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Backwards iteration of the 3 + 1 function starting from a fixed
integer a produces a tree of preimages of a. Let Tg(a) denote
this tree grown to depth k, and let T} (a) denote the pruned
tree resulting from the removal of all nodes n = 0 mod 3.
We previously computed the maximal and minimal number of
leaves in T} (a) for all @ # 0 mod 3 and all k& < 30. Here
we compare these data with predictions made using branching
process models designed to imitate the growth of 3= + 1 trees,
developed in [Lagarias and Weiss 1992]. We derive rigorous
results for the branching process models. The range of variation
exhibited by the 3z + 1 trees appears significantly narrower
than that of the branching process models. We also study the
variation in expected leaf-counts associated to the congruence
class of @ mod 37. This variation, when properly normalized,
converges almost everywhere as j — 00 to a limit function on
the invertible 3-adic integers.

1. INTRODUCTION

The well-known 3x+1 problem concerns the behav-
ior under iteration of the 3x+1 function T : Z — Z
given by

T(n)= {

The 3z 4 1 Conjecture asserts that, for each n > 1,
some iterate T (n) equals 1; it has now been ver-
ified for all n < 5.6 x 10'® [Leavens and Vermeulen
1992]. For each n we call the minimal &k such that
T®(n) = 1 the total stopping time of n and de-
note it 0 (n), letting oo (n) = oo if it is otherwise
undefined.

The 3z + 1 function is a deterministic process
that apparently exhibits pseudorandom behavior.
It has been extensively studied; see the surveys [La-
garias 1985; Miiller 1991]. One approach to quan-
tify its apparent pseudorandomness is to consider

n if n =0 mod 2,
(B3n+1) ifn=1mod2.
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probabilistic models for its behavior on a “random”
input, and then to compare model predictions with
empirical data. Any systematic discrepancies or
similarities uncovered may prove helpful in even-
tually establishing rigorous results.

We now review several probabilistic models for
the 3z+1 iteration. Consider taking input values n
drawn from the uniform distribution Uy on [1, 2],
and examine the induced probability distribution
on TW(n), for 1 < j < [ak], for a fixed positive a.
One can rigorously prove that, when 0 < a < 1,
the successive iterates

(108 T 1og T (n)>

n n
behave exactly like the trajectory of a random walk
that takes i.i.d. (independent, identically distrib-
uted) steps of size log% or log% with equal prob-
ability [Lagarias 1985, §2]. This suggests that the
evolution of 3z + 1 function iterates can be mod-
elled by a multiplicative random walk, in which
from an initial point X, one multiplies by suc-
cessive i.i.d. random variables X; taking the val-

3 1 . ey 1 .
ues 5 and ; with probability ; each, to obtain

Y; :=2X0X1 X

Such a model was first considered in [Crandall
1978], and in more detail in [Rawsthorne 1985;
Wagon 1985]. The analogue in this model of the
stopping time 0., (Xo) is the statistic o, (Xo,w)
that for a random walk w starting from X, gives
the smallest value of J such that Y; < 1. For this

model the expected value is
Eloo(Xo,w)] = (% log %)_1 log Xj.

Recently Borovkov and Pfeifer [1993] gave a re-
fined analysis showing that o, (Xo,w) obeys a cen-
tral limit theorem, that is, the scaled variables

0o (X0, w) — ¢1log X,
Co (].Og X0)1/2 ’

Foo(Xo,w) := (1.1)
in which ¢; = (3log3) " and ¢, = ¢;*/?(3log3),
have distribution converging to the unit normal
distribution N(0,1) as X, — oo. Although this
model with ny drawn from Usr is rigorously proved

to approximate the distribution of 7(®¥)(ny) only
for a« < 1, empirically it is found that the ap-
proximation seems good all the way up to a =
(3log %)~! = 6.95212. Furthermore the agreement
with the central limit approximation (1.1) is also
reasonably good. Thus this random walk model
appears to accurately describe “average” trajecto-
ries of 3z + 1 iterates.

Lagarias and Weiss [1992] have introduced two
types of probabilistic models intended to simulate
“extreme” trajectories of 3x + 1 iterates, that is,
those attaining the largest value of the quantity
0so(n)/logn for all n € [1,2*]. The first of these
models is (the additive counterpart of) a repeated
multiplicative random walk, which takes 2 en-
tirely independent multiplicative random walks as
above, with the n-th such walk w, starting from
Xo = n. An analogous model statistic 7y; to con-
sider is the maximum value of 0 (n, w,)/logn over
1 < n < 2k, For this model, the authors showed
that with probability one the values v, tend to a
limit ygw as k — o0; in symbols,

with probability one, where ygw = 41.677647 is the
solution of a certain transcendental equation. This
model has the deficiency that it assumes indepen-
dence of trajectories for different starting values
ng and n;. This is not true of 3z + 1 trajectories:
they must coalesce, since (empirically) all trajec-
tories reach 1.

The second type of stochastic model of [Lagarias
and Weiss 1992] is a branching process model that
mimics backwards iteration of the 3z 4 1 function,
and that explicitly includes dependencies among
trajectories. Backwards iteration of the 3z +1 map
is multiple-valued; given an initial value a, it pro-
duces a tree T (a) of preimages of a. The branching
process models construct “random” trees whose
structures imitate the structure of a 3z + 1 tree
grown from a “random” starting point a. Lagarias
and Weiss presented an infinite family B[37], for
j = 0,1,2,..., of increasingly refined branching



process models, and proved that for these mod-
els an analogue of the asymptotically largest value
of 0 (n)/logn as n — oo is almost surely a con-
stant ygp, which coincides with the gy of the pre-
ceding paragraph. Finally they observed that the
existing empirical data for extremal trajectories of
the 3z + 1 function, computed up to 5.6 x 10'3 in
[Leavens and Vermeulen 1992], is consistent with
the predictions made by these two types of mod-
els.

This paper studies extremal properties of ensem-
bles of 3z +1 trees of depth k. A 3x+1 tree Ti(a) is
a rooted, labeled tree of depth k, representing the
inverse iterates T7(a) for 0 < j < k. The inverse
map 7 !(n) is multivalued:

{2n}
) {2n, 3(2n—1)} if n=2mod3.
The root node a is at depth 0, and a node labeled
n at level | of the tree is connected by an edge
to a node labeled T'(n) at level I — 1 of the tree.
(We adopt a convention of “unrolling” any cycles
under 7', so that the same node label may appear
at different levels of the tree if a cycle is present, as
in Figure 1.) The formula above for T!(n) reveals
that the nodes labeled n = 0 mod 3 give rise only

to a linear chain of nodes labeled n’ = 0 mod 3 at
higher levels. It is convenient to remove all such

if n=0 or 1 mod 3,
T '(n)

(i) Ts(1)

FIGURE 1.
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nodes and study a “pruned” tree T;(a) consisting
of nodes n # 0 mod 3. Figure 1 presents some
examples of Ty(a) and T;(a).

We say that two pruned 3z + 1 trees T;(a) and
T5(b) have the same structure if they are isomor-
phic as rooted trees by an isomorphism that pre-
serves node labels modulo 2. Since the node label
n mod 2 is determined by whether the lower-level
node T'(n) that it comes from is $n or $(3n + 1),
the congruence classes n mod 3 and T'(n) mod 9
suffice to determine n mod 2. From this, it easily
follows that the structure of T} (a) is completely de-
termined by a mod 3**!. Consequently there are
at most 2-3* distinct pruned tree structures T3 (a).
The actual number R(k) of distinct tree structures
is smaller but still grows exponentially.

We study the extreme (maximum and minimum)
leaf counts N* (k) and N~ (k) for the ensemble of
all such trees of depth k. In Section 2 we present
empirical data for all k¥ < 30, which appeared in
[Applegate and Lagarias 1995a]. These data sug-
gest two conjectures concerning the asymptotic be-
havior of the extreme leaf counts as k¥ — oo, which
we call Conjecture C and the (stronger) Conjec-
ture C#.

We next ask: How well do repeated trials of the
branching process models of [Lagarias and Weiss
1992] reproduce these empirical 3z + 1 data? We
note that only the models B[37] for 5 > 2 can be

20 6 649 20
10 3 32¢ 10
5 16 5
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(ii) T5(4) (iif) T5(4)

3z + 1 trees Ti(a) and “pruned” 3z + 1 tree T;(a). Nodes n = 5 mod 9 are circled to indicate that

they have a preimage 7~ !(n) = 0 mod 3, and nodes n = 0 mod 3 are indicated with a square.
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reasonable models. The models B[1] and B[3] were
already shown in [Lagarias and Weiss 1992, §6]
to fail to assign the correct distribution of residue
classes mod 3 to the node labels. Besides this, and
more importantly, B[1] and B[3] do not possess
the following “strict branching” property of pruned
3z+1 trees: every pruned 3z+1 tree branches after
at most four steps from any node. B[1] and B3]
can produce trees having arbitrarily long chains of
nodes with no branching.

As far as one can tell, all the branching process
models B[3’] for j > 2 provide reasonable imita-
tions of the 3x + 1 trees. Therefore in Section 3 we
study the simplest of these models, which is B[9].
We present data for £ < 30 on the expected value
of extreme leaf counts for a “repeated branching
process” model that takes R(k) independent tri-
als using the branching process B[9]. (Recall that
R(k) is the number of distinct tree structures of
depth k.) These expected values for k£ < 30 appear
consistent with Conjecture C, but exhibit larger
variability than that empirically observed for the
3z + 1 data up to k£ < 30.

In Sections 4 and 5 we present theoretical re-
sults about branching process models. First, in
Section 4 we prove a result establishing for a large
class of branching processes that there is a double-
exponential dropoff of tail probabilities for values
of log N(k), where N (k) is the number of leaves
at depth k of the process. Such results are “folk-
lore”, and we are indebted to Robin Pemantle for
suggesting the method used to prove Theorem 4.1.
Then, in Section 5 we prove that the analogue of
Conjecture C is true for a repeated branching pro-
cess model using B[9]. We finally prove that the
analogue of Conjecture C# is false for this repeated
branching process model.

Thus we have uncovered a difference between the
3z + 1 empirical data and the branching process
model: the extreme leaf count statistics for the
actual 3z+1 problem appear to have a significantly
narrower range than that given by the branching
process models. This seems to be the first evidence
found indicating that the 3z + 1 function iterates

do not behave as randomly as possible subject to
“obvious” constraints.

Section 6 returns to the study of extremal leaf
counts. We study the average number of leaves
in pruned trees T;(a), under the restriction a = [
mod 37/, with [ # 0 mod 3. This amounts to
specifying the branching structure of the first j
levels of the tree T;(a). We prove that this ex-
pected value is asymptotic to W[l mod 37](3)* as
k — oo, where W[l mod 3] is an explicitly com-
putable value (Theorem 6.1). The variation in
W[l mod 3’] appears to account for nearly all of
the variation in leaf sizes, and we conjecture that

lim sup(%)_kN+(k) = sup W[l mod 37],

k— o0 1,j

. . é 7k — — . j
hlgr_l)glf(s) N~ (k) 1l,nij[l mod 3’].
We show (Theorem 6.3) that W[l mod 37| inter-
polates to a function W, (1) defined almost every-
where on the invertible 3-adic integers

Zy ={l€Zs:1=1or 2mod 3}.

We conjecture that W (I) is well-defined on all
of Z5 and is continuous and nonzero. Numerical
evidence concerning Wl mod 3’| seems to support
Conjecture C#.

We remark that G. Wirsching [1994; 1995] has
recently introduced other functions on Z; associ-
ated to backwards iteration of the 3z + 1 mapping.
We do not know if there is any relation between
these functions and the function W,.

2. 3x+1 TREES

In studying 3z + 1 trees we follow [Applegate and
Lagarias 1995a]. Assign to each a Z 0 mod 3 the
pruned tree Tj(a) of depth k whose root node is
labeled a and whose other vertices at depth j for
1 < j < k correspond to labels in the set {n : n Z 0
mod 3 and 7 (n) = a}. Each node labeled n at
level j is connected to that labeled T'(n) at level
j —1: see Figure 2. The branching structure of the
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224 74 23 7
112 37
56
28 80
14 40 13
7 20
(1) T2(7) attains N~ (5) = 2 (i) T¥(20) attains N*(5) =8

FIGURE 2. Pruned 3z + 1 trees. The nodes that have labels n = 5 mod 9 are circled; such nodes have a
preimage n' = %(2n — 1) = 0 mod 3 in the corresponding unpruned tree.

pruned tree T;(a) is completely determined by the k R(k) N—(k) N*(k) (é)k D (k) D+ (k)
value a mod 3F*! :
Lot N* d ) h b f1 denth 1 4 1 2 1.33 0.750 1.500
et* +(a) denote the number of leaves at dept 9 8 1 3 178 0562 1.688
k of Ti(a), and set 3 14 1 4 237 0422 1.688
4 24 2 6 3.16 0.633 1.898
_ . X k
N~ (k) := min{N;(a) : a mod 3™, a # 0 mod 3}, 5 9 5 g 191 0475 1808
N7 (k) := max{N;(a) : a mod 3*™, a # 0 mod 3}. 6 76 3 10 5.62 0.534 1.780
7 138 4 14 7.49 0.534 1.869
Theorem 3.1 of [Lagarias and Weiss 1992] showed 8 254 5 18 9.99 0.501 1.802
that the expected size of N;(a) averaged over all a 9 470 6 24 13.32 0.451 1.802
mod 3*t! with a 3_6 0 mod 3 is 10 876 9 32 17.76 0.507 1.802
11 1638 11 42 23.68 0.465 1.774
B[N (a)] = (2)". 2.1) 12 3070 16 55 3157 0.507 1.742
3 13 5766 20 74 42.09 0475 1.758
In [Applegate and Lagarias 1995a] we proposed 14 10850 27 100  56.12 0.481 1.782
16 38550 48 178 99.77 0.481 1.784
Conjecture C. Both Nt (k) and N~ (k) behave as 17 72806 64 237 133.03 0.481 1.782
(3)k+eM) gs k — . 18 137670 87 311 177.38 0.490 1.753
X L . 19 260612 114 413 236.50 0.482 1.746
To test such a conjecture it is natural to examine 20 493824 154 548 315.34 0.488 1.738
the normalized densities 21 936690 206 736 420.45 0.490 1.751
+ (4 kA 22 1778360 274 988 560.60 0.489 1.762
D*(k) = (3) "N*(k), 93 3379372 363 1314 747.47 0.486 1.758
_ —k o
D-(k) = (2) N (k). 24 6427190 484 1744 996.62 0486 1.750
25 12232928 649 2309 1328.83 0.488 1.738
D*(k) by (2.1). Table 1 gives empirical data for 27 44414366 1159 4130 2362.36 0.491 1.748
k < 30 using the data from [A legate and La- 28 84713872 1549 5500 3149.81 0.492 1.746
005 ® ool T Lt ppies oons 29 161686324 2052 7336 4199.75 0.480 1.747
garias a, §2]. ese data support Lonjec- 30 308780220 2747 9788 5599.67 0.491 1.748
ture C, and also appear to support the following
stronger conjecture. TABLE 1. Normalized extreme values for 3z + 1

trees of depth k.
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Conjecture C*. There are positive constants Ct and
C~ such that

C- <D (k)<1l< D' (k)y<C*

for all sufficiently large k.

It even seems conceivable that D~ (k) and D™ (k)
have limiting values as kK — o0o. In Section 6 we
give further evidence that seems to support Con-
jecture C# and the existence of limiting densities
as k — oo.

3. BRANCHING PROCESS MODELS FOR 3x+1 TREES

We consider the question: To what extent do the
branching process models B[37] for j > 2 presented
in [Lagarias and Weiss 1992] accurately imitate the
behavior of 3z + 1 trees? These models are multi-
type Galton—Watson processes [Athreiya and Ney
1972; Harris 1963]. Recall that such a process de-
scribes the evolution of a population of individuals
of several types over generations, where each indi-
vidual lives one generation. Each individual inde-
pendently gives rise to progeny in the next genera-
tion of several types according to a specified prob-
ability distribution. The branching process tree
describes the descendents of a single individual at
generation 0, and level [ of the tree includes all indi-
viduals in generation [. Edges connect individuals
to their progeny in the next generation. Such a
process is completely described by the probability
distribution of individuals of each type.

(prob. 3 each)
1,4o0r7 1 7

1 4 7 2

FIGURE 3.

The multitype Galton-Watson branching pro-
cess B[9] has individuals of six types, one for each
congruence classes mod 9 that is nonzero mod 3.
They evolve as pictured in Figure 3. Individuals
labeled 1, 4, 5 and 7 evolve deterministically, hav-
ing one child of specified type, while individuals of
type 2 or 8 always have two children, one of speci-
fied type, while the other’s type can be one of three,
with equal probability. Figure 3 also has edge la-
bels reflecting whether T-*(n) is 2n or 1(2n — 1),
that is, whether 77!(n) is even or odd. The edge
labels are completely determined by the types of
the individuals at the two ends of the edge, hence
are determined by the Galton—Watson process.

The model B[9] permits an unambiguous assign-
ment of node labels to all nodes of a branching pro-
cess tree, provided that a root node label is given.
If n is a node label at level [ and n’ is a node it is
connected to at level [+ 1, we assign n’ = 2n or %n
according to whether the edge connecting n to n'
is labeled even or odd. The Galton—Watson pro-
cess with the node labels added and interpreted as
locations of the individuals on the line R becomes
a branching random walk; this is the term used for
these models in [Lagarias and Weiss 1992]. The
node labels are needed in that reference in order
that the branching process can be viewed as imi-
tating the growth of 3x + 1 iterates, but they play
no role in this paper.

Now let X, be a random variable equal to the
number of leaves at depth k of a sample tree drawn
from the branching process B[9], starting from a

(prob. § each)
2,50r8

5 8

Transitions of the branching process B[9]. The parent (bottom) always yields a child by the map

n — 2n (edge label 0), and it yields a child by the multivalued map n — §(2n — 1) (edge label 1) if n = 2 or 8

mod 9.



single individual of type drawn uniformly from the
set {1,2,4,5,7,8}. We are going to consider ex-
treme value statistics for the quantity (3)7* X, for
a specified number of repeated independent draws
of such trees at depth k.

How many independent draws should one allow
in such a “repeated branching process” model? A
naive model is to take 2 - 3¥ draws, which corre-
sponds to allowing all residue classes a mod 3*+!
with @ £ 0 mod 3. An alternative is to take in-
stead the smaller number R(k) of possible distinct
3z + 1 tree structures T*(a) of depth k. The quan-
tities R(k) still grow exponentially in k, and based
on the data for & < 30, Applegate and Lagarias
[1993] estimated (empirically) that

1.87 < lilgninfR(k)l/k < 1.92.

How do the data in Table 1 compare with the
predictions from the branching process model B[9]?
To obtain as exact a numerical comparison with
Table 1 as possible, we computed, for £ < 30, the
quantities

E[N~ (k)] := E[min{X, : take R(k) i.i.d. draws}],
E[N*(k)]:= E[max{X} : take R(k) i.i.d. draws}],

using the values of R(k) from Table 1, drawing
the root node uniformly from {1,2,4,5,7,8}. The
results appear in Table 2.

In this table, both D* (k) = (3)"*E[N*(k)] and
D= (k) = (%)_kE[N_ (k)] exhibit some initial fluc-
tuations, and then D‘(k) appears to steadily de-
crease with k, while D*(k) appears to steadily
increase with k. This contrasts with the analo-
gous quantities in Table 1, which appear to be
roughly constant. If we computed these expected
values E[N~ (k)] and E[N* (k)] using 2 - 3* draws
instead of R(k) draws, the disagreement with Ta-
ble 1 would be even greater.

In Section 5 we prove theoretical results concern-
ing the analogues of Conjectures C and C# for the
branching process model B[9]. We prove that the
analogue of Conjecture C holds for these statistics,
using a result on tail probabilities for leaf count
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k. BIN-(W] BIN*(R)] (3)° D-(k) D*(k)
1 1.00 2.00 1.33 0.750  1.500
2 1.00 2.77 1.78 0.562  1.557
3 1.00 3.96 2.37 0.422 1.669
4 2.00 5.46 3.16 0.633 1.728
5 2.00 7.55 421 0475 1.792
6 3.00 9.99 5.62 0.534 1.778
7 3.07 14.31 7.49 0.409 1.911
8 4.00 19.20 9.99 0.401 1.923
9 5.00 26.45 13.32 0.375  1.986
10 7.00 35.97 1776  0.394  2.026
11 8.32 48.63 23.68 0.352 2.054
12 10.81 65.53 31.57 0.342 2.076
13 12.92 89.17 42.09 0.307 2.118
14 17.12 119.58 56.12 0.305 2.131
15 22.49 162.12 74.83 0.300 2.166
16 30.16 218.52 99.77 0.302 2.190
17 38.42 294.11 133.03 0.289 2.211
18 49.91 39594 177.38 0.281  2.232
19 64.49 533.21 236.50 0.273  2.255
20 85.41 71596 315.34 0.271  2.270
21 11245 963.62 420.45 0.268 2.292
22 148.38 1294.74 560.60 0.265 2.310
23  193.77 1739.01 747.47 0.259 < 2.327
24 254.38 2335.64 996.62 0.255  2.344
25  334.18 3135.96 1328.83 0.252  2.360
26 441.25 4207.62 1771.77 0.249 2.375
27 581.63 5647.11 2362.36 0.246  2.390
28 766.94 7575.10 3149.81 0.243  2.405
29 1009.74 10159.40 4199.75 0.240 2.419
30 1331.40 13623.43 5599.67 0.238  2.433
TABLE 2. Expected values of the branching pro-

cess. The quantites E[N*(k)] are defined in the
opposite column, and calculated as explained in
the sidebar on the next page. The last two columns
are defined by D* (k) = (%)_kE[Ni(k)]

distributions for a general class of branching pro-
cesses, proved in Section 4. We prove that the
analogue of Conjecture C# doesn’t hold, and that
D~ (k) — 0 and D*(k) — oo as k — oo.

4. TAIL PROBABILITIES FOR LEAF COUNT
DISTRIBUTIONS

We consider multitype Galton—Watson processes G
having n types of individuals. In such a process an
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individual of type ¢ lives for exactly one time pe-
riod ¢ and gives rise to a set of progeny of various
types at time ¢ + 1. We assume that G has a fi-
nite mean matric M = [M,; ;|1<i j<n, Where M, ;
gives the expected number of progeny of type j
produced by an individual of type 7. We assume
that G is positively regular, which means that some
power M* has all entries strictly positive. Under
the positive regularity assumption the mean matrix
M has a maximal real eigenvalue p of multiplicity
one, which we call the growth rate of §. Let N;(k)
denote the total number of individuals at time &k of
a process starting from a single individual of type ¢
at time 0. We say that G has finite second moments
if E[N;(1)?] < oo for 1 <i < n.

We prove below a result showing that the upper
and lower tails of the logarithm of the leaf count
distributions N;(k) of multitype Galton—Watson
processes have double-exponential decay in k as
k — oo, provided that the processes satisfy some
mild extra conditions, which we now introduce.
A multitype Galton—Watson process is boundedly

branching if there is an upper bound L on the num-
ber of progeny that an individual (of any type) can
have in one time period. It is strictly branching if
an individual always has at least two progeny in
each time period.

Theorem 4.1. Let G be a multitype Galton—Watson
process with n types that is positively regular, has
finite mean matric M with mazimal real eigen-
value p, and is supercritical (p > 1).

) If G is boundedly branching, there exist for any
r > p positive constants o and 6, depending on
r, such that

Prob{N;(k) > r*} < exp(—

for1<i<mnandallk>1.

(i) If G is strictly branching and has finite second
moments, there exist for any r < p positive con-
stants a and 6, depending on r, such that

Prob{N;(k) < 7*} < exp(—a(1 + 6)*)

for1<i<mnandall k> 1.

a(l+6)")

REMARKS ON TABLE 2

Although a branching process of the type we are considering has a double-exponential number of possible trees
at depth k, the E[N*(k)] entries in Table 2 were computed in single-exponential time as follows: Let X}, for
17 mod 9, be a random variable counting the number of leaves at depth k of a sample tree drawn from the
branching process B[9], starting from a single individual of type i. Let P[X} = z| := Prob{X} = z}. Then the
distributions of X; and X}, were computed from the recursion

P[X}=1] =1,

P[X; =z] = P[X}? ,=2] ifi=1,4,57T,
Xk:$] ZPXk L =r—y ](P[Xk 1 =yl + PlX k31_y]—}—P[X,Z 1—3/]),
PIXE o] = ZPXk ey ](P[Xz_l=y1+P[X,§?=y1+P[X,§_1=y]),

P[Xy =] = % Z PIX} = .
imod 9
The cumulative distribution function f(t) of the number of leaves was then computed. Finally the cumulative

distributions of the minimum and maximum of R(k) draws were computed using 1— (1— fx(¢))®*) and f; (t)F*),
respectively. The entire computation took about 15 minutes on a 150 MHz MIPS R4400 processor.



Before giving the proof, we note that the conclu-
sion of either part of the theorem certainly re-
quire some extra restriction on the Galton—Watson
process § beyond being positively regular and su-
percritical. Concerning (i), suppose a single-type
Galton—Watson process G has the probability p,,
of m offspring satisfying p,, = em™* for large m
(so G has a finite second moment). Then

Prob{N;(k) > ¥} > Prob{N;(1) > r*} > p,»

Z C’r'_4k,
for sufficiently large r, which violates the conclu-
sion in (i). Concerning (ii), if § is not strictly
branching, and p; > 0, then

Prob{Ny(k) < r*} > (p1)*,
which violates the conclusion in (ii).

Proof. (i) Suppose that r > p is given. By hypothe-
sis there is a finite bound L for the maximum num-
ber of progeny that a single individual can have in
one time period. The argument we give does not
depend on the type of the individual at time 0, so
we omit explicit reference to it.

Let N (k) denote the number of individuals of
type i at time k, and define the type vector v(k)
at period k by

v(k) := (ND(k), N®(k),..., N™(k)).

Also let N9 (k, k+ 1) denote the number of indi-
viduals of type j at period k + 1 that are progeny
of an individual of type % at period k.

Suppose that N (k) > r¥. We claim that there is
a constant ky depending on r and a constant § > 0
such that, for all £ > kg, there is some intermediate
time [ with 0 <1 <k — 1 and a pair (3, ) of types
with M; ; # 0, such that

NO@1) > (1+6)F 4.1)
and

NG T +1) > (14 6) M, ;NO(1). (4.2)
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We argue by contradiction, and suppose there were
no such time [. Set e = (1,1,...,1) and observe
that all the type vectors satisfy coordinatewise the
inequality

v(l+1) < (1+8)v()M + (1 + 6)*Le,

because the first term on the right bounds the con-
tribution to v(l+1) of individuals of type j at time
[+ 1 that are progeny of those types ¢ at time [ for
which (4.2) doesn’t hold, while the second term on
the right bounds the contribution from types 4 for
which (4.1) doesn’t hold. Iterating this inequality
for 0 <1 <k — 1 starting with v(0) < e, we have

v(k) < L(1+6)%e
X(T+(1+8)M+(1+6)2M> +-- -+ (1+6) M*)

(where I is the identity). By Perron—Frobenius
theory the matrix M has spectral radius p, and by
the positive regularity hypothesis its set of eigen-
values on the circle |z| = p consists of a single
simple eigenvalue at z = p. Therefore there is a
constant ¢y with

eM* < cypte.
Thus the preceding inequality for v(k) yields
v(k) < co(k + 1)L(1 + 6)*p*e,
hence
N(k) = v(k)eT < con(k + 1)L(1 + §)*p".

If we therefore choose ¢ so that 1 <1+6 < \/7,
this bound contradicts N(k) > r* provided that
k > ko, proving the claim.

To bound Prob{N(k) > r*} it thus suffices to
bound the probability of the event (4.1) and (4.2)
occurring over all triples (7, j,1). Now the random
variable N9 (I, [ + 1) is a sum of N®(I) inde-
pendent draws from an integer-valued probability
distribution {p,,}, where p,, is the probability that
an individual of type 7 on G has exactly m progeny
of type j. By definition the distribution {p,,} has
expected value E[p] = M, ;, and we also know
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that p,, = 0 for all m > L. Now we can ap-
ply Chernoft’s theorem (as quoted in [Lagarias and
Weiss 1992, p. 234]) with N(@(I) draws to obtain
the bound

Prob{NG) (1,14 1) > (1+8)E[p|ND (1)}
< exp(—aN® (1)), 4.3)

where a = —g((1 + ) E[p]) with

g(a) := sup{ﬁa — log ipmemg}.

feR —

We check that > 0. Certainly g(a) > 0, by
taking 8 = 0 above, and the strict convexity of

L
log Z Prme™
m=0

allows one to check that for a > E[p| the minimizer
on the right side is not at § = 0, hence « > 0.
Now combining (4.1), (4.2) and (4.3) we get

Prob{N (k) > r*} < n’kexp(—a(1 + 6)*),

valid for £ > ky. Decreasing @ and ¢ towards 0 as
necessary, we obtain the conclusion of part (i).

(i) Suppose that r < p is given. The assumption
that the process is strictly branching guarantees
that N;(t) > 2" forall ¢ > 1 and 1 < i < n. Now
view a tree of depth k as consisting of a rooted tree
of depth ¢ that has N(t) subtrees, each of depth
l := k —t, growing from each of its leaves. All
of these subtrees grow independently, and each of
them can have at most r* leaves, because the whole
tree has 7" leaves by hypothesis. Using the fact
that N;(t) > 2¢ for all t > 1, we obtain the bound

Prob{N;(k) < r*}
< (Prob{depth-I subtree has < r* leaves})N:(*)
< (max {Prob{N;(1) < *}})”" 4.4
1<j<n

We choose t = ak for a small o and wish to
bound the probability that a tree of depth | =
(1 — @)k has no more than r* leaves. Since M is
positively regular and second moments exist, the

Kesten—Stigum theorem [Kesten and Stigum 1966,
Theorem 1] applies to give positive constants wu;
such that

E[N;(1)] = (us + o(1))/'

Furthermore, by the finite second moment assump-
tion, there is a finite upper bound on the second
moment of N;(1)/p' valid for all [ > 1 [Harris 1963,
Theorem 9.2]. Hence by Chebyshev’s inequality
there is a constant v < 1 such that

Prob{N;(l) < E[N;(1)]} <~

foralll > 1and 1 <i < n. Toapply thisin (4.4), it
suffices to arrange that E[N;(l)] > r*. Now (4.5)
implies that there is a positive constant c¢* such
that for 1 <17 <n,

B[N;(D)] > ¢*p'

as | — oo. (4.5)

for all I > 1. Write r = p® with 0 < ¢ < 1 and
choose
[ = ¢k —log,(c"),

the point being that with this choice we have
B[N, ()] > ¢ > r*

for 1 < j < n, the last inequality depending on the
fact that p > 2. Thus, for 1 < j < n, we get

Prob{N;(l) < r*}] < Prob{N,(l) < E[N;(D)]} < v

for all [ > 1. Setting v = exp(—a*), we get from
(4.4) that

Prob{N (k) < r*} < exp(—a*2¥7)
— exp(—ate k)
< exp(—a(1+6)")
with o > 0 and 6 > 0. O

5. APPLICATION TO 3x+1 BRANCHING PROCESS
MODELS

We consider now a “repeated branching process”
model in which the model B[9] is grown to depth
k, making S(k) independent trials. The statistics
that we are interested in are the minimum and



maximum of the number of leaves over these S(k)
trials. We are interested in the case that S(k)
grows exponentially in k, so we consider S(k) =
| 7% |, where 7 > 1 is a fixed constant. The relevant
random variables are
N7 (k) = min{ X}, : take |7*] i.i.d. draws from B[9]},
N (k) = max{X} : take |7*| i.i.d. draws from B[9]}.
The scaled random variables (%)k(]\? (k))~! and
(3 kN (k) are analogous to (D~ (k)) " and D* (k)
in Table 1.

We first prove that an analogue of Conjecture C
holds for this “repeated branching process” model
using B[9].

Theorem 5.1. For any fived ™ > 1, with probability
one, the branching process B[9] has

Tim (7 () ¥ = Jim (W ()" = 4.

T

Proof. The process has mean matrix

Type

4 7 2 5 8
Type
0O 0 0 1 0 O
410 0 O 0 O0 1
M = 70 0 O O 1 O (5.1)

213 5 £ 0 0 0
5(1 0 0 0 0 O
80 0 1 3 %+ 1

with left-eigenvector v = (1,1,1,1,1,1), and M*
has positive entries so B[9] is positively regular:
compare [Lagarias and Weiss 1992, Theorem 3.2].
It is certainly boundedly branching, so part (i) of
Theorem 4.1 applies to give, for r > %

a(l+ 6)F).

Since Y ,-, 7™ exp(—a(1 + 8)*) converges, we con-
clude that, with probability one,

Prob{N7 (k) > r*} < 7 exp(—

(VS () <p=4 6
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The key point of the proof concerns the strict
branching property. Although B[9] is not strictly
branching, repeated application of it for four time
periods is. This is easy to check using the branch-
ing data in Figure 3. The repeated branching pro-
cess § = B[9]*Y has mean matrix M*, which has
growth rate p*, and it has finite second moments
since it is boundedly branching. Now part (ii) of
Theorem 4.1 applies to G, to show that

Prob{N; (4k) < r¥} < 7¥ exp(—a(1 + 6)*)

4

for any r < (3)*. As in the argument above, we

conclude that, with probability one,
N;(4k))1/k Z (3)4

Since N(k) < N(k+1) <2'N(k) for 0 < i < 3, we
conclude that, with probability one,

lim inf(

k—o0

liminf(N- (k))Y* > p = L.

k— o0

Combining this with (5.2) and using the fact that
N7 (k) < N (k) in any sampling of trees, we con-
clude that kh_)n()lo(]vj(k))l/k and kli_)r{.lo(l\?;(k))l/k both
exist and equal % with probability one. O

Remark. This proof applies to all the branching pro-
cess models B[37] with j > 2, because all the pro-
cesses B[37]*4) have the strict branching property
for 7 > 2. It does not apply to the branching pro-
cesses B[1] and B[3], because they have no iterate
possessing the strict branching property. In fact
the lower bound (5.2) is false for B[1] and B3]
whenever 7 > %.

We now show that the analogue of Conjecture C#
is false for the “repeated branching process” model
using B[9].

Theorem 5.2. For any fized 7 > 1, the branching
process B[9] has
lim (4) "N (k) =0,

k— o0

lim é)_k]\Nf“L(k) = +o0.

k—oo
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Proof. Let W™, for m mod 9, enumerate the num-
ber of leaves of type m of a random tree of depth &
drawn from B[9], with root node drawn uniformly
from {1,2,4,5,7,8}. Set

Wk = (Wkl,W,?,W;,WE,WZ,W}?)a

so that X, = Wit + W2 + W + W2 + W[ + W}.
Let w;, denote the probability distribution of the
random vector () *W . Now E[X; log X;] < oo,
hence the Kesten—Stigum theorem applies to show
that the distributions w; converge weakly to a lim-

iting distribution w,, which is of the form
We =W+ V,

where v is a constant vector and w is a one-dimen-
sional positive random variable that is absolutely
continuous, except for a possible jump at the ori-
gin. (The jump at the origin represents the proba-
bility of extinction.) Furthermore v is the (unique)
left eigenvector corresponding to the maximal real
eigenvalue p of the mean matrix M of the Galton-
Watson process; in our case M is given in (5.1),
andv=e=(1,1,...,1).
The conditional distribution

w; := {w | initial type i}
has expectation
E[w | initial type i] = u;,

where u is a right eigenvector of M, and the jump
q; at the origin depends on the type ¢. The g; are
just probabilities of extinction, so in the case of
B[9] there are no jumps (all ¢; = 0), and each
conditional distribution w; is strictly positive on
R*, by [Athreiya and Ney 1972, § V.6, Theorem
2(iv)]. (A detailed proof of the positivity of w for
the single-type Galton—Watson process appears in
[Athreiya and Ney 1972, §I1.5, Theorem 2]. See
also [Kesten and Stigum 1966, Lemma 7].)
Now the random variables

(3) "N (k) and  (3) "NS(k)

sample values in the tails of the distributions wy,
that is, values that lie outside any fixed region
(e, 1 — €) in the cumulative distribution for large
enough k. Since the wy converge weakly to w,, it
follows from the strict positivity of w on R that,
as k — oo, we have

Theorem 5.2 follows. O

6. AVERAGE LEAF COUNTS AND CONJECTURE C#

We return to the study of 3x + 1 trees, and study
fluctuations in the leaf counts of such trees caused
by the branching pattern at the base of the tree, in
its first j levels. That is, we estimate the expected
size of pruned 3z + 1 trees Tj(a) whose root node
lies in a fixed congruence clase | mod 37. This
expected value is

E;[l mod 37] := 37~ (k1) Z N;(a)

amod 3FT1

a=lmod 37

for j > 1.
Theorem 6.1. For each j > 1 and ! # 0 mod 3 there

is a positive constant W[l mod 3] such that

B[l mod 3] = (W[l mod 37] + o(1)) (2)*  (6.1)

as k — oo.

Proof. We will use the formula (corresponding to
j=0)

Ni(@)=(3)" 62

1
T 2

amod 3Ft1
aZ0mod 3

which is proved in [Lagarias and Weiss 1992, The-
orem 3.1].

We first establish recursions for the quantities
E}[l mod 37]. The recursions are based on the bot-



tom branching of the 3x + 1 tree, which depends
on [ mod 9, and is as follows:

2l mod 37 2l mod 3/ (20 — 1) mod 39!
I mod 3/ I mod 37
1=1,4,5,7mod 9 1 =2,8mod 9

This gives the recursion
N;:(a) = Ni_;(2a) + ¢(a mod 9)N;_; (%(2a — 1)),
in which
0 ifl=1,4,5,7mod9
(i mod 9) := {1 if 1 =2,8mod 9

is an indicator function for the presence of a branch
of the tree with edge label 1. Summing this recur-
sion over all @ mod 3¥! we get, for k > j > 2,

E;[l mod 3] = E;_,[2] mod 3]
+¢(lmod 9)E;_;[2(2l — 1) mod 3’ ']. (6.3)

Ifj>2but 1 <k <jthen
E}[l mod 37] = E;[l mod 3*].

The case j = 1 must be treated separately. The
recursions become

E}[1 mod 3] = E}_,[2 mod 3],
E}[2mod 3] = E;_;[1 mod 3] + %(%)k_l’

where (6.2) was used to obtain the last equation.
We have F;[1 mod 3] =1 = (%) and E;[2 mod 3]
5 _5

=2 =2(2), from which we deduce

Bf[l mod 3] = wy (k) (4)"

3
for I = 1,2, in which w;(k) and ws(k) obey the
IEeCUITENCeS
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This yields wa(k) = zw2(k — 2) + %, from which
one easily deduces

wi(k) = $+0((3)"),
ws(k) = £ +0((3)").
Now (6.1) follows for j = 1 with

Wllmod3]=2 and W([2mod3]=2. (6.5

For j > 2, let W[l mod 37] be defined recursively
in j as the unique solution to the system of linear
equations

Wl mod 3] = (W2l mod 3’]
+ (I mod 9)W[3(21 — 1) mod 3’7 ']). (6.6)

The quantities W[3(2l — 1) mod 3/!] are known,
and this linear system has matrix I — %P, where
P is a certain permutation matrix, which is clearly
invertible since (I—2P) 1 = I+3P+(2P)"+. ..
Next, define the quantities Ax[l mod 3’] by

B[l mod 3] = (W[l mod 39] + Ay[l mod 37]) (£)",
and set

Ak[3‘7] = Inax |Ak[l mod 3‘7”

1#0mod 3
We claim that there are positive constants ¢; such

that
k

Apl3] < (L) 6.7)
If so, then (6.1) follows.
For j = 1 this holds for all £ > 1 by (6.4), choos-
ing a suitable value for ¢;.
We prove (6.7) for j > 2 by induction on j, where
for each j we verify it for all £ by induction on
k > 1. The constants c; are defined recursively by

¢; = max(6c;_1, max Ak[3j](§)k).

Assume (6.7) is true for j — 1 and all k. For j and
1 <k < j, (6.7) holds by the definition of ¢;. For
J > k, the recursions (6.3) give
Agll mod 3] = 2(A,_1[2] mod 3]

+ (I mod 9)Aj_1[3(2] — 1) mod 3/ 1]).
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In particular the recursions yield the inequality
AR[3] < 3A,4[3] 4+ 38,4 [3 1.
This gives, by the induction hypothesis,
A3 < 3e(3)" 3D T <D

since ¢; > 6¢; 1, completing the induction step.
(One can prove that A[37] is O((3)+*)*) for any
e > 0, by a similar argument.) O

The densities W[l mod 3’| are determined recur-
sively by solving the linear system (6.6). For j = 2,
we obtain

W[l mod 9] = 3456 J/[2 mod 9] = 2608

3367’ 3367
W4 mod 9] = 2252 W[8mod 9] = 3222, 3 (6.8)
W[7mod 9] = 3322, W[5 mod 9] = 2322,

We now show, for later use, that the quantities
W[l mod 37] satisfy, for all j > 1, the mean value
formula

1 .
e > | W[lmod3]=1. (6.9
I mod 3’
120 mod 3

This holds for j = 1 by (6.5). For j > 2, summing
up (6.6) over all [ mod 37 we get

L) Wlimoed3)=2 Y W[’ mod 3.
I"mod 31
I’"20mod 3

I mod 37
lZ0mod 3

Now (6.9) follows by induction on j, because its
left-hand side equals, by the equation just given,

1 -
2.3i-2 E W' mod 3771] = 1.
" mod 31
I'#A0mod 3

Using the quantities W[l mod 3’] we can obtain
asymptotic bounds on the number of leaves in ex-
tremal trees.

Corollary 6.2. Let D*(k) = (%)_kNi(k). For each
j > 1, we have

limsup D" (k) > W := max W]l mod 3],

k—o00 - J 1£0mod 3
liminf D~ (k) < W; := min W[l mod 3’].
k— oo 1#0mod 3

Proof. Extreme values on leaf counts satisfy obvious
inequalities in relation to mean values. O

The limit j — oo in Corollary 6.2 yields

lim sup D* (k) > W1 := limsup W',

j—oo
lilgn inf D™ (k) < W := liminf W .
—00 j—oo
In order for Conjecture C# to hold, W} and W
must satisfy

0< W, <1< Wl <oo. (6.10)

This is unproved, but would follow from the Limit
Function Conjecture stated below.

Table 3 presents data on the extreme values W~
and W]-Jr, as well as on the quantities

77;.' =  max

_ |[W[l mod 37] — W[I' mod 37|
I=1" mod 391
which bound how fast W, and W are changing
as j — oo. It also gives the quantities [ mod 3’
attaining W]-*' and W, with [ expressed in base 3,
as well as [ mod 37~" attaining 7; .

On comparing the values in Table 3 with the ex-
treme densities DT (k) and D~ (k) in Table 1, we see
that by k& = 9 the values W* and W~ seem to be
accounting for nearly all of the observed variation
in D*(k) and D~ (k). (Note that Wy < D~ (8);
this is not contradictory because Wy is an asymp-
totic limit as & — oo. However we must have
D~(8) < min; E[l mod 3%](3)8.)

The data in Table 3 suggest that the quantities
W[l mod 3/] may explain all the extremal varia-
tion in leaf count sizes in an asymptotic sense. We
therefore propose the following conjecture.
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j | minl (mod 37) W, | maxl (mod37) W, | maxl (mod3/~') nf
1 13 0.857 23 1.143 - 0.286
2 213 0.577 02; 1.369 23 0.599
3 2213 0.528 2023 1.493 223 0.407
4 22213 0.517 02023 1.561 2225 0.302
5 022213 0.504 121223 1.611 22223 0.209
6 2022215 0.503 2121225 1.649 222224 0.166
7 10022215 0.498 12121225 1.672 2222224 0.116
8 210022215 0.497 212121223 1.690 22222223 0.085
9 2210022213 0.494 2020202023 1.704 222222225 0.062

10 12210022213 0.493 02020202023 1.714 2222222223 0.045

11 | 212210022213 0.491 | 202020202025 1.721 22222222223 0.033

TABLE 3. Extreme densities W[l mod 3.

Extremal Limit Conjecture. D" (k) and D~ (k) satisfy
lim sup D*(k) =W, and ligg}fo(k) =W,.

We observe that the recursion for Wl mod 37]
has a regular structure. These quantities interpo-
late to a function defined almost everywhere on the
invertible 3-adic integers

Zy ={a€Z3:a=1or 2mod 3},

as we now show. We view ZJ as a measure space
with the 3-adic measure p with u(Z3) = 1, so that

WZs) = 4.

Theorem 6.3. For p-almost alla = 3" ja;3 € Z;,
the limit

Weo(a) := lim W]a mod 3]

j—oo

6.11)

exrists.

Proof. Let p* = 3, so that > (Z3) =1 is a prob-
ability measure. Define for j > 1 the functions
W]‘ : Z; — R by

W;(a) := W]a mod 37],

and view {W; : j > 1} as random variables on Zj;
with respect to p*. We claim that {W; : j > 1}
is a martingale with respect to the o-fields {JF; :
j > 1} with F; = {residue classes mod 37}. The

martingale property is that, for each residue class
a mod 37,

E[W;1(8) | 8= amod 3] = Wj(a),

which is equivalent to

2
LY Wla+ k-3 mod 37! = W[a mod 37].
k=0
(6.12)
To establish (6.12), we define

X[l mod 37] :== W[l mod 3] — W[l mod 37 ].

The recursion (6.6) for [ mod 37, subtracted from
that for [ mod 37*!, gives

X[l mod 3] = 3(X[2] mod 37"
+ (I mod 9)X[3(20 — 1) mod 37]). (6.13)

We now prove by induction on j > 1 that

2
Allmod 3] :=> " X[l + k-3 mod 3] = 0
k=0 (6.14)
for all I mod 37*!. The base case j = 1 is verified by
direct computation, using (6.8). For the induction
step, (6.13) summed over [, [ + 37, and [ + 2 - 3/
gives

All mod 37*'] = 3(A[2] mod 371"
+ (I mod 9)A[% (2l — 1) mod 3j]).

1
3
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The last term A[3(2] — 1) mod 37] vanishes by the
induction hypothesis, so the equation becomes the
invertible linear system

(I —2P)(A[l mod 3’"']) = 0.

This gives (6.14). Substituting the definition of
X[l mod 3] in (6.14) gives (6.12); hence {W; :
j > 1} is a martingale.

The mean value formula (6.9) gives

BW;] = BIW)] = [ Wy(@)du(a) =1

for j > 1. Now the Martingale Convergence The-
orem [Billingsley 1979, Theorem 35.4] applies to
{W; : j > 1}, so the theorem follows. O

We may define the limit function W, () for all
a € Zs by

W () = lim sup W[a mod 37].

J—00

Here Wy (o) > 0 and the value +oo is allowed.
The Martingale Convergence Theorem also gives

/W W (@)

= E|[[W|] = E[|[W1]] = (6.15)

The data in Table 3 suggest that 77;-’ tends to 0
rapidly enough that Z 077J < 00, in which case
Wa mod 37] would converge uniformly to W, ()
for all a € Z5 . Therefore we propose:

Limit Function Conjecture. The function W, : Z5 —
R is continuous and nonzero, and

Weo(a) = lim Wa mod 37]

J—00

for all a € Z5 .

If this conjecture is true, then taking the limit
as j — oo in (6.6) shows that W, () satisfies the
functional equation

W (@) = 2 (W (20) +1p(a mod 9)Weo (3 (20—1))).

(6.16)

Since Z; is compact, this conjecture also implies
that
WE = sup Wy (a) < o
aEZ;
and

W_ = inf Wo(a)> 0.
an;

Since (6.15) and (6.16) imply that W, () cannot
be the constant function 1, we must have W <
1 < W4, and (6.10) follows. Thus the Limit Func-
tion Conjecture and the Extremal Limit Conjec-
ture together imply Conjecture C#.

Finally, we note some resemblance of the recur-
sion (6.6) to the Krasikov inequalities studied in
[Applegate and Lagarias 1995b].
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