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We consider pattern formation during the supercooling solid-
ification of a pure material, using a phase field model. The
model gives rise to a rich variety of three-dimensional patterns,
including very realistic dendritic crystal forms. We show how
the strength of anisotropy has a crucial influence on the shape
of crystals.

1. INTRODUCTION

Crystal growth is an interesting phenomenon that
presents spontaneous pattern formation at macro-
scopic scales. Dendritic crystals are the most typ-
ical examples of such patterns. In this article, we
describe one attempt to understand the mechanism
of dendritic pattern formation in three dimeasions,
using a mathematical model and numerical simu-
lations based on it.

There are several types of crystallization: vapor
growth, solute growth, melt growth, and so on. In
a dilute environment like vapor or solute, crystals
are usually bounded by facets. They grow by a pro-
cess called lateral growth, in which the interface is
flat at the molecular level and advances by steps
one-molecule high that sweep over it. The growth
rate of the crystal is determined by the sweeping
velocity of the steps and the frequency of the step-
supplying process, such as two-dimensional nucle-
ation or screw dislocation. If supersaturation is not
very large, the interfaces are kept macroscopically
flat. Once supersaturation becomes larger than
some critical value, the crystal presents a compli-
cated form, as in the case of snowflakes [Yokoyama
and Kuroda 1990].
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By contrast, the crystallization process in a con-
centrated environment like melt is usually of a dif-
ferent kind. Macrescopically the crystals are soft-
shaped, corresponding to the profile of the diffusion
field surrounding them. At the molecular level, the
solid-liquid interface is rough and the molecules
coming to the interface attach to it immediately
and are taken into the solid phase; this is called
attaching growth. In this process, the solid-liquid
interface is much broader than in lateral growth.
Although the process of attaching growth is not
understood as clearly as that of lateral growth at
the microscopic level, it is easier to treat in macro-
scopic models. This is because we don’t have to
consider the transport of molecules along the in-
terface, nor the distribution of the step sources.
Therefore the growth rate of crystals can be con-
sidered to depend on the supercooling and on the
geometric configuration at each point on-the in-
terface, making the mathematical modeling eas-
ier.

In this article we present a model and numer-
ical simulations of macroscopic pattern formation
in the solidification of pure materials. We are espe-
cially interested in dendritic crystal growth. This
type of growth has been studied in a supercooled
melt of succinonitrile [Huang and Glicksman 1981},
helium 4 [Franck and Jung 1986], krypton [Bil-
gram et al. 1988], and in supersaturated solutions
of ammonium bromide {Honjo and Sawada 1982;
Dougherty et al. 1987; Maurer et al. 1989]. Theo-
retically, several models have been proposed: a ge-
ometric model [Brower et al. 1983], a boundary-
layer model [Ben-Jacob et al. 1984], and a fully
nonlinear model [Pelcé and Pomeau 1986; Caroli
et al. 1986; Barbieri et al. 1986; Ben Amar and
Pomeau 1986; Meiron 1986; Kessler et al. 1986].
Numerical simulations were carried out for the fully
nonlinear model, and the anisotropy dependence
of growth velocity was investigated [Saito et al.
1987]. But this approach based on the fully non-
linear model has been limited to two-dimensional
cases. It is important to provide some models to
simulate three-dimensional crystal growth, because

there are some features of this case that do not
arise in any two-dimensional simulation.

What we propose here is a so-called phase field
model. It handles motions of interfaces by using
the layer dynamics of a certain reaction diffusion
system, which enables us to simulate three-dimen-
sional problems. It was introduced as a model of
solidification of pure material [Langer 1986; Collins
and Levine 1985; Fix 1983] and has been studied
to establish the physical and mathematical validi-
ties [Caginalp 1986; 1989; 1991; Umantsev and
Roitburd 1988; Fife and Penrose 1990]. Elsewhere
[Kobayashi 1987; 1991; 1993] I have introduced an-
other type of phase field model, and showed that
the formation of dendritic crystals can be simu-
lated in two dimensions. Moreover, the forma-~
tion of three-dimensional dendrites is simulated in
[Kobayashi 1991] (videotape part) and [Kobayashi
1992], to my knowledge for the first time. The
purpose of this article is to extend the results of
[Kobayashi 1991; 1992] to the morphological as-
pect of the crystals.

In our model, the shape of the crystal is ex-
pressed by a function called the phase field. In this
paper we use as the phase field the ordering param-
eter p(r,t) at the position » and the time t. The
liquid phase is indicated by p = 0, the solid phase
by p = 1, and the solid-liquid interface by a steep
transition layer connecting the values p = 0 and 1
(see Figure 1 for a two-dimensional example). The
thickness of the transition layer is small—of order
€, where ¢ is a small positive parameter explained
shortly. We will refer to this thin layer as “the
interface”, using the italics to distinguish it from
the real solid-liquid interface of the crystal we are
modeling (this is discussed in more detailed later).

Any type of phase field model includes a small
parameter ¢ representing the order of magnitude
of the interface thickness. In attaching growth,
this thickness is not negligible in comparison with
molecular dimensions, but it is very small com-
pared with the macroscopic characteristic size of
the phenomena we are interested in. Thus we have
to handle very different length scales if we take



Kobayashi: A Numerical Approach to Three-Dimensional Dendritic Solidification 61

FIGURE 1. An example of the phase field p(r,t) in the two-dimensional space. On the left, the dark region
corresponds to the solid-liquid interface. On the right, the graph of the function viewed in perspective: the
higher region indicates the solid phase, and the lower region the liquid phase.

£ as the true thickness of the real interface. As
long as we consider the model theoretically, there’s
no problem making e small: this in fact makes
things easier, for example, in asymptotic expan-
sions [Caginalp 1989; 1991]. We can even take the
limit € | 0.

However, from the simulation point of view, we
have a serious problem if € is very small, for the
computational cell size should be of the same or-
der as e at its largest in order to express and drive
our interface. Thus, simulating macroscopic pat-
tern formation with very small € (corresponding to
the thickness of the real interface) would require
an ideal computer with extremely large memory
and extremely high speed. This is impractical in
dimensions greater than one.

Thus we take the following standpoint. Imagine
that we observe the interface with a microscope
whose resolution is of an order & that is not so
fine. This means that we observe some physical
quantity f(r) as f * w.(r), where w.(r) is some
positive function supported in the e-neighborhood
of the origin and having total mass one. If we
take for f(r) the characteristic function of the solid

region (the thickness of the interface being zero
or realistically thin), the observed quantity will
be similar to the function that we use as a phase
field in our model. Thus we regard our computer
as a not-very-good microscope, and interpret the
simulation (with e rather larger than the thick-
ness of the real interface) as an attempt to ap-
proximate the motion of the real interface by the
motion of the much broader interface. In par-
ticular, € is not a physically determined parame-
ter, but rather a parameter determined (more or
less arbitrarily) by the simulator’s intention and
resources. We will return to this point in Sec-
tion 4.

In Section 2 we introduce the phase field model
and show that it falls within the reaction diffu-
sion equation framework. Then we make the model
anisotropic in a certain way. In Section 3 we pre-
sent the three-dimensional simulations of the solid-
ification in supercooled melt, and study in partic-
ular the effect of anisotropy on the growth process
and on the crystal shapes. In Section 4 we make
some additional comments about the model, dis-
cussing the problems associated with it.
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2. MATHEMATICAL MODELS

2.1. Basic Equation

In order to derive the basic equation describing the
evolution of p(r,t}, we first consider the following
energy form involving two parameters ¢ and m:

Blpie,m] = /rz (Ae(Vol? + Fim))dv,  (2.1)

where Q is the region in which the solidification
takes place and the function F(p;m) is a double-
well potential used in [Kobayashi 1987; 1991; 1993):

Foim) = [ 96 -0 - +m)d

Here m € (—5, ), which ensures that the poten-
tial F'(p; m) always has two local minima, at p =0
and p =.1. The difference F(0;m) — F(1;m) be-
tween the minima is gm. If m > 0, the solid phase
(p = 1) is stable and the liquid phase (p = 0) is
metastable, which means the temperature is lower
than the equilibrium temperature. If m < 0, the
liquid phase is stable and the solid is metastable,
which means the temperature is higher than that
of equilibrium. If m = 0, the two minima are iden-
tical, and the temperature is that of equilibrium.
The variable p is an ordering parameter and not
a conserved quantity. Thus the evolution equation
for p can be derived from the gradient formula

op _ 62
TS = 5’ (2.2)
namely,
ap_ 272 _ 1 2.3
r—at—sz+p(1 p)(p— 3 +m). (2.3)

This simple reaction diffusion equation is the basic
equation for our phase field model.

We give a rough sketch of the behavior of the
solution of (2.3). Since the parameter ¢ is small, we
can neglect the laplacian term in (2.3) if p does not
change abruptly in space.' Then we have ordinary
differential equations at each point, and p varies

between 0 or 1 with characteristic time of order
(recall that  — m lies between 0 and 1).

If p is very near 0 (or 1) at all points, the whole
area is filled with liquid (or solid), and no change
will happen after that. From now on we ignore this
trivial case.

If the two regions p =~ 0 and p = 1 coexist, there
must be a boundary region between them. The
value of p must change drastically there, and we
can no longer neglect the term €*V?p in (2.3). In
this region, (2.3) will give rise a transition layer
with thickness of order €. Consequently we obtain
a profile of p as shown in Figure 1 (right), which is
the starting point of our model.

Now we have to consider the problem of how
(2.3) drives this interface. Intuitively speaking,
there are three types of driving force, as we will
see below. _

But first we state the situation more formally.
Equation (2.3) has three spatially consta.nt steady-
state solutions p=0,p=1and p= 1 —m. The
first two solutions are stable, while the last is un-
stable. It is expected that a traveling wave solu-
tion exists connecting these two stable solutions,
and this is important for our model. To study this
solution, we consider (2.3) in one dimension:

dp ,0%
TS =€ ﬂ+p(1 pp—L1+m). (24)
Assume m > 0, so the solid phase is stable and the

liquid phase is metastable. Now it is easy to see
that the nonlinear eigenvalue problem

d*U aUu
F'*‘AE-FU(I—U)(U—%-i-m):
for —oco < € < 400, with boundary conditions
U(—o0) =1 and U(oo) = 0, has a solution

U(€) = (l—ta.nh 5 \/_)

with A = v2m. Using this, we can easily see that
(2.4) has a traveling wave solution

p(:c,t)=%( — tanh 2\/_‘?)
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with velocity

V=‘/§Tm€.

Note that the profiles of these traveling wave so-
lutions are the same for arbitrary values of m and
depend only on €. The thickness of the transi-
tion layer of the solution is of order ¢: if we define
the transition layer region by 0.1 < u < 0.9, say,
its thickness is about 6.2e. This single-layer trav-
eling wave solution is the simplest one describing
the motion of the interface when m # 0. In or-
der to be an expression of the moving solid-liquid
interface, this must be a stable solution [Fife and
McLeod 1977).

If there are several interfaces, separated by a dis-
tance significantly greater than their thickness, the
profile of p(z,t) in the vicinity of the interfaces is
almost the same as that of the single layer solu-
tion; the velocities in this case are also the same
as for a single-layer traveling wave. The situation
is the same if the system size is finite. Since m
corresponds to an energy difference between two
phases, these solutions describe a natural motion,
expressing the fact that the stable phase erodes
the metastable phase with a velocity proportional
to the energy difference. This driving force domi-
nates as long as m # 0.

Now assume m = 0, so the thermodynamic driv-
ing force vanishes. In this situation, there are two
driving forces. The first, corresponding to sur-
face tension, has no effect in one dimension, so for
the one-dimensional equation (2.4) only the second
force applies. It is a very weak attractive force be-
tween the interfaces, of order e~%/¢, where d is the

distance between the interfaces. Thus the layers
move dramatically more slowly than in the case
m # 0, as long as the distance between layers is
more than layer thickness. This is known as very
slow dynamics and is studied in detail in [Carr and
Pego 1989]. We will not take this force into account
any more, since it is so much less than the other
forces and since the motion it causes is too slow
to be interpreted as a motion of the solid-liquid
interface in solidification phenomena.

We return to Equation (2.3) in two or three di-
mensions. If m # 0, the situation is essentially the
same as in one dimension. The dominant driving
force is caused by the energy difference between
stable and metastable phases. Solidification oc-
curs for m > 0 and melting occurs for m < 0, with
rate proportional to |m|. To see the surface tension
clearly, assume at first that m vanishes, that the
dimension is two, and that the initial phase field
has the profile indicated on the left in Figure 2,
for example. For this phase field, both terms of ®
vanish in both bulk regions. At the interface, these
terms are positive, which disadvantages the energy.
Since, by (2.2), the system evolves in the direction
of decreasing ®, the interface will be driven so as
to reduce its area, as seen in Figure 2. The thick-
ness of the interface is almost fixed according to
the value of £, so the evolution tends to decrease
the interface’s “length”. In three dimensions, it
tends to decrease the interface’s “area” (roughly
speaking, the ratio between volume and thickness).
These driving forces correspond to surface tension.
If m # 0, thermodynamic driving force and surface
tension coexist, and both of them tend to move the
interface.

A A

™™™ ™

FIGURE 2. Time evolution of the interface with m = 0 in two dimensions. Time flows from left to right.
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In order to make the situation clear, we discuss
the sharp interface limit obtained by making € ap-
proach zero. There are different ways to take the
limit [Caginalp and Nishiura 1991], depending on
what order in € we take 7 and m to be. Here we
consider only the case where 7 is of order £2 and
m of order €. In this way we obtain a limiting
equation that includes both surface tension and a
thermodynamic driving force. More precisely, with
T = ae? and m = fe/v/2, we formally obtain the
equation

aV = f— (N - 1)k, (2.5)

where V is a normal velocity of the interface (the
direction from solid to liquid being taken to be pos-
itive), N is the ambient dimension and & is the
mean curvature of the interface (positive if the solid
region is convex).

Note that this equation is defined only on the
sharp interface itself (that is, on a surface in three
dimensions or on a curve in two), while the origi-
nal equation (2.3) is defined in the ambient region.
This is reasonable, because (2.3) contains essen-
tial information only in the neighborhood of the
interface; in the bulk regions it simply says that
0 = 0, each of its terms being almost zero (since
p is essentially identically zero or one in the bulk
phases).

If f = 0, Equation (2.5) expresses motion by
mean curvature, and if f # 0, it describes the mo-
tion of the interface caused by the thermodynamic
driving force and surface tension. We may con-
sider that the motion of the interface expressed by
(2.3) approximates the motion of sharp interface
given by (2.5). The convergence of (2.3) to (2.5)
as £ | 0 has been rigorously proved [Mottoni and
Schatzman 1990].

Here we mention another limit, defined by tak-
ing T = ae and m = f/v/2. Here the limit equation
with € | 0 is aV = f, and the surface tension term
disappears. But in the problem of crystal growth,
especially when the shape of crystal destabilizes,
forming dendrites, surface tension must be taken
into account to suppress the growth of structures

with arbitrarily short wavelength. Then usually
an equation including the term of order € is con-
sidered instead, such as aV = f—e(N—1)k. In this
equation, € should be a physical parameter corre-
sponding to capillary length, and therefore cannot
be chosen arbitrarily. As stated in the previous sec-
tion, we prefer to work in a way that frees the pa-
rameter € from such a restriction. This is the case
when we take the limit 7 = ae? and m = fe/v/2,
the parameter € being regarded as the width of the
interface, or as a measure of how well (2.3) approx-
imates (2.5).

Suppose m (or equivalently f) is positive, mean-
ing that the solid phase is stable and the liquid is
metastable. There is a radially symmetric solution
p = p(r) of (2.3), which means that the one par-
ticle of stable phase with radius r. exists in the
surrounding metastable phase. It exists under the
balance of the two forces, the first tending to make
the particle grow and the second to make it shrink.
This solution is unstable since the first force is con-
stant and the second is a decreasing function of the
particle radius (a particle with radius greater than
r. will grow and one with radius smaller than r.
will shrink and disappear). We call r. the criti-
cal nucleation radius. Of course, its value is very
small, so that the facts stated here are about the
ideal case in which we can take ¢ realistically small.
In simulations we must give initial particle a radius
rather larger than the real critical nucleation radius
in order to make the nucleus grow.

In any case, if the particle survives, it keeps
growing. Then the problem is what will happen as
the particle becomes larger, for example, whether
or not some destabilization occurs and patterns ap-
pear. From numerical simulations we can easily
see that no interesting pattern formation occurs.
Even if the initial shape is complicated, the shape
of the particle will become simple. Thus (2.3) is
not enough in order to simulate a formation of a
complicated shape. This is because the compli-
cated shapes arise from the nonuniformity of the
thermodynamic driving force along the interface,
while m is constant in Equation (2.3).
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2.2. Introduction of Anisotropy

Equation (2.3) includes no- anisotropy, and crys-
tals have anisotropy. We derive an equation that
includes anisotropy by making & in (2.1) depend
on the direction: € = £(v), where v corresponds to
the outer normal vector at the interface [Kobayashi
1987; Kobayashi 1993; Kobayashi 1991]. The func-
tion e(v) is assumed to satisfy e(\v) = (v) for A
positive. The equation becomes
2 v (Vrlegs) + V- (V)
+p(1-p)(p—

where ¢ and 8¢/0v are evaluated at the vector
—Vp. We can also make 7 depend on the direc-
tion, 7(v) = 7(—Vp). Thus 7(v) and &(v) control
the anisotropy of the kinetic coefficient and of the
surface energy, respectively.

Perhaps this form is the best way to give the an-
isotropy to the phase field model, since the related
sharp interface equation is physically realistic for
the two-dimensional case [McFadden et al. 1993;
Gurtin].! In three-dimensional cases, the sharp in-
terface equation should have the form

5 +m), - (2.6)

BV = £ - (etm) + 3
- (em+5

as a natural extension of the isotropic equation.
In this equation, f(n) and £(n) indicate anisot-
ropy in the kinetic coefficient and surface energy,
respectively, where n is an outer unit normal vec-
tor .at the interface. Furthermore, x, and x, are
the principal curvatures, and 8%£/8s? and 82€/0s?
are the second derivatives along the directions of
the principal curvatures x; and k,. It’s quite dif-
ficult to derive this sharp interface equation from
(2.6), and we were not able to do it. But we be-
lieve that the correct sharp interface equation is to

)
(n))nz (2.7)

11 made a mistake in deriving the sharp interface equation from
(2.6) in [Kobayashi 1993]: the equation in [McFadden et al. 1993;
Gurtin] js correct.

be derived from (2.6) also in the three-dimensional
case.

Here we will introduce a simple alternative to
(2.6) in order to decrease the computation time of
our numerical simulations. It is given by making
m dependent on the direction in (2.3):

T%p =e’Vip+p(1-p)(p-
where 7 and ¢ are constants. We impose the prop-
erty m(Av) = m(v) for arbitrary positive A, since
we want to express the direction dependence by
the function m(v). The vector —Vp indicates the
outer normal vector if it is evaluated in the in-
terface region. In the bulk region Vp is almost
zero and therefore we can hardly determine its di-
rection. But there is no problem, because Equa-
tion (2.8) works effectively only in the vicinity of
the interface region and we can take the value of
m(—Vp) appropriately in the bulk region.

To clarify how (2.8) drives the interface, we take
the sharp interface limit with 7 = ae? and m(v) =
fa(v)e/+/2, where o(v) is an anisotropy indicator.
The resulting equation is

aV = fo(n) — (N - 1)k. (2.9)

This equation means that the sensitivity of the
growth rate to the thermodynamic driving force
depends on the direction of the interface. To com-
pare (2.9) with (2.7), we introduce direction depen-
dence on a by setting a = a(n). Putting B(n) =
a(n)o(n)~! and £(n) = o(n)~?, we have

B()V = f —&(n)ky — £(n)k,.

This equation is incomplete since it does not in-
clude the second derivative terms of the anisotropy
function for the surface energy.

L+ m(~Vp)), (2.8)

2.3. Model Equation for the Solidification of a Pure
Material

To describe the solidification process of pure mate-
rial, we must make the parameter m in (2.8) should
depend on T, the temperature: m = m(T,v). And,
of course, we must consider the temperature field
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T(r,t) together with the phase field p(r,t). We
define the dimensionless temperature 7" by 17" =
(T —T.)(L/c), where T, is an equilibrium temper-
ature, L is the latent heat per unit mass and c
is the heat capacity per unit mass. The equation
governing the evolution of the temperature field is
derived from the conservation law of enthalpy:

o1’ 2 ra0D

S DV-T" + v
Here, for simplicity, the heat capacity and the heat
conduction coefficient are assumed to be the same
in both phases, and the latent heat does not de-
pend on the temperature at which solidification
oCCurs.

In previous papers [Kobayashi 1987; Kobayashi
1993; Kobayashi 1991; Kobayashi 1992], we defined
the dimensionless temperature as (T — Tvoo1) /(T —
T.001), where T, is the characteristic cooling tem-
perature, and then we had a dimensionless latent
heat K multiplied by the term 9dp/dt. In this
paper, we adopt the above nondimensionalization
and no longer use the parameter K. Instead we
have another dimensionless parameter A (corre-
sponding to K ') in the initial condition or bound-
ary condition.

Next, we nondimensionalize the space variable
by some characteristic crystal size first, and then
the time variable to make the diffusion constant
equal to one. Thus we arrive at the final model
equations for the solidification of a pure material:

15 -
Tzf =e*V2p+p(1 = p)(p — 5 + m(T, —Vp)),(2:10)
orT paindp
or _ ap 2.1
= =V'T+ o (2.11)

Note that the primes ’ are omitted from the nota-
tion of the dimensionless temperature.

In order to simulate the evolution of this system
of equations, we must specify the form of m(T,v).
We adopt the arctangent form used in [Kobayashi
1987; 1991; 1993], at the same time making it de-
pendent on the direction. The problem is how to
introduce anisotropy in three dimensions. In two
dimensions, it is easy to express the anisotropy by

some formula such as 1+ 6 cos46, since we can ex-
plicitly use the variable 6, the angle between the
outer normal vector v at the interface and the con-
stant vector (1,0). In three dimensions, we could
still use polar coordinates, but a formula giving
a reasonable anisotropy behavior would be some-
what complicated, and the evaluation of inverse
trigonometric functions is costly.

We opt for the following formulation. Let o(v)
be defined as

o(v) =1— 5( . 'l’ﬁ) (2.12)

lvl3/”
where |v|, = (Z?:, |'Uilh)1/h for the three-dimen-
sional vector v = (v;,vs,v3). This form gives a

kind of cubic anisotropy (Figure 3). In fact, o(v)
is invariant under 90° rotations around coordinate
axes. Note that o(v) = 1 (the maximum value) for
v = (1,0,0); that o(v) = 1 — 16 for v = (1,1,0);
and that o(v) = 1 — 26 (the minimum value) for
v=(1,1,1).

The anisotropy function (2.12) is not derived
from a serious physical analysis of molecular ar-
ray structure or the growth dynamics. It only ex-
presses a rough preference for growth in the direc-
tions (1,0,0), (0,1,0) and (0,0, 1). The big advan-
tage of this function is that, its computation time
is low, since it only involves arithmetic operations.

FIGURE 3.

Level curves of the anisotropy function
o(v) on the unit sphere.
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We note also that the formula for o(v), when
restricted to two dimensions, yields the four-mode
anisotropy discussed above: o(f) = 1 — 15(1 —
cos 40) for § = tan~* (v, /v,).

It may seem unnatural that the anisotropy ex-
pressed by o(v) is fixed with respect to the coor-
dinate system, but we explain this as follows. Our
model describes the growth process of a single crys-
tal. Since the directions of the crystal structure
are determined at the nucleation stage and do not
change during the growth process, the space coor-
dinates can be chosen so as to coincide with the
directions of the cubic crystalline structure.

Using o(v), we define m(T, v) as

m(T,v) = == tan™} (Yo (v)T).

We can introduce fluctuations in the system by
adding a small amount of noise to m(T’, v), which
effectively works only in the interface region. The
constant o € (0,1) is a safety parameter used to
assure that |m(T, v)| < 3, or |m(T,v) + noise| < 1
if noise is-added to m(T, v). If |T| is small enough,
we can consider m(T, v) linear in T, which means
the thermodynamic driving force is proportional to
the supercooling at the interface. The parameter
« is a sensitivity parameter by means of which we
can control this proportionality constant.

3. SIMULATIONS

In this section we discuss three-dimensional sim-
ulations of the solidification of a pure material in
supercooled melt using the model equation system
(2.10)—(2.11). The vessel is a box with edges par-
allel to the coordinate axes. As mentioned before,
the directions of anisotropy implicit in (2.12) also
coincide with the axes.

In all the simulations, the vessel is initially filled
with uniformly supercooled melt at dimensionless
temperature —A, with A = (T, — Tioa)/(L/c),
where T,,. is the initial temperature of the super-
cooled melt. Nucleation takes place at the center
of one wall and the growth takes place under adia-
batic conditions. We do not simulate the process

of nucleation, only the growth after nucleation; the
nucleus is given as an appropriate initial state for
the phase field p(r,0).

There are two parameters that strongly influ-
ence the shape of crystals: the dimensionless su-
percooling A and the strength of anisotropy §. We
have A = 0.25 in all the simulations demonstrated
here, and we examine how the anisotropy influ-
ences the growth process and the crystal forms.
The remaining parameters that are common to all
the simulations are 7 = 3.0 x 1074, ¢ = 1.0 x 10~2,
a=0.9,v=40.0, 6z =8y =62=3.0x 1072, and
8t = 1.0 x 10~ (here 8z, 6y and 6z are the space
mesh sizes and 6t is the time mesh size).

The numerical convergence of the one- and two-
dimensional phase field model with respect to space
and time mesh sizes was systematically studied in
[Wheeler et al. 1993]. In order to perform the
three-dimensional simulations using the available
computational resources, we chose §z = 3¢, which
is rather larger than the value éx = € used in
[Wheeler et al. 1993]. Although we could not check
numerical convergence for lack of computational
power in the three-dimensional case, we are sure
that the convergence with the space mesh size and
the time mesh size holds. This is because the model
equation is simply a reaction-diffusion equation of
the usual type, once all the parameters are fixed.
However, we have to remember that the conver-
gence for the velocity, radius and temperature of
the tip of the principal branch should hold, while
we cannot expect the convergence of the sidebranch
structure in the strict sense.

In the simulation of the dendritic solidification,
the shape of the interface is strongly unstable and
is subtly affected by noise. Thus convergence will
be observed only in the statistic properties of the
sidebranch structure.

3.1. The Case of Strong Anisotropy

Figures 4-10 show the results of the simulation for
values of 6 ranging from 0.2 to 1.0, with the other
parameters held fixed. The region size was taken
to be 6.0 x 4.8 x 4.8 (200 x 120 x 120 cells), and
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the computations were carried out in a quadrant
only, being extended to the other three by reflec-
tion in the xy- and zz-planes. All the simulations
were carried out by a simple explicit scheme and
no special techniques were used. No noise was ac-
tively added, although noise caused by the trunca-
tion and roundoff is, of course, unavoidable.

6=0.2

Figure 4 shows one typical dendritic crystal form,
similar to the one seen, for example, in the den-
dritic growth of succinonitrile in the (1,1,1) di-
rection [Sawada and Inoue]. It has rather dense
sidebranch structure, with secondary sidebranches.
The most characteristic feature in this growth pro-
cess is the oscillation in the rate at which the prin-
cipal branch grows (speed of the tip, as well as its
curvature: see the bottom left graph in Figure 4).
This kind of oscillation is observed in experiments
[Sawada and Inoue]. Here it is rather strong and
quickly leads to sidebranches. Thus the distance
between the tip of the principal branch and the
fully grown sidebranch nearest to it is small com-
pared with the case of nonoscillatory growth shown
in Figure 6, for example. The angle between the
principal branch and the sidebranches is approx-
imately 7/3, which is shifted from the direction
of cubic anisotropy, and almost perpendicular to
the contour surface of the temperature field (this
is the best direction for sidebranches’ growing, due
to the effectiveness of the cooling). We also see
that, as each sidebranch grows, it splits into three
smaller branches. The growth form of each side-
branch is similar to that of the oscillating prin-
cipal branch seen in two-dimensional simulations
[Kobayashi 1993]. The walls of the vessel prevent
sidebranches from growing beyond a certain point:
the tips of fully grown sidebranches are already
blocked by the side walls and cannot grow any
more.

6=025

The crystal form in Figure 5 is very similar to the
previous one. The growth rate of principal branch

still oscillates, although less (bottom left graph).
The principal branch is a bit thicker than in the
previous case, while the sidebranch structure is al-
most the same.

6=20.3

Figure 6 shows one of the most typical dendritic
growth form. It is observed, for example, in the
dendritic growth of succinonitrile to the (1,0,0)
direction [Huang and Glicksman 1981]. The shape
of the principal branch’s tip is approximately a
paraboloid of revolution. Its axisymmetry is first
broken near the tip into a fourfold fin-like struc-
ture, considered to be a direct result of the cubic
anisotropy. The oscillation of the growth speed
of the principal branch triggered by initial nucle-
ation stage is rapidly damped, and oscillation is no
longer observed in the steady growth stage (bottom
left graph). Although oscillation is not present to
create sidebranches, they nevertheless arise: side-
branch instability takes place on the surface of the
fins and the fluctuations with characteristic wave-
length are destabilized. Since this instability pro-
cess takes longer than the oscillatory mechanism,
fully developed sidebranches are seen only near the
base. For the same reason, the principal branch
is thicker than in the preceding cases. Once the
sidebranches are created, they grow and ramify
as before. Sidebranches compete with each other
through the temperature field, and come out as
winners or losers. This is also seen in physical ex-
periments.

6=04

In Figure 7, sidebranch instability still occurs and
the sidebranches grow, but -only near the base of
the principal branch. The destabilization rate is
less than in the previous case.

6=0.5

In Figure 8, sidebranch instability is even weaker;
sidebranches are smaller and the principal branch
is thicker. Qualitatively, the crystal form is very
similar to the preceding one.
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FIGURE 4. Simulation for 6 = 0.2. Top two rows: views of the computed crystal. Third row, left: sections of
the crystal at successive times; the lower half shows the contour p = % of the phase field along the zy-plane,
and the upper half the same contour along the zz-plane. Third row, right: for a fixed ¢, the contour p = é
and several constant-temperature contours, the innermost being 7' = 7., the equilibrium temperature. Bottom
row, right: for the same ¢, the graph of p and 7" along the z-axis. Bottom row, left: graph of the velocity V
and mean curvature x of the tip of the principal branch as a function of time.
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= 0.25. The arrangement is the same as in Figure 4.

Simulation for é

FIGURE 5.
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FIGURE 6. Simulation for 6 = 0.3. The arrangement is the same as in Figure 4.
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Simulation for 6 = 0.4. The arrangement is the same as in Figure 4.

FIGURE 7.
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FIGURE 8. Simulation for 6 = 0.5. The arrangement is the same as in Figure 4.
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FIGURE 9.

Simulation for § = 0.8. The arrangement is the same as in Figure 4.
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FIGURE 10.

Simulation for § = 1.0. The arrangement is the same as in Figure 4.
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6§=0.8

In Figure 9, no §idebra.nches are observed, although
there may exist still some slight sidebranch insta-
bility (it is hard to tell).

6=1.0

In Figure 10, neither sidebranches nor sidebranch
instability are observed. The crystal form is almost
the same as in the preceding case.

Additional Comments

The sidebranch structure is sensitive to the am-
plitude of noise when § > 0.4, while the grow-
ing velocity of the principal branch is not affected
by noise. This property is also observed in the
two-dimensional simulations [Kobayashi 1993]. In
a certain parameter region in this range, the side
surface of the principal branch seems to be stable
under infinitesimally small noise, while it is un-
stable under noise with some finite amplitude. It
is natural that the situation becomes complicated
in the parameter region where the stability regime
changes. We will not discuss anymore the noise
sensitivity of the sidebranch structure or the sta-
bility of the side surface of the principal branch in
this article; we intend to take up this matter in a
subsequent paper (in preparation).

Figure 11 shows that the mean curvature of the
tip of the principal branch increases monotonically
with 8, which is natural. On the other hand, the
growth rate of the principal branch is not mono-
tonically increasing. Here is our explanation for
this. In our definition of the anisotropy function
o(v), the maximum value is 1 for any 6, and as
6 increases the growth rate decreases somewhat in
directions other than (1,0, 0), (0,1,0) and (0,0, 1).
The profile of the tip of the principal branch and
the temperature field around it is sharper if § is
larger, which increases the effective cooling there
and thus increases the growing velocity of the prin-
cipal branch. That is why the growth rate increases
for § between 0.2 and 0.5. If § increases more, the
growth rate decreases even faster except for one

0
02030405 0.8 1.0

FIGURE11. Plot of time-averaged growth velocity
V of the principal branch and time-averaged mean
curvature k of the tip of the principal branch. Both
averages are taken in the steady growth stage.

point—the tip of the principal branch. The growth
rate is prevented from getting very high by the sur-
rounding area on the tip surface, because of surface
tension.

We see from the graphs on the third and fourth
rows (right) that almost all of the principal branch
and the base part of sidebranches (if they exist)
are slightly superheated. Thus our simulation sug-
gests that temperature inversion occurs upon su-
percooling solidification: the melt is supercooled
while most parts of the crystal are slightly super-
heated. This inversion is usually seen also in two-
dimensional simulations of supercooling solidifica-
tion. The hottest spot is found in the center of the

tip of the principal branch for § between 0.2 and
0.5.

3.2. The Case of Weak Anisotropy

We now examine the weaker anisotropy region, tak-
ing 6§ = 0.1 and 0.0. The other parameters remain
as above, with the following exceptions: the vessel
size is 4.8 x 4.8 x 2.4 (160 x 160 x 80 cells), arid no
mirror symmetry is assumed. A small noise was
added to the initial shape of the crystal, but no
noise was added actively through the growth pro-
cess.

6=0.1

Figure 12 shows a crystal grown under conditions
of weak anisotropy. Its shape is intermediate be-
tween those of the previous section and the one
shown in Figure 13. We can observe the special
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FIGURE 12. Views of the computed crystal for § = 0.1.

FIGURE 13. Views of the computed crystal for 6 = 0.
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branch growing to the (0,0, 1) direction, which has
almost a two-dimensional structure similar to the
oscillating principal branch in the two-dimensional
simulations. The branches growing in slanted di-
rections have a similar structure to those of the
isotropic case, which are formed by tip-splitting.
Once the branch grows to some extent, tip-splitting
occurs into double or triple branches. This makes
the crystal form essentially different from the ones
with stronger anisotropy.

6=0.0

This parameter means, of course, the crystal grows
in a completely isotropic manner, which will hardly
happen in the usual growth process of a single crys-
tal. The shape of the crystal (Figure 13) soon
destabilizes and grows weird—some kinds of coral
have shapes like this. Tip-splitting is essential to
making of the crystal form, and we do not have
a special branch in any sense. The branches are
thicker than the ones in Figure 12.

3.3. Summary

Figure 14 summarizes the results of the simulations
as the strength of anisotropy varies and the other
parameters are held fixed. If anisotropy is strong
enough, the crystal is needle-like with four fins,
and it grows with constant speed. As anisotropy
weakens, sidebranch instability appears on the sur-
face of the fins, and one typical dendritic pattern is
formed (Dendrite I). As anisotropy decreases more,
we enter a regime of oscillating growth rate of the
principal branch, and obtain another typical den-
dritic pattern (Dendrite II). With decreasing an-
isotropy also the sidebranches grow longer and the
principal branch becomes thinner. Finally, as an-
isotropy tends to zero, the principal branch disap-
pears and the crystal becomes coral-shaped.

4. CRITIQUE OF THE METHOD

This section discusses a few potential problems in
the modeling and simulations presented in this ar-
ticle (see also the beginning of Section 3).

Anisotropy is introduced in our model via the
formula (2.9), but in order to compare the results of
the simulation with the physical theories we should
consider anisotropy both in the kinetic coefficient
and in the surface energy. Thus, as a next step,
we should use for our interface equation Equation
(2.6), where m depends on the temperature, with
(2.7) as the corresponding sharp interface equa-
tion for this phase field model in three-dimensional
space.

As stated in the introduction, the choice of ¢
and of the space mesh size éz is a problem. As-
sume R is the size of the region that we want to
simulate and ! is the characteristic length of the
fine structure in the system (for example, the cur-
vature radius of the interface of a sidebranch, or
the spacing between the sidebranches). Consider
the following equality:

R R I ¢

6z | e bz (4.1)
Each of the quotients in the right-hand side needs
to be relatively large for good results. The factor
R/l says how many repetitions of the fine struc-
ture the total system can include—in our case, how
many sidebranches the crystal can have (in one di-
rection); it should be big if we want to obtain well-
grown dendritic crystals with many sidebranches.
The factor I /e measures how well the model equa-
tion approximates the corresponding sharp inter-
face limit or the model equation with realistically
small ¢; in order to compare simulation results with
those obtained theoretically using a sharp inter-
face equation, we must make this ratio large to
make the comparison meaningful. Finally, ¢/éz
says how close the discretized equation used in our
simulation is to the model equation; if this number
is small, the simulation fails due to the anisotropy
induced by the lattice structure, or the interface
might not even move at all.

On the other hand, the left-hand side of (4.1)
is sharply restricted by the computational power
and memory available. In three dimensions, the
necessary memory size is proportional to (R/6z)3,
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Coral-like Dendrite II

FIGURE 14.

Dendrite 1 Needle-like

Morphological change of the crystal with respect to the anisotropy 6, which increases from left

to right. The coral-like regime is characterized by the absence of a principal branch. Dendrite II shows an
oscillating principal branch, while Dendrite I shows sidebranch instability. Finally, the needle-like regime is

stable under infinitesimally small noise.

and computation time is of order (R/6t)-(R/é6z)% ~
(R*/6x°), since 6t ~ éx* as long as 7/6t, /6x and
T/e? are fixed.

In the simulations of Section 3, we attach most
importance to the first factor R/l. This is be-
cause our first intention is to show that our model
can simulate realistic three-dimensional dendrites.
Such restrictions will be gradually eased by the
continual improvement in computers, so at this
point we can be optimistic.

CONCLUSION

We have shown that the model equation system
(2.10) and (2.11) can produce various types of crys-
tal forms, including ones very similar to those ob-
served in experiments of supercooling solidification
of succinonitrile. In physical experiments, one can
hardly change the strength of anisotropy continu-
ously. Thus we usually observe only one or two
types of crystal shapes (depending on the growth
direction) for a fixed value of dimensionless super-
cooling A. In our simulations, on the other hand,
we can control easily the strength of anisotropy,
and therefore obtain a correspondence table be-
tween crystal forms and anisotropy. Because of
this advantage, our understanding of the morphol-
ogy of the crystals becomes deeper in this more
general mathematical setting. This is the most
important and useful point of the modeling and
simulation approach presented here.

If you wear glasses, take them off for a minute
and look around. You will get a feeling for how the
model can capture the large-scale behavior even
if it cannot keep track of fine detail. In return
for the interface getting blurred, we have a great
advantage in numerical simulations—simplicity.
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