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Morse theory is a fundamental tool for investigating the topology
of smooth manifolds. This tool has been extended to discrete
structures by Forman, which allows combinatorial analysis and
direct computation. This theory relies on discrete gradient vec-
tor fields, whose critical elements describe the topology of the
structure. The purpose of this work is to construct optimal dis-
crete gradient vector fields, where optimality means having the
minimum number of critical elements. The problem is equiv-
alently stated in terms of maximal hyperforests of hypergraphs.
Deduced from this theoretical result, a algorithm constructing
almost optimal discrete gradient fields is provided. The optimal
parts of the algorithm are proved, and the part of exponential
complexity is replaced by heuristics. Although reaching opti-
mality is MAX-SNP hard, the experiments on odd topological
models are almost always optimal.

1. INTRODUCTION
1.1  Morse Theory

Morse theory [Milnor 63] is a fundamental tool for inves-
tigating the topology of smooth manifolds. Morse proved
that the topology of a manifold is very closely related to
the critical points of a real smooth map defined on it.
The simplest example of this relationship is the fact that
if the manifold is compact, then any continuous function
defined on it must have a maximum and a minimum.
Morse theory provides a significant refinement of this ob-
servation.

1.2 Forman’s Discrete Morse Theory

The recent insights in Morse theory by Forman [Forman
95, Forman 98] extended several aspects of this funda-
mental tool to discrete structures. Its combinatorial as-
pect allows computation completely independent of a ge-
ometric realization: The algorithms we designed do not
require any coordinate or floating-point calculation, and
geometrical constraints can be applied independently.
Forman proved several results and provided many ap-
plications of his theory [Forman 00, Forman 01]. Once a
Morse function has been defined on a CW-complex, then
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information about its topology can be partly deduced
from its critical cells (i.e., where the discrete gradient
vanishes).

1.3 Optimality

Similarly to the differential case, Forman proved that the
topology of a CW-complex can be partly read out of the
critical cells of a discrete gradient vector field defined
on it. The topological information will be concise if the
discrete gradient vector field has few critical cells. Hence,
we will say that a gradient vector field is optimal if it has
the minimum possible number of critical cells.

1.4 Results

The goal of this work is to build an optimal gradient
vector field. To do so, we develop in Section 4 a hyper-
graph representation of a discrete gradient vector field.
We introduce the notion of hyperforest (Section 4.3) and
prove the equivalence between discrete gradient vector
fields and hyperforests in Theorem 4.7. We stated the
equivalent of a critical cell for a hyperforest in Proposi-
tion 4.9. We finally prove that the minimum number of
critical cells is a topological invariant for 3-manifolds in
Theorem 4.13.

We provide in Section 5 an algorithm to build a
discrete gradient vector field on general cell complexes
of arbitrary dimension. This algorithm is worst-case
quadratic in execution time. It is not guaranteed to be
optimal, but it gives optimal results in most of the cases
(see results in Section 6.3). For the particular case of
2-manifolds, the algorithm is proven to be optimal, al-
though the general problem is MAX-SNP hard! [Lewiner
02].

Sections 2 and 3 recall some basic definitions of graph
theory and discrete Morse theory. The theoretical base
of our work is detailed in Section 4. Our construction and
its optimality are discussed in Section 5. As the problem
is NP hard, we used some heuristics which are compared
to their experimental results in Section 6.

2. DISCRETE STRUCTURES
2.1 Cell Complexes

A cell complex is, roughly speaking, a generalization of
the structures used to represent solid models: It is a con-
sistent, collection of cells (vertices, edges, faces ...). In
particular, triangulations of topological spaces or three-
dimensional meshes are cell complexes (see Figure 1).

LA MAX-SNP hard problem is an NP hard problem for which
any polynomial algorithm can lead arbitrary far from the optimum.
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FIGURE 1. A triangulated torus.
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FIGURE 2. A construction of a torus with four cells.

Figure 2 gives a minimal construction of a torus cell com-
plex. A complete introduction to cell complexes can be
found in [Lundell 69].
Definition 2.1. (Cell.) A cell a®) of dimension
p is a set homeomorphic to the open p-ball D? =
{r e R? : ||z|| < 1}.

When the dimension p of the cell is obvious, we will
simply denote a instead of a(?). Those cells are attached
together to form a cell complex, in the following way:

Definition 2.2. (Attaching a cell.) Given a p—cell , a set
X@=1 of (p-1)-cells and a map ¢, : dD? — X P~ the
attachment of a to X1 via ¢, is the quotient space
of the disjoint union X ?=1) U D? under the identification

T = ¢a(7).

Definition 2.3. (CW-complex.) A CW-complex K is
built by starting off with a discrete collection of 0-cells
(vertices) called K°, then attaching 1-cells (edges) to K°
along their boundaries, obtaining K!, then attaching 2-
cells (faces) to K! along their boundaries, writing K? for
the new space, and so on, giving spaces K™ for every n.
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FIGURE 3. The Hasse diagram of a non-PL torus: The links e5 — v0 and e4 — v0 are double.
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A CW-complex will be said to be finite when it is
built out of a finite number of cells. In this work, we will
consider only finite (and thus regular) CW-complexes, in
order to compute on them.

A p-cell a(P) is a face of a g-cell 39 (p < q) if a C
closure(B). If ¢ = p+ 1, we will use the notation a® <
B9, and say that o and f8 are incident. The multiplicity
of this incidence is the number of connected components
of ¢El(a).

In a sense, a cell complex is a generalization of a graph,
as a graph can be seen as a cell complex of dimension 1.
Nevertheless, we can also represent a cell complex by a
multigraph?, called its Hasse diagram.

Definition 2.4. (Hasse diagram.) The Hasse diagram of
a cell complex K is the oriented multigraph H, where:

e Each node of H represents a cell of K.

e The links of H join nodes representing incident cells
of K. Multiple incidences are represented by mul-
tiple links.
highest dimension.

The source of each link is the one of

The Hasse diagram is usually drawn with the nodes
ranked by their dimension. In Figure 3, the faces (2-cells)
are aligned on top rank, the edges (1-cells) on the middle
one, and the vertices (0-cells) on the bottom rank. A
link between two nodes symbolizes that the correspond-
ing cells are incident.

2.2 Hypergraphs

In the dual graph of a cell complex that is not a manifold,
links that join more than two nodes may appear. This

2 A multigraph admits multiple links.
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would not fit in the definition of a simple graph, but in
the following one:

Definition 2.5. (Hypergraph.) A hypergraph is a pair
(N, L), where L is a family of families of N. The elements
of L are called hyperlinks.

The elements of L are families, which means that a hy-
perlink can be incident more than once to a node. They
can also be empty. We will classify nonempty hyperlinks
into the regular hyperlinks (or shortly link), which join
two distinct nodes as in simple graphs, the loops, which
are incident to only one node, and the nonregular hy-
perlinks, which either join three or more nodes or are
multiply incident to one node. We can extract the sim-
ple graph part of a hypergraph by considering its reqular
components:

Definition 2.6. (Regular components.) The regular com-
ponents of a hypergraph (N, L) are the connected com-
ponents of the simple graph (N, R), where R is the set
of the regular hyperlinks of (N, L).

Multiple incidences (i.e., duplicated edges) are re-
duced inside the regular components. We will give a
hypergraph a simple orientation by distinguishing one
node of each hyperlink as its source.

A hypergraph can be represented by a bipartite graph
[Berge 70]. This gives a simple, but expensive, represen-
tation of hypergraphs:

Definition 2.7. (Bipartite graph of a hypergraph.) The
bipartite graph B(H) of a hypergraph H = (N, L) is the
simple graph whose two classes of nodes are {B(n),n €
N} and {B(l),l € L}, representing the nodes and the
links of H.
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(c) optimal discrete gradient field

FIGURE 4. Example of a combinatorial vector fields: (a) not a gradient (the closed V-path is highlighted); (b) and (c)

are gradient vector fields; (c) is optimal.

For every hyperlink | = (nq,na,...,n;) of H, there are
k links of B(H) joining B(l) to B(n;) (with i =1...k).

When H is oriented, B(H) will be oriented the follow-
ing way:

e If a node n of H is the source of a hyperlink /, then
B(l) will be the source of the link of B(H) joining
B(n) to B(I).

e If a node n of H is not the source of an incident
hyperlink /, then B(n) will be the source of the link
of B(H) joining B(n) to B(l).

The operation of taking the bipartite graph of a hyper-
graph can be reversed. Depending on which class of
nodes becomes the links of the hypergraph, we can ob-
tain a hypergraph or its dual. The bipartite graph is not
supposed to give a consistent orientation in the general
case. Therefore, the hypergraph representing a bipartite
graph will not always be oriented.

Definition 2.8. (Hypergraphs of a bipartite graph.) A
bipartite graph B admits two representations by hyper-
graphs: B7'(B) and its dual D (B~!(B)). The nodes of
B~1(B) represent the nodes of one class of B, and the
hyperlinks of B~!(B) represent the nodes of the other
class. For every node [ of the second class, there is a
hyperlink of B~1(B) joining all the nodes adjacent to .

3. FORMAN'’S DISCRETE MORSE THEORY
3.1 Discrete Gradient Vector Field

Definition 3.1. (Combinatorial vector field.) A com-
binatorial vector field V defined on a cell complex K

is a collection of disjoint pairs of incident cells {a(P) <
By,

We will represent a combinatorial vector field by an
arrow from the cell of lower dimension to its paired cell
of higher dimension (see Figure 4).

Definition 3.2. (V-path.) A V-path is an alternating
sequence of cells olP, gPY . olP) gty aE,’_’gl
satisfying: {agp) < [31-@“)} €V, ﬁl(pﬂ) > Oéz(-ﬂ and

), #alf

‘e

A V-path is nontrivial and closed if r > 1 and @41 =
ap. For example, Figure 4(a) shows in black the closed
V-path of a combinatorial vector field.

Definition 3.3. (Discrete gradient vector field.) A dis-
crete gradient vector field is a combinatorial vector field
with no nontrivial closed V-path.

3.2 Critical Cells

Morse proved that the topology of a manifold is related
to the critical elements of a smooth function defined on it.
Forman gave a similar result, with the following definition
for the critical cells:

Definition 3.4. (Critical cells.) A cell « is a critical cell
of V if it is not paired with any other cell in V.

The example of Figure 4 (a) is not a discrete gradient
vector field as it contains a closed V-path. In Figures
4(b) and 4(c), the critical cells of the discrete gradient
vector field are drawn in black.

The number of critical cells is not a topological in-
variant of the cell complex, as it depends on the discrete
gradient vector field considered. For example, with an
empty discrete vector field (i.e., no cells are paired), ev-
ery cell is critical, which would be the maximal number
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(a) combinatorial vector field

(b) valid discrete gradient field
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FIGURE 5. Hasse diagrams of the examples of Figure 4: (a) not a gradient (the circuit of its closed V-path is highlighted);

(b) and (c) are gradient vector fields; (c¢) is optimal.

of critical cells. In this work, we are more concerned with
minimizing this number, as it would give a more concise
description of the topology.

3.3 Hasse Diagram of Vector Fields

A combinatorial vector field is a partial matching in the
Hasse diagram: Each pair of V corresponds to matched
nodes in the Hasse diagram.

We will represent such a matching by inverting the
orientation of the link between each pair in V: For each
{a® < BP+DY € V the source of the link joining ()
and P*+1) in the diagram will be a(®). For example, Fig-
ure 5 shows the Hasse diagrams of the discrete gradient
vector fields of Figure 4. With this modified orientation,
a closed V-path is just an oriented circuit in the Hasse
diagram (see Figure 5(a)).

A discrete gradient vector field contains no closed V-
path, and thus will be an acyclic partial matching.

4. STRUCTURE OF A DISCRETE GRADIENT
VECTOR FIELD

A discrete gradient vector field has been defined as an
acyclic partial matching in the Hasse diagram (see Sec-
tion 3.3). This involves two problems: creating a match-
ing, and removing cycles. Those two problems are sepa-
rately well understood (see [Lovéasz 86] for matching the-
ory, and [Hopcroft 73] for graph algorithms). However,
when combined, they create NP hard problems [Lewiner
02]. In this section, we will give another point of view
on discrete Morse theory in terms of the simplest (lin-
ear instead of quadratic) of those two problems: creating
forests. We will prove our combined problem can be seen
as a hyperforest creation problem.

4.1 Llayers of the Hasse Diagram

In an n-combinatorial manifold, a (n-1)-cell is incident
to either 1 or 2 n-cells [Lundell 69]. So the dual layer
n/(n-1) of the Hasse diagram will be represented by a

pseudograph?, called the dual pseudograph. This pseu-
dograph can be seen as the hypergraph representation of
the dual layer n/(n-1) of the Hasse diagram.

Definition 4.1. (Layer of the Hasse diagram.) For
two consecutive dimensions p and ¢ of a cell complex
K (lp — q| = 1), the layer L,,, of rank p/q of its Hasse
diagram is an oriented simple bipartite graph. Its classes
of nodes are the p- and g-cells of K. Its links join nodes
representing incident p- and ¢-cells of K.

This definition distinguishes £/, from L, /,,, which are
dual following Definition 2.8. The orientation of those
layers is the same as the one of the original Hasse di-
agram. For example, Figure 6 shows a double cube, its
Hasse diagram, and the hypergraph of the bipartite graph
L5/ (see Definition 2.8), i.e., the dual graph of this dou-
ble cube.

4.2 Reduced Layer of a Combinatorial Vector Field

Considering successive layers of the Hasse diagram is re-
dundant: Each p-cell of K appears in general in four lay-
ers (Lp/p+1)s Lp/-1)> Lo41)/ps Lip-1)/p)- When the
Hasse diagram is oriented by a discrete gradient vector
field (see Section 3.3), a matching belongs to only two of
them. The following reduction allows such partition:

Definition 4.2. (Reduced layers of a combinatorial vector
field.) Let K be a cell complex, V a combinatorial vector
field defined on it, and £,/, the layer p/q of the Hasse
diagram oriented by V, with |[p—¢| = 1. The reduced layer
L,,, is an oriented bipartite graph obtained by removing
from L,/

e the p-cells of K paired with a ¢’-cellof KinV, ¢’ # q.

e the g¢-cells of K unpaired or paired with a p'-cell in
V.p' #p.

3 A pseudograph admits loops and multiple links.
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FIGURE 6. The layer of a double cube made with 12 squared faces, 23 edges, and 14 vertices. The hypergraph of the
layer 2/1 of its Hasse diagram has therefore 12 nodes and 23 links.
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(a) The reduced layer 2/1 of the double cube (dark nodes
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) The hypergraph of the reduced layer 2/1.

FIGURE 7. Given the gradient field (dark lines) (a), its reduced layer is a forest (b).

Notice that any V-path is entirely represented in one
of the reduced layers. For example, Figure 7 shows in
the dark dots the edges in the Hasse diagram of Figure 6
that belong to the reduced layer 2/1. The corresponding
hypergraph is a forest (see Figure 7).

4.3 Hyperforests

A forest is a graph with no circuit. We now give a natural
extension of forests for hypergraphs:

Definition 4.3. (Oriented hypercircuit.) An oriented
hypercircuit in a hypergraph is a sequence of distinct
nodes ng,nq,...,n,41 such that n,;; = ng and for all
0 <i <, n; is the source of a hyperlink leading to n;4.

Definition 4.4. (Hyperforest.) We will say that a simply
oriented hypergraph is a hyperforest if each node is the
source of at most one hyperlink, and if it does not contain
any hypercircuit.

In Figure 8, the oriented links belong to a discrete gra-
dient vector field of the nonmanifold object drawn. The
loops and nonregular hyperlink end the regular compo-
nents.

Proposition 4.5. Let HF be a hyperforest, and R one of
its reqular components.

(i) The regular components of a HF' are simple trees.

(i1) There is at most one node in R which is the source
of either a loop or nonregular hyperlink.

Proof:  (i). Suppose R had a (simple) circuit
Ng,N1,...,Npr1 = Mng. There are (r + 1) nodes
and (r+ 1) regular links in this circuit. As a node cannot
be the source of two links, each node is the source of
exactly one link of the circuit.

Suppose, without loss of generality, that ng is the
source of the link {ng,n1}. ny is incident to two links
of the circuit: {ng,n;} and {ny,ns}. As it is not the
source of the first one, it is the source of {ny,n2}. Con-
tinuing those deductions, we prove that all the links of
the circuit are oriented in such a way to form an oriented
hypercircuit.

Since HF' is a hyperforest, this leads to a contradic-
tion. Therefore, R is a simple tree.

(ii). Let k be the number of nodes of R. As R is a tree,
it has (k — 1) (regular) links. The sources of those links
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FIGURE 8. The nonregular hyperlinks appear while processing nonmanifold surfaces. Loops appear while processing

surfaces with boundary.
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FIGURE 9. (a) The Hasse diagram of a discrete gradient vector field on a 4 cubes solid model, with a discrete gradient
vector field defined on it (darker lines); (b) The 0/1 hyperforest of its reduced layer.

are nodes of R, as those links are regular (see Definition
2.6). Therefore, among those k nodes, there are (k — 1)
nodes that are the source of regular hyperlinks. So there
is at most k — (k — 1) = 1 node in R which is the source
of either a loop or a nonregular hyperlink. O

4.4 Discrete Gradient Vector Field and Hyperforests

We defined a discrete gradient vector field as an acyclic
partial matching in the Hasse diagram (see Section 3.3),
and a hyperforest as a hypergraph without hypercircuit.
Therefore, each layer of the Hasse diagram oriented by
a discrete gradient vector field will have no hypercir-
cuit. Hence, their representations by hypergraphs will
be hyperforests.

Definition 4.6. (Hypergraphs of a combinatorial vector
field.) Let K be a cell complex, V a combinatorial vector
field defined on it, and L,,, the reduced layer p/q of V
(Ip — ¢q| = 1). The p/q-hypergraph of V, H,,,, is the

hypergraph representation of L, ,: Hy,/q = B~(Ly/q)-
H,,, is oriented as follow: The source of a hyperlink of
H,,, is the node representing its paired cell in V.

For example, Figure 9 shows the hyperforest corre-
sponding to the reduced layer 1/0 of the Hasse diagram.

Theorem 4.7. Let V be a combinatorial vector field. V
is a discrete gradient vector field on an n-cell complex K
if and only if the 0/1, 1/2, ... (n-1)/n hypergraphs of V
are hyperforests.

As the dual of a hyperforest is a hyperforest, the the-
orem is valid for any sequence obtained by replacing any
of the p/g-hypergraphs by a ¢/p-hypergraph of V.

Proof: The orientation of L, /, ensures the first condition
of Definition 4.4. As any V-path is entirely represented
in one of the reduced layers, we just need to prove that a
closed V-path is a hypercircuit in one of the hypergraphs.
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Let ng,n1,...,n.41 = no be an oriented hypercircuit
in Hy/,. From Definition 4.3, n; is the source of a hy-
perlink I; incident to n;41. This hyperlink /; represents a
g-cell B; of K, and n; represents a p-cell a;. As n; is the
source of I;, we know from the orientation of Definition
4.6 that «; and §; are incident and form a pair in V. So
@0, oy - -+, Qpr, Br,arr1 i & V-path. As n,y; = ng and
r > 1, this is a closed V-path.

This argument can be reversed to prove that a closed
V-path is hypercircuit in one of the p/g-hypergraphs

Hp/q" =

We will now define the analog of critical cells for hyper-
forests. This will be the foundation of the algorithm of
Section 5. A critical cell of a discrete gradient vector field
corresponds to one of the regular components of one of
its hyperforests.

Definition 4.8. (Critical component.) A regular com-
ponent of a hyperforest will be called critical if none of
its nodes is the source of either a loop or a nonregular
hyperlink.

Proposition 4.9. Let H,,, be the p/q-hyperforest of a dis-
crete gradient vector field V. The number of critical com-
ponents of Hy,, is exvactly the number of critical p-cells

of V.

Proof: Every possible critical p-cell is represented H,,
and its corresponding reduced layer L,,,. The isolated
nodes of L/, are not matched with any cell of K, and
remain isolated nodes in Hy,/,. Those nodes are critical
components, according to Definition 4.8.

We know from Proposition 4.5 that each regular com-
ponent R is a simple tree. In such a tree with k nodes,
there are (k — 1) (regular) links. All links are oriented,
so among those k nodes, (k — 1) are the sources of links
of R, and therefore, those are not critical. If R is not a
critical component, there is exactly one node of R which
is the source of either a loop or a nonregular hyperlink,
i.e., it is not critical.

If R is a critical component, this node is neither the
source of a loop nor of a nonregular hyperlink. From
Definition 2.6 of a regular component, this node is not
incident to any regular hyperlink not in R. All those
links of R are already paired with other nodes. So this
node is unpaired in L,,/,. From Definition 4.2, it cannot
be paired with a cell outside L,/,. Therefore, it is an
unpaired node, i.e., a critical cell. O

4.5 Optimality of Hyperforests

()/'

FIGURE 10. Detail of a hyperlink insertion in the dual
hyperforest appearing with a solid torus model.

An optimal discrete gradient vector field will have the
minimal possible number of critical cells, or equivalently,
the minimum possible sum of critical components in each
hyperforest H,,. There are as many noncritical elements
in a hyperforest as its number of hyperlinks (noncritical
elements are paired with an incident hyperlink). There-
fore, an optimal discrete gradient vector field has the
maximum total number of hyperlinks in all of its hyper-
forests. For example, adding the hyperlink on the left
side of Figure 10 allows us to pair it with the node on the
left. Thus, there will be fewer critical (unpaired) nodes.
As the problem of finding optimal discrete gradient vec-
tor fields is MAX-SNP hard [Lewiner 02], we proved here
that the problem of finding a maximal hyperforest in a
hypergraph is also MAX-SNP hard.

4.6 A Topological Invariant for 3-Manifolds

Definition 4.10. (Discrete Morse numbers.) The Morse
number M, (K) of index p of a cell complex K is the
minimum possible number of critical p-cells, considering
all possible discrete gradient vector fields defined on K.

Morse theory is linked to simple homotopy. To prove
the invariance of the Morse numbers, we could prove that
topologically equivalent cell complexes are simple homo-
topic, and that simple homotopic spaces have the same
discrete Morse numbers. Unfortunately, the first affirma-
tion is not true in the general case. However, it holds for
3-manifolds. We will use the following theorems, proofs
of which can be found, respectively, in [Moise 52] and
[Cohen 73, 25.1].

Theorem 4.11. (3-Manifold Hauptvermutung.) Any two
triangulations of a topological 3-manifold have a common
subdivision.
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FIGURE 11. A contractible space and the complement cell complexes C* and C? of two different hyperforests Hj/l and

H22/1 defined on it.

Theorem 4.12. If K, is a subdivision of K, then K and
K., are simple-homotopy equivalent.

The proof of the invariance now follows:

Theorem 4.13. (Invariance of discrete Morse numbers.)
Let K and L be homeomorphic 3-manifolds. Then for all
P, Mp(K) = My(L).

Proof: Let V be an optimal discrete gradient vector field
defined on K. We will prove the theorem by contradic-
tion. Suppose L would have its Morse number of index n
greater than the number of critical n-cells of V. We will
construct a discrete gradient vector field on L with the
same number of critical elements as V.

From Theorem 4.11, there exists a common subdivi-
sion to K and L. We deduce from Theorem 4.12 that L
can be obtained from K by a finite number of collapses
and extensions.

If M. is an extension of M, and V is a discrete gradient
vector field defined on M, we know from [Forman 98,
Section 12] that we can define a discrete gradient vector
field V, on M, with the same number of critical elements
as V. If M collapses onto M., we know from [Forman 98,
Lemma 4.3] that we can extend V, on M without adding
any critical element.

Therefore, we can build a discrete gradient vector field
on L with the same number of critical elements as V. This
leads to the desired contradiction. |

5. CONSTRUCTING DISCRETE GRADIENT
VECTOR FIELDS

The algorithms we will introduce process each layer £, /,
of the Hasse diagram. For each of those, they define a
hyperforest H),/, extracted from the layer’s hypergraph
Hy/q, i-e., they define a discrete gradient vector field.
The optimizations we perform in the algorithm are lo-
cal. This is sufficient only for 3-manifolds. Locally, we
are able to maximize the number of regular links and
loops. Maximizing the number of nonregular hyperlinks
is performed by a greedy heuristic.

5.1 Validity of Local Optimization for 3-Manifolds

We proved in 4.6 that the minimal number of critical cells
is an invariant at least for 3-manifolds. We will deduce
that maximizing the number of hyperlinks in each layer
of the Hasse diagram gives a global maximum:

Theorem 5.1. Let K be a 3-manifold cell complex. Any
two optimal discrete gradient vector fields defined on K
will have the same number of critical cells in each layer.

Consider two different n/(n-1)-hyperforests H} J(n-1)
and H’?L/(n-l) extracted from the n/(n-1) layer of K, hav-
ing the same number of critical components. Now call
C! and C? the two cell complexes represented by the
cells of K of dimensions < n and whose (n-1)-cells are
not in H}L/(n_l) and Hfl/(n_l), respectively (see Figure 11).
From Theorems 3.3 and 3.4 of [Forman 98], C! and C?
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are simple homotopic and they have the same minimal
number of critical cells. We conclude by induction that,
in the case of 3-manifolds, maximizing the number of hy-
perlinks in each hyperforest generates an optimal discrete
gradient vector field.

5.2 Algorithm Outline

We must first choose which layers of the Hasse diagram
we process. Actually, we can process all of them, in-
dependently from their direct or their dual hypergraph
representation. We know that the dual pseudograph
My /(n-1) of a manifold has no nonregular hyperlink, and
that the direct hypergraph Hg/, of the first layer is a
simple graph. Those two simple cases could be useful as
the construction of hyperforest is linear on pseudograph
and quadratic on general hypergraphs. For example, a
solid model could be processed by the following sequence
of layers: 0/1,1/2,3/2; or 3/2,2/1,0/1. That is, we ex-
tract one hyperforest H,,/, of each of the (d-1) successive
hypergraph H,/, (where d is the dimension of the cell
complex).

In this work, all the algorithms extract a hyperforest
H,,, out of a hypergraph #,,, process by the following
steps (see Figure 12):

1. Initiate H,/, with the nodes of H,/,.

2. Generate a spanning tree on every regular compo-
nent of H,/,-

3. Add all the links of those spanning trees to H,,/,.

4. If a regular component is incident to some loops, add
one of them to Hp/,.

5. Add the nonregular hyperlinks of H,,/, which do not
create cycles.

The first four steps of the algorithm are linear, and
guaranteed to be optimal in any case. The last step re-
quires some heuristics as detailed below.

5.3 Maximum Number of Regular Hyperlinks

Let K be a cell complex, p and ¢ two successive dimen-
sions of K and H,,, the hypergraph of £,/,, the p/q
layer of its Hasse diagram. For any hyperforest H,,,, ex-
tracted from #,/,, consider RT' the simple graph whose
nodes are the nb nodes of a regular component R of H,,/,,
and whose links are the regular hyperlinks of H,,, inci-
dent to those nodes. As R is a regular component of
Hp/q> there is no regular hyperlink incident to a node of
R and a node out of R: RT is well defined. As H,,, is
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(c) Step 5: Adding nonregular hyperlinks.

FIGURE 12. Steps of the algorithm on a part of the hyper-
forest 2/1 of S* x S*.

a hyperforest, there is no circuit in RT. Therefore, RT
RT has (nb — k) links. The
maximum number of links will thus be for & minimal,
i.e., RT a unique (connected) tree. This optimum can be
reached by constructing a spanning tree on each regular
component of H,,/, [Hopcroft 73].

is a collection of k trees:

5.4 Maximizing the Number of Loops

Each connected component of H,,/, is critical or incident
to either a loop or a nonregular hyperlink. The prob-
lem of the regular hyperlinks has been resolved optimally,
and we want now to maximize the number of loops and
nonregular hyperlinks of Hy,/,. If a critical component is
incident to a loop in #H,/,, then adding this loop to H,,
generates another hyperforest with one more hyperlink,
i.e., one critical component less. If a regular component
is incident to a loop [ in H,,, and to a nonregular hyper—
link nl in H,,, and H,/,, then replacing nl by I in H,/,
generates another hyperforest with the same number of
hyperlinks (and a lower risk to create a hypercircuit).
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FIGURE 13. Replacing a nonregular hyperlink by a loop.

This process is illustrated in Figure 13. Therefore, we
can always generate a hyperforest H,,, with the maxi-
mum possible number of hyperlinks such that every reg-
ular component incident to a loop in H,/, is incident to
a loop in H,/,.

5.5 Condition for Nonregular Hyperlink Insertion

Let H,,, be the hyperforest being created out of the
hypergraph H,,,. A hyperlink can be added to H,/,
only if it is incident to at least one critical component.
Otherwise, H,/, would not be a hyperforest, according
to Proposition 4.5. For a nonregular hyperlink nl, let
C(nl) denote the set of connected components of H,/,
containing a node incident to nl in H,,.

The hyperlink nl can create a hypercircuit in a con-
nected component C' of C(nl) when it is incident to more
than one node of C, or more than one time to a node of
C, and when the source of nl is a node of C (see Figure
14).

FIGURE 14. A hyperlink creating a hypercircuit.

If there exists a connected component C in C(nl) such
that nl is simply incident to only one node n of C', and
if n belongs to a critical component of H, /4, then nl can
be added to H,/,. This node ¢ will be the source of nl. If
there does not exist such a node, we can remove nl from
Hp/q as it will never belong to H,/,. This case is valid if
nl is not incident to any critical component.

In particular, when a regular component is incident to
only one hyperlink and if the hyperlink is incident only
once to this regular component, we can add it to Hy/,
(see Figure 15).
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/

FIGURE 15. A regular component incident to only one
hyperlink.

6. FURTHER HEURISTICS

The complexity of the first four steps of our algorithm
is linear in time of execution. Each of those steps gives
an optimal result. However, the problem of finding an
optimal discrete gradient vector field is MAX-SNP hard
[Lewiner 02]. Thus, the last step of our algorithm, i.e.,
deciding which nonregular hyperlinks of H,,, will be
added to Hy/,, must be much more expensive. If the size
of the hypergraph allows it, we could use an exponential
algorithm, generating all possible hyperforests and test-
ing which is the maximal one. For the general case, we
provide in this section different heuristics together with
their results to complete the last step of our algorithm.

6.1 Greedy Methods

Let Hp,/, be the hyperforest being created out of the
hypergraph H,,,. We can try to add the hyperlinks of
Hp/q to Hy/q in a greedy manner. The criterion for a
hyperlink to be added or not to H,,/, has been discussed
in Section 5.5.

The priority on links can be quite arbitrary, as there is
no polynomial approximation. We tested three of them:

e minimal number of incident regular components;

e minimal number of incident critical components in

Hyq;

e maximal number of incident noncritical components
in Hy,/q.

The problem that appears with those criteria is that
the priority must be calculated again each time a hyper-
link is added to H,/, (as some components change status
from critical to noncritical). Therefore, the complexity
of such a heuristic is worst-case quadratic.

6.2 Mixing with Geometry

We can impose some more conditions on our discrete gra-
dient vector fields, similarly to [Lewiner 03]. However,
there is a difference with that case: The geometry can
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FIGURE 16. Discrete gradient vector fields with geometric constraints.

influence the result, as the hyperforest of a layer will be
different if the hyperforest of the previous layer processed
is a geometrical minimum.

There are different constraints we can add on our
hyperforest H,,:

e The spanning tree of the regular components of Hy,/,
can be chosen to be a minimal spanning tree.

e The loops added to the regular components of Hy,/,
can minimize the same function, in order to have the
root of the spanning trees at a minimal position.

e The roots of the spanning trees of the critical com-
ponents of Hy,/, can also be at a minimal position.

e The priority used in the greedy heuristics (see Sec-
tion 6.1) can be derived from the same geometric
function.

The discrete gradient vector fields generated on a torus
model with those constraints are represented in Figure
16 for different geometric functions. The vector field goes
from light gray to dark gray. All of them have four critical
points (one vertex, two edges, one face).

6.3 Experiments

We compared our different heuristics on two kinds of
models: Hachimori’s examples [Hachimori 01] (mainly
nonconstructible models), and other solid models at the
Mat&Midia Laboratory (see Table 2). The results of
those processes are given in Table 1. The different heuris-
tics we implemented were:

HG Simpl Min Deg Min Def Max Cpl

Direct 1208 530 14 402
Dual 7258 728 8 934

Sym Direct 3580 658 50 702
Sym Dual 3842 566 6 722

TABLE 1. Number of redundant critical cells per method
on the models of Table 2.

e Direct: processing the layers 0/1, 1/2, 2/3.

e Dual: processing the layers 3/2, 2/1, 1/0.

e Sym Direct: processing the layers 0/1, 1/2, 3/2.
e Sym Dual: processing the layers 3/2, 2/1, 0/1.

e HG Simpl: only simplifying the hypergraph, with no
further process.

e Min Def: priority to the hyperlinks incident to the
minimum number of critical components.

e Min Deg: priority to the hyperlinks of minimum de-
gree.

e Max Cpl: priority to the hyperlinks incident to the
maximum number of noncritical components.

Forcing the first and last layers to be processed as
0/1 and n/(n-1), as in the cases of Sym Direct and Sym
Dual, leads to the best results (see Table 2), because it
generates fewer nonregular hyperlinks to be processed:
The 0/1 layer is a multigraph (1-skeleton) and, for the
case of manifolds, the n/(n-1) layer is a pseudograph.

The Sym Dual is usually the best processing order, as
it avoids disconnecting the cell complex as would do Sym
Direct (for example, a 0/1 spanning tree on a surface with
boundary, with two vertices on the same boundary). In
particular, for 2-manifolds, the Sym Dual algorithms are
optimal [Lewiner 03].

The Min Def priority in the greedy algorithm leads to
the best algorithm by far. When looking at the detailed
results, mixing with the geometry of the cell complex,
when available, considerably improves the performances
of the algorithm.

Figures 17 and 18 show the resulting discrete gradient
vector field on a four-dimensional model of a Cartesian
product of a Mébius strip by a circle. The algorithm
used was the Sym Dual/Min Def algorithm, minimizing
the total “y” coordinate of the spanning trees and root
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(c) xzw (d) yzw

FIGURE 17. A discrete gradient vector field on a Cartesian product of a Mdbius strip by a circle: 2925 0-cells, 10500
1-cells, 12225 2-cells, and 4650 3-cells; 1 critical 0-cell, 2 critical 1-cells, 1 critical 2-cell, and 0 critical 3-cell. The discrete
gradient vector field, drawn for the 1- and 3-cells, goes from light gray to dark gray. The 3-cells are shrunken for the sake

of clarity.

(c) xzw (d) yzw

FIGURE 18. The 3/2-spanning tree of the discrete gradient vector field of Figure 17. The 2-cells of the 3/2-spanning tree
are drawn as line, and the 3-cells as small solids.
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Model Topology Number of cells Euler | Number of
char | critical cells
bing 3-ball (480,2511,3586,1554) | 1 (1,1,1,0)*
bjorner projective (6,15,11) 2 (1,0,1)
plane + one
facet
c-ns contractible (12, 37, 26) 1 (1,1,1)
c-ns2 contractible (13, 39, 27) 1 (1,0,0)
c-ns3 contractible (10, 31, 22) 1 (1,1,1)
dunce hat Dunce hat (8,24,17) 1 (1,1,1)
gruenbaum 3-ball ( 14, 54, 70, 29) 1 (1,0,0,0)
knot 3-ball (380,1929,2722,1172) | 1 (1,1,1,0)
lockeberg 3-sphere ( 12, 60, 96, 48) 0 (1,0,0,1)
mani walkup C 3-sphere ( 20, 126, 212, 106) 0 (1,0,0,1)
mani walkup D 3-sphere ( 16, 106, 180, 90) 0 (1,0,0,1)
nonextend contractible (7,19, 13) 1 ( 1,0,0)
poincare homology ( 16, 106, 180, 90) 0 (1,2,2,1)
sphere
projective projective (6,15,10) 1 (1,1,1)
plane
rudin 3-ball ( 14, 66, 94, 41) 1 (1,0,0,0)
simon contractible (7,20,14) 1 ( 1,0,0)
ziegler 3-sphere ( 10, 38, 50, 21) 1 (1,0,0,0)
Pile of Cubes contractible (572,1477,1266,360) 1 (1,0,0,0)
s2xs1 S2 % Sl (192, 588, 612,216) 0 (1,1,1,1)
s3 3-sphere (162, 522, 576,216) | 0 (1,0,0,1)*
solid 2sphere 2-sphere ( 64, 144, 108, 26) 2 (1,0,1,0)
Furch  knotted | 3-ball (600,1580,1350,369) | 1 (1,1,1,0)*
ball

TABLE 2. Results on solid models. (* points models for which the best result is not obtained by Min Def/Sym Dual, but

by Min Def/Sym Direct).

positions. The discrete gradient vector field goes from
light gray to dark gray.

7. OPEN PROBLEMS

This work was focused on Forman’s discrete Morse the-
ory. We analyzed the building blocks of this theory, and
proved the layered structure of discrete gradient vector
field. We represented this layer structure by a collec-
tion of hyperforests and gave a complete characteriza-
tion of the critical cells in terms of regular components
of hyperforests. We used this analysis to introduce a
scheme for constructing discrete gradient vector fields on
finite cell complexes of arbitrary dimension. Although

the general problem is MAX-SNP hard, this construc-
tion is quadratic in time in the worst case, and is proven
to be linear and optimal in the case of 2-manifolds. The
experimental results have shown our algorithm gave an
optimal result in most of the cases.

We know from the disproof of the Hauptvermutung
[Moise 52] that combinatorial invariants of triangulations
are not always topological ones. Thus, the discrete Morse
numbers could not be a topological invariant in the gen-
eral case. However, for the case of 3-manifolds, we proved
here that discrete Morse numbers are topological invari-
ants.

Our algorithms seem to be optimal in all the cases we
studied, except for the knotted ball and the Bing’s house.



Finding the conditions that would guarantee an optimal
result in polynomial time remains an open problem.
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