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We present a conjecture, based on computational results, on
the area-minimizing method of enclosing and separating two
arbitrary volumes in the flat cubic three-torus, T3. For compa-
rable small volumes, we prove that the standard double bubble
from R3 is area-minimizing.

1. INTRODUCTION

The classical isoperimetric problem seeks the least-area

way to enclose a single region of prescribed volume.

About 200 BC, Zenodorus argued that a circle is the

least-perimeter enclosure of prescribed area in the plane

(see [Heath 60]). In 1884, Schwarz [Schwarz 1884] proved

by symmetrization that a sphere minimizes surface area

for a given volume in R3. Isoperimetric problems arise

naturally in many parts of modern mathematics; Ros

provides a nice survey [Ros 01].

The double bubble problem is a two-volume general-

ization of the classical isoperimetric problem. In 2000,

Hutchings, Morgan, Ritoré, and Ros proved that the

standard double bubble was the unique least-area way

to enclose and separate two volumes in R3 ([Hutchings

et al. 00], [Hutchings et al. 02], [Morgan 00, Chapter

14]). In this paper, we present a conjecture, based on

substantial numerical evidence, on the least-area way to

enclose and separate two volumes in the three-torus.

Conjecture 1.1. (Central Conjecture 2.1.) The ten dif-

ferent types of two-volume enclosures pictured in Figure

1 comprise the complete set of surface area-minimizing

double bubbles for the flat cubic three-torus T3.

The numerical results summarized in Figure 2 indicate

the volumes for which we conjecture each type of double

bubble minimizes surface area.

In Section 4, we show that for two small comparable

volumes, the standard double bubble from R3 is optimal

in T3. Specifically, we prove the following theorem:
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Standard Double Bubble Delaunay Chain

Cylinder lens Cylinder Cross Double Cylinder

Slab Lens Center Bubble Slab Cylinder

Cylinder String Double Slab

FIGURE 1. Catalog of conjectured minimizers.

Theorem 1.2. Let M be a flat Riemannian manifold of

dimension three or four such that M has compact quo-

tient by its isometry group. Fix λ ∈ (0, 1]. Then there
is an 6 > 0 such that, if 0 < v < 6, an area-minimizing

double bubble in M of volumes v,λv is standard.

We conclude the paper with some extensions to the

primary conjecture that address noncubic tori and addi-

tional volume constraints.

1.1 Existence and Regularity

Using the language of geometric measure theory, bubble

clusters can be expressed as rectifiable currents, varifolds,

or (M, 6, δ)-minimal sets [Morgan 00]. In three dimen-

sions, area-minimizing bubble clusters exist and consist

of constant-mean-curvature surfaces meeting smoothly in

threes at 120◦ along smooth curves, which meet in fours
at a fixed angle of approximately 109◦ ([Taylor 76, The-
orems II.4, IV.5, IV.8], or [Morgan 00, Section 13.9]).

1.2 Recent Results

In 2000, Hutchings, Morgan, Ritoré, and Ros announced

a proof that the standard double bubble, the familiar

shape consisting of three spherical caps meeting one an-

other at 120-degree angles, provides the area-minimizing

method of enclosing and separating two volumes in R3

([Hutchings et al. 02], [Hutchings et al. 00]). The key

features of the proof are a component bound developed

by Hutchings [Hutchings 97, Theorem 4.2] and an insta-
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bility argument. Reichardt et al. [Reichardt et al. 03]

extended this result to R4.

In 2002, Corneli et al. [Corneli et al. 03] solved the

double bubble problem for the flat two-torus, showing

that there are five types of minimizers (one of which only

occurs on the hexagonal torus). The proof relies on reg-

ularity, a variational component bound due to Wichira-

mala [Morgan and Wichiramala 02], and combinatorial

and geometric classification.

1.3 Single Bubbles in T3

Even the single bubble for the three-torus is not yet com-

pletely understood. There are, however, partial results.

The smallest enclosure of half of the volume of the torus

was shown by Barthe and Maurey [Barthe and Maurey

00, Section 3] to be given by two parallel two-tori. Mor-

gan and Johnson [Morgan and Johnson 00, Theorem 4.4]

showed that the least-area enclosure of a small volume

is a sphere. Spheres, tubes around geodesics, and pairs

of parallel two-tori are shown to be the only types of

area-minimizing enclosures for most three-tori by work

of Ritoré and Ros ([Ritoré 97, Theorem 4.2], [Ritoré and

Ros 96]).

1.4 Small Comparable Volumes

We prove Theorem 4.1 by showing that every sequence of

area-minimizing double bubbles with decreasing volume

and fixed volume ratio contains standard double bub-

bles. The main difficulty lies in bounding the curvature.

Once this is accomplished, it is possible to show that the

bubble lies inside a small ball that lifts to R3, where by

[Hutchings et al. 02], a minimizer is known to be stan-

dard.

The main idea of the argument is as follows: From a

given sequence of double bubbles with shrinking volumes

and fixed volume ratio, we generate a new sequence by

rescaling the ambient manifold at each stage so that one

of the volumes is always equal to one. We can then ap-

ply compactness arguments and area estimates to show

that certain subsequences of sequences obtained by rigid

motions of the ambient manifold have nontrivial limits.

These limits are used to obtain a curvature bound on a

subsequence. With such a bound, we apply a monotonic-

ity result to conclude that for small volumes, the double

bubble is contained in a small ball. We conclude that

it must be the same as the minimizer in R3 or R4, i.e.,

it must be the standard double bubble by [Hutchings et

al. 02] or [Reichardt et al. 03]. The result applies to any

flat three- or four-manifold with compact quotient by the

isometry group.

1.5 Plan of the Paper

Section 2 reviews the methods that led to our Central

Conjecture 2.1 and to Figures 1 and 2. Section 3 surveys

some sub-conjectures. Section 4 is the statement and

proof of the main theorem on small volumes. Section

5 shifts from the cubic torus to other tori and discusses

other conjectures and candidates, including a “Hexagonal

Honeycomb.”

2. THE CONJECTURE

2.1 Generating Candidates

Participants in the 2001 CMI/MSRI Summer School pro-

posed many possibilities for double bubbles in the three-

torus T3 in brainstorming sessions.

Standard Double Bubble. The least-area double bubble
in R3.

Delaunay Chain. Two stacked “beads” or “drums”

wrapping around one of the periods of the torus.

The lateral surfaces are Delaunay surfaces (constant-

mean-curvature surfaces of rotation).

Cylinder Lens. A cylinder wrapping around a period of

the torus, with a small bubble attached.

Double Cylinder. Two cylinders wrapping around a pe-
riod of the torus. Transverse sections by an orthogo-

nal plane (i.e., a two-torus) are the standard double

bubble in two dimensions. This is the first of a fam-

ily of solutions we could describe as “cylinders over

minimizing double bubbles in the two-torus.”

Cylinder String. A cylinder over a “Symmetric Chain”

in T2.

Slab Cylinder. Two parallel flat two-tori with a cylindri-
cal bubble attached to one of them. This is a cylin-

der over a “Band Lens” in T2.

Double Slab. Three parallel flat two-tori (cylinder over
a “Double Band” in T2).

Slab Lens. Two parallel flat two-tori, one of which has a
small lens-shaped bubble stuck in it.

Center Bubble. Two close-to-parallel two-tori with a

close-to-cylindrical bubble between them. The

planes buckle slightly (as can be shown by elemen-

tary stability considerations) and the bubble stuck

between them is not quite round (it bulges slightly

in the direction of each of the four corners of the

fundamental domain pictured in Figure 1).
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SDB = Standard Double Bubble
DC = Delaunay Chain
CL = Cylinder Lens
CC = Cylinder Cross
2C = Double Cylinder
SL = Slab Lens
CB = Center Bubble
CS = Cylinder String
SC = Slab Cylinder
2S = Double Slab

FIGURE 2. Phase portrait: volumes and corresponding double bubble. In the center both regions and the

complement have one third of the total volume; along the edges, one volume is small; in the corners, two volumes

are small.

Transverse Cylinders. Two cylinders wrapping around

two different periods of the three-torus that touch

each other to reduce surface area.

Hydrant Lens. The Schwarz P surface with a small bub-
ble attached.

Double Hydrant. Another fanciful proposal based on the
Schwarz P surface, known as “Scary Gary” after its

inventor, Gary Lawlor.

Inner Tube. A cylinder that wraps around one of the

periods of the three-torus with a toroidal bubble

wrapped around it.

When preparing for the calculations that resulted in

the phase diagram of Figure 2, we anticipated the possi-

bility that a minimizing bubble topology might have been

missed. In fact, two additional candidate topologies were

found by systematic application of this heuristic:

When the two volumes are very small, the stan-

dard double bubble should be optimal. As one

or both of the two volumes grow, a bubble that

collides with itself should open up to reduce

perimeter, whereas if two different bubbles col-

lide, they should stick.

This procedure incorporates the assumption that all

three regions associated with a minimizer will be con-

nected. The new candidates we found were as follows:

Cylinder Cross. A cylinder wrapping around one period

of the torus with an attached bubble that wraps

around one of the perpendicular directions. (Ob-

tained from the Cylinder Lens when the small region

grows.)

Center Cylinder. Two parallel flat two-tori with a cylin-
der going through both of them and wrapping

around a period of the three-torus. (Obtained from

the Center Bubble when the small region grows or

from the Transverse Cylinders as one of the cylinders

grows.)

2.2 Producing the Phase Diagram

Brakke’s Surface Evolver [Brakke 99] was used to closely

approximate the minimal area that a double bubble of

each type needs to enclose specified volumes. Our initial

simulations were done with volume increments of 0.05

(from a total volume of 1) for the initial set of brain-

stormed candidates. The results of these calculations

were sufficient to convince us that the Hydrant Lens and

the Double Hydrant were inefficient and that the Inner

Tube was in fact unstable (which is why we could not

draw a picture of it with Surface Evolver for inclusion in
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Transverse Cylinders Double Hydrant

Center Cylinder Hydrant Lens

FIGURE 3. Inefficient double bubbles.

this paper). A rough version of Figure 2 was then ob-

tained using a volume increment of 0.01. From the data

obtained in these computations, we found that each of

the double bubbles pictured in Figure 1 was the least-area

competitor for some volume triple v1 : v2 : v3. The phase

diagram appearing in Figure 2 is the result of refining

our second series of computations along the boundaries

between the regions using a volume increment of 0.005.

Conjecture 2.1. (Central Conjecture.) The ten dou-

ble bubbles pictured in Figure 1 represent each type of

surface area-minimizing two-volume enclosure in a flat,

cubic three-torus, and these types are minimizing for the

volumes illustrated in Figure 2.

2.3 Comments

One might guess that minimizers would be formed from

topological spheres and tori that go around at least one

period of T3. This was borne out in our computations. It

is interesting to note that although the Transverse Cylin-

ders pictured in Figure 3 match this description, they

were never seen to be minimizing.

A challenging problem related to the problem of area

minimization is that of finding all of the stable dou-

ble bubbles in T3; there are probably quite a few that

we have not looked at. Note that a given type from

Figure 1 might be stable for a much wider range of vol-

umes than those for which it actually minimizes surface

area.

It is worth observing that all of the conjectured mini-

mizers for the double bubble problem on T2 are echoed

here in at least two ways: several conjectured minimiz-

ers are T2 minimizers × S1, and others are more di-

rect analogues, for example, the Delaunay and Symmet-

ric Chains. See Corneli et al. [Corneli et al. 03] for more

on the T2 minimizers.

A few words about the accuracy of the simulations

are in order. The commands used in our final stage of

numerics were as follows:

// five cycles of refining the mesh and

// decreasing area

{{u; g; u} 10; {u; r; u}} 5;

// decrease area ten more times at the end

{u; g; u} 10;

These commands produced pictorial output that per-

fectly matches our idea of what each conjectured mini-

mizer should look like.

3. SUBCONJECTURES

We now present a list of natural subconjectures about

bubbles in the flat cubic three-torus T3 that are sug-

gested either by the phase diagram or by examination of

the pictures made by Surface Evolver.

One immediate observation is that the edges of our

phase diagram appear to characterize single bubbles

in T3.

Conjecture 3.1. (Ritoré and Ros [Ritoré 97], [Ritoré and
Ros 96],[Ros 01].) The optima for the isoperimetric

problem in T3 are the sphere, cylinder, and slab.

The following two conjectures are perhaps the most

intuitive things we would expect to be true about bubbles

in T3:
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Conjecture 3.2. An area-minimizing double bubble in T3

has connected regions and complement.

Conjecture 3.3. There is an 6 > 0 such that if v1, v2 are
both less than 6, the standard double bubble of volumes v1
and v2 is optimal in T

3.

In Theorem 4.1, we prove that there is such an 6 for

every fixed ratio of volumes.

If it were known for some reason that the number of

components of a minimizer was relatively small, then we

think the next two conjectures might admit fairly easy

proofs:

Conjecture 3.4. For one very small volume and two mod-
erate volumes, the Slab Lens is optimal.

Conjecture 3.5. The first phase transition as small equal
or close to equal volumes grow is from the standard double

bubble to a chain of two bubbles bounded by Delaunay

surfaces.

Delaunay surfaces are constant-mean-curvature sur-

faces of rotation, and as such contain an S1 in their

symmetry group. From the Surface Evolver pictures, it

appears that the conjectured surface area minimizers al-

ways have the maximal symmetry, given the constraints,

a fact that leads to the following natural conjecture.

Conjecture 3.6. All isotopies that are not isometries de-
crease a minimizer’s symmetry group.

We will conclude the section with a proposition that

establishes a very limited symmetry property for all dou-

ble bubbles in the two torus (including nonminimizing

bubbles). Specifically, we prove that for any double bub-

ble, there is a pair of parallel two-tori that cut both re-

gions in half. Hutchings [Hutchings 97, Theorem 2.6]

was able to show that in Rn a minimizing double bubble

has two perpendicular planes that divide both regions in

half. He used this result in the proof that the function

that gives the least-area to enclose two given volumes in

Rn is concave. We conjecture that a similar concavity

result also holds for the three-torus:

Conjecture 3.7. The least area to enclose and separate
two given volumes in the three-torus is a concave function

of the volumes.

If one could prove Conjecture 3.7, one would then be

able to apply other ideas in Hutchings’ paper [Hutchings

97, Section 4] to obtain a functional bound on the number

of components of a minimizing bubble.

Proposition 3.8. (Deluxe Ham Sandwich Theorem.)∗ If
a double bubble lies inside a solid two-torus inside a rec-

tangular three-torus, D2×S1 ⊂ S1×S1×S1, then there
is a pair of parallel two-tori that divide both volumes in

half.

Proof: This is a generalization of the standard argument

for the ham sandwich theorem in Euclidean space. We

will regard the three-torus as the result of identifying the

faces of a rectangular solid [−n, n] × [−m,m] × [0, p] in
R3. We may assume that the solid torus is a vertical

cylinder with base centered at the origin in the x − y
plane. Now we rotate this solid cylinder, and index the

rotation by α ∈ [0, 2π]. Then for each α ∈ [0,π], rotate
the cylinder (along with the surface that lies inside) by

α in the x − y plane and consider the family of pairs of
planes {y = c, y = c + m}, where c ∈ [−m, 0] For each
α ∈ [0,π], there is at least one such pair of planes that
cuts the volume V1 in half, in the sense that half of V1 is

in the inside of the planes, and half of V1 is on the outside

of the two planes. There may be an interval of such pairs

for a given α. However, some one-parameter family of

these planes may be chosen which varies continuously as

a function of α, and coincides at 0 and π. Since by the

time α reaches π the two portions of V2 have switched

sides, there must be some pair of planes that divides V2
in half. The restriction of these planes to the domain

[−n, n]× [−m,m]× [0, p] glue up to a pair of two-tori in
the three-torus that divides both regions in half.

4. SMALL COMPARABLE VOLUMES

Conjecture 3.3 asserts that two small volumes in T3 are

best enclosed by a standard double bubble. In this sec-

tion, we will prove Theorem 4.1, which says that for any

fixed volume ratio, the standard double becomes optimal

when the volumes are sufficiently small. This result holds

for a relatively broad class of three- and four-dimensional

manifolds (and see Remark 4.4).

The standard double bubble consists of three spherical

caps meeting at 120 degrees (see Figure 2). If the volumes

are equal, the middle surface is planar. The standard

double bubble is known to be minimizing for all volume

pairs in R3 [Hutchings et al. 02] and R4 [Reichardt et

al. 03].

∗Name suggested by Eric Schoenfeld, who gave an independent
proof for T2.



Carrión Álvarez et al: Double Bubbles in the Three-Torus 85

Theorem 4.1. Let M be a flat Riemannian manifold of

dimension three or four such that M has compact quo-

tient by its isometry group. Fix λ ∈ (0, 1]. Then there
is an 6 > 0 such that, if 0 < v < 6, an area-minimizing

double bubble in M of volumes v,λv is standard.

Remark 4.2. Our assumption on the isometry group

guarantees solutions to the double bubble problem for

all volume pairs (the proof is the same as in Morgan

[Morgan 00, Section 13.7]). Not every flat 3-manifold

has compact quotient by its isometry group. Euclidean

3-space modulo a glide reflection or a glide rotation is an

example.

It is helpful to have the overall strategy of the proof

in mind before we go on. Our goal is to prove that a

minimizing double bubble of volumes v, λv lies inside a

trivial ball in M when v is small enough. The results for

Euclidean space then prove our claim.

For the proof, we will regard a double bubble as a pair

of three- or four-dimensional rectifiable currents, R1 and

R2, each of multiplicity one, of volumes V1 = M(R1)

and V2 = M(R2). The total area of such a double bub-

ble is 12 (M(∂R1) +M(∂R2) +M(∂(R1 +R2))). HereM

denotes the mass of the current, which can be thought

of as the Hausdorff measure of the associated rectifiable

set (counting multiplicities). For a review of the perti-

nent definitions, see the notes from Morgan’s course at

the CMI/MSRI Summer School [Morgan and Ritoré 01]

or the texts by Morgan [Morgan 00] or Federer [Federer

69]. By the Nash and subsequent isometric embedding

theorems, we may assume M is a submanifold of some

fixed RN .

We will consider a sequence of area-minimizing double

bubbles in M enclosing the volumes v and λv, as v → 0.

If the theorem were false, there would be some such se-

quence with no standard double bubbles in it. We prove

that every sequence of fixed volume ratio double bubbles

with shrinking volumes contains standard double bub-

bles.

For each v, Mv will denote sv(M) in R
N , where sv

is the scaling map that takes regions with volume v to

similar regions with volume 1. In particular, sv maps

our area-minimizing double bubble enclosing volumes v

and λv to a double bubble which we call Sv that encloses

volumes 1 and λ, and is of course area-minimizing for

these volumes.

The first step is to show that once Mv has been suit-

ably translated and rotated, the sequence Sv has a subse-

quence that converges as v → 0 with V1 W= 0 in the limit.

Our argument also shows that there is a differently mod-

ified subsequence that converges to a limit with V2 W= 0,
but does not show that there is a subsequence where both

volumes are nonzero in the limit. This is because while

we are exerting ourselves trapping the first volume in a

ball, the second one may wander off to infinity.

The second step in the proof is to use these limits to

obtain a weak bound on the curvature of a subsequence

of Sv. We need this in order to apply the monotonicity

theorem for mass ratio [Allard 72, Section 5.1(1)], which

says that a small ball around any point on a surface with

weakly bounded mean curvature contains some substan-

tial amount of area.

The third step is to show that all of the surface area

of each element of our subsequence is contained in some

ball in Mv that has fixed radius for all v. Eventually, as

v shrinks and Mv grows, this ball will have to be trivial

in Mv.

We then use the result that the optimal double bub-

ble in R3 is standard to show that our subsequence has a

tail comprised of standard double bubbles. The desired

conclusion then follows from the fact that Sv is simply

a scaled version of the original double bubble containing

volumes v and λv. Thus there is no sequence of shrink-

ing fixed-ratio area-minimizing double bubbles inM that

does not contain standard double bubbles.

We focus on the case of dimension three; the proof for

dimension four is essentially identical.

The following lemma is needed in the first step of the

proof.

Lemma 4.3. There is a γ > 0 such that if R is a region

in an open Euclidean 3-cube K and vol(R) ≤ vol(K)/2,
then

area(∂R) ≥ γ(vol(R))2/3.

Proof: Let γ0 be such an isoperimetric constant for a

cubic three-torus, so that area(∂P ) ≥ γ0(vol(P ))
2/3 for

all regions P ⊆ T3. Such a γ0 exists by the isoperimet-
ric inequality for compact manifolds [Morgan 00, Section

12.3]. Make the necessary reflections and identifications

of the cube K to obtain a torus containing a region RI

with eight times the volume and eight times the surface

area of R. The claim follows, with γ = γ0/2.

Proof of Theorem 4.1:

Step 1. The sequence Sv ⊂ Mv, where each Mv has

been suitably translated and rotated, has a subsequence

that converges with V1 W= 0 in the limit.



86 Experimental Mathematics, Vol. 12 (2003), No. 1

We first show the existence of a covering Kv of Mv

with bounded multiplicity, consisting of 3-cubes con-

tained in Mv, each of side-length L, for any L > 0.

Lemma 4.3 will give us a positive lower bound on the

volume of the part of R1 that is inside one of these cubes

for each Sv. We will then apply a standard compactness

theorem to show that a subsequence of the sequence of

Sv converges.

Take a maximal packing of Mv by balls of radius
1
4L.

Enlargements of radius 1
2L cover Mv. Circumscribed 3-

cubes in Mv of edge-length L provide the desired cover-

ing Kv. To see that the multiplicity of this covering is

bounded, consider a point p ∈Mv. The ball centered at

p with radius 2L contains all the cubes that might cover

it, and the number of balls of radius 1
4L that can pack

into this ball is bounded, implying that the multiplicity

of Kv is also bounded by some m > 0.

Now let Kv be a covering as above, with L = 2. By

Lemma 4.3, there is an isoperimetric constant γ such that

area(∂(R1 ∩Ki)) ≥ γ(vol(R1 ∩Ki))
2/3,

and therefore, since maxk vol(R1 ∩ Kk) ≥ vol(R1 ∩ Ki)

for any i,

area(∂(R1 ∩Ki)) ≥ γ
vol(R1 ∩Ki)

(maxk vol(R1 ∩Kk))1/3
. (4—1)

Note that the total area of the surface is greater than

1/m times the sum of the areas in each cube, and the

total volume enclosed is less than the sum of the volumes,

so summing Equation 4—1 over all the cubes Ki in the

covering Kv yields

area(Sv) ≥ area(∂R1) ≥ mγ V1
(maxk vol(R1 ∩Kk))1/3

and

(max
k
(vol(R1 ∩Kk)))

1/3 ≥ mγ V1
area(Sv)

≥ δ,

for some δ > 0, because V1 = 1 and area(Sv) is bounded

(there is a bounded way of enclosing the volumes, and

Sv has the same amount of area or less).

Translate each Mv so that a cube Kk that maximizes

vol(R1 ∩Kk) is centered at the origin of R
N , and rotate

so that the tangent space of eachMv at the origin is equal

to a fixed R3 in RN . The limit of the Mv will be equal

to this R3. Since a cube with edge-length L centered at

the origin fits inside a ball of radius 2L centered at the

origin, we have

vol(R1 ∩B(0, 2L)) ≥ δ3

for every Sv. By the compactness theorem for locally

integral currents ([Morgan 00, pp. 64, 88], [Simon 84,

Section 27.3, 31.2, 31.3]), we know that a subsequence of

the Sv has a limit, which we will callD, with the property

that vol(R1) ≥ δ3. This completes the first step.

Since D is contained in the limit of the Mv, namely,

the copy of R3 chosen above, and each Sv is minimizing

for its volumes, a standard argument shows that the limit

D is the area-minimizing way to enclose and separate

the given volumes vol(R1) ≥ δ3 and vol(R2) in R
3 (see

[Morgan 00, 13.7]). In the limit, vol(R2) could be zero,

in which case D is a round sphere. If both volumes are

nonzero, D is the standard double bubble ([Hutchings

et al. 02] and [Reichardt et al. 03], or see [Morgan 00,

Chapter 14]).

Step 2. By taking a subsequence if necessary, we may

assume there is a weak bound on the curvature of the Sv.

To show that the mean curvature is weakly bounded

is to show that there is a C such that for any Sv, and any

direction in the two-dimensional space of possible volume

changes, | dA
dV | ≤ C for smooth variations. Thus it suffices

to produce smooth variations such that changes in the

volume of Sv and in the area of ∂Sv are controlled, that

is, that the magnitude of the change in volume is bounded

from below and the magnitude of the change in area is

bounded from above.

We first show that the magnitude of the change in

volume is bounded below. Take a smooth variation vector

field F in Rn such that for D,

dV1/dt =
∂R1

(F · n) dA = c W= 0

and

dV2/dt = 0.

(Note that we need the first volume to be nonzero, or its

variation could be zero.) For v small enough, the subse-

quence of Sv associated with the limit D has the property

that dV1/dt is approximately equal to the constant c and

dV2/dt is approximately equal to 0.

By the argument in the first step, we can translate and

rotate eachMv so that, after taking a subsequence again

if necessary, Sv converges to a minimizer D
I in R3 where

the second volume is nontrivial. This time we take a

smooth variation vector field F I, such that the images of
Sv under the appropriate rigid motions have the property

that dV1/dt is approximately equal to 0 and dV2/dt is

approximately equal to some constant cI W= 0, for v small
enough.

Note that the change in volume is independent of rigid

motions; in particular, we can translate both F and F I
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back along the rigid motions to act on Sv. This proves

that for this sequence, the magnitude of the change in

volume is bounded below.

Now we need to show that the change in area is

bounded above. This follows from the fact that every

rectifiable set can be thought of as a varifold [Morgan

00, Section 11.2]. By compactness for varifolds [Allard

72, Section 6], the Sv, situated so that the first volume

does not disappear, converge as varifolds to some varifold,

J . The first variations of the varifolds also converge, i.e.,

δSv → δJ ; see [Allard 72]. The first variation of a varifold

is a function representing the change in area. Therefore,

far enough out in the sequence the change in area of the

Sv under F is bounded close to the change in area of J

under F , which is finite. Similarly, the change in area of

the Sv under F
I is bounded above.

We conclude that, after restricting to a subsequence,

Sv has the property that | dAdV | is bounded for two indepen-
dent directions in the two-dimensional space of volume

changes, and hence for the entire space. This completes

the second step.

Step 3. When v is small, all of the elements of a

subsequence of Sv ⊂ Mv are contained in a ball with a

fixed radius that can be lifted to R3.

As v shrinks, the area of each element of the subse-

quence Sv found in Step 2 is bounded above by A > 0,

since our double bubbles are area-minimizing, and a

nearly Euclidean double bubble is one candidate. By

monotonicity of mass ratio [Allard 72, Section 5.1(1)],

every unit-radius ball centered at a point of Sv contains

at least area 6, for some 6 > 0. Therefore, there are at

most A/6 such disjoint balls.

We claim that the Sv are eventually connected, which

will imply that the diameter Sv is bounded above by

2A/6. Indeed, unless the Sv are eventually connected,

one can arrange to get in the limit a disconnected mini-

mizer in R3 by translating and centering nontrivial vol-

ume on two different points. This is false, so we conclude

that Sv is contained in a ball of radius 2A/6 for all small v.

Since our original manifold has compact quotient by

its isometry group, we may quotient by isometries to get

a compact 3-manifold. This implies that balls of a cer-

tain radius or smaller are topologically trivial. Hence,

as we expand the manifold, balls of radius 2A/6 can be

lifted to R3, which means that they are Euclidean. This

completes the third step.

Since Sv is eventually contained in a Euclidean ball,

the tail of this sequence is made up entirely of standard

double bubbles ([Hutchings et al. 02], [Morgan 00, Chap-

ter 14]). Recall that our sequence Sv is simply a scaled

version of the original sequence of minimizing double

bubbles inM enclosing volumes v and λv, where we have

restricted to subsequences as necessary. Therefore, any

sequence of area-minimizing double bubbles with shrink-

ing volumes and fixed volume ratio contains standard

double bubbles. We conclude that the minimizing dou-

ble bubble with volume ratio λ is standard when v is

small enough.

Remark 4.4. Given n and m, essentially the same ar-

gument shows that for any smooth n-dimensional Rie-

mannian manifold with compact quotient by the isome-

try group, given 0 < λ ≤ 1, there are C, 6 > 0, such

that for any 0 < v < 6, a minimizing cluster with m pre-

scribed volumes between λv and v lies inside a trivial ball.

For the case of flat three- or four-dimensional manifolds

with compact quotient by the isometry group, this means

that small clusters of bubbles with comparable volumes

are the same as the Euclidean minimizer containing the

same volumes. To deduce the corresponding result in

the nonflat case would require knowing that convergence

weakly and in measure, under bounded mean curvature,

implies C1 convergence, as is known for hypersurfaces

without singularities ([Allard 72, Section 8], see [Morgan

01, Section 1.2]).

5. SPECIAL TORI

Changing the shape of the torus, by stretching it or by

skewing some or all of its angles, would certainly change

the phase diagram of Figure 2.

Conjecture 5.1. In the special case of a very long three-
torus, i.e., with side lengths { 162 , 6, 6} (6→ 0), the Double

Slab is optimal for most volumes.

Special tori may have special minimizers:

Conjecture 5.2. For the special case of a torus based on a
short hexagonal prism, the Hexagonal Honeycomb prism

of Figure 4 is an area-minimizing double bubble when both

regions and the exterior all have equal or close to equal

volumes.

Indeed, for such volumes, the Hexagonal Honeycomb

ties the Double Slab, just as in the hexagonal two-torus,

a Hexagonal Tiling ties the Double Band [Corneli et al.

03].

For multiple enclosed regions, we would expect to find

minimizers that lift to R3 as periodic foams with cells of
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FIGURE 4. Hexagonal honeycomb

finite volume, such as Kelvin’s foam or the Weaire-Phelan

foam [Kusner and Sullivan 96].

However, there is no minimizing double bubble in any

torus that lifts to a division of R3 into bounded regions.

Indeed, as pointed out by Adams, Morgan, and Sullivan

[Adams et al. 2003], by Lebesgue’s Covering Theorem

[Hurewicz and Wallman 41, Theorem IV2], such regions

must sometimes meet in fours or more.

This suggests that it is likely that there are no other

special minimizers for the double bubble problem.

Conjecture 5.3. The double bubbles of Figure 1 together
with the Hexagonal Honeycomb of Figure 4 comprise the

complete set of area-minimizing double bubbles for all

three-tori.

In light of the fact that the triple bubble problem in

the torus seems likely to produce many interesting can-

didates, we conclude with one final conjecture.

Conjecture 5.4. For the triple bubble problem in a flat

cubic three-torus in the case where one of the volumes is

small, the minimizers will look like the double bubbles of

Figure 2 with a small ball attached. The phase diagram

will look just like our Figure 3.
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