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Backwards iteration of the 3x+1 function starting from a fixed

integer a produces a tree of preimages of a. Let Tk(a) denote

this tree grown to depth k, and let T�k(a) denote the pruned

tree resulting from the removal of all nodes n � 0 mod 3.

We previously computed the maximal and minimal number of

leaves in T�k(a) for all a 6� 0 mod 3 and all k � 30. Here

we compare these data with predictions made using branching

process models designed to imitate the growth of 3x+1 trees,

developed in [Lagarias and Weiss 1992]. We derive rigorous

results for the branching process models. The range of variation

exhibited by the 3x + 1 trees appears significantly narrower

than that of the branching process models. We also study the

variation in expected leaf-counts associated to the congruence

class of a mod 3j . This variation, when properly normalized,

converges almost everywhere as j !1 to a limit function on

the invertible 3-adic integers.

1. INTRODUCTIONThe well-known 3x+1 problem concerns the behav-ior under iteration of the 3x+1 function T : Z 7! Zgiven by
T (n) = ( 12n if n � 0 mod 2,12(3n+ 1) if n � 1 mod 2.The 3x+1 Conjecture asserts that, for each n � 1,some iterate T (k)(n) equals 1; it has now been ver-i�ed for all n < 5:6� 1013 [Leavens and Vermeulen1992]. For each n we call the minimal k such thatT (k)(n) = 1 the total stopping time of n and de-note it �1(n), letting �1(n) =1 if it is otherwiseunde�ned.The 3x + 1 function is a deterministic processthat apparently exhibits pseudorandom behavior.It has been extensively studied; see the surveys [La-garias 1985; M�uller 1991]. One approach to quan-tify its apparent pseudorandomness is to consider
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probabilistic models for its behavior on a \random"input, and then to compare model predictions withempirical data. Any systematic discrepancies orsimilarities uncovered may prove helpful in even-tually establishing rigorous results.We now review several probabilistic models forthe 3x+1 iteration. Consider taking input values ndrawn from the uniform distribution U2k on [1; 2k],and examine the induced probability distributionon T (j)(n), for 1 � j � [�k], for a �xed positive �.One can rigorously prove that, when 0 < � � 1,the successive iterates�log T (n)n ; : : : ; log T [�k](n)n �
behave exactly like the trajectory of a random walkthat takes i.i.d. (independent, identically distrib-uted) steps of size log 32 or log 12 with equal prob-ability [Lagarias 1985, x 2]. This suggests that theevolution of 3x + 1 function iterates can be mod-elled by a multiplicative random walk, in whichfrom an initial point X0 one multiplies by suc-cessive i.i.d. random variables Xi taking the val-ues 32 and 12 with probability 12 each, to obtainYj := X0X1 : : :Xj.Such a model was �rst considered in [Crandall1978], and in more detail in [Rawsthorne 1985;Wagon 1985]. The analogue in this model of thestopping time �1(X0) is the statistic �1(X0; !)that for a random walk ! starting from X0 givesthe smallest value of J such that YJ < 1. For thismodel the expected value isE[�1(X0; !)] = ( 12 log 43)�1 logX0:Recently Borovkov and Pfeifer [1993] gave a re-�ned analysis showing that �1(X0; !) obeys a cen-tral limit theorem, that is, the scaled variables�̂1(X0; !) := �1(X0; !)� c1 logX0c2(logX0)1=2 ; (1.1)in which c1 = ( 12 log 43)�1 and c2 = c13=2( 12 log 3),have distribution converging to the unit normaldistribution N(0; 1) as X0 ! 1. Although thismodel with n0 drawn from U2k is rigorously proved

to approximate the distribution of T (�k)(n0) onlyfor � � 1, empirically it is found that the ap-proximation seems good all the way up to � =( 12 log 43)�1 := 6:95212. Furthermore the agreementwith the central limit approximation (1.1) is alsoreasonably good. Thus this random walk modelappears to accurately describe \average" trajecto-ries of 3x+ 1 iterates.Lagarias and Weiss [1992] have introduced twotypes of probabilistic models intended to simulate\extreme" trajectories of 3x + 1 iterates, that is,those attaining the largest value of the quantity�1(n)=log n for all n 2 [1; 2k]. The �rst of thesemodels is (the additive counterpart of) a repeatedmultiplicative random walk, which takes 2k en-tirely independent multiplicative random walks asabove, with the n-th such walk !n starting fromX0 = n. An analogous model statistic 
k to con-sider is the maximum value of �1(n; !n)=log n over1 � n � 2k. For this model, the authors showedthat with probability one the values 
k tend to alimit 
RW as k !1; in symbols,lim supn!1 �1(n; !n)log n = 
RWwith probability one, where 
RW := 41:677647 is thesolution of a certain transcendental equation. Thismodel has the de�ciency that it assumes indepen-dence of trajectories for di�erent starting valuesn0 and n1. This is not true of 3x + 1 trajectories:they must coalesce, since (empirically) all trajec-tories reach 1.The second type of stochastic model of [Lagariasand Weiss 1992] is a branching process model thatmimics backwards iteration of the 3x+1 function,and that explicitly includes dependencies amongtrajectories. Backwards iteration of the 3x+1 mapis multiple-valued; given an initial value a, it pro-duces a tree T(a) of preimages of a. The branchingprocess models construct \random" trees whosestructures imitate the structure of a 3x + 1 treegrown from a \random" starting point a. Lagariasand Weiss presented an in�nite family B[3j], forj = 0; 1; 2; : : :, of increasingly re�ned branching
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process models, and proved that for these mod-els an analogue of the asymptotically largest valueof �1(n)=log n as n ! 1 is almost surely a con-stant 
BP, which coincides with the 
RW of the pre-ceding paragraph. Finally they observed that theexisting empirical data for extremal trajectories ofthe 3x + 1 function, computed up to 5:6� 1013 in[Leavens and Vermeulen 1992], is consistent withthe predictions made by these two types of mod-els.This paper studies extremal properties of ensem-bles of 3x+1 trees of depth k. A 3x+1 tree Tk(a) isa rooted, labeled tree of depth k, representing theinverse iterates T�j(a) for 0 � j � k. The inversemap T�1(n) is multivalued:
T�1(n) =( f2ng if n� 0 or 1 mod 3,f2n; 13(2n� 1)g if n� 2mod 3.The root node a is at depth 0, and a node labeledn at level l of the tree is connected by an edgeto a node labeled T (n) at level l � 1 of the tree.(We adopt a convention of \unrolling" any cyclesunder T , so that the same node label may appearat di�erent levels of the tree if a cycle is present, asin Figure 1.) The formula above for T�1(n) revealsthat the nodes labeled n � 0 mod 3 give rise onlyto a linear chain of nodes labeled n0 � 0 mod 3 athigher levels. It is convenient to remove all such

nodes and study a \pruned" tree T�k(a) consistingof nodes n 6� 0 mod 3. Figure 1 presents someexamples of Tk(a) and T�k(a).We say that two pruned 3x + 1 trees T�k(a) andT�k(b) have the same structure if they are isomor-phic as rooted trees by an isomorphism that pre-serves node labels modulo 2. Since the node labeln mod 2 is determined by whether the lower-levelnode T (n) that it comes from is 12n or 12(3n + 1),the congruence classes n mod 3 and T (n) mod 9su�ce to determine n mod 2. From this, it easilyfollows that the structure of T�k(a) is completely de-termined by a mod 3k+1. Consequently there areat most 2 �3k distinct pruned tree structures T�k(a).The actual number R(k) of distinct tree structuresis smaller but still grows exponentially.We study the extreme (maximum and minimum)leaf counts N+(k) and N�(k) for the ensemble ofall such trees of depth k. In Section 2 we presentempirical data for all k � 30, which appeared in[Applegate and Lagarias 1995a]. These data sug-gest two conjectures concerning the asymptotic be-havior of the extreme leaf counts as k !1, whichwe call Conjecture C and the (stronger) Conjec-ture C#.We next ask: How well do repeated trials of thebranching process models of [Lagarias and Weiss1992] reproduce these empirical 3x + 1 data? Wenote that only the models B[3j] for j � 2 can be
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(i) T5(1) (ii) T5(4) (iii) T�5(4)
FIGURE 1. 3x+ 1 trees Tk(a) and \pruned" 3x+ 1 tree T�k(a). Nodes n � 5 mod 9 are circled to indicate thatthey have a preimage T�1(n) � 0 mod 3, and nodes n � 0 mod 3 are indicated with a square.
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reasonable models. The models B[1] and B[3] werealready shown in [Lagarias and Weiss 1992, x 6]to fail to assign the correct distribution of residueclasses mod 3 to the node labels. Besides this, andmore importantly, B[1] and B[3] do not possessthe following \strict branching" property of pruned3x+1 trees: every pruned 3x+1 tree branches afterat most four steps from any node. B[1] and B[3]can produce trees having arbitrarily long chains ofnodes with no branching.As far as one can tell, all the branching processmodels B[3j] for j � 2 provide reasonable imita-tions of the 3x+1 trees. Therefore in Section 3 westudy the simplest of these models, which is B[9].We present data for k � 30 on the expected valueof extreme leaf counts for a \repeated branchingprocess" model that takes R(k) independent tri-als using the branching process B[9]. (Recall thatR(k) is the number of distinct tree structures ofdepth k.) These expected values for k � 30 appearconsistent with Conjecture C, but exhibit largervariability than that empirically observed for the3x+ 1 data up to k � 30.In Sections 4 and 5 we present theoretical re-sults about branching process models. First, inSection 4 we prove a result establishing for a largeclass of branching processes that there is a double-exponential dropo� of tail probabilities for valuesof logN(k), where N(k) is the number of leavesat depth k of the process. Such results are \folk-lore", and we are indebted to Robin Pemantle forsuggesting the method used to prove Theorem 4.1.Then, in Section 5 we prove that the analogue ofConjecture C is true for a repeated branching pro-cess model using B[9]. We �nally prove that theanalogue of Conjecture C# is false for this repeatedbranching process model.Thus we have uncovered a di�erence between the3x + 1 empirical data and the branching processmodel: the extreme leaf count statistics for theactual 3x+1 problem appear to have a signi�cantlynarrower range than that given by the branchingprocess models. This seems to be the �rst evidencefound indicating that the 3x + 1 function iterates

do not behave as randomly as possible subject to\obvious" constraints.Section 6 returns to the study of extremal leafcounts. We study the average number of leavesin pruned trees T�k(a), under the restriction a � lmod 3j, with l 6� 0 mod 3. This amounts tospecifying the branching structure of the �rst jlevels of the tree T�k(a). We prove that this ex-pected value is asymptotic to W [l mod 3j]( 43)k ask ! 1, where W [l mod 3j] is an explicitly com-putable value (Theorem 6.1). The variation inW [l mod 3j] appears to account for nearly all ofthe variation in leaf sizes, and we conjecture thatlim supk!1 � 43��kN+(k) = supl;j W [l mod 3j];lim infk!1 � 43��kN�(k) = infl;j W [l mod 3j]:
We show (Theorem 6.3) that W [l mod 3j] inter-polates to a function W1(l) de�ned almost every-where on the invertible 3-adic integersZ�3 = fl 2 Z3 : l � 1 or 2 mod 3g:We conjecture that W1(l) is well-de�ned on allof Z�3 and is continuous and nonzero. Numericalevidence concerning W [l mod 3j] seems to supportConjecture C#.We remark that G. Wirsching [1994; 1995] hasrecently introduced other functions on Z�3 associ-ated to backwards iteration of the 3x+1 mapping.We do not know if there is any relation betweenthese functions and the function W1.
2. 3x+1 TREESIn studying 3x+ 1 trees we follow [Applegate andLagarias 1995a]. Assign to each a 6� 0 mod 3 thepruned tree T�k(a) of depth k whose root node islabeled a and whose other vertices at depth j for1 � j � k correspond to labels in the set fn : n 6� 0mod 3 and T (j)(n) = ag. Each node labeled n atlevel j is connected to that labeled T (n) at levelj�1: see Figure 2. The branching structure of the
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(i) T�5(7) attains N�(5) = 2 (ii) T�5(20) attains N+(5) = 8
FIGURE 2. Pruned 3x + 1 trees. The nodes that have labels n � 5 mod 9 are circled; such nodes have apreimage n0 = 13 (2n� 1) � 0 mod 3 in the corresponding unpruned tree.pruned tree T�k(a) is completely determined by thevalue a mod 3k+1.Let N�k (a) denote the number of leaves at depthk of T�k(a), and setN�(k) := minfN�k (a) : amod 3k+1; a 6� 0 mod 3g;N+(k) := maxfN�k (a) : a mod 3k+1; a 6� 0 mod 3g:Theorem 3.1 of [Lagarias and Weiss 1992] showedthat the expected size of N�k (a) averaged over all amod 3k+1 with a 6� 0 mod 3 isE[N�k (a)] = � 43�k: (2.1)In [Applegate and Lagarias 1995a] we proposedthe following conjecture:

Conjecture C. Both N+(k) and N�(k) behave as( 43)k(1+o(1)) as k !1.To test such a conjecture it is natural to examinethe normalized densitiesD+(k) := � 43��kN+(k);D�(k) := � 43��kN�(k);which must necessarily satisfy 0 < D�(k) � 1 �D+(k) by (2.1). Table 1 gives empirical data fork � 30 using the data from [Applegate and La-garias 1995a, x 2]. These data support Conjec-ture C, and also appear to support the followingstronger conjecture.

k R(k) N�(k) N+(k) � 43�k D�(k) D+(k)1 4 1 2 1:33 0:750 1:5002 8 1 3 1:78 0:562 1:6883 14 1 4 2:37 0:422 1:6884 24 2 6 3:16 0:633 1:8985 42 2 8 4:21 0:475 1:8986 76 3 10 5:62 0:534 1:7807 138 4 14 7:49 0:534 1:8698 254 5 18 9:99 0:501 1:8029 470 6 24 13:32 0:451 1:80210 876 9 32 17:76 0:507 1:80211 1638 11 42 23:68 0:465 1:77412 3070 16 55 31:57 0:507 1:74213 5766 20 74 42:09 0:475 1:75814 10850 27 100 56:12 0:481 1:78215 20436 36 134 74:83 0:481 1:79116 38550 48 178 99:77 0:481 1:78417 72806 64 237 133:03 0:481 1:78218 137670 87 311 177:38 0:490 1:75319 260612 114 413 236:50 0:482 1:74620 493824 154 548 315:34 0:488 1:73821 936690 206 736 420:45 0:490 1:75122 1778360 274 988 560:60 0:489 1:76223 3379372 363 1314 747:47 0:486 1:75824 6427190 484 1744 996:62 0:486 1:75025 12232928 649 2309 1328:83 0:488 1:73826 23300652 868 3084 1771:77 0:490 1:74127 44414366 1159 4130 2362:36 0:491 1:74828 84713872 1549 5500 3149:81 0:492 1:74629 161686324 2052 7336 4199:75 0:489 1:74730 308780220 2747 9788 5599:67 0:491 1:748
TABLE 1. Normalized extreme values for 3x + 1trees of depth k.
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Conjecture C#. There are positive constants C+ andC� such thatC� � D�(k) < 1 < D+(k) < C+for all su�ciently large k.It even seems conceivable that D�(k) and D+(k)have limiting values as k ! 1. In Section 6 wegive further evidence that seems to support Con-jecture C# and the existence of limiting densitiesas k !1.
3. BRANCHING PROCESS MODELS FOR 3x+1 TREESWe consider the question: To what extent do thebranching process models B[3j] for j � 2 presentedin [Lagarias and Weiss 1992] accurately imitate thebehavior of 3x+ 1 trees? These models are multi-type Galton{Watson processes [Athreiya and Ney1972; Harris 1963]. Recall that such a process de-scribes the evolution of a population of individualsof several types over generations, where each indi-vidual lives one generation. Each individual inde-pendently gives rise to progeny in the next genera-tion of several types according to a speci�ed prob-ability distribution. The branching process treedescribes the descendents of a single individual atgeneration 0, and level l of the tree includes all indi-viduals in generation l. Edges connect individualsto their progeny in the next generation. Such aprocess is completely described by the probabilitydistribution of individuals of each type.

The multitype Galton{Watson branching pro-cess B[9] has individuals of six types, one for eachcongruence classes mod 9 that is nonzero mod 3.They evolve as pictured in Figure 3. Individualslabeled 1, 4, 5 and 7 evolve deterministically, hav-ing one child of speci�ed type, while individuals oftype 2 or 8 always have two children, one of speci-�ed type, while the other's type can be one of three,with equal probability. Figure 3 also has edge la-bels re
ecting whether T�1(n) is 2n or 13(2n� 1),that is, whether T�1(n) is even or odd. The edgelabels are completely determined by the types ofthe individuals at the two ends of the edge, henceare determined by the Galton{Watson process.The model B[9] permits an unambiguous assign-ment of node labels to all nodes of a branching pro-cess tree, provided that a root node label is given.If n is a node label at level l and n0 is a node it isconnected to at level l+1, we assign n0 = 2n or 23naccording to whether the edge connecting n to n0is labeled even or odd. The Galton{Watson pro-cess with the node labels added and interpreted aslocations of the individuals on the line R becomesa branching random walk; this is the term used forthese models in [Lagarias and Weiss 1992]. Thenode labels are needed in that reference in orderthat the branching process can be viewed as imi-tating the growth of 3x+ 1 iterates, but they playno role in this paper.Now let Xk be a random variable equal to thenumber of leaves at depth k of a sample tree drawnfrom the branching process B[9], starting from a
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single individual of type drawn uniformly from theset f1; 2; 4; 5; 7; 8g. We are going to consider ex-treme value statistics for the quantity ( 43)�kXk fora speci�ed number of repeated independent drawsof such trees at depth k.How many independent draws should one allowin such a \repeated branching process" model? Ana��ve model is to take 2 � 3k draws, which corre-sponds to allowing all residue classes a mod 3k+1with a 6� 0 mod 3. An alternative is to take in-stead the smaller number R(k) of possible distinct3x+1 tree structures T�(a) of depth k. The quan-tities R(k) still grow exponentially in k, and basedon the data for k � 30, Applegate and Lagarias[1993] estimated (empirically) that1:87 < lim infk!1 R(k)1=k < 1:92:How do the data in Table 1 compare with thepredictions from the branching process model B[9]?To obtain as exact a numerical comparison withTable 1 as possible, we computed, for k � 30, thequantitiesE[ ~N�(k)] :=E[minfXk : take R(k) i.i.d. drawsg];E[ ~N+(k)] :=E[maxfXk : take R(k) i.i.d. drawsg];using the values of R(k) from Table 1, drawingthe root node uniformly from f1; 2; 4; 5; 7; 8g. Theresults appear in Table 2.In this table, both ~D+(k) = ( 43)�kE[ ~N+(k)] and~D�(k) = ( 43)�kE[ ~N�(k)] exhibit some initial 
uc-tuations, and then ~D�(k) appears to steadily de-crease with k, while ~D+(k) appears to steadilyincrease with k. This contrasts with the analo-gous quantities in Table 1, which appear to beroughly constant. If we computed these expectedvalues E[ ~N�(k)] and E[ ~N+(k)] using 2 � 3k drawsinstead of R(k) draws, the disagreement with Ta-ble 1 would be even greater.In Section 5 we prove theoretical results concern-ing the analogues of Conjectures C and C# for thebranching process model B[9]. We prove that theanalogue of Conjecture C holds for these statistics,using a result on tail probabilities for leaf count

k E[ ~N�(k)] E[ ~N+(k)] � 43�k ~D�(k) ~D+(k)1 1:00 2:00 1:33 0:750 1:5002 1:00 2:77 1:78 0:562 1:5573 1:00 3:96 2:37 0:422 1:6694 2:00 5:46 3:16 0:633 1:7285 2:00 7:55 4:21 0:475 1:7926 3:00 9:99 5:62 0:534 1:7787 3:07 14:31 7:49 0:409 1:9118 4:00 19:20 9:99 0:401 1:9239 5:00 26:45 13:32 0:375 1:98610 7:00 35:97 17:76 0:394 2:02611 8:32 48:63 23:68 0:352 2:05412 10:81 65:53 31:57 0:342 2:07613 12:92 89:17 42:09 0:307 2:11814 17:12 119:58 56:12 0:305 2:13115 22:49 162:12 74:83 0:300 2:16616 30:16 218:52 99:77 0:302 2:19017 38:42 294:11 133:03 0:289 2:21118 49:91 395:94 177:38 0:281 2:23219 64:49 533:21 236:50 0:273 2:25520 85:41 715:96 315:34 0:271 2:27021 112:45 963:62 420:45 0:268 2:29222 148:38 1294:74 560:60 0:265 2:31023 193:77 1739:01 747:47 0:259 2:32724 254:38 2335:64 996:62 0:255 2:34425 334:18 3135:96 1328:83 0:252 2:36026 441:25 4207:62 1771:77 0:249 2:37527 581:63 5647:11 2362:36 0:246 2:39028 766:94 7575:10 3149:81 0:243 2:40529 1009:74 10159:40 4199:75 0:240 2:41930 1331:40 13623:43 5599:67 0:238 2:433
TABLE 2. Expected values of the branching pro-cess. The quantites E[ ~N�(k)] are de�ned in theopposite column, and calculated as explained inthe sidebar on the next page. The last two columnsare de�ned by ~D�(k) = ( 43 )�kE[ ~N�(k)].distributions for a general class of branching pro-cesses, proved in Section 4. We prove that theanalogue of Conjecture C# doesn't hold, and that~D�(k)! 0 and ~D+(k)!1 as k !1.

4. TAIL PROBABILITIES FOR LEAF COUNT
DISTRIBUTIONSWe consider multitype Galton{Watson processes Ghaving n types of individuals. In such a process an
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individual of type i lives for exactly one time pe-riod t and gives rise to a set of progeny of varioustypes at time t + 1. We assume that G has a �-nite mean matrix M = [M i;j]1�i;j�n, where M i;jgives the expected number of progeny of type jproduced by an individual of type i. We assumethat G is positively regular, which means that somepower Mk has all entries strictly positive. Underthe positive regularity assumption the mean matrixM has a maximal real eigenvalue � of multiplicityone, which we call the growth rate of G. Let Ni(k)denote the total number of individuals at time k ofa process starting from a single individual of type iat time 0. We say that G has �nite second momentsif E[Ni(1)2] <1 for 1 � i � n.We prove below a result showing that the upperand lower tails of the logarithm of the leaf countdistributions Ni(k) of multitype Galton{Watsonprocesses have double-exponential decay in k ask ! 1, provided that the processes satisfy somemild extra conditions, which we now introduce.A multitype Galton{Watson process is boundedly

branching if there is an upper bound L on the num-ber of progeny that an individual (of any type) canhave in one time period. It is strictly branching ifan individual always has at least two progeny ineach time period.
Theorem 4.1. Let G be a multitype Galton{Watsonprocess with n types that is positively regular , has�nite mean matrix M with maximal real eigen-value �, and is supercritical (� > 1).
(i) If G is boundedly branching , there exist for anyr > � positive constants � and �, depending onr, such thatProbfNi(k) > rkg � exp(��(1 + �)k)for 1 � i � n and all k � 1.
(ii) If G is strictly branching and has �nite secondmoments, there exist for any r < � positive con-stants � and �, depending on r, such thatProbfNi(k) < rkg � exp(��(1 + �)k)for 1 � i � n and all k � 1.

REMARKS ON TABLE 2Although a branching process of the type we are considering has a double-exponential number of possible treesat depth k, the E[ ~N�(k)] entries in Table 2 were computed in single-exponential time as follows: Let Xik, fori mod 9, be a random variable counting the number of leaves at depth k of a sample tree drawn from thebranching process B[9], starting from a single individual of type i. Let P [Xik = x] := ProbfXik = xg. Then thedistributions of Xik and Xk were computed from the recursionP [Xi0 = 1] = 1;P [Xik = x] = P [X2ik�1 = x] if i = 1; 4; 5; 7;P [X2k = x] = 1Xy=0P [X2ik�1 = x� y]�P [X1k�1 = y] + P [X4k�1 = y] + P [X7k�1 = y]3 � ;
P [X8k = x] = 1Xy=0P [X2ik�1 = x� y]�P [X2k�1 = y] + P [X5k�1 = y] + P [X8k�1 = y]3 � ;P [Xk = x] = 16 Ximod 9P [Xik = x]:The cumulative distribution function fk(t) of the number of leaves was then computed. Finally the cumulativedistributions of the minimum and maximum of R(k) draws were computed using 1�(1�fk(t))R(k) and fk(t)R(k),respectively. The entire computation took about 15 minutes on a 150 MHz MIPS R4400 processor.
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Before giving the proof, we note that the conclu-sion of either part of the theorem certainly re-quire some extra restriction on the Galton{Watsonprocess G beyond being positively regular and su-percritical. Concerning (i), suppose a single-typeGalton{Watson process G has the probability pmof m o�spring satisfying pm = cm�4 for large m(so G has a �nite second moment). ThenProbfN1(k) > rkg � ProbfN1(1) > rkg � prk� cr�4k;for su�ciently large r, which violates the conclu-sion in (i). Concerning (ii), if G is not strictlybranching, and p1 > 0, thenProbfN1(k) < rkg � (p1)k;which violates the conclusion in (ii).
Proof. (i) Suppose that r > � is given. By hypothe-sis there is a �nite bound L for the maximum num-ber of progeny that a single individual can have inone time period. The argument we give does notdepend on the type of the individual at time 0, sowe omit explicit reference to it.Let N (i)(k) denote the number of individuals oftype i at time k, and de�ne the type vector v(k)at period k byv(k) := (N (1)(k); N (2)(k); : : : ; N (n)(k)):Also let N (i;j)(k; k+1) denote the number of indi-viduals of type j at period k + 1 that are progenyof an individual of type i at period k.Suppose that N(k) > rk. We claim that there isa constant k0 depending on r and a constant � > 0such that, for all k � k0, there is some intermediatetime l with 0 � l � k � 1 and a pair (i; j) of typeswith M i;j 6= 0, such thatN (i)(l) � (1 + �)k (4.1)and N (i;j)(l; l + 1) � (1 + �)M i;jN (i)(l): (4.2)

We argue by contradiction, and suppose there wereno such time l. Set e = (1; 1; : : : ; 1) and observethat all the type vectors satisfy coordinatewise theinequalityv(l + 1) � (1 + �)v(l)M + (1 + �)kLe;because the �rst term on the right bounds the con-tribution to v(l+1) of individuals of type j at timel+1 that are progeny of those types i at time l forwhich (4.2) doesn't hold, while the second term onthe right bounds the contribution from types i forwhich (4.1) doesn't hold. Iterating this inequalityfor 0 � l � k � 1 starting with v(0) � e, we havev(k)�L(1+�)ke�(I+(1+�)M+(1+�)2M 2+ � � �+(1+�)kMk)(where I is the identity). By Perron{Frobeniustheory the matrixM has spectral radius �, and bythe positive regularity hypothesis its set of eigen-values on the circle jzj = � consists of a singlesimple eigenvalue at z = �. Therefore there is aconstant c0 with eMk � c0�ke:Thus the preceding inequality for v(k) yieldsv(k) � c0(k + 1)L(1 + �)2k�ke;henceN(k) = v(k)eT � c0n(k + 1)L(1 + �)2k�k:If we therefore choose � so that 1 < 1+ � <pr=�,this bound contradicts N(k) > rk provided thatk � k0, proving the claim.To bound ProbfN(k) > rkg it thus su�ces tobound the probability of the event (4.1) and (4.2)occurring over all triples (i; j; l). Now the randomvariable N (i;j)(l; l + 1) is a sum of N (i)(l) inde-pendent draws from an integer-valued probabilitydistribution fpmg, where pm is the probability thatan individual of type i on G has exactly m progenyof type j. By de�nition the distribution fpmg hasexpected value E[p] = M i;j , and we also know
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that pm = 0 for all m � L. Now we can ap-ply Cherno�'s theorem (as quoted in [Lagarias andWeiss 1992, p. 234]) with N (i)(l) draws to obtainthe boundProbfN (i;j)(l; l+ 1) � (1 + �)E[p]N (i)(l)g� exp(��N (i)(l)); (4.3)where � = �g((1 + �)E[p]) with
g(a) := sup�2Rn�a� log LXm=0 pmem�o:

We check that � > 0. Certainly g(a) � 0, bytaking � = 0 above, and the strict convexity of
log LXm=0 pmem�

allows one to check that for a > E[p] the minimizeron the right side is not at � = 0, hence � > 0.Now combining (4.1), (4.2) and (4.3) we getProbfN(k) > rkg � n2k exp(��(1 + �)k);valid for k � k0. Decreasing � and � towards 0 asnecessary, we obtain the conclusion of part (i).
(ii) Suppose that r < � is given. The assumptionthat the process is strictly branching guaranteesthat Ni(t) � 2t for all t � 1 and 1 � i � n. Nowview a tree of depth k as consisting of a rooted treeof depth t that has N(t) subtrees, each of depthl := k � t, growing from each of its leaves. Allof these subtrees grow independently, and each ofthem can have at most rk leaves, because the wholetree has rk leaves by hypothesis. Using the factthat Ni(t) � 2t for all t � 1, we obtain the boundProbfNi(k) < rkg� (Probfdepth-l subtree has < rk leavesg)Ni(t)� ( max1�j�nfProbfNj(l) < rkgg)2t : (4.4)We choose t = �k for a small � and wish tobound the probability that a tree of depth l =(1 � �)k has no more than rk leaves. Since M ispositively regular and second moments exist, the

Kesten{Stigum theorem [Kesten and Stigum 1966,Theorem 1] applies to give positive constants uisuch thatE[Ni(l)] = (ui + o(1))�l as l!1: (4.5)Furthermore, by the �nite second moment assump-tion, there is a �nite upper bound on the secondmoment of Ni(l)=�l valid for all l � 1 [Harris 1963,Theorem 9.2]. Hence by Chebyshev's inequalitythere is a constant 
 < 1 such thatProbfNi(l) < E[Ni(l)]g � 
for all l � 1 and 1 � i � n. To apply this in (4.4), itsu�ces to arrange that E[Ni(l)] > rk. Now (4.5)implies that there is a positive constant c� suchthat for 1 � i � n,E[Ni(l)] � c��lfor all l � 1. Write r = ��c with 0 < �c < 1 andchoose l = �ck � log2(c�);the point being that with this choice we haveE[Nj(l)] � c��l � rkfor 1 � j � n, the last inequality depending on thefact that � � 2. Thus, for 1 � j � n, we getProbfNj(l) < rkg] � ProbfNj(l) < E[Nj(l)]g � 
for all l � 1. Setting 
 = exp(���), we get from(4.4) thatProbfN(k) < rkg � exp(���2k�l)= exp(���c�c(1�i)k)� exp(��(1 + �)k)with � > 0 and � > 0. �
5. APPLICATION TO 3x+1 BRANCHING PROCESS

MODELSWe consider now a \repeated branching process"model in which the model B[9] is grown to depthk, making S(k) independent trials. The statisticsthat we are interested in are the minimum and
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maximum of the number of leaves over these S(k)trials. We are interested in the case that S(k)grows exponentially in k, so we consider S(k) =b�kc, where � > 1 is a �xed constant. The relevantrandom variables are~N�� (k) = minfXk : take b�kc i.i.d. draws from B[9]g;~N+� (k) = maxfXk : take b�kc i.i.d. draws from B[9]g:The scaled random variables ( 43)k( ~N�� (k))�1 and( 43)�k ~N+� (k) are analogous to (D�(k))�1 andD+(k)in Table 1.We �rst prove that an analogue of Conjecture Cholds for this \repeated branching process" modelusing B[9].
Theorem 5.1. For any �xed � > 1, with probabilityone, the branching process B[9] haslimk!1( ~N�� (k))1=k = limk!1( ~N+� (k))1=k = 43 :
Proof. The process has mean matrix

M :=
@@@ TypeType

0 05 1 0 0 1 02 13 43 130 13 13 131 0 0 08 0 0
0

81 0 0 0 51 4 7 21 0 17 0 0 0 0 0 04 0 0 0
(5.1)

with left-eigenvector v = (1; 1; 1; 1; 1; 1), and M 4has positive entries so B[9] is positively regular:compare [Lagarias and Weiss 1992, Theorem 3.2].It is certainly boundedly branching, so part (i) ofTheorem 4.1 applies to give, for r > 43 ,Probf ~N+� (k) � rkg � �k exp(��(1 + �)k):Since P1k=1 �k exp(��(1 + �)k) converges, we con-clude that, with probability one,lim supk!1 ( ~N+� (k))1=k � � = 43 (5.2)

The key point of the proof concerns the strictbranching property. Although B[9] is not strictlybranching, repeated application of it for four timeperiods is. This is easy to check using the branch-ing data in Figure 3. The repeated branching pro-cess G = B[9](�4) has mean matrix M 4, which hasgrowth rate �4, and it has �nite second momentssince it is boundedly branching. Now part (ii) ofTheorem 4.1 applies to G, to show thatProbf ~N�� (4k) < rkg � �k exp(��(1 + �)k)for any r < ( 43)4. As in the argument above, weconclude that, with probability one,lim infk!1 ( ~N�� (4k))1=k � � 43�4:Since N(k) � N(k+ i) � 2iN(k) for 0 � i � 3, weconclude that, with probability one,lim infk!1 ( ~N�� (k))1=k � � = 43 :Combining this with (5.2) and using the fact that~N�� (k) � ~N+� (k) in any sampling of trees, we con-clude that limk!1( ~N+� (k))1=k and limk!1( ~N�� (k))1=k bothexist and equal 43 with probability one. �
Remark. This proof applies to all the branching pro-cess models B[3j] with j � 2, because all the pro-cesses B[3j](�4) have the strict branching propertyfor j � 2. It does not apply to the branching pro-cesses B[1] and B[3], because they have no iteratepossessing the strict branching property. In factthe lower bound (5.2) is false for B[1] and B[3]whenever � > 43 .We now show that the analogue of Conjecture C#is false for the \repeated branching process" modelusing B[9].
Theorem 5.2. For any �xed � > 1, the branchingprocess B[9] haslimk!1� 43��k ~N�� (k) = 0;limk!1� 43��k ~N+� (k) = +1:
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Proof. Let Wmk , for m mod 9, enumerate the num-ber of leaves of type m of a random tree of depth kdrawn from B[9], with root node drawn uniformlyfrom f1; 2; 4; 5; 7; 8g. SetW k := (W 1k ;W 2k ;W 4k ;W 5k ;W 7k ;W 8k );so that Xk = W 1k +W 2k +W 4k +W 5k +W 7k +W 8k .Let wk denote the probability distribution of therandom vector ( 43)�kW k. Now E[X1 logX1] <1,hence the Kesten{Stigum theorem applies to showthat the distributions wk converge weakly to a lim-iting distribution w1, which is of the formw1 = w � v;where v is a constant vector and w is a one-dimen-sional positive random variable that is absolutelycontinuous, except for a possible jump at the ori-gin. (The jump at the origin represents the proba-bility of extinction.) Furthermore v is the (unique)left eigenvector corresponding to the maximal realeigenvalue � of the mean matrixM of the Galton{Watson process; in our case M is given in (5.1),and v = e = (1; 1; : : : ; 1).The conditional distributionwi := fw j initial type ighas expectationE[w j initial type i] = ui;where u is a right eigenvector ofM , and the jumpqi at the origin depends on the type i. The qi arejust probabilities of extinction, so in the case ofB[9] there are no jumps (all qi = 0), and eachconditional distribution wi is strictly positive onR+ , by [Athreiya and Ney 1972, xV.6, Theorem2(iv)]. (A detailed proof of the positivity of w forthe single-type Galton{Watson process appears in[Athreiya and Ney 1972, x II.5, Theorem 2]. Seealso [Kesten and Stigum 1966, Lemma 7].)Now the random variables( 43)�k ~N�� (k) and ( 43)�k ~N+� (k)

sample values in the tails of the distributions wk,that is, values that lie outside any �xed region("; 1 � ") in the cumulative distribution for largeenough k. Since the wk converge weakly to w1, itfollows from the strict positivity of w on R+ that,as k !1, we have� 43��k ~N�� (k)! 0;� 43��k ~N+� (k)!1:Theorem 5.2 follows. �
6. AVERAGE LEAF COUNTS AND CONJECTURE C#We return to the study of 3x+ 1 trees, and study
uctuations in the leaf counts of such trees causedby the branching pattern at the base of the tree, inits �rst j levels. That is, we estimate the expectedsize of pruned 3x+ 1 trees T�k(a) whose root nodelies in a �xed congruence clase l mod 3j. Thisexpected value isE�k [l mod 3j] := 3j�(k+1) Xamod 3k+1a�lmod 3jN�k (a)for j � 1.
Theorem 6.1. For each j � 1 and l 6� 0 mod 3 thereis a positive constant W [l mod 3j] such thatE�k [l mod 3j] = (W [l mod 3j] + o(1))�43�k (6.1)as k !1.
Proof. We will use the formula (corresponding toj = 0) 12 � 3k Xamod 3k+1a6�0mod 3 N�k (a) = � 43�k; (6.2)

which is proved in [Lagarias and Weiss 1992, The-orem 3.1].We �rst establish recursions for the quantitiesE�k [l mod 3j]. The recursions are based on the bot-



Applegate and Lagarias: The Distribution of 3x+1 Trees 205

tom branching of the 3x + 1 tree, which dependson l mod 9, and is as follows:2l mod 3j
l mod 3j

r
r

2l mod 3j 13 (2l � 1) mod 3j�1
l mod 3j����

�r
r

r
AAAA

A
l � 1; 4; 5; 7 mod 9 l � 2; 8 mod 9This gives the recursionN�k (a) = N�k�1(2a) +  (a mod 9)N�k�1� 13(2a� 1)�;in which (l mod 9) := � 0 if l � 1; 4; 5; 7 mod 91 if l � 2; 8 mod 9is an indicator function for the presence of a branchof the tree with edge label 1. Summing this recur-sion over all a mod 3k+1 we get, for k � j � 2,E�k [l mod 3j] = E�k�1[2l mod 3j]+  (l mod 9)E�k�1[ 13(2l � 1) mod 3j�1]: (6.3)If j � 2 but 1 � k < j thenE�k [l mod 3j] = E�k [l mod 3k]:The case j = 1 must be treated separately. Therecursions becomeE�k [1 mod 3] = E�k�1[2 mod 3];E�k [2 mod 3] = E�k�1[1 mod 3] + 23� 43�k�1;where (6.2) was used to obtain the last equation.We have E�1 [1 mod 3] = 1 = 34� 43� and E�1 [2 mod 3]= 53 = 54� 43�, from which we deduceE�k [l mod 3] = wl(k)�43�kfor l = 1; 2, in which w1(k) and w2(k) obey therecurrences w1(k) = 34w2(k � 1);w2(k) = 34w1(k � 1) + 12 :

This yields w2(k) = 916w2(k � 2) + 12 , from whichone easily deducesw1(k) = 67 +O�� 34�k�;w2(k) = 87 +O�� 34�k�: (6.4)

Now (6.1) follows for j = 1 withW [1 mod 3] = 67 and W [2 mod 3] = 87 : (6.5)For j � 2, letW [l mod 3j] be de�ned recursivelyin j as the unique solution to the system of linearequationsW [l mod 3j] = 34�W [2l mod 3j]+  (l mod 9)W [ 13(2l � 1) mod 3j�1]�: (6.6)The quantities W [ 13(2l � 1) mod 3j�1] are known,and this linear system has matrix I � 34P , whereP is a certain permutation matrix, which is clearlyinvertible since (I� 34P )�1 = I+ 34P+� 34P �2+� � � .Next, de�ne the quantities �k[l mod 3j] byE�k [l mod 3j] = �W [l mod 3j] +�k[l mod 3j]�� 43�k;and set ��k[3j] := maxl 6�0mod3���k[l mod 3j]��:We claim that there are positive constants cj suchthat ��k[3j] � cj� 78�k: (6.7)If so, then (6.1) follows.For j = 1 this holds for all k � 1 by (6.4), choos-ing a suitable value for c1.We prove (6.7) for j � 2 by induction on j, wherefor each j we verify it for all k by induction onk � 1. The constants cj are de�ned recursively bycj = max�6cj�1; max1�k�j ��k[3j]�87�k�:Assume (6.7) is true for j � 1 and all k. For j and1 � k < j, (6.7) holds by the de�nition of cj. Forj � k, the recursions (6.3) give�k[l mod 3j] = 34��k�1[2l mod 3j]+  (l mod 9)�k�1[ 13(2l � 1) mod 3j�1]�:
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In particular the recursions yield the inequality��k[3j] � 34 ��k�1[3j] + 34 ��k�1[3j�1]:This gives, by the induction hypothesis,��k[3j] � 34cj� 78�k�1 + 34cj�1� 78�k�1 � cj� 78�k;since cj � 6cj�1, completing the induction step.(One can prove that ��k[3j] is O�( 34)(1+")k� for any" > 0, by a similar argument.) �The densities W [l mod 3j] are determined recur-sively by solving the linear system (6.6). For j = 2,we obtainW [1 mod 9] = 34563367 ; W [2 mod 9] = 46083367 ;W [4 mod 9] = 32583367 ; W [8 mod 9] = 43443367 ;W [7 mod 9] = 19443367 ; W [5 mod 9] = 25923367 :
9>=>; (6.8)

We now show, for later use, that the quantitiesW [l mod 3j] satisfy, for all j � 1, the mean valueformula 12 � 3j�1 Xlmod 3jl 6�0mod 3W [l mod 3j] = 1: (6.9)

This holds for j = 1 by (6.5). For j � 2, summingup (6.6) over all l mod 3j we get14 Xlmod 3jl 6�0mod 3W [l mod 3j] = 34 Xl0mod 3j�1l0 6�0mod 3W [l0 mod 3j�1]:
Now (6.9) follows by induction on j, because itsleft-hand side equals, by the equation just given,12 � 3j�2 Xl0mod 3j�1l0 6�0mod 3W [l0 mod 3j�1] = 1:
Using the quantities W [l mod 3j] we can obtainasymptotic bounds on the number of leaves in ex-tremal trees.

Corollary 6.2. Let D�(k) = � 43��kN�(k). For eachj � 1, we havelim supk!1 D+(k) �W+j := maxl 6�0mod 3W [l mod 3j];lim infk!1 D�(k) �W�j := minl 6�0mod 3W [l mod 3j]:
Proof. Extreme values on leaf counts satisfy obviousinequalities in relation to mean values. �The limit j !1 in Corollary 6.2 yieldslim supk!1 D+(k) �W+1 := lim supj!1 W+j ;lim infk!1 D�(k) �W�1 := lim infj!1 W�j :In order for Conjecture C# to hold,W+1 andW�1must satisfy 0 < W�1 < 1 < W+1 <1: (6.10)This is unproved, but would follow from the LimitFunction Conjecture stated below.Table 3 presents data on the extreme valuesW�jand W+j , as well as on the quantities�+j := maxl�l0mod 3j�1��W [l mod 3j]�W [l0 mod 3j]��
which bound how fast W�j and W+j are changingas j ! 1. It also gives the quantities l mod 3jattaining W+j and W�j , with l expressed in base 3,as well as l mod 3j�1 attaining �+j .On comparing the values in Table 3 with the ex-treme densitiesD+(k) andD�(k) in Table 1, we seethat by k = 9 the values W+ and W� seem to beaccounting for nearly all of the observed variationin D+(k) and D�(k). (Note that W�8 < D�(8);this is not contradictory because W�8 is an asymp-totic limit as k ! 1. However we must haveD�(8) � minlE�8 [l mod 38]( 34)8.)The data in Table 3 suggest that the quantitiesW [l mod 3j] may explain all the extremal varia-tion in leaf count sizes in an asymptotic sense. Wetherefore propose the following conjecture.
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j min l (mod 3j) W�j max l (mod 3j) W+j max l (mod 3j�1) �+j1 13 0:857 23 1:143 { 0:2862 213 0:577 023 1:369 23 0:5993 2213 0:528 2023 1:493 223 0:4074 22213 0:517 02023 1:561 2223 0:3025 022213 0:504 121223 1:611 22223 0:2096 2022213 0:503 2121223 1:649 222223 0:1667 10022213 0:498 12121223 1:672 2222223 0:1168 210022213 0:497 212121223 1:690 22222223 0:0859 2210022213 0:494 2020202023 1:704 222222223 0:06210 12210022213 0:493 02020202023 1:714 2222222223 0:04511 212210022213 0:491 202020202023 1:721 22222222223 0:033
TABLE 3. Extreme densities W [l mod 3j ].

Extremal Limit Conjecture. D+(k) and D�(k) satisfylim supk!1 D+(k) =W+1 and lim infk!1 D�(k) =W�1.We observe that the recursion for W [l mod 3j]has a regular structure. These quantities interpo-late to a function de�ned almost everywhere on theinvertible 3-adic integersZ�3 = f� 2 Z3 : � � 1 or 2 mod 3g;as we now show. We view Z�3 as a measure spacewith the 3-adic measure � with �(Z3) = 1, so that�(Z�3 ) = 23 .
Theorem 6.3. For �-almost all � =P1j=0 aj3j 2 Z�3 ,the limit W1(�) := limj!1W [� mod 3j] (6.11)

exists.
Proof. Let �� = 32�, so that ��(Z�3 ) = 1 is a prob-ability measure. De�ne for j � 1 the functionsWj : Z�3 ! R byWj(�) :=W [� mod 3j];and view fWj : j � 1g as random variables on Z�3with respect to ��. We claim that fWj : j � 1gis a martingale with respect to the �-�elds fFj :j � 1g with Fj = fresidue classes mod 3jg. The

martingale property is that, for each residue class� mod 3j,E[Wj+1(�) j � � � mod 3j] =Wj(�);which is equivalent to13 2Xk=0W [�+ k � 3j mod 3j+1] =W [� mod 3j]:
(6.12)To establish (6.12), we de�neX[l mod 3j] :=W [l mod 3j]�W [l mod 3j�1]:The recursion (6.6) for l mod 3j, subtracted fromthat for l mod 3j+1, givesX[l mod 3j+1] = 34�X[2l mod 3j+1]+  (l mod 9)X[ 13(2l � 1) mod 3j]�: (6.13)We now prove by induction on j � 1 thatA[l mod 3j+1] := 2Xk=0X[l + k � 3j mod 3j+1] = 0
(6.14)for all l mod 3j+1. The base case j = 1 is veri�ed bydirect computation, using (6.8). For the inductionstep, (6.13) summed over l, l + 3j, and l + 2 � 3jgivesA[l mod 3j+1] = 34�A[2l mod 3j+1]+  (l mod 9)A[ 13(2l � 1) mod 3j]�:
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The last term A[ 13(2l � 1) mod 3j] vanishes by theinduction hypothesis, so the equation becomes theinvertible linear system(I � 34P )�A[l mod 3j+1]� = 0:This gives (6.14). Substituting the de�nition ofX[l mod 3j+1] in (6.14) gives (6.12); hence fWj :j � 1g is a martingale.The mean value formula (6.9) givesE�jWjj� = E[Wj] = ZZ�3 Wj(�)d��(�) = 1for j � 1. Now the Martingale Convergence The-orem [Billingsley 1979, Theorem 35.4] applies tofWj : j � 1g, so the theorem follows. �We may de�ne the limit function W1(�) for all� 2 Z�3 byW1(�) = lim supj!1 W [� mod 3j]:Here W1(�) � 0 and the value +1 is allowed.The Martingale Convergence Theorem also givesE[W1] = ZZ�3 W1(�) d��(�)= E�jW1j� = E�jW1j� = 1: (6.15)The data in Table 3 suggest that �+j tends to 0rapidly enough that P1j=0 �+j < 1, in which caseW [� mod 3j] would converge uniformly to W1(�)for all � 2 Z�3 . Therefore we propose:
Limit Function Conjecture. The function W1 : Z�3 !R is continuous and nonzero, andW1(�) = limj!1W [� mod 3j]for all � 2 Z�3 .If this conjecture is true, then taking the limitas j ! 1 in (6.6) shows that W1(�) satis�es thefunctional equationW1(�) = 34�W1(2�)+ (� mod 9)W1( 13(2��1))�:

(6.16)

Since Z�3 is compact, this conjecture also impliesthat W+1 = sup�2Z�3W1(�) <1and W�1 = inf�2Z�3 W1(�) > 0:Since (6.15) and (6.16) imply that W1(�) cannotbe the constant function 1, we must have W�1 <1 < W+1, and (6.10) follows. Thus the Limit Func-tion Conjecture and the Extremal Limit Conjec-ture together imply Conjecture C#.Finally, we note some resemblance of the recur-sion (6.6) to the Krasikov inequalities studied in[Applegate and Lagarias 1995b].
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