z, that is to say by the center of G. Since ε(d) is real,
its conjugates over M , i.e., zl(ε(d)) with 0 ≤ l ≤ 3, are
real too and positive by the second part of the conjecture.
Thus, they are given by the formula

zl(ε(d)) = exp
{

f ′
d(ψ(zl)+ψ(zlτ))(0)

}
for 0 ≤ l ≤ 3.

Hence, we can compute approximations of L′(0, ρ) and
get from them approximations of the conjugates of ε(d)
over M , and then form the monic polynomial P̃ whose
roots are these approximations. This polynomial is thus
an approximation of the minimal polynomial P (X) of
ε(d) over M . Now, since ψ(z3σ) = iψ(σ), it follows that
ψ(z2σ) = −ψ(σ), and thus z2(ε(d)) = ε(d)−1, z3(ε(d)) =
z(ε(d))−1, and one can write

P (X) = X4 + aX3 + bX2 + aX + 1

with a, b ∈ OM . We now need to be able to recover the
coefficients a and b from the corresponding coefficients ã

and b̃ of P̃ .
The problem can be stated in a more general setting

as follows: Given a real number x̃, and two positive real
numbers C1 and C2, find, if it exists, an algebraic integer
x in OM such that

|x̃ − x| < C1 and |x′| < C2

where x′ is any conjugate of x (�= x). (4–1)

Note that here and in what follows, when we talk about
the conjugates of x, we mean the conjugates of x different
from x. It is not difficult to show that if we choose C1

small enough, then we can make sure that there is at most
one algebraic integer in M satisfying these conditions.

The method we used is a generalization of a method
due to H. Cohen (see [Cohen 00, Section 6.2.4]). Let
r1, r2 be the two real embeddings of M , with r1 being
the identity, and let c1, . . . , c14 be a complete fixed set
of nonconjugate complex embeddings of M . For y ∈ M

and 1 ≤ l ≤ 30, we define

y(l) =


rl(y) if l = 1 or 2

(cl−2(y)) + �(cl−2(y)) if 3 ≤ l ≤ 16

(cl−16(y)) −�(cl−16(y)) if 17 ≤ l ≤ 30.

Let v(y) be the 30-dimensional vector whose l-
component is y(l). The image of the ring of integers OM

under the map v that sends y ∈ M to v(y) is a full lattice
in R30 with determinant equal to the absolute value of
the discriminant of M .

We will need the following lemma whose proof is di-
rect.

Lemma 4.1. Let x ∈ M and assume that all the conju-
gates of x have absolute value less than C2. Then∣∣∣x(2)

∣∣∣ < C2 and
∣∣∣x(l)

∣∣∣ <
√

2C2 for 3 ≤ l ≤ 30.

In the reverse direction, if∣∣∣x(l)
∣∣∣ < C2 for 2 ≤ l ≤ 30,

then all the conjugates of x have absolute value less than
C2.

Let {ω1, . . . , ω30} be an integral basis of OM . For
a fixed real number x̃, consider the following quadratic
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form on Z31:

Q(v0, v1, . . . , v30) = C2
2v2

0 + (C2/C1)2

 30∑
j=1

vjω
(1)
j − v0x̃

2

+
30∑

l=2

 30∑
j=1

vjω
(l)
j

2

.

If x = x1ω1 + · · ·+x30ω30 ∈ OM is a solution of (4–1),
then

Q(1, x1, . . . , x30) < C2
2 + (C2/C1)2(x − x̃)2

+
(
x(2)

)2

+
30∑

l=3

(
x(l)

)2

< C2
2 + C2

2 + C2
2 + 2

30∑
l=3

C2
2 = 59C2

2 .

Conversely, let (x0, . . . , x30) ∈ Z31 be such that

Q(x0, . . . , x30) < 59C2
2 .

Then C2
2x2

0 < 59C2
2 so |x0| ≤ 7. If x0 is actually equal to

±1, then we can set

x∗ = x0

 30∑
j=1

xjωj

 ∈ OM ,

and x∗ satisfies |x∗ − x̃| <
√

59C1 and all its conjugates
are of absolute value less than

√
59C2. Therefore, solu-

tions to
Q(x0, . . . , x30) < 59C2

2 (4–2)

with x0 = ±1 are not too far from being solutions to our
original problem, and there are only a small number of
solutions to (4–2) when C1 is small enough.

In order to find solutions to (4–1), one can use the
Fincke-Pohst algorithm [Cohen 93, 2.7.3] to find solu-
tions to (4–2), then discard those for which x0 �= ±1 (or
even better, modify the algorithm in such a way that it
only considers vectors with x0 = ±1). Then for each so-
lution found (with x0 = ±1), compute the corresponding
algebraic integer and check whether or not it satisfies the
stronger conditions of (4–1).

In practice, this method works very well for small
enough values of C1 and gives only a few vectors satisfy-
ing (4–2), only one of those satisfying (4–1). For infor-
mation, the size of C1, that is the precision used, was be-
tween 10−100 and 10−200 for most examples, with a pre-
cision up to 400 decimal places in one case (N = 3004).

However, the computations used to compute the value of
the L-functions was higher, around 600 decimal places.

Once the (conjectural) unit ε(d) has been found, we
need to check that it satisfies the conjecture. Of course,
one part of the check involves testing whether or not two
real numbers, given by approximations, are equal, which
is an impossible computational task. So we will not be
able to prove the conjecture in these cases, but only to
give evidence pointing toward the truth of the conjecture.
These checks are described in Section 4.4 together with
an example. We summarize these computations in the
following result.

Theorem 4.2. For the 14 icosahedral representations with
odd quadratic determinant listed in Table 1, Conjecture
2.9 has been numerically verified up to the precision of
the computation.

4.2 Square-Root of the Stark Unit

In all the examples, we have found that the unit ε(d)
was a square in K. In fact, in almost all examples, it is
actually a fourth power (see below). We have used this
fact to simplify the computation. Indeed, in all exam-
ples, we have started by assuming that it was a fourth
power, and instead of trying to recognize the coefficients
of the minimal polynomial of ε(d) over M , we searched
for the coefficients of the minimal polynomial of ε(d)1/4.
In doing so, we always took the positive fourth root as
conjugates of ε(d)1/4. If we were not able to find those,
then we searched for that of the minimal polynomial of
ε(d)1/2, assuming again that all the conjugates were pos-
itive. As stated above, in all cases, we were able to find
these coefficients. Not only does this method prove di-
rectly that the unit ε(d) is a fourth power (respectively
a square), but it also greatly simplifies the computations
since we had to deal with numbers having one fourth (re-
spectively one half) as many digits! Of course, if we failed
to recognize the coefficients of the minimal polynomial of
ε(d)1/4, then that did not prove that it was not a fourth
power, since we arbitrarily decided to consider only the
positive fourth root. So, in those cases, we did check once
the unit had been found that it was not a fourth power.

Table 3 sums up the information mentioned above.
For each conductor N , an entry 2 (respectively 4) means
that the unit ε(d) was a square (respectively a fourth
power) in K. We do not specify in the table the value of
d ( 1

2 or 5+
√

5
20 ), or the representation (if there are more

than one to test of the same conductor) since in all the
examples, we have found that this property does not de-
pend on these.
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N power N power N power N power

1948 4 2083 4 2336 2 2707 4

2863 4 3004 2 3203 4 3547 4

3548 2 3587 4 3676 2

TABLE 3.

4.3 The Abelian Condition

The so-called abelian rank one Stark conjecture for an
abelian extension K1/K2 of number fields (see [Tate 84,
Chapter IV]) predicts the existence of a unit ε ∈ K1 sat-
isfying conditions similar to that of Conjecture 2.9 and
such that ε1/e defines an abelian extension of K2, where
e is the number of roots of unity in K1. A similar condi-
tion for the Stark-Chinburg conjecture has not yet been
stated. However, following a suggestion made by Stark,
we have checked in all 14 of our examples that the fourth
root of the Stark unit always generates an abelian ex-
tension of M (of course, this is trivially satisfied when
the Stark unit is already of fourth power). We ask the
following question:

Question 4.3. In this setting, is it true that the extension
K(ε(d)1/4)/M is always an abelian extension?

4.4 An Example

We conclude with an example of a computation. We
will look at the representation of conductor N = 2863
and with determinant the quadratic character of the field
Q(

√−409), and the value d = 5+
√

5
20 . (This example is

the one for which the irreducible polynomial over Q of
the Stark unit has the smallest coefficients.) In what
follows, we will write ε instead of ε( 5+

√
5

20 ) to denote the
Stark unit.

First, we compute the field F using the explicit for-
mula for θ and then find that the field M is generated
over Q by a (fixed) real root of the polynomial:

X30 − 11X29 + 60X28 − 184X27 + 282X26 − 93X25

+ 1155X24 − 15102X23 + 81876X22 − 295153X21

+ 824690X20 − 1918902X19 + 3838834X18

− 6617268X17 + 9651756X16 − 11548871X15

+ 10886632X14 − 7709825X13 + 3980211X12

− 1749801X11 + 1033046X10 − 526435X9

− 55897X8 + 112042X7 + 213353X6 − 221284X5

− 31311X4 + 78204X3 + 4802X2 − 12005X − 2401.

We compute the values of f ′
d(ψ(g)+ψ(gτ))(0) for all g ∈

G with a precision of 620 decimal places for g ∈ 〈z〉 and

of 100 decimal places for g �∈ 〈z〉. Using the (positive)
fourth root of these values, we find that, if these choices
are correct, then ε1/4 must be a root of the following
polynomial which must have coefficients in OM if the
fourth root belongs to K+: 1

X4 − 11.0733582927400638184932897075796398...X3

+ 26.4538517976073658614124922380428030...X2

− 11.0733582927400638184932897075796398...X + 1.

Also, we find that the other conjugates of the coefficient
a of X3 (which is also that of X) are bounded in abso-
lute value by 14, and those of the coefficient b of X2 are
bounded by 44. These bounds are also found by using
Conjecture 2.9. Using the method explained above, we
recognize the two coefficients a and b using C1 = 10−120.
We will not list those since each one would require several
pages just to write it down! However, once these coeffi-
cients have been found, we construct the corresponding
polynomial and compute its roots to a precision of 600
decimal digits. We then check that these values agree
with the one computed via the conjecture. This is al-
ready a first good check since only a precision of 120 dec-
imal digits was used to recover the coefficients. (Actually,
the first good check is that there are indeed elements a

and b in OM satisfying the conditions we imposed.)
We then compute the irreducible polynomial of ε1/4

over Q; it is a degree 120 polynomial with quite big coef-
ficients even though we are only looking at the fourth
root of the Stark unit (see Figure 2). We compute
its roots (ei)1≤i≤120 to a precision of 100 decimal dig-
its. We then look for a one-to-one correspondence be-
tween the absolute values of the ei and the values of
exp{f ′

d(ψ(g)+ψ(gτ))(0)}, for g in a set of representatives
of G/〈τ〉, such that corresponding values agree up to the
precision. Such a correspondence must exist if the con-
jecture is true and, indeed, we find that it does. This is
also quite a good check since we used the values of the
other conjugates of ε which are not conjugates over M

only through the upper bound that they provide on the
conjugates of the coefficients a and b. Actually, if the
conjecture is true, this correspondence should give us ex-
plicitly the Galois action of G on the conjugates of the
Stark unit. However, it is not practical to recover this
(conjectural) correspondence by trying to match the val-
ues of the absolute values of the conjugates with the val-
ues predicted by the conjecture since there are too many

1 In this example, we will, of course, give all the numerical
results with a much smaller precision than the one used in the
computations.
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X
120 − 14X

119 + 10X
118 + 528X

117 − 721X
116 − 12186X

115 − 1022X
114 + 272500X

113 + 511431X
112

− 5891390X
111 − 13723194X

110 + 105936396X
109 + 206807275X

108 − 1534364982X
107

− 2148339186X
106 + 17880418336X

105 + 15711872585X
104 − 168995037912X

103

− 67266744140X
102 + 1311505408046X

101 − 89291738681X
100 − 8494623508910X

99

+ 4235000319554X
98 + 45100336757892X

97 − 44699345526371X
96 − 198789238356076X

95

+ 318871476120728X
94 + 744008040343916X

93 − 1682328456079649X
92 − 2135167290906516X

91

+ 7510163330929880X
90 + 4496703792844188X

89 − 28166525613664065X
88 − 3766815912764636X

87

+ 90442638583264834X
86 − 22239156146839804X

85 − 255223687887713211X
84 + 144746005476226278X

83

+ 637495087229463472X
82 − 538617388539670046X

81 − 1405725781756458029X
80 + 1586294443053165584X

79

+ 2827558653955188558X
78 − 3855005474440939128X

77 − 5224727512198411575X
76 + 8024368738725683150X

75

+ 9089153383531781324X
74 − 14516564995099084468X

73 − 15279740471791884367X
72

+ 22886584508143805334X
71 + 24920013640589593880X

70 − 31520286306610904124X
69

− 38951665554067587963X
68 + 37417793964722184658X

67 + 56660611016658159176X
66

− 37074726381332624176X
65 − 74983502912940337331X

64 + 27894404791194859718X
63

+ 89065895937691036822X
62 − 10418769031801600904X

61 − 94322409774714428665X
60

− 10418769031801600904X
59 + 89065895937691036822X

58 + 27894404791194859718X
57

− 74983502912940337331X
56 − 37074726381332624176X

55 + 56660611016658159176X
54

+ 37417793964722184658X
53 − 38951665554067587963X

52 − 31520286306610904124X
51

+ 24920013640589593880X
50 + 22886584508143805334X

49 − 15279740471791884367X
48

− 14516564995099084468X
47 + 9089153383531781324X

46 + 8024368738725683150X
45 − 5224727512198411575X

44

− 3855005474440939128X
43 + 2827558653955188558X

42 + 1586294443053165584X
41 − 1405725781756458029X

40

− 538617388539670046X
39 + 637495087229463472X

38 + 144746005476226278X
37 − 255223687887713211X

36

− 22239156146839804X
35 + 90442638583264834X

34 − 3766815912764636X
33 − 28166525613664065X

32

+ 4496703792844188X
31 + 7510163330929880X

30 − 2135167290906516X
29 − 1682328456079649X

28

+ 744008040343916X
27 + 318871476120728X

26 − 198789238356076X
25 − 44699345526371X

24

+ 45100336757892X
23 + 4235000319554X

22 − 8494623508910X
21 − 89291738681X

20

+ 1311505408046X
19 − 67266744140X

18 − 168995037912X
17 + 15711872585X

16 + 17880418336X
15

− 2148339186X
14 − 1534364982X

13 + 206807275X
12 + 105936396X

11 − 13723194X
10 − 5891390X

9

+ 511431X
8 + 272500X

7 − 1022X
6 − 12186X

5 − 721X
4 + 528X

3 + 10X
2 − 14X + 1

FIGURE 2. The irreducible polynomial over Q of ε( 5+
√

5
20

)1/4.

conjugates of the Stark unit with the same absolute value
and thus too many possible correspondences (in this ex-
ample, the number of possible correspondences is around
1026).

Finally, we check that the Stark unit generates the
field K+ over Q in the following way. Recall that the
method of [Jehanne 01] gives us an explicit construction
of S. Now, looking at Figure 1, it is clear that K+ =
SK = SM . We find a primitive element α of S over
F , so K+ = M(α). Next, we compute the compositum
field over M of M(ε) and M(α) using the method of
[Cohen 00, 2.1.3] and find that it has degree 4. Thus,
M(ε) = M(α) = K+.
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