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We classify the primitive distance-transitive representations of
the Fischer sporadic simple groups and their automorphism
groups. It turns out that the only primitive distance-transitive
representations of these groups are their rank 3 representations.
In the process of our work, we also classify and study the
primitive multiplicity-free permutation representations of these
Fischer groups. Our methods, which we describe in some
detail, demonstrate the use of computational and randomized
techniques in the classification of distance-transitive graphs
and the study of very large permutation representations.

1. INTRODUCTION

Let G be a permutation group on a finite set V', and
I" an undirected, loopless, connected graph with
vertex-set V. Now G has a natural action on V xV,
defined by (v,w)? = (v?,w?), and we say that G
acts distance-transitively on I if the G-orbits of this
action are precisely the sets {(v,w) | dr(v,w) =i},
wherei =0,1,...,diamI'. (Note that if G acts dis-
tance-transitively on I', it is necessarily a vertex-
transitive and ordered-edge-transitive group of au-
tomorphisms of I'.) The graph I is called distance-
transitive if AutT' acts distance-transitively on T.
The permutation representation of G on V is a
distance-transitive representation (DTR) if G acts
distance-transitively on some (undirected, loopless,
connected) graph with vertex-set V. A good gen-
eral reference for the theory of distance-transitive
graphs is [Brouwer et al. 1989].

For our purposes, a Fischer group is one of the
sporadic groups Fisy, Fig:2 = AutFiy, Fisz =
Aut Fiys, Fiy,, and Fiyy = Fi},:2 = Aut Fi},. The
main purpose of this paper is to classify the graphs
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on which a Fischer group acts primitively and dis-
tance-transitively. In the process we also classify
the primitive multiplicity-free permutation repre-
sentations of these groups, and determine the cor-
responding permutation characters. These results,
and the techniques described in this paper, are
used in the complete classification [Ivanov et al.
1995] of the primitive multiplicity-free permuta-
tion representations of the sporadic simple groups
and their automorphism groups, and the graphs on
which such a group acts primitively and distance-
transitively.

Our classification uses several tools of computa-
tional group theory and graph theory, such as char-
acter theory algorithms, single and double coset
enumeration, permutation group algorithms, and
graph theory algorithms. We also illustrate some
randomized techniques that we use to study ex-
tremely large permutation representations.

We make extensive use of the group theory sys-
tem GAP [Schonert et al. 1994] and its share li-
brary package GRAPE [Soicher 1993] (for com-
puting with graphs with groups acting on them),
which includes the nauty package [McKay 1990]
(for computing automorphism groups of graphs and
testing for graph isomorphism). We usually give
more information about a graph than is strictly
necessary to determine if a given group acts on it
distance-transitively.

The groups Fiys, Fiss, and Fiyy were constructed
by B. Fischer [1969] as 3-transposition groups. A
group G = (G, D) is a 3-transposition group if it
is generated by a conjugacy class D of 3-transposi-
tions (this means the elements of D are involutions
whose pairwise products have order 1, 2, or 3).

Our main result is stated at the end of the next
section. We use Atlas notation [Conway et al. 1985]
throughout this paper for group structures, conju-
gacy classes, and characters. For example, 429b
denotes the second character of degree 429, and
429ab denotes the sum 429a + 429b. The ordering
of characters we use is that of the GAP version of
the Atlas character tables, which agrees with the
Atlas ordering in the case of simple groups.

2. ORBITAL GRAPHS, DISTANCE-TRANSITIVE
REPRESENTATIONS, AND THE MAIN THEOREM

Throughout this section G is a transitive permuta-
tion group on a finite set V.

The orbits of G (acting naturally) on V' x V are
called orbitals, and the number of these orbitals
is called the (permutation) rank of G. A directed
graph with vertex-set V' and edge-set an orbital
E is called an orbital digraph. If E is an orbital
such that (v,w) € E whenever (w,v) € E, then
we call E self-paired, and consider the orbital di-
graph (V, E) to be an undirected (orbital) graph
by identifying (v, w) € E with (w,v). The orbitals
for G are in one-to-one correspondence with the
orbits on V of the stabilizer G, of a point v € V:
this correspondence maps an orbital E to the set
of points {w | (v,w) € E}. The orbits of G, on
V are called suborbits of G, and their lengths are
called the subdegrees of G.

Now if G on V is a distance-transitive repre-
sentation, then a corresponding distance-transitive
graph must have vertex-set V', and edge-set a self-
paired orbital of G. Indeed, if G on V is a DTR,
then all its orbitals must be self-paired, which is
equivalent to the property that the permutation
representation of G on V is the sum of distinct
complex irreducible representations, each of which
is writable over the reals [Brouwer et al. 1989].
Furthermore, if G acts distance-transitively on the
graph (V, E), then the suborbit corresponding to
the orbital E is a suborbit of the smallest or the
second smallest length greater than 1 [Brouwer et
al. 1989].

Now suppose that V7 = {v}, V5, ..., V. is an
ordering of the orbits of GG,, with respective rep-
resentatives v; = v, va, ..., v,. Let I' = (V, E) be
a (di)graph on which G acts as a vertex-transitive
group of automorphisms, and define

aij = {(vi,w) € E|w € V;}|.

Note that a;; does not depend on the choice v;
of suborbit representative. The r X r integer ma-
trix A = (ai;) is called the collapsed adjacency
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matriz for I' (with respect to G and the subor-
bit ordering). Much information about I' can be
read off directly from its collapsed adjacency ma-
trix [Praeger and Soicher|. In particular, G acts
distance-transitively on I' if and only if for some
ordering Vi = {v}, Va,...,V, of the suborbits, the
corresponding collapsed adjacency matrix is tridi-
agonal, with all entries nonzero on the upper and
lower diagonals.

We are now in a position to state our main the-
orem. The representations and graphs described
by this theorem are well-known (see, for example,
[Brouwer et al. 1989]).

Theorem 2.1. Suppose that G = Fiys, Figy: 2, Fiys,
Fi,,, or Fiyy. Then the primitive distance-transi-
tive representations of G are precisely its (well-
known) rank 3 representations, described below.
The corresponding distance-transitive graphs come
in complementary pairs, and the list below gives
their collapsed adjacency matrices.

1. If G = Fias or Fiss: 2, then G acts primitively
with permutation rank 3 on the conjugacy class
of 3-transpositions of G' = Fiy,. The subdegrees
are 1, 693, 2816, and the collapsed adjacency
matrices are:

0 693 0 0 0 2816
1 180 512 0 512 2304
0 126 567 1 567 2248

2. Let G = Fiyp. Then G contains exactly two
conjugacy classes of maximal subgroups O7(3),
and these classes are interchanged by an outer
automorphism of G. The group G acts on each
of these classes with permutation rank 3, and
these two representations give rise to the same
complementary pair of graphs. The subdegrees
are 1, 3159, 10920, and the collapsed adjacency
matrices are:

0 3159 0 0 0 10920
1 918 2240 0 2240 8680
0 648 2511 1 2511 8408

3. If G = Fiy3, then G acts primitively with per-
mutation rank 3 on the conjugacy class of 3-

transpositions of G. The subdegrees are 1, 3510,
28160, and the collapsed adjacency matrices are:

0 3510 0 0
1 693 2816
0 351 3159

0 28160
0 2816 25344
1 3159 25000

4. Let G = Fiy3. Then G contains exactly one con-
jugacy class of maximal subgroups Og (3):Ss,
on which G acts with permutation rank 3. The
subdegrees are 1, 28431, 109200, and the col-
lapsed adjacency matrices are:

0 28431 0 0 0 109200
1 6030 22400 0 22400 86800
0 5832 22599 1 22599 86600

5. If G = Fi}, or Fiy4, then G acts primitively with
permutation rank 3 on the conjugacy class of 3-
transpositions of Fiys. The subdegrees are 1,
31671, 275264, and the collapsed adjacency ma-
trices are:

0 31671 0 0
1 3510 28160
0 3240 28431

0 275264
0 28160 247104
1 28431 246832

We shall prove this theorem by showing that there
are no other primitive DTRs for the Fischer groups.

3. THE GENERAL APPROACH

We discuss here our general approach to classifying
the primitive DTRs of a given finite group G.

First, a permutation representation of G is prim-
itive if and only if it is equivalent to a representa-
tion of G acting on the (right) cosets of a max-
imal subgroup. The maximal subgroups of Fi,,
and Fijy: 2 are determined in [Wilson 1984; Kleid-
man and Wilson 1987], those of Fiy; in [Kleidman
et al. 1989], and those of Fi}, and Fiy, in [Linton
and Wilson 1991].

Next, for a permutation representation p to be
a DTR, it is necessary that p be multiplicity-free,
that is, the sum of distinct complex irreducible
representations. Furthermore, if p is a DTR then
each of these distinct irreducible representations
must be writable over the reals, or equivalently,
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have a character with Frobenius—Schur indicator
+1. The next section contains a general discus-
sion on practical computational methods to deter-
mine if a given permutation representation is mul-
tiplicity-free, and in Section 5 the multiplicity-free
primitive representations of the Fischer groups are
classified, and their characters determined.

The problem then boils down to that of deter-
mining if a given (multiplicity-free) primitive rep-
resentation of G on V is a DTR.

We explicitly construct some such representa-
tions using single or double coset enumeration, and
calculate collapsed adjacency matrices for the or-
bital graphs corresponding to the two smallest sub-
degrees greater than 1 (using the method described
in [Praeger and Soicher]). Then a trivial examina-
tion of these collapsed adjacency matrices deter-
mines if the representation is a DTR.

However, the primitive representation of G on V'
may be too large or difficult to construct directly,
but if we can construct another representation of
G as a vertex-transitive group of automorphisms
of some graph I' = (W, F), such that the stabilizer
H of v € V acts intransitively on W, then we can
try to show that G on V is not a DTR as follows.

Let A be the (proper) subgraph of I' induced
on some orbit of H on W. Then the action of G
on V is equivalent to the action of G on the orbit
AC of subgraphs of T' (as H is maximal in G, it
must be the full G-stabilizer of A). We may then
use various computational tricks (often involving
randomized techniques) to determine a set of rep-
resentatives of the H-orbits on A®. We sometimes
distinguish the H-orbit containing A9 from that
containing A% by showing that A N A9 is not iso-
morphic to A N A%, and here the nauty package
[McKay 1990] is useful.

Now, given H-orbit representatives A; = A,
Ay, ..., A,, we determine H; = stabg(A;) for
i = 1,...,7 (using GAP, say), and then obtain

the subdegrees d; = |H|/|H;]|.

Now define ¥; to be the graph with vertex-set
A% and edge-set the orbit {A, A;}¢ (where i > 1).
We can usually show that G does not act distance-

transitively on a given X; as follows. (In general,
our aim is to find a G-invariant relation ~ on A%,
and X,Y € AC® such that d(A,X) = d(A,Y) in
Y, A ~ X, but A ¢ Y.) First, we calculate an
element g; € G such that A% = A;. We then de-
termine various subgraphs of I' of the form A? 9
for random h € H. Such subgraphs are joined to
A; in ¥;, and we can usually find two such sub-
graphs X,Y such that ANX Z2ANA; 2ANY
and ANY 2 AN X. In that case, in ¥; we have
d(A,X)=d(A,Y) =2, but there is no element of
G taking (A, X) to (A,Y), and we can conclude
that G does not act distance-transitively on X;.

Remark. The calculations described above usually
lead to an explicit rule for determining in which G-
orbital a given ordered pair of elements of A€ lies.
Such a rule enables us (at least in theory) to com-
pute collapsed adjacency matrices for the orbital
graphs for the action of G on V = A% We have
recently used such rules to compute collapsed ad-
jacency matrices for the nontrivial orbital graphs
of the two smallest valencies for almost all of the
multiplicity-free representations we consider. Al-
though not usually required for the proofs of our
results, these matrices are of interest in their own
right, say for the investigation of geometries re-
lated to the corresponding orbital graphs. Many
of these matrices are published in [Ivanov et al.
1995], and we include the others in this paper. We
note that the intersection matrices in [Ivanov et al.
1995] are the transposes of what we call collapsed
adjacency matrices for orbital graphs, after a pos-
sible reordering of the suborbits. We have decided
to retain the original proofs of our results, as these
contain interesting information not available from
collapsed adjacency matrices alone.

4. THE COMPUTATIONAL STUDY OF PERMUTATION
CHARACTERS

Determining a Permutation Character

There are several methods one can apply in order
to determine the permutation character of the per-
mutation action of a finite group G on the cosets
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of a subgroup H. These methods are distinguished
by the amount of information used by the meth-
ods. As a rule of thumb, the methods that require
a detailed knowledge enable one to determine the
permutation character exactly, but are only ap-
plicable for small groups. Other methods, which
need much less information, do not always lead to
a unique possibility, but can be used for very large
groups. We will deal mainly with the second kind
of methods, which are based on character theory.
A good reference for the character theory used here
is [Isaacs 1976].

For g € G, the permutation character w of G,
with respect to the subgroup H, has value m(g)
equal to the number of fixed points in the action
of G on the (right) cosets of H. The permutation
character 7 can also be interpreted as 1%, the triv-
ial character of H induced up to GG. From this,
we get a formula relating 7(g) = 1%(g) to the H-
conjugacy-classes lying in the G-conjugacy class of
g, as follows. Let hq,..., h, be representatives for
the conjugacy classes of elements in H contained
in the G-conjugacy class of g. Then the value of
the permutation character can be written in the
following way:

15(g) = |CG(9)|Zm'

Thus, the permutation character can be derived
from the knowledge of the H-conjugacy classes and
the knowledge in which G-conjugacy classes they
are contained. The map that attaches to each H-
conjugacy class the G-conjugacy class it is con-
tained in is called the fusion map from H to G.

The group theory system GAP contains a power-
ful function, written by T. Breuer, which supports
the determination of the fusion map given informa-
tion, like that which can be found in a GAP char-
acter table, about the H-conjugacy classes and the
G-conjugacy classes. This information usually con-
tains the orders of the representatives, the power
maps and the orders of the centralizers.

For all sporadic simple groups other than Fi,,,
the baby monster group B, and the monster group
M, the conjugacy classes and the character tables
for all maximal subgroups have now been deter-
mined. These tables are publicly available as part
of the GAP character table library, which forms
part of the GAP system [Schonert et al. 1994].

We give a short outline of how one proceeds to
determine a permutation character using GAP and
its character table library. More information on
the use of the functions described below can be
obtained using the online help system of GAP.

One first reads in the character table of the cho-
sen finite simple group G using the command Char-
Table supplied with the library name of the char-
acter table of G. The GAP character table of G
is a so-called GAP record, and one component of
this record is a list (mazes) containing the names
under which the character tables of the maximal
subgroups of G can be found in the library. Using
the name for the chosen maximal subgroup H, we
read in the character table of H.

The function SubgroupFusions, when supplied
with the character tables of H and G as the main
arguments, returns the possible fusion maps consis-
tent with all the restrictions. Since fusion maps are
only determined up to automorphisms of the char-
acter tables, the function RepresentativesFusions
can be used to get a list of representatives for the
fusion maps. For each of the representatives in turn
we can determine the permutation character of G
on the cosets of H via the function Induced sup-
plied with the fusion map and the trivial character
of H. Since we are interested in the multiplicities
of the irreducible characters in the resulting per-
mutation character, we determine the decomposi-
tion of the permutation character into ordinary ir-
reducible characters using the function MatScalar-
Products, applied to the irreducible characters of
G and the permutation character. It is then triv-
ial to derive from the decomposition whether the
permutation character is multiplicity-free or not.
Observe that even though there might be several
possible fusion maps, it is still possible that the
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putative permutation characters corresponding to
these maps coincide. A more detailed account of
the basic theory is contained in [Breuer 1991]; see
also [Neubiiser et al. 1984]. We remark that many
fusion maps are now explicitly stored in the GAP
character table library.

Useful Tricks to Show That Certain Characters Are Not
Multiplicity-Free
Let H and K be subgroups of a finite group G.
Then the number of orbits of H acting on the cosets
of K in G is equal to the scalar product [1§,1%]
of the permutation characters corresponding to H
and K (in particular, the permutation rank of G
on H is [1§,1%]). Thus, if 1§ is the sum of at most
m irreducible characters (counting multiplicities),
and we can show that H has more than m orbits
on the cosets of K, then 1§ cannot be multiplic-
ity-free.

As an application, we record the following well-
known result.

Lemma4.1. Let a and b be elements of G, in respec-
tive G-conjugacy classes A and B, and let C(a) and
C(b) denote the centralizers in G of a and b. Let m
be the number of conjugacy classes C of G such that
the (A, B, C) structure constant in G is nonzero.
Then C(a) has at least m orbits on the cosets of
C(b), and thus, if lg(b) is the sum of fewer than m
irreducible characters, then 1g(a) s not multiplic-
ity-free.

Now each of our Fischer groups F' has a rank 3
action on a class D of 3-transpositions, which in-
duces a group of automorphisms of (D). Often we
can show that the stabilizer H in F' of a small sub-
set S of elements of D has more than three orbits
on D, by showing that there are more than three
isomorphism classes of groups (S, d), as d ranges
over D. For example, if S C D, (S) = 22, then
the isomorphism types of groups of the form (S, d)
(d € D) are 2% 23, 2 x S3, and S;. If S C D,
(S) = S;, then the isomorphism types of groups
of the form (S,d) (d € D) are S3, 2 x S;, Sy, and
3%: S5 [Fischer 1969]. We thus have:

Lemma 4.2. Let F be a Fischer group (as defined
on page 235), acting on a class D of 3-transposi-
tions. Let H be the stabilizer in F of a set S of
3-transpositions, such that (S) = 2% or (S) = S;.
Then the action of F on the cosets of H is not
multiplicity-free.

On the Permutation Characters of G.2

Now let G be a finite simple group having an outer
automorphism of order 2, and G.2 be the extension
of G by this outer automorphism. The irreducible
characters of G.2 and their relationship with the
irreducible characters of G are explicitly described
by Clifford’s theorem. We first note that since the
outer automorphism acts on G, it also acts natu-
rally on the conjugacy classes and the irreducible
characters of G. The irreducible characters of G.2
fall into two sets, namely the ones that are exten-
sions of the irreducible characters of G invariant
under the outer automorphism, and those that are
the induction of the irreducible characters of G not
invariant under the automorphism. There are al-
ways two extensions of a given invariant character,
and the induced characters of the two noninvariant
characters in the same orbit are identical.

Let us now consider a not necessarily irreducible
character x of G and an extension x' of x to G.2.
It follows from Frobenius reciprocity that the mul-
tiplicity of an induced irreducible character of G.2
in x' is the same as the multiplicity of the origi-
nal (noninvariant) irreducible character of G in x.
Also, the sum of the multiplicities of the exten-
sions of a given invariant irreducible character
equals the multiplicity of ¥ in x. We thus have the
following result.

Lemma 4.3. Let M be a subgroup of G.2 such that
|M : M NG| = 2. If the permutation charac-
ter 1§, o is multiplicity-free, then the permutation
character 15;% is again multiplicity-free. If 1
has a noninvariant irreducible constituent having
multiplicity at least 2, or 1§, has any irreducible
consituent having multiplicity at least 3, then 1§
is mot multiplicity-free.
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The maximal subgroups of G.2 also fall into two
sets. As defined in [Wilson 1985|, a nonnovelty M
is a maximal subgroup of G.2 whose intersection
M N G is a maximal subgroup of G, and a novelty
is a maximal subgroup whose intersection with G
is not a maximal subgroup of G. In both cases, M
contains M N G as a normal subgroup of index 2.

In order to decide whether the permutation char-
acter 1§;? is multiplicity-free, we first consider the
the permutation character of G on M N G. If the
permutation character of G on this intersection is
multiplicity-free, then so is the permutation char-
acter 1§;2. If the permutation character for G con-
tains either an invariant character with multiplicity
at least 3 or a noninvariant character with multi-
plicity at least 2 then the permutation character
for G.2 is not multiplicity-free. If none of these
cases hold, we may determine the extended per-
mutation character of the given one for G, using
the fact that the extended permutation character
on the maximal subgroup M of G.2 is a summand
of the permutation character of G.2 on M N G.
This poses a strong restriction on the irreducible
characters of G.2 that may appear in the extended
permutation character. In order to determine the
permutation character for G.2 on the maximal sub-
group M, we have written a GAP program that
lists the subsums of the constituents of the per-
mutation character of G.2 on M N G, which fulfill
certain necessary conditions of being a permuta-
tion character (for G.2 on M). In the cases we had
to consider we were always led to a unique solution.

5. THE MULTIPLICITY-FREE PRIMITIVE PERMUTATION
REPRESENTATIONS OF THE FISCHER GROUPS

We now classify the multiplicity-free primitive per-
mutation representations of the Fischer groups and
determine their characters. Each character turns
out to contain only irreducible constituents with
Frobenius—Schur indicator +1, so each of these mul-
tiplicity-free representations has all its orbitals self-
paired. Each of the rank 3 representations is dis-
tance-transitive, and we shall show in the next sec-

tion that each multiplicity-free primitive represen-
tation of a Fischer group of rank greater than 3 is
not distance-transitive.

Since the character tables for the maximal sub-
groups of Fiyy and Fiys have been determined and
are accessible via the character table database con-
tained in GAP, it is a straightforward exercise to
determine the permutation characters belonging to
the actions of Fiyy; and Fiy; on the cosets of their
maximal subgroups.

Theorem5.1. The multiplicity-free primitive permu-
tation characters for Fisy are:

1. 1372 ) = la + 429a + 3080a

2. 152, = la + 429a + 13650a

3. 1% = la + 429a + 13650a

4, 15?2(2)153 = la + 3080a + 13650a + 45045a

5. 1553%,.. = la+ 78a + 429a + 1430a + 3080a +

30030a + 32032a + 75075a
6. 136%%, (o) = La+429a+1430a+3080a + 13650a +
30030a + 45045a + 75075a + 205920a + 320320a
7. 13125, = la+1001a+1430a+13650a+30030a+
289575a + 400400ab + 579150a + 675675a +
1201200a

Theorem5.2. The multiplicity-free primitive permu-
tation characters for Fiss are:

1. 133 = la+ 782a + 308884
2. 172 o = la+ 30888a + 106743a

od(3)

3. 15;2(32) = la+ 782a + 3588a + 30888a + 609964 +
106743a + 274482a + 812889a + 1951872a +
5533110a +21348600a + 26838240a + 293543254

4. 153, = la+782a+3588a+30888a+60996a+
274482a + 789360a + 812889a + 1677390a +
1951872a + 5533110a + 7468032a + 21348600a +
28464800a + 29354325a + 97976320a

The determination of the primitive multiplicity-
free representations of the simple group Fij, dif-
fers from that for Fi,, and Fi,3, since not all char-
acter tables of the maximal subgroups of Fi,, are
known. However, there is an obvious bound for



242 Experimental Mathematics, Vol. 4 (1995), No. 3

the index of a subgroup whose permutation char-
acter is multiplicity-free, namely the sum of the
degrees of all irreducible characters of Fi,,, which
is 7824318655674. This already implies that we
only have to consider the permutation characters
on the first nine maximal subgroups of Fi,, given
in the Atlas. For all but the sixth and the ninth
maximal subgroup the character tables have been
determined and we can proceed in the same way
as for Fiyp and Fiys. For the sixth maximal sub-
group, N(3B), the conjugacy classes and their fu-
sion into Fi}, have been determined by U. Schiffer,
a diploma student at RWTH Aachen, and an ac-
count of this work will appear in [Schiffer 1995].
The decomposition of the permutation character
follows immediately from this information; it is:

1la+57477a+249458a+1666833a+35873145aa
+40536925a 4794523730+ 112168056a
+281380736a+1264015025a+1540153692a
+3208653525aa+ 328349092504 5775278080a
+8529641472a+9100908180a+17068369920a
+17161712568a 4250274974950+ 45049495491a
+54234085491a+-63831063582a.

Thus, the permutation character 1?%533) is not mul-

tiplicity-free.

The ninth maximal subgroup is the 2B-central-
izer. In the proof of Theorem 5.5 we show that the
permutation character of Fiyy acting on the class
2B is not multiplicity-free, which implies that the
action of Fi}, on the class 2B is not multiplicity-
free as well.

We have thus proved:

Theorem 5.3. The multiplicity-free primitive permu-
tation characters for Fiy, are:

1. 1p = la 4 57477a + 2494584
2. 1524 — 14 4+ 8671a + H74T7a + 2494584 +

010(2)
555611a + 1666833a + 358731450 + 488937684 +
794523730 + 415098112a¢ + 1264015025a +
1540153692a + 2346900864a + 3208653525a +

10169903744a 4 13904165275ab+- 17161712568a

.
Fiy,

3. 13r7%, 5 = La+57477a+249458a+ 358731450 +
405369250 + 79452373a + 112168056a +
281380736a + 1069551175a + 12640150254 +
32086535250 + 3283490925a + 5775278080 +
10776585600ab+17068369920a+17161712568a+
54234085491a

(The character in the third case is stated incor-
rectly in [Ivanov et al. 1995].)
We now turn our attention to Fiss: 2 and Fisy.

Theorem5.4. The faithful multiplicity-free primitive
permutation characters for Fixg: 2 are as follows:

11502, = la + 429a + 3080a
2. 1Fiz22 = la + 3080a + 13650a + 45045a

OfF (2):83x2
3. 15857 5 = la+ 78a + 429a + 1430a + 3080a +
30030a + 32032a + 750754
4. 13727, = la+429a+ 14300+ 3080a+ 13650a +
30030a + 45045a + 75075a 4 205920a + 320320a
5. 13,73 = la+1001a+1430a+13650a+30030a+

2Fy(2

289575b + 800800a + 579150a + 6756750 +
1201200c¢

Proof. We first consider the nonnovelties amongst
the maximal subgroups of Fiss:2. In Fiys, only
the first through sixth and the ninth maximal sub-
groups lead to a multiplicity-free primitive permu-
tation character of Fiy. (We order the maximal
subgroups as in the Atlas, where the list of maxi-
mal subgroups of Fiyy and Fi,: 2 is complete [Klei-
dman and Wilson 1987].) All of these except the
second and the third extend to nonnovelties, and
hence lead to multiplicity-free permutation charac-
ters for Figa: 2.

The nonnovelty corresponding to the 7th maxi-
mal subgroup of Fiy, is the (setwise) stabilizer of a
pair of commuting 3-transpositions, and that cor-
responding to the eighth maximal subgroup is the
stabilizer of a set of three 3-transpositions generat-
ing an S3. By Lemma 4.2 the corresponding per-
mutation characters are not multiplicity-free.

We explicitly constructed the permutation char-
acter 7 of Fisy: 2 on the extension H.2 of the tenth
maximal subgroup H of Fiy, (using the fact that
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7w is a summand of the permutation character of
Fizs:2 on H), and showed that 7 is not multiplic-
ity-free.

Next, we observe that the permutation character
of Fiyy on its eleventh maximal subgroup has an
irreducible constituent with multiplicity 3, and so
the extension of this character to Fisy: 2 is not mul-
tiplicity-free.

The twelfth and thirteenth maximal subgroups
of Fiy, do not extend to nonnovelties, and the four-
teenth maximal subgroup of Fi,, has index greater
than the sum of the character degrees of the irre-
ducible characters of Fig,: 2.

We are now left with the novelties in Fijy: 2.
There are exactly two novelties (up to conjugacy)
of Fiyp: 2, namely G4(3):2 and 3°: (Uy(2):2 x 2).

In the case of the novelty G2(3):2 the permu-
tation character can be calculated using GAP and
the functions explained in Section 4, since the char-
acter table for G5(3): 2 is an Atlas table, and there-
fore contained in the GAP character table library.
The permutation character we obtain is

15225 , = la + 429ab + 10725b + 13650aab
+48048b -+ 50050c + 75075ae
+81081b+ 579150ab + 675675a
+ 1164800a + 1201200ac + 1360800ab
+1441792ab + 1791153a + 2027025b,

and thus is not mutliplicity-free.
For the second novelty 3°: (U4(2): 2 x 2), we com-
pute that

1552, (2) x2) = La+429aa+3080a+13650aaa
+45045a+75075a+81081a
+150150a+289575a +320320a
+360855aa+675675a+1360800aa.

It follows that the permutation character of Fiyy: 2
on 3°: (U4(2): 2 x 2), being an extension of the per-
mutation character given above, is not multiplicity-
free since the corresponding permutation character
for the simple group has an invariant irreducible
counstituent of multiplicity 3. U

Theorem 5.5. The faithful primitive multiplicity-free
permutation characters of Fiay are precisely the ez-
tensions of the primitive multiplicity-free permuta-
tion characters of Fi,,, and are as follows:

1. 1524 = la+ 57477a + 249458a

2. 15;34(2):2 = la + 8671b + 57477a + 249458a +
555611b + 1666833a + 358731450 + 48893768b +
794523730 + 4150981126 + 12640150250 -+
1540153692a + 2346900864b + 32086535254 +
10169903744b + 13904165275a + 171617125684

3. 15%, (3)2 = 1a+57477a+249458a+35873145a+
405369250 + 79452373a + 112168056a -+
281380736a + 1069551175b + 12640150250 -+
32086535250 + 32834909254 + 57752780800 +
170683699204+ 17161712568a+21553171200a -+
54234085491a

Proof. We consider the maximal subgroups of Fiyg,
the automorphism group of Fi},, and the sum of
the degrees of the ordinary irreducible characters
of Fi,y, gives an upper bound for the indices of the
maximal subgroups we have to consider. It fol-
lows from the list of the maximal subgroups given
in [Linton and Wilson 1991] that we only have to
deal with first nine nonnovelties amongst the max-
imal subgroups of Fi,, listed in the Atlas. The
indices of all novelties are greater than the bound.
There are exactly three primitive multiplicity-free
permutation characters for Fi,,, namely the ones
on Fiys, O79(2) and 3™ 0(3), and they lead to mul-
tiplicity-free permutation characters of Fisy on the
nonnovelties 2 X Fiyz, 019(2):2, and 37-04(3): 2.

The permutation characters of Fiyy on the non-
novelties (2 x 2:Figy):2 and S3 x Of (3): S3 can be
seen not to be multiplicity-free by applying Lemma
4.2. The permutation characters of Fi}, on 2! M,
and on 22.Ug(2): S3 contain an invariant character
with multiplicity 3, and so the permutation char-
acters on the corresponding nonnovelties are not
multiplicity-free.

Since we already know the permutation charac-
ter of Fi,, on the normalizer of a 3B in Fi),, it is
straightforward to derive the permutation charac-
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ter of Fiyy on the normalizer of a 3B in Fisy, using
GAP. The decomposition of the permutation char-
acter for Fig4 is

1la+57477a+249458a+1666833a+35873145aa
+40536925a4-79452373a+112168056a
+281380736a+1264015025a+1540153692a
+3208653525aa+- 32834909254+ 5775278080a
+8529641472a+9100908180a+17068369920a
+17161712568a+25027497495a+45049495491a
+54234085491a+-63831063582a,

and hence this permutation character is not multi-
plicity-free.

For the ninth maximal subgroup, the 2B-cen-
tralizer in Fipy, we shall use Lemma 4.1. We cal-
culate the permutation character of Fiy, on its 2A-
centralizer and obtain

la 4 57477aa + 249458a + 555611b
+ 35873145a + 79452373a + 112168056a
+ 159402880a + 1264015025a + 3208653525a,

which is the sum of exactly 11 irreducible charac-
ters. Using the GAP command ClassMultCoeffs-
CharTable, we find that there are exactly 16 Fisy,
conjugacy classes C for which the (24, 2B, @) struc-
ture constant is nonzero, and conclude that the
permutation character of Fiyy on the class 2B is
not multiplicity-free. O

6. ANALYSIS OF THE MULTIPLICITY-FREE PRIMITIVE
REPRESENTATIONS OF RANK GREATER THAN 3

In this section we present a case by case analysis
of the multiplicity-free primitive representations of
rank greater than 3 of the Fischer groups. We give
detailed information on each such representation,
including its subdegrees, and show that each is not
a DTR, to complete the proof of Theorem 2.1.

In the statements below, expressions in paren-
theses such as (:2) and (x2) give alternate state-
ments: thus Theorem 6.1 covers the representation
of Figy on the cosets of O (2): S and the represen-

tation of Fi: 2 on the cosets of Of (2): S5 x 2, and
S0 om.

F]22( 2) on O;(Z) S3(X2)

Theorem 6.1. The subdegrees of the representation
of Fixn(:2) on the cosets of O (2): S3(x2) are 1,
1575, 22400, 37800, and the representation is not
distance-transitive.

Proof. 'We reproduce from [Praeger and Soicher]
the collapsed adjacency matrices for the orbital
graphs corresponding to the two smallest subde-
grees greater than 1:

0 1575 0 0 0 0 22400 0
1 198 512 864 0 512 8064 13824
0 36 567 972 1 567 8224 13608
0 36 576 963 0 576 8064 13760

We now observe that each of these graphs has di-
ameter 2, and so the above representations are not
distance-transitive. (But, as noted in [Praeger and
Soicher], each of these graphs is distance-regular.)

O

Fipa(:2) on 29 My, (: 2)

Let I'(Fizz) be the graph whose vertex-set is the
conjugacy class of 3510 3-transpositions of Fi,,,
two 3-transpositions being joined if and only if
their product has order 2. Then this graph has
just one Figs-orbit of maximal cliques, each hav-
ing size 22. The stabilizer of a maximal clique is
219: My, in Fiys, and 210: My,: 2 in Figy: 2.

Theorem 6.2. The subdegrees of the representation
of Figa(:2) the cosets of 2'%: Myy(:2) are 1, 154,
1024, 3696, 4928, 11264, 42240, 78848, and the
representation is not distance-transitive.

Proof. We perform the following sequence of cal-
culations using GRAPE and GAP. The method is
based on the approach described in Section 3.

We first use GRAPE to construct the graph I' =
I'(Fiy2) from the degree 3510 representation of Fiy,
on its 3-transpositions (this representation was con-
structed via a coset enumeration, using a presen-
tation of Y3, = 22.Fiyy and enumerating over the
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centralizer 23.Ug(2) of a 3-transposition [Conway
et al. 1988]). Then a clique K of size 22 is found
in I', and the stabilizer of this clique computed.
Next, representatives K; = K, K, ..., Kg for the
eight orbits of H on the maximal cliques of I" are
calculated (using the GRAPE function Complete-
SubgraphsOfGivenSize) and the stabilizers of these
eight cliques are determined (using GAP). The sub-
degrees above are then obtained.

Now to each maximal clique M of I there corre-
sponds the set M of the 1024 vertices of I' joined
to no vertex of M. Ordering Ki,...,Kg to rep-
resent suborbits in increasing order of length, we
find that |K N K;| = 1024, 512, 232, 384, 256, 352,
288, 296, for ¢ = 1,...,8, respectively.

Now if Figp on 2% My, (or Figg: 2 on 210: My,: 2)
is a distance-transitive representation, Figy:2 =
AutT' acts distance-transitively on Y515 or iz,
where ¥, is defined to be the graph having ver-
tices the maximal cliques of I', with two vertices
X,Y joined in ¥, if and only if [X NY| = n.

We show that Fisy: 2 does not act distance-tran-
sitively on X512 by finding maximal cliques X, Y of
I', such that both X and Y are at distance 2 from
K in g5, but |[K N X| =256 and |[K NY| = 384,
and so no element of Fiy,: 2 takes (K, X) to (K,Y).
(Alternatively, a collapsed adjacency matrix for
Y512 is calculated in [Rowley and Walker 1993,
and we see that there are exactly two suborbits at
distance 2 from a given vertex of that graph.)

We complete the proof by showing that Fiss: 2
does not act distance-transitively on Xs35,. We find
maximal cliques X,Y of I', such that both X and
Y are joined to K3 in Yasp, but |[K N X| = 296 and
|IKNY|=384. O

Remark. collapsed adjacency matrices for Y55 and
Y232 are now available in [Ivanov et al. 1995].

Fisy(:2) on 2°:S¢(2)(.2)

Theorem 6.3. The representation of Fix(:2) on the
cosets of 2°:54(2)(.2) has subdegrees 1, 135, 1260,
2304, 8640, 10080, 45360, 143360, 2419207, and the
representation is not distance-transitive.

Proof. From the permutation characters, we see
that the ranks are the same for the two permuta-
tion representations of the theorem.

We construct the degree 694980 representation
of Fiyy on the cosets of 2%:S4(2) by coset enu-
meration of the cosets of Ys3; = 22.2%:S54(2) in
Y332 & 22.Fiy, [Conway et al. 1988]. We then cal-
culate the collapsed adjacency matrices for the or-
bital graphs for this representation, and record be-
low the collapsed adjacency matrices for the orbital
graphs of the smallest two valencies greater than 1
(the suborbits are ordered in nondecreasing order
of length):

0 13 0 0 O O 0 O 0 O

1 14 56 0 64 0 0 O 0 O

0 6 9 0 48 0 72 0 0 O

0 0O 0 0 30 0 0 0 105 O

0 1 7 8 21 0 42 0 56 O

0 0O 00 0 3 36 0 0 96

0 0O 2 0 8 8 21 0 64 32

0 0O 0 0 O 0 0 27 54 54

0 0 0 1 2 0 12 32 40 48

0 0O 0 0 0 4 6 32 48 45
0 0 1260 O 0 O 0 0 0 0
0 56 84 0 448 0 672 0 0 0
1 9 82 64 144 96 288 0 576 0
0 O 35 35 0 0 315 560 315 0
0 7 21 0 126 0 210 0 560 336
0 O 12 0 0 8 108 384 576 96
0 2 8 16 40 24 162 256 336 416
0 O 0 9 0 27 81 360 405 378
0 O 3 3 20 24 63 240 475 432
0 O 0 O 12 4 78 224 432 510

The result follows. O

Fiza(:2) on ?F,(2)"(.2)

Theorem 6.4. The subdegrees of the representation
of Fiyp on the cosets of 2Fy(2)' are 1, 1755, 11700,
14976, 832002, 140400, 187200, 374400, 449280,
2246400. For the representation of Fiy:2 on the
cosets of 2Fy(2) the suborbits of equal length are
fused. Neither of these representations is distance-
transitive.
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Proof. We proceed along the lines described in Sec-
tion 3. We use GAP and GRAPE to compute with
Fis; as a group of permutations of 14080 points.

In this representation, a subgroup H 2 2F,(2)
has two orbits, of 1600 and 12480 points. Fixing
such a subgroup and letting A be its smaller orbit,
we look for elements {gi,...,g11} such that

{Agi

i <i<11}

is a set of representatives for the H-orbits on A¢.

If A9 and A9 lie in the same H-orbit, |A N A9
must equal |[A N AY'|, and so we first test random
elements g of Fiy, to see how many different values
of |[A N A9 we can find. A search of 5000 random
elements gives nine values: 196, 176, 180, 208, 192,
256, 1600, 100 and 320 (our “random” elements
deliberately included the identity).

We let g1, ..., g9 be elements giving rise to these
values, and we then compute (using GAP) the or-
ders of the subgroups stabg(A%) and so obtain
the sizes of the nine orbits represented. These
sizes are, respectively: 374400, 2246400, 449280,
187200, 140400, 11700, 1, 14976 and 1755. These
leave 166400 points unaccounted for, or about 5%
of the total of |Fiy : 2Fy(2)'| = 3592512 points.
It seems unlikely that our random search would
simply have missed the two orbits containing these
points, so we surmise that we must have failed to
distinguish them from the nine orbits we have.

Accordingly, we perform a second search, using
not just the size, but the exact graph isomorphism
type (as computed by nauty) of an orbital graph
of Fiys on the 14080 points, restricted to A N A9,
to distinguish between orbits. This is much slower,
but only a few dozen random elements need to be
searched to find the two missing orbits, which have
ANAY of cardinality 196, and which both have size
83200. We conclude that these two orbits must be
fused under the action of Fiy,: 2 since the permu-
tation character implies that the rank is smaller in
that case.

Having obtained the suborbit structure, it now
remains to check for distance-transitivity. We only

need to check the orbital graphs corresponding to
the two suborbits of smallest length (greater than
1). We do this as described in Section 3. In the va-
lency 1755 graph, we find suborbits of sizes 187200
and 449280 at distance 2 from a fixed vertex, and in
the valency 11700 graph we find suborbits of sizes
449280 and 2246400 at distance 2 from a fixed ver-
tex. O

We remark that a collapsed adjacency matrix for
the orbital graph of valency 1755 is published in
[Ivanov et al. 1995], and we record below a col-
lapsed adjacency matrix for the orbital graph of
valency 11700, for the action of Fiss on the cosets
of 2Fy(2)":

0 011700 O 0 0 0 0 0 0 0
08 100 O 0 0 640 640 5120 0 5120
115 516 0 1024 1024 576 96 0 3840 4608
0 0 0 300 0 0 O 0 1800 1200 8400
0 0 144 0 612 576 864 216 648 1944 6696
0 0 144 0 576 612 864 216 648 1944 6696
0 8 48 0 512 512 812 272 1088 1344 7104
0 6 6 0 96 96 204 1308 1440 1248 7296
0 24 0 72 144 144 408 720 1980 960 7248
0 0 100 40 360 360 420 520 800 2060 7040
0 4 24 56 248 248 444 608 1208 1408 7452

Fiy; on Sg(2)

Theorem 6.5. The subdegrees of the permutation
representation of Fixs on the cosets of Ss(2) are
1, 2295, 13056, 24192, 107100, 261120, 1285200,
2203200, 3046400, 3290112, 12337920, 20844800
and 32901120. The representation is not distance-
transitive.

Proof. We construct (a compressed form of) the de-
gree 86316516 representation of Fiys on the cosets
of Ss(2) by double coset enumeration of the dou-
ble cosets of Y33 = Sg(2) x 2 and Yy30 = Sy in
Yi32 = Fips x 2 [Linton 1991], using a new GAP
double coset enumeration program written by the
first author.

Since Y39 < Y431 the suborbits must be unions
of double cosets, and it is easy to calculate them
all. We can then compute the collapsed adjacency
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matrices corresponding to the orbital graphs of the
two smallest valencies greater than 1. With the
suborbits in increasing order of length, these ma-
trices are:

02290 0 0 0 0 0 O 0O O 0 0

1 300 02801024 0 90 0O 0 0O 0 O

0O 000 O O 01350 0 0945 0 0

0O 008 O 080 0 O O 0 01360

0O 60 0 9 0216 144 0768 01152 0

0 90 0 0 135 0 135 0126 01890 0

0 0016 18 0 61 72 0 0576 144 1408

0 18 0 7 16 42 149 224 112 56 1008 672

0 00 0 O 0 O 162 81 108 324 648 972

0O 00 0 25 10 O 75100 135 600 450 900

0 01 0 O 0 60 10 80 160 160 960 864

0 00 0 4 16 6 72 64 48 384 789 912

0 00 1 O 0 55 45 90 90 324 855 835
0013056 0 O O O O O O O O 0
00 00 O O 07680 0 05376 0 0
10 210 01575 0 O 05600 05670 0 O
00 00 O O O O 0486 0 08160
00 192 0 192 01728 0 4608 0 1728 4608 0
00 0 0 0120 0 O 80 0 0 7560 4536
00 0 0 144 0 336 283 1152 0 4608 3456 3072
08 0 0 0 O 1681008 0 1792 672 4032 5376
00 24 0 162 72 486 0 1944 0 3888 4536 1944
00 03 0 0 01200 0 720 1200 2700 7200
01 6 0 15 0 480 120 960 320 2130 5760 3264
00 0 0 16 64 144 283 448 288 2304 4608 4896
00 0 6 0 36 120 360 180 720 1224 4590 5820
The result follows. O

Fi23 on 211'M23

Let I'(Fiz3) be the graph whose vertex-set is the
conjugacy class of 31671 3-transpositions of Fias,
two 3-transpositions being joined if and only if
their product has order 2. Then this graph has
just one Fiyz-orbit of maximal cliques, each hav-
ing size 23. The stabilizer of a maximal clique is
211'M23.

Theorem 6.6. The subdegrees of the representation
of Fiys on the cosets of 211 Mys are 1, 506, 23552,
28336, 113344, 129536, 971520, 1036288, 1813504,
4533760, 8290304, 21762048, 31088640, 31653888,
36270080, 58032128, and the representation is not
distance-transitive.

Proof. This proof is similar to the proof that Fiy,
on the cosets of 21°: M, is not a distance-transitive
representation.

We first construct the graph I' = I'(Fip3) from
the degree 31671 representation of Fis3 on its 3-
transpositions (this representation was constructed
via a coset enumeration, using a presentation of
Y32 = 2 x Fiy3 and enumerating over the central-
izer Y33s = 22.Fiyy of a 3-transposition [Conway et
al. 1988]). Then a clique K of size 23 is found in T,
and the stabilizer of this clique computed. Next,
representatives K; = K, K,,..., K¢ for the six-
teen orbits of H on the maximal cliques of I' are
calculated (using the GRAPE functions Complete-
SubgraphsOfGivenSize and OrbitRepresentatives),
and the stabilizers of these sixteen cliques deter-
mined. The subdegrees above are then obtained.

Ordering K;,..., K5 to represent suborbits in
increasing order of length, we find |[KNK;| = 23, 7,
1,3,1,2,1,0,1,0,0,0,0,0,0,0, forz =1,...,16.

Now define ¥; to be the orbital graph whose ver-
tices are the maximal cliques of I', and edge-set is
the orbit of { K, K} under Fiy;. We need only show
that Fiy3 does not act distance-transitively on 3,
or Y, to complete the proof of the theorem.

In X5, we find vertices X, Y joined to K,, such
that |[KNX|=3and |[KNY|=1

In X3, we find vertices X, Y joined to K3, such
that |[K N X| =3 and |[KNY|=0. 0

We remark that collapsed adjacency matrices for
¥, and X3 are now available in [Ivanov et al. 1995].

Fi,(:2) on O55(2)(: 2)

Let I'(Fizy) be the graph whose vertex-set is the
conjugacy class of 306936 3-transpositions of Fiyy,
two 3-transpositions being joined if and only if
their product has order 2. We shall use this graph
to apply the method of Section 3.

Theorem 6.7. The permutation representation of Fi,,
on the cosets of O1y(2), and that of Fixy on the
cosets of O1(2):2, have subdegrees 1, 25245, 104448,
157080, 12773376, 45957120, 67858560, 107233280,
193881600, 263208960, 579059712, 1085736960,
5147197440, 5428684800, 7238246400, 12634030080
and 17371791360. Neither of these representations
is distance-transitive.
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Proof. We apply the general method of Section 3,
computing in the graph I' = I'(Fizs). We con-
struct permutations generating the action of Fipy =
Yi142/03(Ya42) on this graph by (double) coset enu-
meration, using the presentation of Yy, given in
[Conway and Pritchard 1992]. A subset of these
generators give a subgroup H = 05(2):2 = Yy4;.
This has three orbits on the vertices of I', having
sizes 528, 104448, 201960. We call the smallest of
these orbits A;, and the second-smallest A,.

We now aim to find the orbits of H on A¢, and
we proceed by computing, for random elements g €
G the numbers

ni(g) = |A;NAY| and mna(g) =|A: N AT

Each of these is an H-orbit invariant. We find dis-
tinct pairs of values (n1(g;), n2(g;)) for¢ =1,...,15.
We would like to compute S; = staby(Af*) for
each ¢, but computing set stabilisers in a represen-
tation of degree 306936 is too hard for GAP on
available computers, so we instead compute

Sz, = StabH(Az N A'(i”),

which must contain S; as a subgroup. The order
of S! is then a multiplicative upper bound for |S;],
giving rise to a lower bound for |A%#|. We will
later show that all these bounds are exact.

The results obtained so far are shown in Table 1.

Assuming that all our bounds are exact, we see
that the two remaining orbits (we know from the
permutation character that the rank is 17) contain
just 12798621 points. Since this number is odd, we
see that one of the two remaining orbits must have
odd size. Relatively few subgroups of H have odd
index, and for most such subgroups K, the differ-
ence 12798621 — |H : K| does not divide |H|. A
few calculations suggest that the orbit sizes might
be 25245 and 12773376.

Based on this conjecture, we attempt to find a
representative of the orbit of size 25245. The point
stabilizer in this orbit would be

K o 26+8: (As X 53),

i nai(gi) m2(g:) |H : S}
1 528 0 1
2 66 462 104448
3 36 384 1570800
4 3 120 45957120
5 10 272 67858560
6 15 270 107233280
7 6 168 193881600
8 0 132 263208960
9 3 180 579059712
10 6 222 1085736960
11 0 177 5147197440
12 3 192 5428684800
13 0 186 7238246400
14 0 165 12634030080
15 1 182 17371791360

TABLE 1. Pairs (n1(g),n2(g)), and corresponding
indices, for the permutation representation of Figy
on the cosets of O,(2).

a subgroup of index 2 of the octad stabilizer in Fiy,.
It thus seems reasonable to look at large cliques in
A; in the hope of finding a structure stabilised by
K. The Fiy-stabiliser of this structure will then
contain a representative of the desired orbit.

Using GRAPE we can compute in the subgraph
of I' induced on A; and find a clique C of size 16,
whose stabilizer in H can be seen to be a subgroup
of index 3 in our desired group K. Looking now in
I', we find just eight points joined to all of C, which
form an octad O. Using the ProbablyStabilizer
function of GRAPE, we can find the pointwise sta-
bilizer of five points from O, which is a group of
order 27.3. A randomly chosen element g;¢ of this
group has n;(g1s) = 48, n2(g16) = 0, and

|H : S | = 25245.

This demonstrates (up to the strictness of our
bounds) that the subdegrees are as claimed. If
one of the bounds were not strict, then one of the
subdegrees would have to be a proper multiple of
the bound, and the unexhibited orbit, which we
claim to have size 12773376, would be accordingly
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smaller. It is easy to check this cannot happen,
since all the subdegrees must be the indices of sub-
groups of H.

Finally, it is easy to check, as described in Sec-
tion 3, that neither of the two suborbits of small-
est length greater than 1 gives rise to a distance-
transitive graph. In the valency 25245 graph, the
suborbits numbered 3 and 4 are both at distance

0 25245 0 0 O 0 0 0 0
1 60 0 1120 0 16384 0 0 7680
0 00 0 0 0 0 0 14850
0 180 27 O 0 1296 0 864
0 00 0 85 0 80 0 0
0 90 0 0 405 0 0 135
0 00 30 160 0 151 0 360
0 00 0 O 0 0 243 810
0 18 7 0 32 126 448 375
0 00 0 O 0 0 0 990
0 00 25 0 310 0 100 75
0 01 0 O 0 180 160 30
0 00 0 0 0 81 0 0
0 00 4 6 48 6 96 216
0 00 0 36 0 9 0 45
0 00 0 O 55 0 22 165
0 00 0 1 0 55 90 45
0 0 104448 0 0 O 0 0 0
00 0 0 0 O 0 0 61440
10 462 5775 0 0 0 30800 0
00 384 384 0 0 10368 18432 0
00 0 0272 0 2720 0 0
00 0 0 0 120 0 840 0
00 0 240 512 0 752 2304 1440
00 30 270 0 360 1458 4968 0
08 0 0 0 0 504 0 2688
00 2 0 0 880 0 0 0
00 0 0 108 O 0 0 2400
01 6 15 0 0 1080 1680 360
00 0 0 0 15 162 162 0
00 0 16 48 192 192 576 720
00 0 2 72 96 72 96 270
00 0 0 0 165 0 66 330
00 0 0 26 36 182 180 450

249

2 from a fixed vertex, and in the valency 104448
graph, the suborbits numbered 3 and 6 are both at
distance 2 from a fixed vertex. O

We have since computed collapsed adjacency ma-
trices for the orbital graphs corresponding to the
two smallest subdegrees greater than 1, for the ac-
tion of Fi},, on O,(2), and record them below.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 10395 0 0 0 0 0
0 9216 0 0 13824 0 0 0
0 0 0 0 2550 20400 0 1360
0 3906 0 0 5670 0 15120 0
0 0 2880 6144 480 960 0 14080
0 540 1620 0 4860 0 2592 14580
1344 224 168 0 6048 1680 10752 4032
891 0 0 1584 1980 0 7920 11880
0 285 1800 6000 1350 0 7200 8100
0 960 450 640 5040 5400 5760 6624
81 675 135 1728 3375 5265 6615 7290
96 144 1008 3200 2421 2208 5760 10032
0 0 810 3744 1656 3753 4896 10296
165 330 495 2695 2475 2805 7128 8910
180 270 414 2160 3135 4290 6480 8125
0 0 0 0 0 0 0 0
0 0 43008 0 0 0 0 0
5040 0 62370 0 0 0 0 0
0 0 10368 0 55296 9216 0 0
0 4896 0 0 20400 40800 0 35360
5040 0 0 1680 22680 15120 45360 13608
0 0 17280 12288 15360 7680 0 46592
0 0 17010 7776 29160 6480 7776 29160
0 7168 2016 0 20160 10080 21504 40320
2112 0 1782 19008 7920 9240 39744 23760
0 1440 4200 10800 8100 5400 18000 54000
432 2240 5082 4608 24480 18000 15360 31104
972 1215 972 9006 12690 19800 29322 30132
384 864 4896 12032 13584 11136 20736 39072
336 432 2700 14080 8352 14580 24192 39168
828 825 1320 11946 8910 13860 30558 35640
360 1800 1944 8928 12210 16320 25920 36092

Collapsed adjacency matrices for the orbital graphs corresponding to the two smallest subdegrees greater than 1,
for the action of Fi5, on O;,(2). Suborbits are ordered in increasing order of length.
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Fil,(:2) on 37°0,(3)(: 2)

Theorem 6.8. The permutation representation of
Fi}, on the cosets of 37O+ (3) has the following sub-
degrees: 1, 1120, 49140, 275562, 816480, 21228480,
57316896, 62178597, 286584480, 429876720,
2901667860, 5158520640, 6964002864, 91833004802
15475561920, 23213342880 and 52230021480.
For the representation of Fiyy on the cosets of
3707(3): 2, the suborbits of equal length are fused.
Neither representation is distance-transitive.

Proof. A geometric argument in [Ivanov et al.] shows
that each of these representations has suborbits of
sizes 1120 and 49140. This argument makes use of
a certain rank 4 extended dual polar space § on
which Fij, acts flag-transitively, with “point” sta-
bilizer 37-07(3). We compute the remaining (non-
trivial) subdegrees below. The subdegrees 1120
and 49140 turn out to be the smallest nontrivial
ones. In [Ivanov et al. 1995] it is also shown, us-
ing the geometry G, that neither Fi, nor Fi,, acts
distance-transitively on the orbital graphs corre-
sponding to these two smallest nontrivial subde-
grees.

To compute the remaining subdegrees, we once
again consider the action of Fij, on the class of
306936 3-transpositions in Fiyy. The first prob-
lem is to construct permutations generating a sub-
group H = 3"°0,(3). We do this in a somewhat
roundabout manner. First we obtain elements ¢
and s of Fi}, of classes 2B and 3E respectively.
Searching at random through the conjugates of ¢
(as described in [Linton and Wilson 1991]) we find
some conjugates which, together with s, generate
subgroups isomorphic to Ly(7). In each of these
there is an involution inverting s. Taking a num-
ber of these involutions we obtain generators for
Ny, (s) = 3%:2 x G(3). The normal subgroup 3?
of this group contains an element r of class 34,
which can easily be computed. This element r, to-
gether with s and one of the conjugates of ¢ that
generates an L,(7) with s (of a particular class)
generate the required subgroup H.

There are just three orbits of H on the 306936
transpositions, of sizes 1134, 30240 and 275562.
We let A; be the smallest orbit and A, the second-
smallest. As above we let ny(g) = |A; N Af| and
na(g) = |Ax N Aj|l. We now test a number of
random elements g of Fi,, and record the values
of (n1(g),n2(g)) that arise: see Table 2. We also
record how many times each pair is encountered.
We find 13 distinct pairs.

i n1(g;) m2(g:) |H : S!| #enc. #exp.
1 120 0 275562 1 0
2 3 429 816480 3 1
3 18 198 21228480 49 33
4 30 60 57316896 80 91
5 42 0 62178597 96 99
6 9 165 286584480 470 457
7 15 96 2901667860 5234 4636
8 1 140 5158520640 8217 8242
9 13 80 6964002864 11047 11127
10 0 119 9183300480 29443 14673
11 6 102 15475561920 24877 24727
12 3 117 23213342880 36868 37091
13 4 112 52230021480 83615 83455

TABLE 2. Pairs (n1(g),n2(g)) for the representa-
tion of Fij, on the cosets of 37°O7(3), the corre-
sponding indices, and the number of times each
pair is encountered (fifth column). The last col-

umn lists the “expected” number of encounters,
200000 |H : S}|/|Fib, : H|.

The known orbits, together with the ones in the
table, leave 9613177200 points unaccounted for,
which is about 7% of the total. It seems most un-
likely that our search (of 200000 elements) would
have missed orbits containing this many points, so
we can presume that we have failed to discriminate
them from some of the orbits that we have found.
That is to say, some pairs (n;,n,) correspond to
two or more orbits. To form a conjecture as to
which pairs this might be we look at how often
each pair was encountered, compared to the size of
the orbit known to correspond to it. If each pair
corresponded to just one orbit we would expect to
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find pair ¢ about 200000 |H : S}|/|Fi}, : H| times.
We tabulate these numbers in Table 2 as well.
These numbers show clearly that pairs 7 and 10
deserve further attention. In each case we generate
a number (say 10) of elements g with the appro-
priate (n1(g),n2(g)) and use backtrack methods to
see whether or not the corresponding sets AY actu-
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orbits by this method, accounting for 429876720
(pair 7) and 918330048 (pair 10) points.

This accounts for all remaining points, so the
bounds we have are exact. The fusion of suborbits
of equal length in the case of Fiyy can be seen from
the permutation character, or by observing that
the corresponding 2-point stabilisers are subgroups

ally lie in the same orbits of H. We find two new L,(13), which are conjugate in 37-O7(3): 2. O

01120 0 0O O O0 00 0O 0 0 00 0 O 0 O

1 3931 0729 0 00 0O 0 0 OO0 O0 O 0 0

0 8 32 0 216 864 0 0 0O 0 0 OO0 O0 O 0 0

0 0O 0 0O 8 O 001040 O O O O O O 0 0

0 1 1327 65312 00 702 0O O O O O O 0 0

0 0 2 0 12 80 540 324 162 048 0 0 O 0 O

0 0 0 0 O 20200 0O O 0540 0540 O 0 0

0 0 00 O O OO 0O 0 0 O O 0 01120 O

0 0 0 1 2 24 00 139 36 243 432 0 0 0 243 O

0 0O 00 O 8 00 24 8 0144 0216 0 648 O

0 0O 00 O O 0O 24 0 96192 0 32 0 200 576

0 0 0 0 O 2 60 24 12 108 176 0 90 0 216 486

0 0O 00 O O OO 0O O O 080 80 240 240 480

0 0O 00 O 0 20 0 6 6 30 36 272 216 120 432

0 0O 00 O O OO 0 0 0 091 182 210 182 455

0 0 00 O O 03 3 12 25 48 72 80 144 301 432

0 0O 0 0 O 0 00O 0 0 32 48 64 128 160 192 496
0 049140 O 0 0 0 O 0 0 0 0 0 0 0 0 0
0 351 1404 0 9477 37908 0 0 0 0 0 0 0 0 0 0 0
1 32 534 729 1728 8208 5832 0 23328 8748 0 0 0 0 0 0 0
0 0 130 260 0 4160 0 0 8320 4680 31590 0 0 0 0 0 0
0 13 104 0 897 3900 0 0 14742 4212 0 25272 0 0 0 0 0
0 2 19 54 150 1152 432 0 4806 1944 6561 15066 0 5832 0 13122 0
0 0 5 0 0 160 240 0 1080 1350 5265 2700 2430 10800 0 3240 21870
0 0 0 O 0 0 0 280 0 1680 3500 0 10080 4480 0 8960 20160
0 0 4 8 42 356 216 O 2371 972 4860 9936 0 1944 0 10935 17496
0 O 1 3 8 96 180 243 648 882 2187 3312 3402 6264 3888 12960 15066
0 O 0 3 0 48 104 75 480 324 3362 3840 3312 4960 2880 8800 20952
0 0 0 O 4 62 30 0 552 276 2160 5052 972 4446 5184 9828 20574
0 0 0 0 0 0 20 90 0 210 1380 720 4770 6760 6240 8640 20310
0 0 0 0 0 8 40 18 36 174 930 1482 3042 7944 7560 7764 20142
0 O 0 O 0 0 0 O 0 91 455 1456 2366 6370 8918 8918 20566
0 O 0 O 0 12 8 24 135 240 1100 2184 2592 5176 7056 10381 20232
0 O 0 O 0 0 24 24 96 124 1164 2032 2708 5968 7232 8992 20776

Collapsed adjacency matrices for the orbital graphs corresponding to the two smallest subdegrees greater than 1,
for the action of Fizq on 37-O7(3): 2. Suborbits are ordered in increasing order of length.
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