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Let f(x) be a polynomial with integral coefficients and let, for
c > 0, S(f(x), c) = j (mod c) exp(2πı

f(j)
c ). It has been pos-

sible, for a long time, to estimate these sums efficiently. On the
other hand, when the degree of f(x) is greater than 2 very little
is known about their asymptotic distribution, even though their
history goes back to C. F. Gauss and E. E. Kummer. The pur-
pose of this paper is to present both experimental and theoretic
evidence for a very regular asymptotic behaviour of S(f(x), c).

1. INTRODUCTION

The purpose of this series of papers is to study the as-

ymptotic distribution of exponential sums of the follow-

ing types:

1. S
D
f(x); c

i
=

�
ξ (mod c)

e
D
f(ξ)/c

i
where e(u) = e2πiu

and f is a polynomial with integral coefficients,

2. K(a, b; c) =
�

ξ (mod c)

ξξ̄≡1 (mod c)

e
D
(aξ + bξ̄)/c

i
,

3. Kε(a, b; c) =
�

ξ (mod c)

ξξ̄≡1 (mod c)

D
ξ
c

i
e
D
(aξ + bξ̄)/c

i
.

The sums K(a, b; c) are classical Kloosterman sums

and Kε(a, b; c) are their twisted analogues, and are just

about as classical as the K(a, b; c) themselves.

The reason for considering these together is that

there are relationships between these different classes of

sums–see, for example, [Duke and Iwaniec 93] and [Mao

97]. The estimation of individual sums of these types is

well understood–see, for example, [Loxton and Vaughan

85], where a survey of known results is given. The pur-

pose of the present investigation is to study the behaviour

of these functions as functions of c. By and large most of

the investigations in the past have concentrated on the

case where c is restricted to be a prime. In many cases, it

appears that one obtains a much more complete picture
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by considering general arguments c. Indeed, in the few

cases of this type where it has been possible to obtain re-

sults, one begins by understanding the distribution over

general values of c and then uses a sieve method to an-

alyze the case of primes–see [Heath-Brown 00], [Heath-

Brown and Patterson 79], and [Duke et al. 95] for exam-

ples of this kind.

The main motivation for investigating sums of this

kind lies in diophantine analysis. The “circle method”

and other techniques often rely on some form of Fourier

analysis which “reduces” the problem in hand to one

involving such sums. If we let t(c) denote one of the

sums above, then one would typically be interested in

estimating sums of the type
�
t(c)ω(c) where ω is some

reasonably well understood analytic or arithmetic func-

tion. For most applications, an estimate for the indi-

vidual t(c) suffices. However, better estimates are some-

times needed; for example, in [Linnik 63], Linnik studied

a problem connected with quadratic forms and was led

to propose the conjecture
�
c≤X

K(a, b; c)/
√
c = O(X 1

2+ε)

for every ε > 0. This conjecture is still unproven, but N.

V. Kuznetsov [Kuznetsov 80] has proved that it is true

for ε > 1
6 . It is also worth noting, parenthetically, that

K(0, 1; c) = µ(c), the Möbius function, and so the con-

jecture
�
c≤X

K(0, 1; c)/
√
c = O(Xε) for every ε > 0 is

equivalent to the Riemann hypothesis. Selberg [Selberg

65, page 9] indicated that a uniform version of Linnik’s

conjecture would imply the Ramanujan-Petersson con-

jecture; that was demonstrated by Ram Murty in [Murty

85].

Another motivation has come through the cohomolog-

ical interpretation of exponential sums and other arith-

metical functions. It is known that K(a, b; p) can be

written as 2
√
p cosφp(a, b) with φp(a, b) ∈ [0,π] when-

ever p is a prime not dividing ab. By analogy with the

theory of elliptic curves, it is believed that the φp(a, b)

are distributed on [0,π] over a large range of p accord-

ing to the Sato-Tate distribution–see [Serre 68, pages

I-25, I-26]. Certain analogues of this have been proved–

see [Adolphson 89] and [Katz 88]–but the framework of

these results is rather distant from that described here.

In this paper, we shall analyze the problems and give

a brief synopsis of the major conclusions drawn. More

details will be given in later papers in this series.

2. THE STRUCTURE OF EXPONENTIAL SUMS

In this section, we shall summarize those aspects of the

sums under consideration which we shall need. We begin

with the two classes of Kloosterman sums K and Kε. If

c = c1 c2 with c1 and c2 co-prime, then we define d1, d2

so that d1c1 ≡ 1 (mod c2) and d2 c2 ≡ 1 (mod c1). Then
we have

K(a, b; c) = K(d2a, d2b; c1)K(d1a, d1b; c2)

and

Kε(a, b; c1c2) = Kε(d2a, d2b; c1) ·Kε(d1a, d1b; c2).

This reduces some problems to ones involving prime pow-

ers. If k = 1, the results are due to Davenport, Hasse,

and Weil; if k > 1, they are due to Salié and are much

easier. What we need is summarized in [Patterson 97].

We have, if k ≥ 1, p|/ab

K(a, b; pk) = α(a, b; pk) + αI(a, b; pk),

where

α(a, b; pk) · αI(a, b; pk) = pk
| α(a, b, pk) |=| αI(a, b; pk) |= pk/2.

In the case of Kε with p W= 2, then we have an analogous
statement.

If p | ab, then we have a number of different cases. We
shall not record them all here, but refer to [Patterson 97,

Prop. 2.1 and Th. 3.1], where details are given. We do

note, however, that if pk | a and pk | b, then

K(a, b; pk) = (p− 1)pk−1

which is of the form above with αp(a, b) = p
k,αIp(a, b) =

−pk−1, but now αp(a, b) · αIp(a, b) = −p2k−1. If p |
a, p|/b, then K(a, b; p) = −1 and so we have a differ-
ent structure–as if the multiset {αp(a, b),αIp(a, b)} had
been replaced by a singlet. If k > 1, p|/a, p | b, then
K(a, b; pk) = 0 and Kε(a, b; p

k) = 0.

It follows from this that if c is co-prime to ab, then

K(a, b; c) =
3

α∈A(a,b;c)
α and Kε(a, b; c) =

3
α∈Aε(a,b;c)

α

where |α| = c
1
2 in both cases and A(a, b; c) and

Aε(a, b; c) are multisets with Card
D
A(a, b; c)

i
= 2ω(c),

Card(Aε(a, b; c)) = 2ω(c) where ω(c) is the number of

prime divisors of c. In this case, one can define

K(r)(a, b; c) =
3

α∈A(a,b;c)
αr and K(r)

ε (a, b; c) =
3

α∈Aε(a,b;c)
αr

where r ≥ 1. From the point of view of understanding

the Sato-Tate conjecture, these sums would be the most
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natural to study. Unfortunately, from both the theo-

retical and computational points of view, they are very

difficult to work with. It seems, therefore, that at least

at the present time, it is better to restrict one’s attention

to the K(a, b; c)r and Kε(a, b; c)
r if one wishes to study

the value-distribution of these Kloosterman sums. They

are at least exponential sums in their own right and re-

stricted to primes contain the same information as the

K(r)(a, b; c) and K
(r)
ε (a, b; c). In a series of papers [Fou-

vry and Michel 02, Fouvry and Michel 03a, Fouvry and

Michel 03b], E. Fouvry and P. Michel have proved some

very interesting results about the value distribution of the

values of Kloosterman and similar sums. They combine

large sieve methods with the structure theory of these

sums obtained from the algebraic geometric interpreta-

tion.

The S(f ; c) are rather more subtle. It is convenient

to introduce some concepts from [Loxton and Vaughan

85]. If f is a polynomial with integral coefficients and

degree n, we let ξ1, . . . , ξm be the roots with multiplici-

ties e1, . . . , em. Let K be the subfield of C generated by
the ξ1, . . . , ξm and D(f) be the different of f , i.e., the
fractional ideal generated by the

f(ei)(ξ1)
ei!

; in [Loxton and

Smith 82], it is remarked that this is an integral ideal in

K. For c ∈ N, let Dc,D(f)i be �
p|c
pmin
D
ordp(D(f)),ordp(c)

i
where for an ideal a of K, we define

ordp(a) = max{k/l : pk | al, k, l > 0}.

Let e(f) = max
1≤i≤m

ei; this is called the exponent of f . Let

Cn =
�
p≤n

p prime

p.

Then ([Loxton and Vaughan 85, Theorem 2]) one has

| S(f ; c) |≤ C
1

e+1
n · (n− 1)ω(c)(D(f I), c) 1

e+1 c1−
1

e+1 ,

where e = e(f I). This suggests that S(f, pk) behaves as if
it were the sum of n−1 terms of modulus pk(1− 1

e+1 ), but,

in fact, the structure is usually much more complicated.

We give two examples which will be relevant later. For

the value distribution of such sums, see also [Fouvry and

Michel 03a, Michel 98].

First of all, we have for p|/n, p|/a:

S(axn; pk) =
3
χn=1

χ W=1

g(χ, a, p) (k = 1)

= pk−1 (2 ≤ k ≤ n)
= pn−1 S(axn; pk−n) (k > n).

In this case, the exponent of f I is n− 1. Here, g(χ, a, p)
is the Gauss sum 3

x (mod p)

χ(x)e(
ax

p
);

note that each of these summands has modulus p
1
2 . In

particular, in this example, S(axn; p) will be zero if

(n, p−1) = 1. This example, having, as it does, the maxi-
mal exponent possible, represents an extreme case. These

evaluations are classical–see, for example, [Vaughan 81,

§4.2].
The other case which we shall consider is rather more

special, namely f(x) = x4 + ax2. Here, e(f I) = 1 when
a W= 0. By [Weil 48], one has S(x4+ax2; p) = α+αI+αII

where | α |=| αI |=| αII |= p
1
2 . In fact, one can be

rather more specific. We can write S(x4 + ax2, p) as�
y(p)

p
1 + (y

p )
Q
e
p
y2+ay
p

Q
. This splits naturally into two

sums; the first is a standard quadratic Gauss sum which

is
√
p · γp · e

D
4̄·a2
p

i
where

γp = 1 p ≡ 1 (mod 4)

= i p ≡ 3 (mod 4)

and 4̄ · 4 ≡ 1 (mod p). Note that 4̄ = p+1
4 if p ≡ 3

(mod 4) and 4̄ = − p−14 if p ≡ 1 (mod 4), so that this

sum is, for p large,

√
p
D
1 +O(1p )

i
if p ≡ 1 (mod 4) and a is even,

−√p i D1 +O( 1p )i if p ≡ 1 (mod 4) and a is odd,
√
p i
D
1 +O(1p )

i
if p ≡ 3 (mod 4) and a is even,

−√pD1 +O( 1p )i if p ≡ 3 (mod 4) and a is odd.

By [Weil 48],
�
y(p)

( yp )e(
y2+ay
p ) is of the form αI+αII with

| αI |=| αII |= p 12 . In the case of k > 1, we have a similar
phenomenon, now easily proved by the “method of sta-

tionary phase” (see [Livné and Patterson 02, Proposition

5.2]). We find

S(x4 + ax2; pk) = p
k
2 ·
p
1 +
D
1 + ( 2ap )

i
e(3·4̄·a

2

pk
)
Q

if k is even.

= p
k
2 γp

p
1 +
D
1 + (2a

p
)
i
e(3·4̄a

2

pk
)
Q

if k is odd k > 1.

The arguments used here can be adapted to the case of

polynomials of the form f0(x
2).

We shall now return to the “generic case,” i.e., when

e(f I) = 1. For k = 1, Weil’s theorem yields the decom-

position S
D
f(x); p

i
= α1 + . . . + αn−1. For k > 1, the



138 Experimental Mathematics, Vol. 12 (2003), No. 2

“method of stationary phase” yields

S
D
f(x); pk

i
=



p
k
2

�
ξ:f I(ξ)≡0 (mod pk)

e
p
f(ξ)
pk

Q
if k is even

p
k
2 · γp

�
ξ:f I(ξ)≡0 (mod pk)

e
p
f(ξ)
pk

Q
if k is odd.

It is easy to see that the number of summands can vary

between 0 and n−1; this means that attempting a general
definition of S(k)(f ; c) is futile. The number of factors is

described by the zeta—function of the splitting field of

f I(x).
It is worth noting here that for a ∈ Z,
S(f + a; c) = S(f ; c)e(ac )

= S(f ; c)
D
1 +O(1c )

i
as c→∞.

Thus, we can alter f by addition of a constant without

altering the asymptotic behaviour of S(f ; c). Likewise,

we can replace f(x) by f(x+ c) or f(−x+ c) with c ∈ Z
without altering the asymptotic behaviour of S(f(x), c).

Finally, we shall recall results in three cases which

are relevant to us. The first is based on the reciprocity

formula for quadratic Gauss sums for A, c positive3
x (mod c)

e

w
Ax2 +Bx

c

W
=
1 + i

2

· c
1
2

A
1
2

3
y (mod 4A)

e

w
−cy

2 + 2By

4A

W
e

w−B2
4Ac

W
;

see, for example, [Berndt, et al. 98, Theorem 1.2.2]; to

obtain the result in the form quoted here, one sets the

parameters a, b, and c of that theorem to the values a =

2A, b = 2B, c = c for which ac+ b is clearly even. This

formula gives a “closed expression” for S(Ax2 + Bx; c)

which we can use directly. Although this case is very

special, it is very helpful for orientation. For us, the

major consequence is the following theorem:

Theorem 2.1. Let A > 0; let R be the largest number r

with r2|A.

3
c≤X

S(Ax2+Bx; c) =



2(1+i)
3 R A−

1
2 X

3
2 +O(X 1

2 )

if B ≡ 0 (mod R)

O(X 1
2 )

otherwise.

Proof: We use the reciprocity law and consider c re-

stricted to an individual residue class (mod 4A), say

c ≡ α (mod 4A). Since we have for any natural number

N the elementary estimate3
c≤X

c≡α (mod N)

c
1
2 =

2

3
N−1X

3
2 +O(x 1

2 )

and as we can absorb e
p
−B2

4Ac

Q
= 1 + O(c−1) into the

error term, we obtain3
c≤X

S(Ax2 +Bx; c) =
1 + i

3
A−

1
2 (4A)−1

·
3
α,y

e(−αy
2 + 2B y

4A
) X

3
2 +O(X 1

2 ).

Now the sum of e(−αy2

4A ) over α is a geometric series

which becomes 4A if y2 ≡ 0 (mod 4A) and zero other-
wise. This yields3

c≤X
S(Ax2 +Bx; c) =

1 + i

3
A−

1
2

·
3
y

e(−2B y

4A
) X

3
2 +O(X 1

2 ),

where the sum over y is taken over those residue

classes (mod 4A) for which y2 ≡ 0 (mod 4A). The

condition that y2 ≡ 0 (mod 4A) means that y ≡ 0

(mod (4A)/(2R)) as follows from the prime decompo-

sition. If we write y = (2A/R)η where η is taken

(mod 2R). The sum over η is easy to carry out and we

obtain the result stated above.

We note here that the coefficient of the real and imag-

inary parts of the coefficient are positive or zero. In this

case, they are also equal. We could have considered the

asymptotics over certain arithmetic sequences by essen-

tially the same methods. In some more general cases,

the details can be rather involved, but at least if we con-

sider the asymptotic behaviour over a sequence c ≡ 0

(mod D) for a fixed D.

The second example is the main theorem of [Patterson

02]. It states

Theorem 2.2. For A ∈ Z, A W= 0, there is a constant k(A)
so that, for ε > 0,3

c≤X
S(Ax3, c) = k(A)X

4
3 +O(X 5

4+ε)

with

k(A) =
(2π)2/3Γ(13 )

24 · LD2, (−3· )i
�
pk,A

Tp(p
k) ·A− 1

3
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where

Tp(p
k) = p[k/3] + p[(k−1)/3] − p−1

if k ≥ 1, p ≡ 1 (mod 3)

=
D
p[k/3] + p[(k−1)/3]

i
1+p−1
1+p−2 − 2p−1

1+p−2

if k ≥ 1, p ≡ 2 (mod 3)

= 3[
k
3 ] + 3[

k−1
3 ] − 1

3

if k ≥ 1, p = 3.
One can also obtain rather more extensive results over

Z[ω] where ω is a primitive third root of 1. Let us embed
Z[ω] in C by ω = exp(2πı3 ). For z ∈ Z[ω], let eω(z) =
exp(2πı(z+ z̄)) and, for A,B ∈ √−3−1Z[ω] and c ∈ Z[ω],
let

Sω(Ax
3 +Bx; c)

3
j (mod c)

eω(
Aj3 +Bj

c
)

where the summation is in Z[ω]. R. Livné and the author
proved in [Livné and Patterson 02, Theorems 1.2, 1.3] the

results summarized in the following theorem.

Theorem 2.3. Suppose that A,B,D,DI ∈ Z[ω] are
such that D,DI are square-free and mutually co-prime,
that both are co-prime to 3, that any prime ( W= λ)

which divides B also divides DI, that 27.A|B3, and that
B3/(27.A) ≡ ±1 (mod 3). Let χ be a Dirichlet character
of modulus dividing DI. Then for any ε > 0, we have3

N(c)≤X,(c,DI)=(1)
c≡0 (mod D), c≡1 (mod 3)

Sω(A,B; c)χ(c) =

(2π)1/3Γ(1/3)2
√
3

32ζQ[ω](2)

N(DI)
σ(DDI)

X4/3 +O(X5/4+ε) .

if χ =
D
A
·
i
3
and3

N(c)≤X,(c,DI)=(1)
c≡0 (mod D),c≡1 (mod 3)

Sω(A,B; c)χ(c) = O(X5/4+ε)

otherwise.

Suppose next that D,DI ∈ Z[ω], D,DI ≡ 1 (mod 3)

are mutually co-prime and square-free. Suppose that the

only primes dividing A ∈ Z[ω] are those dividing 3DI.
Suppose χ is a Dirichlet character to the modulus DI.
Then if χ3 is not principal, we have3
N(c)≤X,c≡0 (mod D)
c≡1 (mod 3),(c,DI)=1

Sω(A, 0; c)χ(c) · (1−N(c)/X) = O(X 5
4+ε)

If χ =
p

·
δ1δ22

Q
3
with δ1δ2|DI, δ1, δ2 ≡ 1 (mod 3), then

there exist C I(A,D,DI, δ1, δ2) and C II(A,D,DI, δ1, δ2) so
that, for ε > 0,3
N(c)≤X,c≡0 (mod D)
c≡1 (mod 3),(c,DI)=1

Sω(A, 0; c)χ(c) · (1−N(c)/X) =

C I(A,D,DI, δ1, δ2)X
4
3 logX

+ C II(A,D,DI, δ1, δ2)X
4
3 +O(X 5

4+ε).

Moreover, if C I(A,D,DI, δ1, δ2) = 0, then

C II(A,D,DI, δ1, δ2) = 0.

Unfortunately, in [Livné and Patterson 02, Theorem 1.2],

the condition above, “that any prime ( W= λ) which divides

B also divides DI,” the phrase “(W= λ)” was omitted,

rendering the theorem empty. More details about the

value of C I(A,D,DI, δ1, δ2) can be found in [Livné and
Patterson 02, Theorem 1.3].

These results summarize about all that is known about

the global behaviour of exponential sums of Hua type.

A few minor, but insubstantial, extensions are possible.

It is worth noting that all of the results have certain

restrictions. These are most painful in the last theorem

where one would very much like to ease the restrictions on

the coefficients A,B. Note also that in the behaviour in

the cases B = 0, there is a dichotomy between Theorem

2.1 and Theorem 2.3 in the case B = 0 that is reminiscent

of that between the divisor function d(n) and the function

r(n) giving the number of representations of n as a sum

of two squares.

3. ASYMPTOTICS OF ARITHMETIC FUNCTIONS

Let t be an arithmetic function of the type that we have

introduced above. The basic type of asymptotic behav-

iour which would be of interest to us is whether
�
c≤X

t(c)

behaves like K ·Xγ as X →∞. One would like to extend
this to arithmetic progressions. Since there are numerous

linear relations between sums over different arithmetic

progressions, it is convenient to have a method free of re-

dundancy. To achieve, this let χ be a primitive Dirichlet

character and D ∈ N. Then we ask whether3
c≤X

c≡0 (mod D)

t(c)χ(c/D)

has an asymptotic behaviour of the form

K(χ, D)Xγ(χ,D). Let A be an arithmetic progres-

sion. It is then not difficult to express
�
c≤X
c∈A

t(c) in terms
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of the
�
c≤X

c≡0 (mod D)

t(c)χ(c/D); see [Patterson 87] for

details.

For applications–for example, to the analysis of the

distribution of the function t over primes–one might ex-

pect that these suffice, but unfortunately, this is not so.

In the case of the Möbius function, one would have3
c≤X

c≡0 (mod D)

µ(c)χ(c/D) = O
D
X

1
2+ε
i

for all ε > 0 if the generalized Riemann Hypothesis holds.

However,
�
c≤X

µ(c)Λ(c) ∼ −X. One might hope that the
general sieve identity3

c≤X
t(c)Λ(c) = −

3
D≤X

µ(D) logD ·
3
c≤X

c≡0 (mod D)

t(c)

would indicate the behaviour of
�
c≤X

t(c)Λ(c), but this

example shows that such hopes are naive. One is led to

investigate also such sums as3
c≤X

c≡0 (mod D)

µ(c)t(c) · χ(c/D)

or, more generally,3
c≤X

c≡0 (mod D)

t(c) · t∗(c)χ(c/D),

where t∗ is another arithmetic function.
As in considerations of this sort, the range of potential

functions can easily become much too large to be man-

ageable so we have restricted ourselves to the following

cases for the moment:

• the S(f(x), c) for f(x) = Ax3 +Bx over Z,
• more general S(f(x), c) of degree 3 and also some
polynomials f(x) of degree 4 and 5,

• the behaviour of K(a, b; c)µ(c) and K6(a, b; c)µ(c),

• the behaviour of K(a, b; c)K(aI, bI; c) and

K6(a, b; c)K6(a
I, bI; c).

We have not investigated K(a, b; c) itself, as the

Linnik-Selberg conjecture predicts its behaviour and

Kuznetsov’s theorem, assuming Selberg’s conjecture on

the eigenvalues of the Laplace—Beltrami operator, sup-

ports this, [Kuznetsov 80]; for results toward the Sel-

berg conjecture, see [Luo, Rudnick and Sarnak 95] and

for more on the distribution of Kloosterman sums, see

[Fouvry and Michel 03b]. Likewise, we have not investi-

gated Kε(a, b; c) as the analogue of Kuznetsov’s method

for forms of 12 -integral weight should lead to a result of

the form3
c≤X

c≡0 (mod D)

Kε(a, b; c)χ(c/D) ∼ k(a, b;χ;D)X 5
4

with an explicit formula for k(a, b;χ;D).

Up to the present, this does not seem to have been

treated in the literature–see, however, [Duke et al. 95]

and the reference to the PhD thesis of I. Vardi on page

245 of [Goldfeld and Sarnak 83]; the results of this thesis

have apparently not been published. In [Duke et al. 95],

Duke, Friedlander, and Iwaniec prove the analogue of

Hooley’s theorem [Hooley 64] on the equidistribution of

solutions of quadratic congruences over prime moduli.

To do this, they use a version of Kuznetsov’s theorem for

forms of half-integral weight. For their purposes, they

can avoid a detailed analysis of the sort that would be

necessary to determine the k(a, b;χ;D) above explicitly.

Naturally, all of these could be considered as more

general exponential sums, but this opens up a field of

investigation too wide to be so contemplated.

The expectation is then that for each sum t(c), there

will be an exponent γ(t) and a coefficient kt(χ, D) so that3
c≤X

c≡0 (mod D)

t(c)χ(c/D) ∼ kt(χ, D) ·Xγ(t)

for X →∞.
In this paper, we shall discuss the general answer to

the second problem. In the next paper of this series, we

shall discuss the finer details of the theory of the polyno-

mials Ax3 + Bx and in the third, both the behaviour of

the Kloosterman sums and the distributions of the vari-

ous arithmetic functions.

4. COMPUTATIONS AND RESULTS

The actual numerical experiments needed to investigate

the 3
c≤X

c≡0 (mod D)

t(c)χ(c/D)

are relatively straightforward, but there are one or two

points worth mentioning, as they affect the range avail-

able. Each t(c) involves at least O(c) computations,
sometimes O(c log c) and so the entire computational
requirements grow like O(X2) or O(X2 logX). It was
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found that using any dynamical method of representing

numbers (such as the PARI/gp package) was too slow

because of the “garbage collection.” Consequently, the

programs were written in C and integers had a word-

length of 32 bits. This meant that there was a risk of

overflow, which is often difficult to spot in this sort of

computation. The safest, and fastest, way of comput-

ing the polynomials was by “Russian multiplication” and

continually reducing (mod c).

For most of the examples considered, one has that the

general order of magnitude of t(c) was c
1
2 · 2ω(c). This

means that one expects a “noise level” of O(X1+ε) in3
c≤X

c≡0 (mod D)

t(c)χ(c/D),

and this itself should have a dominant term kt(χ, D)·Xγ .

In the examples studied, γ was generally 4
3 or

5
4 and

kt(χ, D) in general moderately small, usually less than

1. This would mean that to obtain an accuracy of, say,

k decimal places, one would need, on a conservative esti-

mate, log10X ≥ k+1
γ−1 computational steps. If γ =

4
3 and

k = 2, we would then need X ≥ 109. With k = 1, one

would need X ≥ 106. Since the number of operations

needed to compute this is a multiple of X2, one sees that

whereas the case k = 1 is feasible, but expensive, the case

k = 2 is entirely impossible. Indeed, the amount of in-

formation obtained is proportional to logX, and the cost

to X2. The best compromise appeared to be X around

100000 or 500000. In principle, this scarcely suffices for

even one significant digit in kt(χ, D), but one could at

least get an idea. Since here logX < 12, the range was

much too small to use any sort of “denoising” techniques.

From one point of view, the use of Riesz means, i.e.,3
c≤X

c≡0 (mod D)

t(c)χ(c/D)
p
1− c

X

Q
should be more stable and theoretically more plausible;

it unfortunately gives disproportionately excessive weight

to the small values of c and this distorts the result. These

considerations indicate that one has to treat all results

here with a fair degree of skepticism. In particular, there

is little possibility of identifying the kt(χ, D) in terms of

known constants.

The numerical experiments indicated the following

conclusions:

Conjecture 4.1. If f is of degree n, then3
c≤X

c≡0 (mod D)

S(f(x), c)χ(c/D) ∼ k(χ, D)Xγ

where γ = 1+ 1
n or 1+

2
n , the second case arising only if

there exist a ∈ Z with f(a− x) = f(x) and deg(f) > 2.
One has Re

D
k(1, 1)

i ≥ 0; if the leading coefficient is
positive, then Im

D
k(1, 1)

i ≥ 0.
In these γ and k(χ, D) are the parameters associated

with S(f ; c). The exponent in the generic case is the

one suggested by the analysis of [Livné and Patterson

02]. Those cases where the exponent is expected to be

1+ 2
n can be regarded as a reflection of the description of

S(x4 + ax2; c) given in Section 2 and its generalizations.

This is in no way a rigorous argument.

The second assertion can be understood as an asymp-

totic form of Gauss’ theorem for higher Gauss sums. It

should be noted that since replacing f(x) by f(−x) yields
the same sums, it follows that

Im
D
k(1, D)

i
= 0

if deg(f) is odd.

The computations up to the present are not suffi-

cient to make hypotheses of type 2 above whenever

(χ, D) W= (1, 1). It appears that many of the k(χ, D)

can be zero, but, in view of the discussion above, it is

hard to distinguish between “small” and “zero.” The ex-

ample of Theorem 2.1 shows that the coefficients can be

zero without the summands being zero and the exam-

ple below, of 3x3 + 2x2, shows that the same apparently

happens here.

The positivity posited in 2 indicates that one might

expect that Re
D
k(χ, D)

i
and Im

D
k(χ, D)

i
are given as

infinite products of the type of the “singular series” of

the circle method. So far, no plausible hypothesis has

been found. This is what happens in the case of Theorem

2.2.

We shall give here some typical examples:

• x3 + 2x with γ = 4
3

• 2x3 − x with γ = 4
3

• x3 + 2x2 with γ = 4
3

• 3x3 + x2 + x with γ = 4
3

• x4 with γ = 3
2

• x4 + x with γ = 5
4

• x4 + x2 with γ = 3
2

• 2x4 + 4x3 + 6x2 + 4x+ 1 with γ = 3
2

• x4 + 2x3 + 3x2 + 2x+ 1 with γ = 3
2
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Note that 2x4+4x3+6x2+4x+1 is equal to x4+(1+x)4

and x4 + 2x3 + 3x2 + 2x+ 1 is equal to
x4+1+(1+x)4

2 and

so both are invariant under x )→ −1− x.
In each of the cases above, we reproduce the graph of

X )→ X−γ
�

c≤X S(f(x), c) in the range X ≤ 100, 000.
The graphs are sampled at intervals of 100 except for

the second case which is sampled at intervals of 500. Al-

though there is considerable cancellation, the asymptotic

behaviour is extremely marked. It is apparent that the

sampling rate also is not very critical. The value of γ

chosen is based partly on general principles and on the

numerical evidence. It should be remembered that small

variations in the exponent are difficult to recognize nu-

merically in a range of this limited logarithmic length.

The graphs are reproduced at the end of this paper.

The fact that these represent the sort of asymptotic be-

haviour conjectured is clear. Indeed, considering the ex-

tensive cancellation that has to occur, the behaviour is

much more pronounced than one would have dared to ex-

pect. Nevertheless, it is more or less impossible to guess

the constants involved.

In the error term, there are two types that one nor-

mally meets. The first is that which occurs in Riemann’s

explicit formula where the error term is a sum of terms of

the form c(ρ)Xρ. This gives a fairly irregular behaviour

because it reflects the fact that the generating Dirichlet

series has poles, probably not too far to the right of the

line representing the main term. Note that the sums are

often, as in the case of Riemann’s explicit formula, not

absolutely convergent, but nevertheless they offer a good

representation of the actual asymptotic behaviour. An-

other example of this type is the hyperbolic circle prob-

lem. In other cases, one has the asymptotic formulæ of

Voronoi type, that is analogous to those in the circle or

divisor problems. These are made up of terms (summed

over λ) c(λ, µ)Xα cos(λXβ + µ) and this reflects gener-

ally cases where the asymptotic behaviour is limited by

the growth in vertical strips of the generating Dirichlet

series and not by the existence of poles. Two classical

examples are the formulae3
n≤X

1 = X − 1
2
+
1

2π

3
m≥1

sin(2πmX)

m

where α = 0 β = 1 and µ = −π
2 and the Voronoi formula

itself3
n≤X

r(n) = πX − 1 +
√
X
3
m≥1

r(m)

m
1
2

J1(2π
√
mX),

where r(n) is the number of representations of n as a

sum of two squares, α = 1
4 , β =

1
2 , and µ = −3π4 . Both

of these formulae are only conditionally convergent and

have to be carefully interpreted at integer arguments X.

In them, the terms − 12 and −1, respectively, reflect the
existence of a pole and also a monotonic component in the

behaviour of X−1
�

n≤X 1 and X
−1�

n≤X r(n), respec-
tively. The same type of behaviour seems to be visible

in a number of the graphs presented here, but in view of

the tenuity of the evidence, we shall not speculate further

here. One should recall that this behaviour also occurs

in formulae of Riemann type if one nondominant pole is

further to the right than all others. More information

on the structure of the “error term” would be a prereq-

uisite to using the present information to obtain better

estimates of the constants appearing in the asymptotic

formula.

One should also note that the graphs are rougher the

smaller γ is. There are reasons to believe that the error

term, even after smoothing, remains of order Ω(X1−η) for
any η > 0 Thus, the smaller the value of γ, the smaller

the signal-to-noise ratio is.

5. FINAL REMARKS

There are a number of remarks that one should make

about the observation above. First of all, it is far from

clear that the formulation above is the correct one. One

beguiling alternative is the following. In [Weil 64, Chap-

ter II] Weil reformulated Gauss’ theorem in the form$
kA
eA(x2)dx = 1 where kA denotes the adele ring and

eA is a nontrivial additive character on kA, trivial on k.
This suggests that one should perhaps study, in place of

the S(f ; c), the integrals

c )→
8
eA
D
f(x)/c

i
dx,

where we keep eA fixed. We shall examine the integral
in the special case f(x) = ax3 + bx(a, b ∈ Z, k = Q).
It is worth examining this integral. As k = Q, we take
e∞(x) = e2πix.
Then, if

Ai(u) =

8 +∞

−∞
e2πi(x

3−ux)dx

denotes the Airy integral (see [Copson 65, Chapter 9]

with a slight change of notation), we have if a, c > 08
Q∞
e∞
D
f(x)/c

i
dx =

p c
a

Q 1
3 ·Ai

w −b
a
1
3 c

2
3

W
.

Moreover, by Nicolson’s formula (see [Copson 65, page

99]) or [Watson 22, page 190], we have
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Ai(u) = 2π
3

D
u
3

i 1
2

+
J 1
3

p
2·2π
3
3
2
u
3
2

Q
+ J− 1

3

p
2·2π
3
3
2
u
3
2

Q�
if u > 0

=
(2π)

1
3

3 u
1
2K 1

3

p
2·2π
3
3
2
u
3
2

Q
if u < 0

Ai(0) = 1

(2π)
1
3
√
3
Γ
D
1
3

i
.

It follows that for c :| c |∞→∞,8
Q∞
e∞ (f(x)/c) dx ∼

p c
a

Q 1
3

3−
1
2Γ

w
1

3

W
.

If p|/3ac, then it is easy to see that8
Qp
e
D
f(x)/c

i
dx = 1

if the Haar measure is so normalized that Zp has mea-
sure 1. The remaining factors can be represented as a

sum. We shall consider the case b W= 0. It is then most

convenient to rewrite the integral as8
ep

w
ac2

b3
x3 + x

W
dx ·
eeec
b

eee
p
.

Let σp(u) =
$
Qp ep(u · x3 + x)dx.

This can be computed by splitting the integral into

subintegrals over | x |p≤ R and | x |p= R · pl(l ≥ 1).
We can choose R so that these latter integrals are all

0 and the first is an exponential sum. Let t = ordp(u).

Then we find

σp(u) = p
t
3 t ≤ 0, t ≡ 0 (mod 3)

= p
t−1
3 t ≤ 0; t ≡ 1 (mod 3)

= pt−
2
3

3
ξ(p)

ep(u · p−t · ξ3/p) t ≤ 0, t ≡ 2 (mod 3)

=
3
ξ(p

t
2 )

ep

w
up−tξ3 + ξ

p
t
2

W
t > 0, t ≡ 0 (mod 2)

=
3

ξ(p
t−1
2 )

ep

w
up−t · pξ3 + ξ

p
t−1
2

W
t > 0, t ≡ 1 (mod 2), p W= 3

=
3

ξ(p
t+3
2 )

ep

w
up−tξ3 + pξ

p
t+3
2

W
t > 0, t ≡ 1 (mod 2), p = 3.

In point of fact, we do not need these evaluations. It

comes out the same if we replace our original exponential

sum by 1
M2

�
x(cM3)

e
p
ax3+M2bx

M3c

Q
where M is “divisible

enough”; this means that for each prime p, we should

have
ordp(M) ≥

max

w
1

3

D
ordp(3a)− 1

i
,
1

2

D
ordp(3a)− ordp(b)− 1

i
, 0

W
.

The sum above can be interpreted as an integral and

so does not depend on M . One can understand this as

restricting the class of f(x) = ax3 + bx and moduli D

considered above. One might suspect, although there is

little evidence for it, that this class may be better be-

haved than the more general case.

There is one final point that needs to be addressed.

In [Livné and Patterson 02, §8] and [Patterson 97], we
examine the distribution of the sums

S(a; c) =
3
x(c)

e

w
ax3

c

W
,

where now c ∈ Z[ω], x is taken (mod c) in Z[ω] and
e(v) = e2πi(v+ū). In those cases which can be treated,

one has, for a certain K(a) ∈ C,3
c:N(c)≤X

S(a, c) ∼ K(a) ·X 4
3 · logX.

In one present case, we have conjectured that the loga-

rithm factor does not appear. This deserves comment.

We recall that over Z the sums
�
x(c)

e(ax3/c) vanish if c

contains a prime factor p with p ≡ 2 (mod 3). Since

Q(ω) contains the third roots of 1, nothing of this kind
occurs in this case. The situation can be considered as

analogous to the arithmetic functions r(n) (the number

of representations of n as a sum of two squares) and d(n)

(the number of divisors of n). Then r(n) = 0 if n is

divisible (exactly) by an odd power of a prime p ≡ −1
(mod 4). Nothing of this kind happens with d. On the

other hand,
�
n≤X

r(n) ∼ πX, but
�
n≤X

d(n) ∼ X logX.

This shows that d is analogous to the exponential sum in

the case of Q(ω), and r in the case of Q.
The fact that we do not have a logarithmic factor is

associated with vanishing of the sum on a very large set

of arguments. If one is prepared to speculate on the ana-

logues of the conjecture above in the case of an arbitrary

number field (or A-field), then it is necessary to treat the
case of such polynomials separately which are invariant

under a transformation of the form f(ζx + b) = f(x)

where b is an integer of the field and ζ is a primitive nth

root of 1. The evidence above shows that when the field

is Q, the asymptotic behaviour in the case of quadratic f
has an exponent γ = 1+ 1

2 , but if deg(f) > 2 and such a

condition is satisfied, then γ = 1+ 2
n . A complete picture

is not available at present.
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6. APPENDIX: THE NUMERICAL EVIDENCE
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FIGURE 1. The asymptotic behaviour in the case of x3 + 2x, γ = 4
3 .
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FIGURE 2. The asymptotic behaviour in the case of 2x3 − x, γ = 4
3
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FIGURE 3. The asymptotic behaviour in the case of 3x3 + 2x2 (real part), γ = 4
3
.
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FIGURE 4. The asymptotic behaviour in the case of 3x3 + 2x2 (imaginary part), γ = 4
3
.
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FIGURE 5. The asymptotic behaviour in the case of 3x3 + x2 + x (real part), γ = 4
3 .
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FIGURE 6. The asymptotic behaviour in the case of 3x3 + x2 + x, (imaginary part) γ = 4
3
.
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FIGURE 7. The asymptotic behaviour in the case of x4 (real part), γ = 3
2
.
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FIGURE 8. The asymptotic behaviour in the case of x4 (imaginary part), γ = 4
3
.
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FIGURE 9. The asymptotic behaviour in the case of x4 + x (real part), γ = 5
4
.
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FIGURE 10. The asymptotic behaviour in the case of x4 + x (imaginary part), γ = 5
4
.
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FIGURE 11. The asymptotic behaviour in the case of x4 + x2 (real part), γ = 3
2
.
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FIGURE 12. The asymptotic behaviour in the case of x4 + x2 (imaginary part), γ = 3
2
.
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FIGURE 13. The asymptotic behaviour in the case of 2x4 + 4x3 + 6x2 + 4x+ 1 (real part), γ = 3
2
.
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FIGURE 14. The asymptotic behaviour in the case of 2x4 + 4x3 + 6x2 + 4x+ 1 (imaginary part), γ = 3
2
.
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FIGURE 15. The asymptotic behaviour in the case of x4 + 2x3 + 3x2 + 2x+ 1 (real part), γ = 3
2
.
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FIGURE 16. The asymptotic behaviour in the case of x4 + 2x3 + 3x2 + 3x+ 1 (imaginary part), γ = 3
2
.
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