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This article is an expository description of quadratic rational
maps from the Riemann sphere to itself.

1. INTRODUCTION

This article has two main parts. The first, com-
prising Sections 26, is concerned with the geome-
try and topology of quadratic rational maps. The
space Rat, of all quadratic rational maps from the
Riemann sphere to itself is a smooth complex five-
manifold, having the homotopy type of an SO(3)-
bundle over the real projective plane. However,
the “moduli space” M,, consisting of all holomor-
phic conjugacy classes of maps in Rat,, has a much
simpler structure, being biholomorphic to the co-
ordinate space C2. (More precisely, M, can be
described as an orbifold whose underlying space is
isomorphic to C2.) The locus Per, (1) consisting of
conjugacy classes with a periodic point of period n
and multiplier u is an algebraic curve in M, & C2.
For the special cases n = 1 and n = 2 this curve is
a straight line. The moduli space M. has a natural
compactification M,, isomorphic to the projective
plane CP2. We also consider quadratic maps to-
gether with a marking of the critical points, or of
the fixed points. As an example, the moduli space
Mg™ for maps with marked critical points is an or-
bifold with one essentially singular point, and has
the homotopy type of a two-sphere.

The second part, comprising Sections 7-10, sur-
veys some topics from the dynamics of quadratic
rational maps. There are few proofs. Maps which
are hyperbolic on their Julia set give rise to “hy-

‘perbolic components” in moduli space, as studied
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in [Rees 1990a). If we work in the compactified
moduli space M, every hyperbolic component is a
topological four-cell with a preferred center point.
However, if we work in M, = C?, there is one ex-
ceptional component that has a more complicated
topology, namely the “escape component”, consist-
ing of maps with totally disconnected Julia set.
Section 9 attempts to explore and visualize moduli
‘space by means of complex one-dimensional slices:
compare [Rees 1990b, 1992]. Section 10 describes
the theory of real quadratic rational maps.

For convenience in exposition, some technical de-
tails have been relegated to appendices. Appendix
A outlines some classical algebra. Appendix B de-
scribes the topology of the space of rational maps
of degree d. Appendix C outhn% several conve-
nient normal forms for quadratic rational maps,
and computes relations between various invariants.
Appendix D describes some geometry associated
with the curves Pern(x) C M. Appendix E de-
scribes totally disconnected Julia sets containing
no critical points. Appendix F, written in collabo-
ration with Tan Lei, describes an example of,a con-
nected quadratic Julia set for which no two compo-
nents of the complement have a common boundary
point. Finally, Appendix G addresses the problems
involved in making adequate pictures. .

2. THE SPACE Rat, OF QUADRATIC RATIONAL MAPS

Th1s section -will set the stage by giving a bnef
dwcnptlon of ,the space of all quadratlc ratlonal
maps

It will be convenient to, identify the compactl-,

fied plane € = CU with the unit sphere S"’ via
stereographic prOJectlon, and to. ‘call either one the
Riemann sphere. Let Raty be the space consisting
of all hqlomorphm maps of degree d from 8?2 to it-
self. Recall .that any such map can be expressed

as a ratio 2(2) /g(2) of two relatively prime poly-
nomials, with d = ma.x(deg p,degq). Information
about Raty may be found in Append1x B; see also
[Segal 1979]. For example, Rat, is a smooth con-
nected complex manifold of dimension 2d + 1, ‘and

the fundamental group m;(Raty) is cyclic of order
2d for d > 1. For d = 1, note that Rat; can be
identified with the group PSL(2, C) of all M&bius
transformations from the Riemann sphere to itself.

We now specialize to the case d = 2. Each map
f in the space Rat; of all quadratic rational maps
can be expressed as a ratio

p(2) _aoz’+az+ay
f&) =0 = b Tzt 5

where ay and b, are not both zero and. p, g have no
common root. It follows easily that Rat, can be
identified with the Zariski open subset of complex
projective 5-space consisting of all points

(ao:ay:az:bo:by:b) € CP8
for which the resultant

a a a O

_ 0 Qg Q) Q2
res(p, g) = det bo by by 0
0 b by b

is nonzero (see Appendix A). The topology of this
space can be described roughly as follows.

Theorem.2.1. The space Rat,- contains a compact
nonorientable manifold M5, as deformation retract.
This manifold can be described as the unique non-

trivial principal SO(3)-bundle over the projective
plane RP2,

Outline of proof (for details, see Appendix B). Ev-
ery quadratic rational map has two distinct crit-
ical points w; # w; in the Riemann sphere $2,
and two distinct critical values f(wy) # f(wz).. Let
M3 C Rat, be the subspace consisting of quadratic
rational maps such that:

e w; and w; are “antipodal” in the sense that w, =
—1/ “_)1’

o f(w1) and f(w,) are also antipodal, and

e every point on the “equator” midway between
the critical points maps to a point midway be-
tween the critical values.
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It is not hard to check that M5 is indeed a smooth
manifold, embedded in Rat; as a deformation. re-
tract, and that the continuous map f — {w;,ws}
from M? to the real projective plane is.the projec-
tion map of a principal fibration, with fiber equal
to the group SO(3) = PSU(2) ¢ PSL(2,C) con-
sisting of all rotations of the two-sphere. Using re-
sults of Graeme Segal, we will show in Appendix B
that the fundamental group m (M%) 2 m;(Raty)
is cyclic of order 4, and conclude that this bundle
must be nontrivial. O

As one immediate consequence of Theorem 2.1;

we see that M5 (or Rat,) has the rational homol-
ogy of a three-sphere. However, the twofold ori-
entable covering manifold of M® is homeomorphic
to the product SO(3) x S% (hence the universal
covering of M®.is homeomorphic to $3 x S2). In
Section 6 we will discuss the corresponding two-
sheeted covering manifold of Rat,. This covering
manifold can be identified with the space of criti-
cally marked quadratic rational maps, denoted by
Rat$™. Its elements can be described as ordered
triples (f,w;,w;) where f € Rat, and w; # w, are
the two critical points of f.

3. THE SPACE M,; OF HOLOMORPHIC CONJUGACY
CLASSES

The group Rat, = PSL(2,C) of Mdbius transfor-
mations acts on the space Rat, of quadratic ratio-
nal maps by conjugation: g € Rat;.and, f € Rat,
yield go fog™! € Rat,. ‘Two maps in Rat; are sald
to _be_holomorphzqally conjugate if they belong to
the same orbit. '

Definition. The. quotient space ‘of Rat under this
action will be denoted by M,, and called the mod-
uli space of holomorphic conjugacy classes (f) of
quadratic rational maps f. -

This action of PSL(2, C) is not free. For example,
the Mébius transformation g(z) = —z acts trivially
on any odd function, such as f(2) = a(z+ z71).
Hence we might expect-the quotient space M, to
have singularities. In fact, however, we will see

that it has the simplest possible description, and
can be identified 'with the complex affine space C2.
(On the other hand, since it is defined as a non-
trivial quotient space, M, does have a natural or-
bifold structure that reflects the complications of
the group action: see Section 5.)

In order to describe this affine structure, we will
study fixed points. Every map f € Rat; has three,
not necessarily distinct, fixed points 21, 2, 23 € S2.
Let p; be the multiplier of f at z;—that is, the
first derivative of f at z;, suitably interpreted in
the special case when z; is the point at infinity—
and let

01 = My + p2 + s,
O2 = [z + t1pi3 + H2li3,
O3 = Hil2li3

be the elementary symmetric functions of these
multipliers. Note that u; = 1 if and only if z; is a
multiple fixed point, that is, if and only if z; = 2;
for some j # 1.

Lemma 3.1. These three multipliers determine f up
to holomorphzc conjugacy, and are subject only to
the restriction

Paptzpis — (B1 + p2 + pa) +2 =0, (8-1)

or, equivalently,

O3 =01 — 2. (3—2)

Hence the moduli space My is canonically isomor-
phic to C?, with coordinates o, and 0.

We sometimes use the notation (f) = (ui, p2, us)
for the conjugacy class of a map f whose fixed
points:-have multipliers p;, p; and pa. If pypp # 1,
we can solve equation (3-1) to obtain

2 —p— Yo
1= papsz
On ‘the other hand, ifig us = 1, it follows easily

from (3-1) that u; = us =1, so that z, = 2z, is a
double fixed point. In this.case us can be arbitrary.

g = (3-3)
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Proof -of 3.1. ' We first prove (3-1). First suppose
that the y; are all different from 1, so that there is
no double fixed point. Then the classical formula

e 1
St

is proved by integrating dz/(z— f(2)). (See, for ex-
ample, [Milnor 1990, §9].) Clearing denominators,
we obtain (3-1)..

-On the other hand, if y; =.1 then 21 is a double
fixed. point, with say 2; = 2z, and p; = pp = L.
Then (3-1) is true for. any value of u3.

To show that the holomorphic conjugacy class is
determined by {u, p2, 3}, we first consider a map
f that has at least two distinct fixed points, which
we can assume are 0 and oo, after conjugating by
a Mobius transformation. It follows easily that f
has the form
az+b
1) =222
wherea;éO d # 0, a.ndad bc # O since f
has degree two. After multiplying numerator and
denominator by a constant, we may assume that
d = 1. If we replace f(2) by f(kz)/k, the effect
is to multiply both a and ¢ by k. Thus there is a
unique choice of k¥ that has the effect of replacing
a by 1. This yields the normal form

z+b
f@) =2 222

where b = p; and ¢ = p, are evidently equal to the
- multipliers at zero and infinity. Thus f is uniquely
determined, up to holomorphic conjugacy, by the
multipliers ., and p, associated with any two dis-
tinct fixed points. The determinant 1 — p;u, can-
not vanish, but there are no other restrictions on
p1 and po. The multiplier at the third fixed point
is then determined by (3-3). For further informa-
tion, see Appendix C.

- Now suppose there is only one fixed point, z; =
22 = z3. After a M6bius conjugation, we may as-
sume that z; = 0o, and that f~!(o0) = {0, 0}.
This implies that f has the form f(z) = p(z)/z for
some quadratic polynomial p(z). The difference

with1—be#0,  (3-4)

f(z) — z = (p(z) — 2%)/2z can have no zeros in the
finite plane, hence p(z) — 22 is constant. It follows
that f(z) = z + ¢/z, with critical points ++/c. If
we normalize so that the critical points of f are
#+1, then ¢ =1-and

fle)=z+7. ~ (35)

In this case, the multipliers at the unique fixed
point are given by p; = pp = pz = 1, and again
the conjugacy class is uniquely determined by these
multipliers.

Evidently we can realize any triple {u;, 2, 13}
that satisfies (3-1). Finally, note that the unor-
dered collection {u;} of multipliers is determined
by the three elementary symmetric functions o,, =
0n (11, P2, 3). Since (3-2) shows that o3 is deter-
mined by o,, the lemma. follows. a

Remark 3.2: Cubic polynomial maps. There is a strong
analogy between the theory of quadratic rational
maps and that of cubic polynomial maps [Milnor
1992a; Milnor). In both cases there are three fixed
points and two critical points. In both cases the
moduli space of holomorphic conjugacy classes has
dimension two, and can be identified with C?, with
the elementary symmetric functions of the multi-
pliers at the fixed points, subject to a single linear
relation, as coordinates. In the cubic polynomial
case, this linear relation is g — 207 +3 = 0.

Remark 3.3: Affine structure. Since the complex man-
ifold M, = C? has many holomorphic automor-
phisms, it is not immediately clear that the affine
structure imposed by taking the o; as affine co-
ordinates has any preferred status. However, the
following three lemmas show that this affine struc-
ture does indeed have very special properties. For
a different coordinate system, which would impose
a different and less useful affine structure, see Re-
mark 6.3.

Definition. -For each 1 € C, let Per,(n) C M, be
the set of all conjugacy classes (f) of maps f that
have a fixed point with multiplier equal to 7.
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represent —1 < 7 < 1, corresponding to attracting or parabolic real fixed points. The envelope of the family
{Pery(n)} consists of the symmetry locus & of §5, together with the line Per;(1). This envelope cuts the real
plane into three regions (cross-hatched) where the real quadratic map f has three distinct real fixed points,
and two regions where f has only one real fixed point.

Lemma 3.4. For each n € C, the locus Peri(n) C
M, is a straight line with respect to the coordinates
01,02, with slope do,/doy =n+n~'. Forn#0it
is.given by the equation

oz = (n+nNor— (1" +2077),
while Per, (0) is the vertical line oy = +2.
Figure 1 shows the situation in the real case.

Proof of 3.4. The multipliers at the three fixed points
are the roots of the equation

7° — o1 + o — 03 =0.

Substituting 03 = o; — 2 and solving for g2, we
obtain the required equation. O

Definition. More generally, for any integer n > 1
and any number 7 # 1 in C, let Per,(n) be the set
of (f) € M having a periodic point of period n and
multiplier n. (For the special case n = 1, the defini-
tion needs more care, as discussed in Appendix D.

One possibility is simply to define Per,(1) as the
limit of Per,(n) asn — 1, n#1.)

The following assertion is part of Theorem 4.2:

Lemma 3.5. Each Per,(n) is an algebraic curve in
M, with degree equal to the number of hyperbolic
components of period n in the Mandelbrot set.

Thus, for n = 1 and' n = 2 the curve Per,(n) is a
straight line, but for n = 3 it is a cubic curve. For
period n = 2 we have the following simple descrip-
tion: :

Lemma 3.6. The curves Pery(n) are parallel straight
lines of slope —2, given by the equation

201 +o02=1.

As noted above, the case 7 = +1 is exceptional. In
fact the proof will show that there is no quadratic
rational map having an orbit of period 2 and mul-
tiplier +1.
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Proof of 3.6. The fixed points of the fourth-degree
map f°? consist of the fixed points of f together
with the period 2 orbits (if any) of f. First consider
a map f € Raty with fixed-point multipliers {u;}
such that no p;:is-equal to 1. Then we will show
that the five fixed points of f°2 are all distinct.
In fact, three of these are the three distinct- fixed
points of f, and they have multipliers u?, u2, u? #
+1 when considered as fixed points of f°2. The
remaining two must constitute a period-two orbit
for f. Neither of these points can coincide with a
fixed point of f, since such a multiple fixed point
of f°2 would have to have multiplier +1, and the
two cannot coincide with each other, since they
would then constitute an extra fixed point for f.
It follows that the multiplier # for this period-two
orbit cannot be +1. Hence the rational fixed point
formula for f°? takes the form
1 1 1 1 1 1
g tiog i@ 1= 10

(compare [Milnor 1990] or the proof of Lemma 3.1)
We can solve this equation so as to express n as a

certain rational function of the elementary sym-:

metric functions o;(u;; 42, 43). In fact, making
use of (3-2) and carrying out the division (prefer-
ably by computer), we find the required formula
1N =20, + 02.

Now suppose that (f) belongs to Per;(—1), or, in
other words, that f has a.fixed point of multiplier
#i = —1. Then f°2 has a multiple fixed point,
with multiplier p? = +1. If f has m distinct fixed
points, where m = 2 or m = 3, it follows easily
that f°2 has at most m + 1 distinct fixed points.
Hence f cannot have any orbit of period two. In
fact,.as- 7 — 1, the unique orbit of period two for
f degenerates to the fixed point 2; of multiplier
—1. (By (3-1) there cannot be two fixed points
of multiplier —1.) Note that the equation for the
locus Per;(—1), as given by Lemma 3.4, coincides
precisely with the locus n = 20y + 02 =
it'is convenient to define

Pery(1) =

Perl(—l) = {(f) EMy:201+02= 1}

+1. Thus

(compare Figure 6). Finally, suppose that f has
a double fixed point 27 = 2, with multiplier
g1 = pe = 1, and that the third fixed point z;
has multiplier x3 # —1. Then a straightforward
argument by continuity shows that the formula
N =20,4+03 for the multiplier of the orbit of period
two remains true. In this case, a brief computation
shows that the multiplier 7 = 20, 405 for the orbit
of period two is equal to 5+ 4uz # +1. O

We will study these curves Per,(7) further in Sec-
tions 4 and 9, and in Appendix D.

4. THE COMPACTIFICATION M, & CP?

The coordinate plane C? embeds naturally in the
projective plane CP2. Since M, is isomorphic to
C? with coordinates o, and o3, there is a corre-
sponding compactification M, = CP?, consisting
of M, together with a two-sphere of ideal points
at infinity. Elements of this two-sphere ‘can be
thought of very roughly as limits of quadratic ra-
tional maps as they degenerate towards a frac-
tional linear or constant map. However, caution is
needed, since such a limit cannot be uniform over
the entire Riemann sphere.

In terms of the multipliers at the fixed points,
the two-sphere at infinity can'be described as fol-
lows. If at least one of the elementary symmetric
functions o;(p1, 4o, u3) tends to infinity, at least
one of the y; must tend to infinity. If only ua,
for example, tends to infinity, it follows from (3-3)
that the product u,u, must tend to +1. On the
other hand, if two of the u; tend to. infinity, we see
form (3-3) that the third must tend to zero. Thus

the collection of ideal points in 39[2 can be identi-
fied with the set of unordered triples of the form
(B, p~1, 00), with u € C= CUco. It seems appro-
priate to use the notation Per, (00) C M, for this
two-sphere of pomts at mﬁmty A useful parame-
ter on Per, (00) is the sum p+ u~! € €, which can
be identified with the limiting ratio

o 1 1 1

+—4+—.
O3 W1 M2 U3
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Except for the.case yu. = 1, the dynamics of a
representative of a point in M, “close” to the ideal
point {u, u~!,00) can be described as follows. (For
i = 1, a useful description would be more com-
plicated, involving the theory of Ecale cylinders
[Lavaurs '1989].) As in (3-4) or in (C-l) of Ap-
pendix C, we use the normal form.

with pype # 1. (4-1)
First suppose that y # 0,00, and let u; = p and
U2 =~ p~*, so that pyu, ~ 1. It turns out that,
over most of the Riemann sphere, this map f is
uniformly close to the linear map z — 2z/uz, or
equivalently to z — pz. However, the behavior
is quite different in a small nelghborhood of the
point z = —1/u,: this neighborhood, which in-
cludes béth critical points, maps over the entire
Riemann sphere. -The case p = 0 is similar. Any
(f) € M, that is close to the ideal point (0, o0, 00)
has a convenient representative that is uniformly
close to a constant throughout most of the sphere.
We will make these statements more precise as part
of the proof of the following result:

Lemma 4.1. For any period n > 2 and any multi-
plier n € C, the only possible limit points of the
curve Per,(n).C M, on the two-sphere: at infinity
are ideal points of the form (u, ™', 00), where u is
a g-th root of unity, with ¢ < n.

In pa.rtlcular, the lumtmg ratio og /03 = bt p!
necessarily a point in the real interval =2,2]. For
example, if y = €2™™/7 then

22 = 2cos =

o3

(compare Figures 16 and 17). Tt is conjectured that
the case ¢ = 1 cannot occur, and that the set of
all limit points of Per,(n) is precisely the set of
(#, -1, oo) such that pis a q—th root of unity with
1<g<n.

Note added in proof. - This.conjecture:has been veri-
fied by Stimson [1993], at least for the case n = 0.

In fact Stimson gives a much more precise descrip-
tion of the intersections of the completed curve
Per,,(0) with the sphere at infinity, showing:that
a neighborhood of this intersection in 1’3&,‘;(0) is
made up of finitely many smooth branches, each
associated with either one or two components of
period n in the Mandelbrot set.

Proof of 4.1. First suppose that u # 0,1, 00. Using
the normal form (4-1), set
6=1—pps,  U(2)=p2z+1,

and assume that the determinant 6 is very close

.to zero. Note that the linear function I(z) is close
:to. zero if and only if z is close to —1/ug. A brief

computation shows that

fz) _  z+m =1__6__
2 u2u2z+1 I(z)’
and that 5
I o) = —— ——
/'1'2f (Z) =1 l(z)z_'

We now partition the z-plane into three disjoint
regions D, A, C, according to whether the num-
ber |I(2)[® is less than |6|?, between |6|2 and |6},
or greater than |§|. Thus D is a very small disk
centered at the pole —1/u,, while A is a small an-
nulus surrounding this disk, and the complemen-
tary region C is everything else, including zero and
infinity. Note that

"#2@ —'1"" <" forze AUC

and

lpaf'(z) — 1| < |6)*3  forz€ C,

but

lef'(2) = 1| > 16]7/% forz € D.

Thus the value of f(z)/z is-uniformly close to the
constant 1/u, = everywhere outside of the small
disk D.: The derivative f'(2) is very large through-
out D, and is uniformly close to 1/u; ~ p and
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-hence bounded away from zero throughout the out-
side region ‘C. It follows that both critical points
sbelong to the annulus A.

.- Now consider a periodic point of period n. > 2.
If its orbit is disjoint from the disk D, we have 1 =
f°*(2)/z ~-u™. If the orbit touches both D. and A,
we may assume that z € A, and that f°9(2) € D
for some 1 < g < n, which we take to be minimal.
In this case, it follows that u? ~ 1. Finally, if an
orbit touches D but not A, its multiplier must tend
to infinity as § — 0. Thus, in the limit as § — 0
and pj; — u, we can have an orbit of period n > 2
with bounded multiplier only if 4 is a g-th root of
unitywith ¢ < n. (Note that this argument allows
the possibility that u = 1.) - This completes the
proof for the case u # 0, co.

To handle the case 4 = oo (or u = 0, which is
equivalent), we need a slightly different argument.
Again we use the normal form (4-1), but now as-
sume that the multiplier y; at the origin is very
large in absolute value, and that the multiplier u,
at infinity is very close to zero. It then follows from
(3-3) that the multiplier 43 at the third fixed point
z3 = (p1—1)/(p2 — 1) = —p is also very large in
absolute value. We write yu;, 43 =~ 0o but uy = 0.
For z in the disk |z| < 2, it then follows from the

computation
2
+22 4+
(g = B2 T2 T H
f(z) (22 +1)2

that the derivative f’(z) has bounded distance from
p1. Hence this disk maps diffeomorphically onto a
region U, which is approximately the disk of radius
2 || enclosing both finite fixed points. Let D C U
be the disk centered at the midpoint of the two fi-
nite fixed points, with radius equal to the distance
between them. Since the two finite fixed points
play a symmetric role, it follows that the preimage
f~Y(D) c D splits up as a neighborhood N; of
z; = 0, throughout which f’ &~ u;, and a neighbor-
hood Nj of z3 throughout which f’ = us. It is now
easy to check that the Julia set J(f) is a Cantor
set, contained in the union N; U N3, and that every
orbit outside of the Julia set converges to the fixed

point at infinity. (Compare Section 8.) Thus f'(2)
is approximately equal to either y; or 3 through-
out the Julia set; hence the multiplier of any orbit
of period > 2 tends to infinity as u;,us — co. 0O

Theorem4 2. For any n € C, the degree of the curve
Per,(n) C M, is 3v2(n), where the numbers va(n)
are defined mductwely by the formula

= ZV2(m)7

m|n

to be summed over all positive integers m which
divide n. FEguivalently, this degree is equal to the
number of hyperbolic components of period n in the
‘Mandelbrot set.

(Compare Lemma 3.5 and Appendix D.) Here are
the first few values of this degree:

n 12345 6 7 8
degree 11 3 6 15 27 63 120

Proof of 4.2. By Lemma 3.4, it suffices to consider
the case n > 1. Since the definition of Per,(n) is
purely algebraic, it is not difficult to check that it is
an algebraic curve in M, 2 C? (see Appendix D).
In fact it is useful to consider its closure ﬁe\r,,(n)
in the projective space M, & CP2. By definition,
the degree of a curve in CP? is equal to its num-
ber of intersections with any straight line, counted
with. multiplicity. As a test line we choose the clo-
sure of the locus Per;(0), with equation o; = 2,
or, equivalently, o3 = pypzps = 0. This line can
be 1dent1ﬁed with the set of all quadratic polyno-
mial maps f(z) = 2% + ¢ having a fixed point of
multlpher zero at infinity. (Here oo = 4c.) The
closure Per, (0) within the compactified space M,
contains just one point at infinity (0, 00,00). By
Theorem 4.1, ﬁe\r,,(n) does not contain this point.
Thus it suffices to consider intersections in the fi-
nite plane.

First consider the case 7 = 0.. The points of
Per, (0)NPer,, (0) can be described as the conjugacy
classes of maps f.(z) = 2% + ¢ for which the finite
critical point-0 has period exactly n under f.. By
definition, these are exactly the center points of the
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various components of period n of the Mandelbrot
set. Furthermore, it follows easily-from [Douady
and Hubbard 1982, § 3] that such a ¢ cannot be a
multiple solution to the equation f2*(0) = 0. In
other words, the intersection is always transverse,
with intersection multiplicity 1. More’ generally,
whenever || < 1 a similar argument shows that
the curves Per,(0) and Per,(7) intersect transver-
sally, with exactly one intersection point-in each
component of period n of the Mandelbrot set.

‘To show that this number of intersection points
is 1v5(n), note that the equation fJ*(0) = O has

degree 2"~1. In other words, the number of centers -

in the Mandelbrot set with period d1v1d1ng n is
equal to 2", After discarding all of those centers
corresponding to proper divisors of n, we obtain
the required number.

For the case |n| > 1, it is convenient to introduce
algebraic ‘curves Q% D Q, — P, as follows. Let
Q:, C C? be the set of all pairs (c, 2) satisfying the
polynomial equation fo*(z) = z. (Thus the point
z must be periodic with period m dividing n under
the map f..) Let @, C Q be the union of those
irreducible components of the curve @}, for which
a generic point (cg,29) has the property that z
has period exactly n under f.,. (By [Bousch 1992],
there is exactly one such irreducible component; in
other words, Q, is 1rredu01ble ) Evidently we can
write

Q= @m

m|n

taking the union over all divisors m of n. The cyclic
group of order n operates on Q,, by the transforma-
tion (¢, z) — (c, fc(2)). Let P, be the quotient vari-
ety of @, under this action. Thus a point of P, can
be described as a pair- (¢, {z;}) consisting of a pa-
rameter value ¢ and a periodic orbit 2, +=» 23— -+
under f. which, at least for a generic point of P,,
has period exactly n.

For each fixed value of z, the deﬁmng equation
f"(z) = z has degree 2"~! in ¢. In other words, the
projection map (¢, z) — 2 from @Q;, to the z-plane
has degree 2"~1: If we restrict to the subvariety Q,,,

it follows that the correspondmg projection map
(¢, z) 2 has degree jun(n). If z =2 — 2, > -

is the orbit of 2 under fe, it follows that each pro-
jection (¢,2) — 2; from @, to C also has degree
3v2(n). Now the multiplier 7 = (221)(222) .. . (225)
of such a periodic orbit is, up to a constant fac-
tor, just the product 2;,2,...2,. It follows easily
that the projection (¢, z) — 7 from @, to the 7-
plane has degree } 7 1vy(n) = inie(n). This can
be proved, for example, by considering Q, as a
curve of degree 1v,(n) in the space C* C CP",
consisting of n~tuples (z,..:,2,). (We can easily
solve for ¢ as a function of the z;.) The locus
21...2, = constant # 0 is a hypersurface of de-
gree n in this same space. The total number of
intersections of @, with this locus, counted with
multiplicity, is equal to the product jnus(n). All
of these intersections lie within the finite space C",
since as any 2; tends to infinity within @, the re-
maining z; must also tend to infinity.

Finally, since the projection Q,, — P, has degree
n, this implies that the projection (c,{z}) — 7
from P, to the n-plane has the required degree
3v2(n). In other words, for a generic choice of g
there are 31,(n) corresponding points in the curve
P,, which map to ;v,(n) distinct points of the c-
plane. Of course, for particular values of 7 there
may be coincidences, but this will not affect the
count with multiplicity. Now using the argument
above, we see that the curve Per,(n) C M, has
degree 1vo(n).

This proves the theorem and Lemma 3.5. O

Remark 4.3: The curves Per;(7n). We look at the spe-
cial case n = 3 as an example (without proofs).
Theorem 4.2 says that each Pers(n) is a curve of
degree three. For most values of 7, this curve is
nonsingular of genus one, and has two ends corre-
sponding to the two intersection points of its pro-
jective completion with the line at infinity (namely
a double intersection at (w,,00) where w is a
primitive cube root of unity, and a single inter-
section at (~1,~—1,00)). However, there are three
special values of n that behave differently. For
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.. = 0, the curve Per3(0) has genus zero, with a
transverse self-intersection point corresponding to
the map for which both critical points lie in a single
orbit of period 3. (This parameter curve is shown
in Figure 9, and the Julia set corresponding to the
self-intersection point in Figure 2.)

Similarly, for n = —8 the curve Per3(—8) has
genus zero, with a single transverse self-intersection
.point corresponding to the map z — 1/z%, which
has two distinct orbits of period 3 with multiplier
—8. Finally, for = 1 the cubic curve Per;(n)
degenerates into a union of three straight lines:

Per;(1) = Per; (w) U Pery (@) U Perg( 3),

where w is a primitive cube root of unity (com-
pare Figures 7 and 10). The first two lines, with
slope —1, correspond to maps for which one orbit
of penod 3 degenerates to a fixed point of mul-
tiplier w or. @, while the thn‘d straight line, with
equation o, = ~20y ~— 3, corresponds to maps for
which the two period-three orbits coincide. For
some reason, which I do not understand this locus
is prec1sely equal to the line Pery(—3). This third
line is v181ble as part of the boundary -of the hy-
perbohc component labeled 3in Flgure 16. Thus
the curve Pers(1) has two finite self-intersections—
correspondmg to the map 2z +— w(z + 2z7!) and its
complex conjugate—and one self-intersection at in-
finity. '

5. MAPS WITH SYMMETRIES

By an automorphism of a quadratic rational map
f we will mean a Mdbius transformation g that
commutes with f, so that go fog™! = f. The
collection of all automorphisms of f forms a finite
group

Aut f C Rat, = PSL(2,C)

which measures the extent to which the :action of
Rat, on Rat; by conjugation fails to be free at f.

Theorem 5.1. A quadratic rational map possesses a
nontriviel automorphism if and only if it is conju-

‘gate to-a map. in the unique normal form

(5-1)

f(z)= k(z + %)

with k € C~ {O} For f in this normal form,

Aut f is cyclic of order two (consisting of the maps

z > +2) z'f k # —3, but is nonabelian of order siz
fOT k= 5

(Compare [Doyle and McMullen 1989; McMullen
1988].) Figure 12 shows a picture of the k-plane:

Remark 5.2. For & map in this normal form, the
point at infinity is fixed with multiplier 4 = k=1

‘There are two other fixed points at

k

1-k’
both with multiplier 2k — 1. Thus the fixed-point
multipliers of f are

{pu}={k", 2k — 1, 2k — 1}. (5-2)

There are two special values of k for which all three
multipliers are equal: the exceptional point k = —1
of Theorem 5.1, with p; = p = p3 = —2, and the
point k = 1 with p) = pus = pz = 1. In the latter
case, all three fixed points coincide with the point
at infinity, as discussed in the proof of Lemma 3.1.

Proof of 5.1. First consider an automorphism of or-
der two. Any element of order two in PSL(2, C) is
conjugate to the map g(z) = —z, so it suffices to
look at quadratic rational maps f which commute
with z-+— —2z. In other words, it suffices to:look
at odd functions, f(—z) = —f(z). Writing f(2)
as a'quotient p(2)/q(z) of two polynomials, we see
easily that f is odd if and only if one of these two
polynomials is odd and the other is even. If p(z) is
even and g(z) is odd, we can write

2
f(z )_kz +1

with kI # 0. Chooging A = £4/l/k, we see that
the conjugate map f(Az)/\ has the required form

z==

=kz+127!
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2z +— k(z+ z71). On the other hand, if p(z) is odd
and g(z) is even, the conjugate map 1/f(1/2) will
have the form even/odd, so the above argument
applies. '

For f in the normal form (5-1), the critical points
+1 are interchanged by the automorphism z + —z.
In fact, for any quadratic rational map f and au-
tomorphism g, it is clear that the set: of critical
points {w;,w,} must be mapped into itself by g.
Hence the ‘automorphism group Aut f contains a
subgroup Aut’f of index at most two, consisting
of automorphisms that fix each of the two critical
points. Suppose that th1s subgroup contains a non-
trivial automorphism g. After a Mdbius change of
coordinates, we may assume that the two critical
points are 0 and co. Thus the nontrivial -auto-
morphism g fixing these two points. must have the
form g(z) = Az for some A # 0,1. The equation
f(Az) = Af(z) then implies that f(0) € {0,00},
and similarly that f(oo) € {0,00}. If f also fixed
both critical points, then evidently we would have
f(z) = az? for.some constant o # 0, and the equa-
tion f(Az) = Af (z) would imply that A = 1, con-
trary to our hypothesis. Smce the two critical val-
ues must be distinct, the only other possrblhty is
that f interchanges the two critical points. Thus f
must have the form f(z) = /22, and after a scale
change we may assume that a = 1, so that

@) =5 (5-3)
z
A brief computation then shows that the group
Aut’f of automorphisms that fix zero and infinity
is the cy¢lic group of order three, consisting of all
maps g(z) = Az-with A3 = 1.7 The full group of
automorphisms for {5-3)-is génerated by this sub-
group, together with'the involution z — 1/2z. From
theidiscussion above, or by direct computation, we
see that the map (5-3) is holomorphically conju-
gate to the special case z — —3(z + 27!) of (5-1).
Further details of the proof are straightforward. -0

In terms of the fixed points of f, we can reformulate
this result as follows:

Case 1. If f has three distinct fixed points (in other
words, if u; # 1), then Aut f coincides with the
group consisting of all multiplier-preserving per-
mutations of the fixed points. Thus it has order
1, 2 or 6 according to whether the u; are distinct,
two are equal, or all three are equal.

Case 2. If f has only two distinct fixed points, Aut f
is trivial.

Case 3. If f has only one fixed point, Aut f is cyclic
of order two.

Definition. Let S C M, be the symmetry locus con-
sisting of all conjugacy classes (f) of quadratic
maps that admit a nontrivial automorphism. (For
other characterizations of this set, see Remarks 5.4
and 6.4.)

Using (5-2), we easily prove the following.

Corollary 5.3. The symmetry locus S is. a curve of
degree three and genus zero in My = C2. It can be
defined parametrically by the equations:

) 0'1=4k—,2+k-—1,
o = 4k? — 4k + 5 — 2k~

as k varies over C ~\ {0}. This curve is nonsingu-
lar, except for a cusp at the point (z — 272), with
k——-— o1 = —6 and 02 = 12.

See Figure 15, which shows the intersection of §
with the real (0,, 02)-plane, and compare Figure 1.

Remark 5.4: Orbifold structure. Since the action

g f—gofog™

of the group PSL(2 C) on the space Rat, is proper
and locally free, it follows that the quotlent space
M, has an assocmted orbifold structure. (Com-
pare [Thurston].) In fact, the manifold Rat, is
smoothly foliated by the orbits under this action,
and if U C Rat; is a loca.l complex two-ma.mfold
transverse to the orbit’ O(fo) = {go foog~1}, then
the fundamental group m (O(fo)) acts by holonomy
on U in a neighborhood U of fo. It is easy to
check that this action factors through the homo-
morphism 7, (0(fo)) — Aut fo. The quotient of Uy
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by this action of the finite group Aut f, is precisely
a coordinate neighborhood of (f;) for the required
orbifold structure on Ms.

Note that we can describe the symmetry locus
§ as the set of points of M, at which this natu-
ral orbifold structure is nontrivial. Evidently this
structure is especially nontrivial at the cusp point
(z — 1/2%).

6. MAPS WITH MARKED POINTS

Marked Critical Points

Recall from Section 2 that a critically marked qua-
dratic rational map (f,w;,w,) is @ map f € Rat,
together with an ordered list of its critical points.
The space Rat§™ of all critically marked quadratic
rational maps is a smooth two-sheeted covering
manifold of Rat,. The Mobius group PSL(2, C)
acts on Rat{™ by conjugation:

g9 (fywr,w2) = (go fog™, 9(“1), g(w2)).

The quotient space of Rat$™ by this action will be
denoted by M5™, and called the critically marked
moduli space. Following [Rees 1990a], we will show
that this moduli space is a smooth complex man-
ifold except at one singular point, corresponding
to the special map f(z) = 272 of (5-3). To un-
derstand M$™ it is convenient to use the normal
form

withad —fy=1, (6-1)
so that the two marked critical points are zero and
infinity, in this order (see also Appendix C). Maps
in this form satisfy f(2) = f(2') if and only if 2’ =
+2z, so the Julia set J(f) is 1nva.r1ant under the
1nvolutlon zZ & —z.

‘This normal form is unique except for the scale
change that replaces f(z) by A=2f(\2z). This acts
on the unimodular matrix of coefficients by the
transformation

a B alx BA3
v §) 7 e aat

(6-2)

for X € C \ {0}. (Note that we can change the
signs of all coefficients by taking A = —1.) It is
easy to check that this action of the group C \ {0}
on the manifold SL(2, C) of complex unimodular
matrices is free with a single exception: The cube
roots of unity act trivially on the orbit o = 6 = 0,
which corresponds to the special mapping (5-3).

* We can introduce three expressions that are in-
variant under the action (6-2):

A=ab=1+py, B=a’8, C=+6. (6-3)

It seems difficult to interpret these quantities geo-
metrically, but they are quite convenient to work
with.

Lemma 6.1. We can identify the moduli space M§™
for critically marked quadratic rational maps with
the hypersurface W consisting of all those triples
(A,B,C) € C® that satisfy the equation

A*A-1)=BC (6-4)

This algebraic surface is nonsingular except at the
point A = B = C = 0, corresponding to (2 +—
272), where it has an essential smgulanty The
deck transformation

(f’wlyw2) A (f)w%wl)

of M§™ over M,, which interchanges the two crit-
ical. points, corresponds to the map (A, B,C) «
(A,C, B).

Proof. 1t is clear that A, B and C are indeed in-
variant under (6-2), and that they satisfy (6-4).
Conversely, given A, B, C satisfying (6-4), we can
find ¢, 8, v, § satisfying (6-3), unique up to the ac-
tion of C \ {0}, as follows. If B # 0 or A # 0,
we can set @ = 1, and solve uniquely for § = B,
6 = A and either y = (A—1)/B or y = C/A3. The
case C # 0 is similar; and thecase A=B=C=0
reduces to the map z +— z~2. Finally, note that the
conjugacy that replaces f(z) by

1 bz+vy
f(1/z) ~ Bz+«
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interchanges the roles of the two critical points,
and interchanges the invariants B and C. 0O

Remark 6.2: Singularities. In order to understand the
singularity of the hypersurface (6-4) at the origin,
it is convenient to introduce the following termi-
nology:

Definition. A surface in C® has a singularity of type

(p,q;7), where p,q,7 > 1 if it can be reduced to
the form- 2f + 2% + 2§ = 0 by a local holomorphic
change of variable.

Such a point is indeed always singular. In fact, the
surface is locally homeomorph1c to the cone over a

three-ma.mfold with nontrivial fundamental group;.

see, for example, [Mxlnor 1975]. In particular, for a
singularity of type (2,2,7) this fundamental group
is cyclic of order r. Slmlla.rly, we will say that a
curve in C? has a singularity of type (p, q) if it can
be reduced to the form 2P + 2 = 0.

Clearly the hypersurface (6-4) has a smgula.nty
of type (2,2, 3) at the origin. Hence a nelghbor-
hood of the origin is homeomorphic to the cone
over a three-dimensional lens space whose funda-
mental group has order three. We can resolve this
singularity locally by passing to a three-sheeted
cover ramified at this single singular point (com-
pare Lemma 6.6).

Remark 6.3: M, = C2, Lemma 6.1 provides a quite
different proof that the moduli space M is isomor-
phic to C2. Evidently we can obtain M, from the
algebraic surface (6-4) by identifying each triple

(4, B, C) with (4, C, B). Let us introduce the sum’
¥ = B + C, which is invariant under this 1nvolu-'

tion. Given any pair (4,X) € C?, we can solve
the équations A%(A — 1)'="BC and T'= ‘B+C
uniquely for 'the unordered pair {B,C}. Thus the
quotient surface is 1somorphlc to C?, with coordi-
nates A and . (However, these new coordinates
are not compatible with the compactification in-
troduced in Section 4.) Of course this proof imme-
diately raises a question: How are these new co-
ordinates (A, X) related to the coordinates (o,,53)

of Section 3?7 This question will be answered. in
Corollary C.4 (Appendix C).

Remark 6.4: MS™ as two-sheeted covering. Evidently
the cntlcally marked moduli space M§™ = W-ican
be considered as a ‘two-sheeted ra.mlﬁed covenng
space of M, = C2. The covering is ramified pre-
01sely over the symmetry locus 8§ of Section 5. For
there exists an automorphlsm of f interchanging
the two critical points if and only if (f) € 8. The
ramification locus or symmetry locus corresponds
to the set of points (A4, B,C) € ‘W that satisfy
B=C= —2 and. hence are fixed by the involu-
tion B « C ‘In terms of the coordinates (4,X)
on M;, this locus can:be-described by the fourth-
degree equation

4A%(A-1) =2

(Thus 8 is a fourth-degree curve in the coordinates
(A, Z) for M, = C2, but a cubic curve in the more
natural coordinates (o1,02).) As noted already in
Section 5, 8 can be described geometrically as a
curve of genus zero .in C? with a single cusp point
at-the origin.

Remark 6.5: Homotopy type. The critically marked
moduli space M$™ has the homotopy type of the
two-sphere. In fact, the correspondence

a a® B A3

. - — = ——— = —

('r 5) v T A-1 C

is a smooth map from M§™ onto S? = CU oo, with

the property that the inverse image of any point

is isomorphic to C. (This map is of course not a

fibration: local trlvmhty fails about the smgula.r

point A= B=C =0, wh1ch maps to 0.) The
topological two-sphere

= VA1 - A)’

is embedded in M§™ as a deformation retract, and
maps homeomorphically onto C. (This two-sphere
provides a natural example of a “teardrop orbifold”
[Thurston], which is simply connected but has one
point with nontrivial-orbifold structure.)

0<A<1, |B|
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Marked Fixed Points

Instead of numbering the critical points of a ratio-
nal map f, we can equally well number the fixed
points. Let Ratf™ denote the space of fized-point
marked quadra.tlc rational maps, that is, ordered
.quadruples (f,zl,zz,z:,), where 2, 22,23 € S? are
the, fixed points of f, with repetitions in the case
of a double. or triple fixed point. Let ‘ME™ be the
quotient of Ratf“‘ by the group Rat; acting by con-
jugation

Indeed we can go further and mark both the
fixed. pomts and the critical pomts, thus produc-
ing a space Rat{™ of totally marked rational maps
(f, 21, 22, 23, w1, ws), whose quotient moduli space
we denote by My™.

Lemma 6.6. The space Rati™ is a smooth complex
five-dimensional manifold, and Rat{™ is an unram-
ified twofold covering manifold of it. The action
of Rat; on Rati™ by conjugation is free, so M{™
8 a smooth complex two-manifold. - The action of
Rat, on'Ratf™ has one nonfree orbit, so M has
one singular point.. It corresponds to the conjugacy
class of the map z — 2z + 271, which has. just one
triple fized point.

Proof. 'To see that the space Rat{™ of totally marked:
maps is a smooth complex five-manifold, we will
identify it with an open subset of the product (52)°.
More precisely; we will show that a point

(fa Z1422,23,W1, (-U2) e Ra.t;m

is uniquely determined by its ordered quintuple of
fixed and critical points, and that a given quintuple
actually occurs if and only if

(a') wh # w2, and
(b) for each i # j, the cross-ratio

(2 — w1) (25 — wa)

e Cu
(27 — w1)(zi —wp)- *®

is well defined and:different from —1.

As in (6-1), it is.convenient to consider the special

case w; = 0, wy = 00, so that
az’+ 8
&) =515 Y22+ 6

With this choice of critical points, condition (b)
simply says that z; # —z;. In fact, the two points
z; and —z; cannot be distinct and both fixed since
they have the same image under f, and we can-
not have z; = z; € {0,00}, since a critical fixed
point cannot also be 'a double fixed point. The
fixed points of f are the roots of the equation
¥23 — az? + 8§z — 3 = 0 (a root at infinity cor-
responding, as usual, to a polynomial equation of
reduced degree). The set of roots determines and
is determined by the point (a: 8 : v : §) € CP3,
which is subject only to the determinant inequal-
ity aé — By # 0. If we express these coefficients
in terms of the fixed points, a brief computation
shows that this determinant inequality is equiva-
lent to condition (b).

Thus Rat{™ is a smooth complex five-manifold.
Since Ratf™ is the quotient space of Rat{™ by the
holomorphic involution

(21, 29, ZSiwlwa) « (zh 22, 23, W2, wl)

which has no fixed points, Rat{™ is also a smooth
complex manifold. Similarly, since the ‘quintuple
(21, 22, 23, w1, w2) must contain at least three dis-
tinct points, the action of Rat; on Rat{™ by con-
jugation is necessarily free, and the quotient space
ME™ is a-smooth complex manifold.

On the other hand, the action of Rat; on Ratf" is
not free, since the involution z — —2 fixes the point
(f,00,00,00) € Ratf™, where the map f :-z —
24271 has just one tnple fixed point at infinity. In
fact, it follows 1mmed1ately from Lemma 3.1 that
the moduli space Ratf® can be identified with the
hypersurface consisting of pomts (11, 2, p3) € c?
satisfying the polynomial equation

papops — (py + po + ps) +2 = 0.

It is easy to check that this surface has a singular
point of type (2,2,2) at the point p; =p,=pz=1,
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corresponding to a map having a triple fixed point.
(Compare Remark 6.2.) a

To summarize, we have a commutative diagram

Rat{™ —» Ratg™
2] 2]

Ratf® -2 Rat,

of holomorphic maps, where the vertical maps are
unramified two-sheeted coverings. The horizontal
maps are six-sheeted coverings, ramified along the
double fixed-point locus JT(y; — 1) = 0, and with
a more complicated ramification along the triple
fixed point orbit gy = w2 = pz = 1. Similarly,
there is a commutative diagram

M;m i) Mgm
2] 2|
Min 2, M,

of holomorphic maps, where now all four maps
have ramification points. However, the projection
Mim — MIm ramifies only at the singular point
f1 = p2 = p3'= 1, so that Mi™ can be considered
as & desingularization of Mfm Similarly, the pro-
jection M{™ — MS™ has an isolated ramification
point at the -unique singular point p; = pge = puz =
—2, so that it can be considered at least locally as
a desingularization.

Remark 6.7: Topology. I know almost nothing about
the homology or homotopy of the spaces Rati™ and
Ratf™ and M¥™ and Mf™, or about the fiber bundle
Rat, — Rati™ —» M{™. Any information would be
appreciated.

Remark 6.8: Compactifications. Each of these moduli
spaces has an appropriate compactification. Thus
MC"‘ can be compactified by adding a two-sphere
Per, (00) of ideal points. The resulting variety MC"‘
can be described as the disjoint union of an open
subset consisting of maps

z»—>1«+3+ﬁ2
2 VA

with marked critical point zero, where (a,) €
C? < {(0,0)}, together with a two-sphere Per,(0)
of limit points as || + |8| — o0, and a two-sphere
Perl(O) of limit points as (o, 8) — (0,0). (Com-
pare [Stimson].) It has the homology (but not the
cohomology ring) of 2 x S2. It has three singular
points, at (—2,—2;—2) as before, at” (-1, —1, 00)
and at (0,00,00). Locally these singularities can
be described as cones over lens 'spaces with funda-
mental group of order 3, 2 and 4, respectively.

Similarly, M can be compactified by adding
three pairwise 1ntersectmg copies of Per1 (oo) The
resulting variety M‘m is singular only at the fi-
nite point (1,1,1). It has a cell subdivision with
this singular point as vertex, with three.copies’ of
Per,(1) as two-cells, .and with a single four-cell
parametrized by the numbers (1 — y;)~! with sum
1. The singular point can be resolved bx passing
to the twofold branched covering space MY, but
this process will introduce new singularities at the
three copies of .the point (0, 00, 00).

Remark 6.9: One marked fixed point. Sometimes it is
convenient to consider maps with just one distin-
guished fixed -point. (Compa.re the' norma.l form
(C-2) in Appendix C.) The multiplier 4 at this
fixed point is then an invariant, and the product
7 of the multipliers at the other two.fixed points
is also an invariant. The pair (g, 7) € C? deter-
mines the map up to conjugacy. For we can solve
for o1 = 03 +2 = ur + 2, and the sum of the
multipliers at the other two fixed points is equal
to oy — p = pur +2 — p. We can easily; solve for

= u(u7 +2—p)+7. Thus 7 is an affine param-
eter along the line Per, (1) C M,.

Remark 6.10: Marked cubic polynomlals There is a
completely a.na.logous concept of markings for cubic
polynomial maps (compare Remark 3.2). A cubic
polynomial ‘map is umquely determmed by its fixed
pomts 2; and its cntlcal pomts wj;, which are sub-
ject only to the equality 1 (z1 F2o+23) = (w1 +wp)
of ba.rycenters and to the inequality

2125+ 2123+ 2223 # Jwiws.
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{The equality 2;z; + 2,23 + 2223 = 3w w,, together
with the equality of barycenters, would character-
.ize_triples {23, 22,23} that have a common-image
upder every. cubic map with critical points.wy, ws:)
From _this descriptiion, it is not difficult to check
that the space of all totally marked cubic polyno-
:mial maps is-a manifold having the homotopy type
of the nonorientable two-sphere bundle over a cir-
cle.. The corresponding moduli space, consisting of
conjugacy classes of totally marked cubic polyno-
‘mial maps, is'a complex manifold that can be iden-
tified with the complement of a quadratic curve in
CP?2. This moduli space has the homotopy type of
RP2.

These descriptions seem rather complicated. In
fact, in the polynomial case it is usually much more
convenient to work with monic centered polyno-
‘mials, or sometimes with critically marked monic
centered polynomials, rather than getting into the
complications of a fixed-point marking: However,
for quadratic rational maps there does not seem to
be any correspondingly convenient normal form.

7. HYPERBOLIC JULIA SETS AND HYPERBOLIC
COMPONENTS IN MODULI SPACE

We now turn to the'dynamics of quadratic rational
maps, starting with a brief description of results
due to Mary Rees and Tan Lei. Recall that a ra-
tional map is hyperbolic (that is, hyperbolic on its
Julia set) if and only if the orbit of every critical
point converges to some attracting periodic orbit.
Hyperboli¢c maps form an open subset of moduli
space, whose connected components are called hy-
perbolic components. Rees works with the critically
marked moduli space M5™ of Section 6. However,
we can work equally well with the unmarked mod-
uli space Mgv of Section 3, or with the moduli space
M or ME™ of Section 6.

Rees shows that the hyperbolic components can
be divided into four classes, listed below. (The
names are my own.) Recall that the immediate
basin of an attracting periodic point zp = f°"(z)
is the component of 2, in the open set consisting

of all points whose orbit under f°* converges to z,
or, equivalently, the component of z; in the Fatou
set C \ J(f).

Type B: Bitransitive. Each of the two critical points
belongs to the immediate basin of some attracting
periodic point, with the two basins distinct but
belonging to the same orbit. Evidently the period
must be two or more.

Type C: Capture. Only one critical point belongs to
the immediate basin of a periodic point, but the
orbit of the other critical point eventually falls into
this immediate basin. Again the period must be
two or more (compare Lemma 8.2).

Caution. The word “capture” is used in a quite dif-
ferent sense in [Wittner 1988], as a construction for
passing from quadratic polynomial maps to qua-
dratic rational maps. I have only recently been
able to get a copy of this important work.

Type D: Disjoint attractors. The two critical points
belong to the attracting basins of two disjoint at-
tracting periodic orbits. One particularly interest-
ing and important class of examples are those ob-
tained by mating two quadratic polynomial maps:
see the next subsection.

Type E: Escape. Both critical orbits converge to the
same attracting fixed point. This implies the Julia

FIGURE 2.

Type B: Julia set for z — 1 — 1/22,
with both critical points in the period three orbit
0+ oo+ 1+ 0. The fixed points are d, e, &, and
the other period three orbit is a + b+— ¢ — a.
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FIGURE3. Type C: Julia set for z — a+1/(z%*—a?),
with a &~ .7467 + .2286:. Here the periodic critical
orbit 0o «+ a captures the orbit

Or—b—c— —ar—

of the other critical point.

set is totally disconnected. To fix our ideas, we
will take this fixed point to be the point at infinity,
and say that both critical orbits escape to infinity.
There is just one such hyperbolic component: it
will be discussed in Section 8.

For an analogous discussion of polynomial maps,
see [Milnor 1992a, 1992b).

There are infinitely many hyperbolic components
of each of the types B, C and D, and they share
many similarities. For every hyperbolic map f of
one of these types, the Julia set J(f) is connected
and locally connected (see Figures 2—4, and com-
pare Lemmas 7.3 and 8.2 below). It follows that
each component of its complement C~NJ (f) is
conformally isomorphic'to the unit disk. Follow-
ing McMullen, Rees shows that each hyperbolic
component of type B, C or D contains precisely
one map fo, called its center point, which is post-
critically finite (this means that the orbit of each
critical point is periodic or eventually periodic).

FIGURE4. Type D: Julia set for z — a+1/(2%2—a2),
with a ~ .8200 + .1446i. (See [Bielefeld 1992].)
Here there are two disjoint periodic critical orbits

ocoe—a and 0—b—c—0.

This example is constructed by mating.

Furthermore, with one trivial exception, she shows
that each hyperbolic component of type B, C or D
is a topological four-cell. The unique exception is
the hyperbolic component H{™ C M$™ of type B
centered at the unique singular point (z — 1/22)
of the space M§™. Even in this exceptional case,
we can get rid of the singularity and obtain a topo-
logical cell simply by working in one of the other
versions of moduli space. In fact the correspond-
ing hyperbolic component H, C M, is a topo-
logical cell, and its six-sheeted ramified covering
Hf c M!™ is also a topological cell. The cor-
responding set in ME{™ is a disjoint union of two
copies of Hf™. '

Some representative examples of Julia sets for
postcritically finite hyperbolic maps of types B-D
are shown in Figures 2-4. (It is probably impossi-
ble to distinguish these three types just by looking
at the Julia set.) In each case, the critical points
have been placed at zero and infinity, so that the
symmetry of the Julia set is evident.



54 Experimental Mathematics, Vol. 2 (1993), No. 1

Mating
Suppose given two quadratic polynomials f,(z) =
2%+ a and fy(z) = 22 + b, both with connected Ju-
lia set. It is often possible to paste together their
filled Julia sets so as to obtain a Riemann sphere
that decomposes into two halves, one half with the
dynamlcs of fo and the other with the dynarics
of fy: ‘see [Rees 1992; Tan 1987; Shishikura 1990;
Wlttner 1988]. Accordmg to Tan Lei, in the post-
critically finite case, this is possible if and only if
fa-and fy ' do not belong to limbs of the Mandel-
brot set that are complex conjugate to one another.
(We say that’a map belongs to the t-limb of the
Mandelbrot set M, where t is. any angle in R/Z,
if it either has a fixed point of multiplier e?™t, or
is sepa.ra.t‘edifror_n‘ the central region of M by the
map that has such a fixed point.) A

Mating yields many examples of quadratic ra-
tional maps with two distinct superattractive cy-
cles. However, not every component of type D can
be obtained in this way. Wittner has described a
real quadratic map with attracting cycles of period
three and four that cannot be obtained by mating
(Appendix F).

For maps that are not postcritically finite, Tan
Lei’s result can be con_]ectura.lly generalized as fol-
lows:

Quadratic Mating Conjecture. It f, and f, do not be-
long to complex conjiigate limbs of the Mandelbrot
set, it is possible to define a mating f, I f;, unique
as an element of Mg"‘ and dependmg continuously
on a and b.

Here is one way of trying to construct such a mat-
ing. Let U(f,,€) be the neighborhood of the filled
Julia set K(f,) consisting of .all. points for which
the Green'’s function (that is, the canonical poten-
tial function) G, of K(f,) takes values G,(z) < e.
Let M = M(fs, fs,€) be the compact Riemann sur-
face obtained from the disjoint union U(f,,¢) U
U(fe,€) by identifying the open subset U(f,,€) ~
K(f,) with U(fs,€) \ K(fy) under the correspon-
dence (G, t) < (e — G, —t), where G is the Green'’s
function and t is the external angle. By virtue

of the Uniformization Theorem, M is conformally
isomorphic to the Riemann sphere €. More explic-
itly, there is a unique conformal isomorphism that
takes the critical points of f, and f, to +1 and -1,
respectively, and takes the point with coordinates
G =¢€/2, t = 0 to the point at infinity in C. Now
fa and f; fit together to yield a holomorphic map
from M(f,, fs,€) to M( fay fos 2¢). Identifying each
of these manifolds with C, we get a holomorphic
map from C to itself that has critical points at +1
and a fixed point at infinity. Thus it is a quadratic
rational map of the form

H(faafbse) TW %(w+ % +C),
where A is the multiplier at infinity; compare (C-2).
If the coefficients c and A tend to well-defined finite
limits as £ tends to zero, the limiting rational map
may be called the mating f, U f,. For other, more
standard, forms of the definition, see [Shishikura
1990; Tan 1987; Bielefeld 1992].

Remark 7.1: Common Fatou boundary points. In the
Julia sets illustrated in Figures 2-4, there are many
pairs of Fatou components that have a common
boundary point, or (in Figure 2) even a Cantor set
of common boundary points. However, this need
not be the case. Appendix F, written in collabo-
ration with Tan Lei, describes an example of a hy-
perbolic map for which no two Fatou components
have a common boundary point. The correspond-
ing Julia set is a “Sierpiriski carpet”.

Remark 7.2: A compactness question. How can one
decide whether some given hyperbolic component
has compact closure within the moduli space M, =2
C2, or whether it is unbounded? Any hyperbolic
component with an attracting fixed point is cer-
tainly unbounded, and Figures 8-10, 16 and 17
show many other examples of unbounded compo-
nents. On the other hand, consider a component
obtained by mating two hyperbolic components of
period > 2 of the Mandelbrot set. If the Quadratic
Mating Conjecture is true, it is-easy to show that
such a component has compact closure, canonically
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homeomorphic to D x D (at least in the critically
marked case). McMullen [1988] has conjectured
that whenever a Julia set J(f) of degree d is a
Sierpiriski carpet (Appendix F) the corresponding
hyperbolic component in M, has compact closure.

Lemma 7.3. If the Julia set of a hyperbolic map is
connected, it is locally connected.

Outline of proof (suggested by Douady). It suf-
fices to consider the postcritically finite case be-
cause, according to [McMullen 1988], every hy-
perbolic map with connected Julia set can-be de-
formed through hyperbolic maps to a postcritically
finite one, and according to [Maifié et al. 1983] or
[Lyubich 1984] the topology of the Julia set, and
the isotopy class of its embedding into C, does.not
change under such a deformation. In the case of
a periodic Fatou component U, every internal ray
from the superattracting point lands at a well:de-
fined boundary point, which depends continuously
on the initial angle. (Compare the argument in
[Douady and Hubbard 1984, p. 24].) Since the
continuous image of a locally connected space is
locally connected, it follows that the boundary of
U is not only connected but also locally connected.
Since every Fatou component is eventually peri-
odic [Sullivan 1985), it follows that the boundary
of every Fatou component is connected and locally
connected.

Let V ¢ € be the complement of the posteriti-
cal set for f. We will use the Poincaré metric on
V and on its universal covering manifold V. Note
that f —1 lifts to a well defined contracting map- f -
on V. Each Fatou component U that contains no
postcntlca.l point lifts homeomorphically to a sub-
set U’ c V, and f ~1 maps U’ to-a set of strictly
smaller diameter in the Poincaré metric. In fact, a
straightforward compactness argument shows that
the diameter shrinks by a factor bounded away
from 1. Thus, for any € > 0, there are only finitely
many Fatou components of diameter more than €.
From this it follows easily that J is locally con-
nected. In fact, if two points of J are close to each
other, we can find a connected subset of J of small

diameter containing both points as follows. Draw
a straight line segment between them, and replace
its intersection with each Fatou component U by
the entire boundary of U if U is small, or by a suit-
able small connected subset of QU otherwise. 0O

8. THE “ESCAPE LOCUS”: TOTALLY DISCONNECTED
JULIA SETS

We start with a lemma about rational maps of ar-
bitrary degree, which follows from results that will
be proved in Appendix E.

Lemma 8.1. If all the critical values of a rational
map are contained in a single component of the
Fatou set €~ J , then the Julia set J is totally
disconnected, and every orbit in the Fatou set con-
verges to an attracting fized point or to a parabolic
fized point of multiplicity two.

(The multiplicity m > 1 of a (finite) fixed point
f(20) = z is defined as the degree of the first
nonzero term in the Taylor expansion about 2y,

f(2) = z = a(z — 20)™ + higher terms,

with a # 0.) In the quadratic case, there is an
explicit dichotomy, and an effective criterion, ex-
pressed in the following lemma., which we will prove
at the end of this section. See also [Yin 1992;
Makienko; Przytycki 1989; Rees 1990a).

Lemma 8.2. The Julia set J of a quadratic rational
map is either connected, or totally disconnected
and homeomorphic, with its dynamics, to the one-
sided shift on two symbols. It is totally discon-
nected if and only if either

(a) both critical orbits converge to a common at-
tracting fized point, or

(b) - both critical orbits converge to a common fized
point of multiplicity two, but neither critical or-
bit actually lands on this point.

Example 8.3: Quadratic maps. For the map f(z) =
2+ 24 z~1, one critical orbit 1+ 4+ 6.25 — - - .
converges to the parabolic fixed point at infinity,
while the other critical orbit —1 — 0 — 00 actually
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lands at this fixed point. Thus the Julia set is
connected. In fact J(f) is the interval [—o0,0].
For f(z) = £(z + z7!), both critical orbits +1
42— £2.5— ... converge to the parabolic point
at infinity. Since the multiplicity of the fixed point
at infinity is either three (if the multiplier is +1)
or one (if the multiplier is —1), the Julia set is
‘again connected. It equals the imaginary axis plus
the point at infinity. On the other hand, for 2 —
z+ ¢+ z7! with ¢ > 2, the Julia set is totally
disconnected.

Example 8.4: Cubic maps. The situation for maps of
higher degree is more complicated. The rational
map

2 223
% 27(2 — 2)

has connected Julia set, although the critical points
0,0, 3, % are all contained in an orbit 3 ~— 0+ 2 —
oo, which lands at a superattracting fixed point.
The Julia set of the polynomial map f(z) = 23 —
12z + 12 is a Cantor set, contained in the interval
[—4, 3], although the critical point +2 belongs to it.
The Julia set for the map z — (2 — 3)%(z +4) is
disconnected, but contains the connected interval
[0,5]. For a thorough analysis of such polynomial
examples, see [Branner and Hubbard 1992).

Definition: Escape locus. There is just one hyper-
bolic component of type E in the moduli space
M,. We will call it the hyperbolic escape locus,
and denote it by £ C M,. (Perhaps a better term
would be “shift locus” or “totally disconnected lo-
cus”?) If we work with critically marked conjugacy
classes, there is a corresponding unique component
E™ C Mg™.

The escape locus is very different from the other
hyperbolic components. For a map f of type E,
the Julia set J(f) is a Cantor set, and its comple-
ment is a connected open set of infinite connectiv-
ity. Such a map can never be postcritically finite,
so this hyperbolic component £ does not have any
preferred center point within M.

‘Here is a well-known collection of examples. We
consider the one-parameter family of polynomials
z +— 2% + ¢, which can be identified with the one-
dimensional slice g3 = 0 through the moduli space
M,. The intersection of this family with the es-
cape locus F is precisely the complement of the
Mandelbrot set. This complement is conformally
isomorphic to C \ D, with free cyclic fundamental
group. The corresponding hyperbolic escape locus
for polynomials of higher degree has been studied
by Blanchard, Devaney and Keen, who show that
it has a very rich fundamental group. :

Using the critically marked moduli space, Rees
shows that the escape locus E°™® has a rather com-
plicated topology. In particular, her description
implies that E°™ has the homotopy type of a Klein
bottle, and hence nonabelian fundamental group.
However, the unmarked escape locus £ C M, has
a much simpler description:

Lemma 8.5. The hyperbolic escape locus E C M, is
homeomorphic to the product D x (C \ D), where
D 1is the open unit disk.

More explicitly, if u = u(f) € D is the multiplier
at the unique attracting fixed point of f, we will
show that the correspondence (f) — u(f) yields
a fibration of E over D, with fiber £, homeomor-
phic to C \ D (or equivalently to D \ {0}). Asin
Remark 6.9, it will be convenient to work with the
coordinates (u,7), where 4 is the multiplier at the
preferred (attracting) fixed point and 7 is the prod-
uct of the multipliers at the other two (repelling)
fixed points. Thus each line of constant 4 € D
in ‘the (g, 7)-plane corresponds to a straight line
Per, () C M,, consisting of all conjugacy classes
of maps that have an attracting fixed point of mul-
tiplier . (Compare Section 3. These straight lines
Per; (1) intersect each other within M,, but not
within the escape locus, since for (f) € E the map
f has only one attracting fixed point.)

Proof of 8.5. The proof will be based on [Gold-
berg and Keen 1990). For each fixed u € D, these
authors show, using the theory of polynomial-like
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mappings [Douady and Hubbard 1985], that the
complement M, of the escape locus in Per; (1) = C
is canonically homeomorphic to the Mandelbrot set
M = M,. (This statement is quite likely true even
in the limiting case u = 1; see Figure 5.) For
(f) € M, the map f restricted to a suitable neigh-
borhood of its Julia set is polynomial-like of degree
two with connected Julia set, and hence is hybrid-
equivalent.to a unique conjugacy class in M,. Fur-
thermore, by [Douady and Hubbard 1985, § 7], the
resulting map from |J, M, C M; to M, is contin-
uous.

Caution. This statement is formulated rather dif-
ferently by Goldberg and Keen, since the authors
work with marked critical points and hence study a
twofold branched covering space Per; (1), which
contains two disjoint copies of the Mandelbrot set
for u # 0. Also, some notations (such as Rat,)
used in [Goldberg and Keen 1990] are incompati-
ble with ours.

It follows from the Riemann Mapping Theorem
that the complement

E, =Per,;(u) NE = C\M,

is conformally isomorphic to the region C \ D. In
fact, we can choose a canonical conformal isomor-
phism

Py : CND - C\M,,

normalized so that the multiplier at infinity, A(s) =
1/lim, .o ¥,(2), is real and positive. We must
show that 1, depends continuously on u, using the
topology of locally uniform convergence, so that
the correspondence

(1, Yu(2)) € p x B,

yields the reqmred homeomorphism between D x
(C ~ D) and the escape locus E.

Note that this multiplier A(u) provides an in-
variant measure of the “size” of the open set E, =
9,(C \ D). More generally, if U; C U, are simply
connected neighborhoods of infinity in € and if A

(1, 2) =

and A, are the multipliers at infinity of the corre-
sponding Riemann:maps C \ D — U, it follows
easily from the Schwarz Lemma that A\; < )g, with
equality if and only if U, = U,.

Assume, for a contradiction, that the correspon-
dence p — 1, is not continuous. Then we can
choose a sequence of points y; € D converging to a
limit i € D so that the corresponding sequence of
functions %, on C \ D does not converge locally
uniformly to ;. However, since the %, belong
to a normal family, we may assume after passing
to a subsequence that these functions do converge
locally uniformly to some univalent limit 1 # Yi.
It is not hard to check that the image ¥/(C ~ D)
must be a proper subset of the open set wﬁ(C ~ D)
Therefore, as noted above, the multiplier X of ¢ at
infinity must be strictly less than the multiplier
A(2) of 9y, say A < A(2)/(1 + €) with € > 0. Now
the circle of radius 1+¢ in C\ D corresponds under
1, to a loop that encloses a small neighborhood of
the compact set M;. For u; sufficiently close to
i the compact set Mm must be contained in this
neighborhood, and it follows easily that

A(#)

Al )“1+s

Passing to the locally uniform limit as i — oo, since
A(pi) — A, we obtain a contradiction. a

Remark 8.6: The escape locus in M,. If we work with
the compactified moduli space M, of Section 4,
the appropriate hyperbolic escape locus E* C M,
is a topological four-cell with a preferred center
point, just like all other hyperbolic components. In
fact, let E* consist of E together with the two-cell
consisting of all ideal points {u, u~!, 00} for which
|| < 1. Then E* fibers over the open disk with
an open disk as fiber; and each fiber contains one
and only one ideal point. By definition, the “cen-
ter” of this filled-in component is the ideal point
(0,00,00). This center can perhaps be identified
with the improper map (z — 2% + 00}, or with the
limit of a sequence of quadratic maps “tending” to
a constant map.
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Next. we study the escape locus E°™ C M3$™, with
marked critical points. We will prove the following
result; for a more precise description of E°™, see
[Rees 1990a).

Lemma 8.7. The critically marked escape locus E°™
contains a Klein bottle as retract. Hence the fun-
damental group of E°™ is‘nonabelz'an.

Proof.: E°™ can be described as a twofold branched
covering of E, branched along the symmetry lo-
cus 8 N E, which consists of all pairs (u,7) with
p € D\{0} and 7 = (2—p)?/u?. However, it seems
somewhat easier to take a different approach. We
will first work with fixed-point markings, and de-
scribe the corresponding escape locus Ef™ C M{™,
Recall that a point in M is specified by a tnple
(11, p2, ps) satxsfymg the cubic equation (3-1). For
a map in the escape locus, one of the three fixed
points must be attracting and the other two must
be repelling. Thus E™ actually splits into three
distinct components, depending on which of the
three marked fixed points is attracting. To fix our
ideas, suppose that |u|, [u2] > 1 > |pal. We will
take the pair (1, g2) € (C \ D) x (C \ D) as in-
dependent parameters, solving for y3; by means of
(3-3). Of course, not every such pair determines
a map in the escape locus, or even a map with
|#s| < 1, but pairs with sufficiently large |u,| and
|ugl do:

Lemma 8.8. If |u1| > 6 and |uq| > 6, the associated
map f belongs to the escape locus.

This estimate is probably far from sharp. The

largest values of |u| and |ps| known to me for
which f lies out81de the mpe locus occur for

f(2) = —(z+271), with pty =pup = 3.
Proof of 8.8. We will use the ﬁxed-'point normal form
_zztm)  m+tz
fz) = poz+1  pg+ 271

of (34) (see also Appendix C). If |u;| > 6 and
|2| > 6, a brief: computation shows that f maps
the annulus 2/|ps| < |z| < |m|/2 into a com-
pact subset of itself. Furthermore, the polynomial

W22? + 2z + py, whose roots are the critical points
of f, is strictly nonzero outside of this annulus, so
both critical points are contained in the annulus.
Using the Poincaré metric for this annulus, we see
that both critical orbits must converge to a com-
mon. attracting fixed point. The conclusion then
follows by Lemma 8.2. O

We return to the proof of Lemma 8.7. We can
easily construct a mapping from our preferred com-
ponent of Ef to the torus by the correspondence

(B2, p2) — (arg p1, arg ).

The subset |u,| = |p2| = 7 maps homeomorphically
to the torus, and hence is embedded in E™™ as a
retract.

Now we mark also the critical points, thus pass-
ing to the two-sheeted covering manifold E*™. The
single ramification point for the map M{™ — Mim
does not belong to the escape locus, and hence
causes no difficulty. It is not difficult to show
that a choice of critical point for f is equivalent
to a choice of sign for +1/T — 2. (Compare the
discussion following (C-1) in Appendix C.) Since
the ratio (1 — pypuz)/(p1p2) always lies in the left
half-plane when |y pu,| > 1, this is equivalent to
making a choice of sign for the geometric mean
n = =%,/p1p2. In other words, our component of
E'™ can be identified with an open subset of the
manifold consisting of all (uy,us,1) € (C ~\ D)3
for which 72 = p . In particular, we obtain an
explicit retraction onto the torus

T = {(p1, p2,1) : |pa] = |pe2| = Inl =7, 0° = papsa}-

In order to obtain the hyperbolic component E™,
as described by Rees, we must pass to a quotient
space by identifying under the involution of E*®
which interchanges the role of the two repelling
fixed points. A brief computation shows that this
corresponds to the fixed point free involution

(B2, p2,m) & (p2, p1, —).

The quotient space E°™ is still a smooth manifold.
If we collapse the torus T under this involution, we
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obtain a Klein bottle. Thus this argument proves
that E°™ contains a Klein bottle as retract, and
hence that 7y (E°™) retracts onto the fundamental
group of a Klein bottle. 0

If we try to carry out the same argument for the un-
marked escape locus E C M, we must simply work
with the torus |u;| = |uz| = 7 and the orientation-
reversing involution (i, pus2) v (u2,p1). In this
case, the qﬁotient space is.a Mobius band, which
has the homotopy type of a circle. Thus we would
conclude only that E contains a circle as retract.
Recall that MS™ has the homotopy type of a two-
sphere. It is conjectured that the inclusion map
E™ — M$™ is homologically nontrivial,-or, more
explicitly, that it induces an.isomorphism of two-
dimensional homology with modulo 2 coefficients.

Proof of 8.2. We first prove that every quadratic Ju-
lia set J is either connected or totally disconnected.
J is connected if and only if ‘every component of
the Fatou set G\ J is simply connected. According
to Sullivan, every component of €\ J is eventually
periodic, and every periodic component is either a
Siegel disk, a Herman ring, or an immediate basin
for some attracting or parabolic point. According
to [Shishikura 1987], there are no Herman rings in
the quadratic case.

We will frequently use the fact that a ramified
covering of a simply connected region that has only
one ramification point is again simply connected.

First suppose that every periodic Fatou compo-
nent is simply connected. Any cycle of Fatou com-
ponerits must either contain a critical point (in'the
attracting or ‘parabolic ‘cases), or have a critical

orbit that is dense in its boundary (in the Siegel

case). Thus there is at most one critical point left

over. It follows inductively that every Fatou com-

ponent is simply connected.

Now suppose that-some periodic Fatou compo-
nent is not simply connected. Evidently it must
be an immediate basin for some attracting or para-
bolic periodic point. 'Such an immediate basin can
be reconstructed from a simply connected neigh-
borhood of the fixed point in the attracting case,

or from a simply connected petal in the parabolic
case, by taking a direct limit of successive ram-
ified coverings, ramified only at the critical val-
ues. The result will again be simply connected,
unless both critical points belong to the same con-
nected component. But in that case, it follows from
Lemma 8.1 that J is totally disconnected. (Com-
pare [Rees 1990a] and Appendix E.) Thus J is con-
nected or totally disconnected.

If both critical orbits converge to the same at-
tracting fixed point or fixed point of multiplicity
two, at least one critical point must belong to the
immediate basin U. Hence the restriction of f to
U is two-to-one. Since f is quadratic, and since
f(U) = U, this implies that U is fully invariant:
U = f~Y(U). Hence both critical points belong to
U, and again we can apply Lemma 8.1.

Finally, we must prove that a totally discon-
nected J is homeomorphic to a one-sided two-shift.
In the hyperbolic case, this is proved in [Goldberg
and Keen 1990). The key step is the construction
of an embedded disk A ¢ €~ J that contains both
critical values and is forward invariant, f(A) C A.
The two components of C < f~1(A) then cover the
Julia set, and form the required Bernoulli parti-
tion. In the parabolic case,. we modify this ar-
gument by constructing a simply connected open
petal P that contains both critical values and sat-
isfies' f(P) C P. Again the two components of
C \ f~Y(P) cover the Julia set and form the re--
quired Bernoulli partition. The proof that a point
in the Julia set is uniquely determined by its sym-
bol sequence with respect to this partition is more
delicate in this case. However, since a completely
analogous argument is carried out in Appendix E,
details will be left to the reader. O

9. SOME COMPLEX ONE-DIMENSIONAL SLICES

The moduli space M; can be thought of as a kind
of table of contents, each point (f) € M, corre-
sponding to a different’ form of dynamic behavior.
Since this space is a complex two-manifold, it is dif-
ficult to visualize all of it -directly. Hence it may be
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helpful to try to describe what kinds of behavior
occur for (f) belonging to some one-dimensional
slice through M.

As a first example of a dynamically interesting
one-dimensional slice, fix some integer n > 1 and
some complex number u, and consider the curve
Per, (1) € M; consisting of all conjugacy classes of
maps that possess a periodic point of period n and
multiplier ;v (see Lemma 3.4 and Theorem 4.2).
The case u = 0 is of particular interest: compare
[Rees 1990b, 1992; Milnor 1992a; Milnor], and see
Figures 8 and 9. Evidently the center point of ev-
ery hyperbolic component must belong to at least
one of these curves Per,,(0). For any p in the closed
disk |u| < 1, the condition (f) € Per, (1) imposes
very strong restrictions on the dynamics of f. The
cases where p is a root of unity are noteworthy,
since these curves contain faces where two or more
hyperbolic components of M, come together along
a common boundary: see Figures 5-7.

We can also consider curves for which one critical
orbit is eventually periodic, say

fot(wl) = f°t+"(w1).
See Figure 11 for the case ¢t = 2, n = 1. These

curves also contain common boundary faces be--

tween two hyperbolic components. The symme-
try locus of Section 5 is another curve of interest
(Figure 12).

‘As a final interesting family of curves, for each
integer t > 1 we can consider all f such that the ¢-

th forward image of one critical point is equal to the.

other critical point, f*(w;) = w,. See Figure 13
for the case t = 1. Note that the center point of
every hyperbolic component of type B or C must
belong to at least one of these curves.

Here is a more detailed discussion of some sample
curves. It will be convenient to define the bifurca-
tion locus of a parametrized family of maps {f,}
as the closed set consisting of parameter values a
for which the associated Julia set J(f,) does not
vary continuously under deformation of a; compare
[Maiié et al. 1983; Lyubich 1984].

FIGURE5. The bifurcation locus in Per; (1) seems
to be a homeomorphic copy of the boundary of the
Mandelbrot set, with the cusp straightened out.
Here Per;(1) is represented as the —a?-plane for
the family of maps fg(z) = z + a + 1/z, having a
double fixed point of multiplier +1 at infinity, and
having critical points at +1 (see Appendix C). The
other fixed point has multiplier 1—a?, and the orbit
of period two has multiplier 9 — 4a2. Level curves
of the function Re(f°"(+1)/a) —n, for large n, are
also shown. See also Appendix G.

Period 1

As noted in Lemma 3.4, the curves Per,(u) are
particularly easy to describe: Each locus Per, (1)
is a straight line of slope y + x~?! in the (oy,03)-
coordinate plane, given for example by the equa-
tion '

p—opf+oau+2—0,=0.

First consider the case u = 0. Putting the fixed
critical point at infinity, we can use the normal
form z — 2% + ¢, with 0; = 2 and 0, = 4¢. The
corresponding bifurcation locus in the c-plane is
the boundary of the familiar Mandelbrot set. The
hyperbolic components that intersect Per;(0) all
have type D or E. ‘

(If we lift to the critically marked moduli space
M35™, the locus Per, (0) lifts to a union of two lines
that intersect transversally. In fact, in the coordi-
nates (A, B, C) of (6-3), the locus Per{™(u) splits
as the union of a line A = 1, B = 0 for which
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FIGURE 6. The bifurcation locus in Per;(—1) is -
a distorted copy of the Mandelbrot set. boundary
with the 2-limb missing (collapsed to the pomt at
infinity). This picture shows part of the —a2-plane
for the family of maps z — —(z+a+2~1), having
a fixed point of multiplier —1. The notation p/q
indicates that the map also has a fixed point -of
multiplier e?™*P/9; the case 4 would correspond to
the point at infinity.

the first critical point is fixed and a line A = 1,
C = 0 for which the second critical point is fixed.
These two lines intersect transversally at A = 1,
B = C = 0, corresponding to the map z — 22 with
both critical points fixed.)

As noted in the proof of Lemma 8.5, the b1furca,-
tion locus in the line Per, (1) varies by a continuous
isotopy as u varies within the open unit disk. As
shown in Figure 5, it even seems to retain the same
topology as u tends nontangentially to +1. On the
other hand, as y — —1 nontangentially, the cen-
tral region of the Mandelbrot set opens out so as to

contain a full half-plane, and the éntire 2-limb of.

the Mandelbrot set disappears to infinity. Also, a
number of the tentacles of the Mandelbrot set join
together, so as to enclose new regions (Figure 6).
Similarly, as x tends to e~2"*?/¢ pontangentially,
the entire p/¢-limb disappears to infinity. This dis-

FIGURE 7. Bifurcation locus in Per; (¢2™/3). The
—-hmb of the Mandelbrot set has disappeared to
mﬁmty Under a slight perturbation, the fixed
point of multiplier e2™*/3 will become repelling but
split off an attracting orbit of period three, yield-
ing hyperbolic components of type B, C, and D,
as indicated. (This picture looks rather diﬁerent
from Figure 6 because a different algorithm was
used.) The intersection point of Per; (e 2mi/3) with

the line Pery(—3) of Figure 10 is indicated by a
heavy dot (upper right).

appearance is one aspect of Tan Lei’s observation
that mating between two quadratic polynomials is
never possible when the two belong to complex
conjugate limbs of the Mandelbrot set. The case
p/q = — is illustrated in Figure 7: again, various
tentacles of the Mandelbrot set have come together
to enclose new regions.

A more precise statement can be made. Sup--
pose that f.€ Rat, has an attracting fixed. point of
multiplier 4 = u, and a repelling fixed point with
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FIGURE 8. Blfurcat10n loéhs in Pery (0), showing

z—alz+1/22,

with a critical point.of period two at z = 0. This
appears to be a homeomorphic copy of Figure 6.
The types of some of the more conspicuous hyper-
boli¢ components are indicated.

combma.tonal rotation number p/q and ‘multiplier
2. Then it is shown in. [Petersen] that a suitable
choice of log u2:is contained in the disk.bounded by
the circle!tangent to the imaginary axis at 2mip/q
and passing throughlog(1/u,). Hence; as y; tends
to e~2*P/% pontangentially, u, tends to e?™*#/¢, If
0 < p/q < 1; it follows from (3-3) that the mul-
tiplier 43 at the third fixed point tends to infin-
ity. Thus the-entire p/q-limb of the Mandelbrot set
must be missing in the locus Per;(e~27/9),

Period 2

According to Lemma 3.6, the:curve. Per,(u) is also
a straight line in the (01, 02)-coordinate plane, with
equation 20, + 0, = p. In the case u = 1, we have
Per,(1) = Per;(—1): see Figure 6. As y varies from

1-to 0, the. left-hand region of Figure 6 opens up

even further, as shown in Figure 8.

There is some difficulty in finding a good normal
form in the case u-= 0, since the curve Per,(0)
includes the special point (z — .1/22), which has
an anomalously large group of automorphisms. If
we place the critical point of period two at the
origin and its image at infinity, and normalize by
an appropriate scale change, we get the formula

=2+

This normal form is not unique, since for any cube
root of unity A the map f(Az)/A will have the same
form, but with the parameter a replaced by Aa.
Thus to obtain an‘invariant we must pass to a3

which ranges over C. In fact it turns out tha.t

a® —6=o0,.

Period 3

The curve Per;(0) also has genus zero, being con-
formally isomorphic to a punctured plane or to a
cylinder. We may put the periodic critical point at
the origin, with orbit 0 — 0o ~— 1~ 0. This yields
the unique normal form

14c¢ " c

21—

z 22’

where now the parameter ¢ ranges over C \ {0}.
Figure 9.shows the situation in the (log¢)-plane.
The lower left-hand portion of this picture can per-
haps be understood as a perturbation of Figure 7,
and the upper left portion as a perturbation of
a complex conjugate figure. In fact, as u varies
from 0 to 1 — € the bifurcation locus in Pers(u)
varies continuously. However, in the limit, as 4 —
1, the locus Per;(u) degenerates into a union of
three straight lines (compare Remark 4.3). Two
of these lines correspond to the locus Per;(e?"*/3)
and its complex conjugate, while the third line can
be identified with the locus Pery(—3). Thus, in or-
der to understand the right half of Figure 9, we
must also study the bifurcation locus in Pery(—3),
as shown in Figure 10. Unfortunately, it seems
to require considerable imagination to see how to
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FIGUREY. Picture in Per3(0), showing the (log c)-
plane for the family of maps z — 1—(1+c)/z+c/22
with a critical point of period 3 at z.= 0. (The top
and bottom are to be identified, with a bit of over-
lap.) There are only two components of type B
in the cylinder C/27iZ, but many components of
type C and D. For the three most prominent com-
ponents of type D, corresponding to the three com-
ponents of period three in the Mandelbrot set, in-
ternal angles have been indicated. For the large
component-on. the right, the point at infinity has
internal angle 1 3, for the upper and lower D com-
ponents on the left, it has internal angle 1 3 and 2
respectively.

cut and paste Figure 7, its complex conjugate, and
Figure 10 so as to obtain Figure 9.

For.more detailed studies of Per3(0) and of the
associated dynamics, see [Rees 1990b, 1992; Witt-
ner 1988].

Period 4

The curve Pery(0) is isomorphic to a three.times
punctured plane. Again we place the periodic criti-
cal point at the origin, and now suppose that it has
orbit 0 — 00 + 1 +— p — 0. The parameter p can
be. described as the cross-ratio of the points in this
orbit. It is not difficult to check that p determines
the quadratic map uniquely, and that it ranges over

periods 1,3

FlGURE 10. Bifurcation locus in the line Pery(—3),
which coincides. with the locus of (f) for which f
has a nondegenera.te 6rbit of period 3 and multi-
plier +1. (The algorithm used to draw this figure is
not too satisfactdry In fact, the boundary of the
outer region looks rather ragged because of very
slow convergence.)

the set C \ {0, 3,1}. The value 1 is excluded since
as p — % the associated quadratlc map degener-
ates to a fractlonal linear map z —'1—(22)%, and
the class (f) tends to the ideal point (i, —i, c0).

Preperiodic critical orbits

Another important class of parameter slices are
those for which one critical point is preperiodic.
Since a nonperiodic ‘critical point of a quadratic
map cannot map directly to a periodic point, the
simplest p0831b1hty is that the second forward im-
age f%(w,) is fixed. If we place the critical points
at 1 and this fixed point at infinity, this leads to
the normal form

o 1
AN w

with —1 0 ++ 0o. Notethat A~ is the multiplier
of the fixed point at infinity. A corresponding pic-
ture in the A-plane is shown in Figure 11. Values
of A outside of the unit disk correspond to maps
in the escape locus E. However, points within the
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FIGURE 11,

Picture for the /\-plane for the family
of maps z — A(z+2+271) with preperiodic critical
orbit —1 + 0 + 0o +» co. In the more prominent
regions with an attracting orbit, the period is in-
dicated.

unit disk correspond to nonhyperbolic maps, since
one critical orbit lands on a repelling fixed point.
In contrast with the slices considered previously,
where each map has at least one attracting or par-
abolic orbit, so the Julia set is a proper subset of
C the present family contains maps that have no
attracting or parabolic fixed points. In fact, the or-
blts of both critical points +1 may eventually land
on repelhng cycles This happens, for example, for
the value' Ao ,'"Z’ w1th 1+— ~1+ 0 o0o. The
Julia set for such a map is necessa.nly the entire
sphere In fact, the followmg much sharper state-
ment follows immediately from a theorem in [Rees
1986): Every neighborhood of such a point Ay con-
tains a set of parameter values A of positive area
(two-dimensional Lebesgue fneasure) for which the
associated Julia set is the entire sphere.

The symmetry locus

An apparently quite different one-dimensional slice
is the branch locus or symimnetry locus 8, consisting

FIGURE 12. :Picture of the symmetry locus §, rep-
resented as the k-plane for the family of maps
z — k(z+271). The component of type D on
the right is centered at k = 2, with both critical
points fixed, while the component of type B on
the left is centered at k = —— , with critical points
-1e 1.

of all cdnjugacy classes (f) for which f has a non-
trivial automorphism. By Lemma 5.1 this locus
can be described parametrically as the set of (f)

with
fulz) = k(= +2),

where k ranges over C \ {0}. A picture of the k-
plane is shown in Figure 12; see also [Haeseler and
Peitgen 1988].

Note that Figure 12 is centrally symmetric. In
fact, from fi(—2) = —fi(z) = f-x(2) it follows
that fro fi = f_i o f_i. Hence the Julia set J(f})
is precisely equal to J(f-i), and the bifurcation
diagram in the k-plane, describing different forms
of dynamical behavior, is essentially invariant un-
der the involution k — —k. (This does not mean
that f. has precisely the same dynamics as f_;.
For example, ‘f; has a triple fixed point while f_,
has three distinct fixed points.) As in the previ-
ous example, this symmetry locus contains maps
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for which both critical orbits eventually land on
repelling cycles: for example, z — %(z +271), with
*+1+— +i— 0 co.

C. Petersen has pointed out to me that this fam-
ily of maps is closely related to the locus of Fig-
ure 11. In fact, the two-to-one substitution w = 22
semiconjugates the family z — k(z + z7!) to the
family

w— (k(w'/? + 111‘1/2))2 =AMw+2+w™),

with A = k?. Note that symmetric pairs of hy-
perbolic components in the k-plane of Figure 12
correspond to “subhyperbolic components”, where
only one critical orbit converges to a periodic at-
tractor, in-the A-plane of Figure 11.

One critical point mapping eventually to the other

As a last source of interesting sections, we consider
the condition that one critical point maps to the
other after some number of iterations. The sim-
plest possibility is that one critical point maps di-
rectly to the other. Taking the critical points to be
0 — oo, we obtain the normal form z — a + 1/22
of Figure 13. Here 0, = —6 and o, = 12 — 4a3%.

As in the previous two examples, this family con-
tains maps for which the critical orbits eventually
land on a repelling cycle. This happens, for exam-
ple, if f(z) = a4+ 1/2% with a® = —0.5, so that
0+ 00 a+— —a+— —a. Again, it follows from
[Rees 1986] that there is a set of parameter values
of positive area for which the associated Julia set
is the entire Riemann sphere.

10. REAL QUADRATIC MAPS

Consider a quadratic rational map that has real co-
efficients, and hence induces a map from the circle
R = RU oo into itself. We will distinguish seven
cases, depending on the topology of this map from
the circle to itself.

First suppose that the two critical points of f are
conjugate complex. Then it is easy to check that
f induces a two-to-one covering map from R onto
itself. In this case, we must distinguish between the
positive derivative case, where f maps this circle
with degree 42, and the negative derivative case,
with degree —2.

On the other hand, suppose both critical _points
are real. Then f maps the entire circle R onto
a closed interval I = f(R) bounded by the two
critical values. Evidently, in order to study both
critical orbits, we need only study the dynarmcs of
f restricted to this interval I.

Definition. A real quadratic map with real critical
points will be called monotone, unimodal or bi-
modal, according to whether the interior of the in-
terval I = f(ﬁ) contains no critical points, one
critical point, or both critical points. In the mono-
tone case, we distinguish between increasing and
decreasing. Similarly, in the bimodal case we dis-
tinguish two patterns of increasing and decreasing
laps: (+—+) and (— + —).

The unimodal case is illustrated in Figure 14: just
one critical point w; = 0 belongs to the interior of
the interval I = [—1,1]. (The other critical point

= 1 belongs to the boundary of I. Thus‘this

FIGURE 13.

The a 3_plane for the family of maps z — a + 1 /7%, with one critical ‘point mapping directly to the

other. In the more conspicuous hyperbolic components (type B or E), the period of the attractor is indicated.
The dot in the period-two component represents the origin a = 0.
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/

FIGURE14. Graph of the borderline unimodal real
quadratic map fo(z) = (1-2z~2?)/(1-2z+32?).
The square represents the interval fo(R) = [-1,1].
Both critical orbits land on the repelling fixed point
1, s0.the (complex) Julia set J(fo) is the entire
Riemann sphere.

particular map lies on the boundary between the
unimodal and the (+ — +)-bimodal regions of the
real moduli space.)

It is not difficult to check that a conjugacy class
(f) € M, possesses a representative with real coef-
ficients if and only if the two invariants o, and o,
of Section 3 are both real. Hence we define the real
moduli space to be simply the real (01, 02)-plane.
In general, the real representative for (f) € M, is
unique up to real conjugacy, but not in the special
case when (f) belongs to the real part of the sym-
metry locus 8 of Section 5. In fact, for the conju-
gacy class of f(z) = A(z+z~!), where A € R\ {0},
we can choose f itself as real representative, with
critical points +1 and degree zero. But we can also
take f(iz)/i = A(x — ™) as representative, with
critical points +¢ and with degree equal to 2sgn A.

The classification of real quadratic maps into
seven topological types corresponds to a partition
of real moduli space into seven regions, as indicated
in Figure 15. More precisely, the real (o,,0;)-plane
is cut up into seven pieces by the two real branches
of the symmetry locus §, and by the vertical lines
o1 = 2 and 0, = —6 that correspond to_the classes
(f) satisfying f(w1) = w; and f(w1) = w,, respec-
tively.

The bifurcation locus i the real (oy,0;)-plane
is plotted in Figures 16 and 17. Figure 16 shows
the same region as Figures 1 and 15. Note that

the vertical line 0y = 2 parametrizes the family
of real quadratic polynomials x — 2 + constant,
while the line o; = —6 parametrizes the family of
maps that carry one critical point to the other—
that is, the real axis of Figure 13. As in Figure 13,
the numbers label hyperbolic components of type
B, with attracting period as indicated. Figure 17
shows a much larger region, so that we can begin
to see the limiting behavior as (o1, 02) tends to the
line at infinity Per, (00). (Compare Lemma 4.1.)

Significant features of both figures are the fol-
lowing. The two straight lines Per;(1) of slope +2
and Per;(~1) of slope —2 cut the plane into four
quadrants:

Top quadrant. This is part of the escape locus. If
we restrict attention to maps in this quadrant with
two real critical points, the real dynamics is com-
pletely trivial: the successive images of R converge
uniformly to the real fixed point.

Right quadrant. These are the maps with two at-
tracting -fixed points. They form the real part
of the hyperbolic component D, ; consisting of all
maps with two attracting fixed points. It is cen-
tered at the point (z — 22).

Bottom quadrant. As we pass from the right-hand
quadrant to the bottom quadrant, one fixed point
bifurcates to an orbit of period two, then to pe-
riod four, and so on, in the usual Sharkovskii pat-
tern, until we again reach the escape locus. (In
fact, the standard quadratic polynomial family is
just the section of this picture with the vertical line
o1 = 2.) However, this lower component of the real
escape locus has much more complicated real dy-
namics, since the entire Julia set—a Cantor set—is
contained in R.

Left quadrant. Here we evidently have a much more
complicated situation. There are conspicuous hy-
perbolic components of type B, bordered by hyper-
bolic components of type C. There are also hyper-
bolic components of type D, at least within the bi-
modal region o, < —6 (compare Appendix F), but
these are tiny and are not visible in the pictures.
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FIGURE 15. The regions in the real (o1, 02)-plane corresponding to the seven topological descriptions of f on
R are bounded by the thick lincs, comprised of the symmetry locus 8§ and of the vertical lines ¢y = —6 and

o1 = 2. The dotted lines are the loci Per;(+1). The rectangles shown is (o1, 02) € [—12,10] x [-10,22], with
the horizontal scale exaggerated, as in Figures 1 and 16.

FIGURE 16.

01:2

1 (escape)

Rectangle [~12,10] x

[—~10,22] in the real (oy,o2)-plane, emphasizing dynamic behavior. (Hori-

zontal scale exaggerated.) The periods of (possibly complex) attracting orbits for some of the more prominent
hyperbolic components are indicated. As we traverse any vertical line with ~6 < oy < 2, we follow a full family
of unimodal maps. For maps within the top component of the escape locus, there are no real periodic orbits
other than the attracting fixed point. However, for maps in the bottom component, the entire Julia set is real.

67
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o1 =2

0’1=—6
| I

FIGURE 17. Picture of the much larger rectangle.
[—25,10] x [—55, 55] in the real (01, 02)-plane. For
01 very negative, with o2/0, = 2cos(27ip/q) we
are in a component of type B with attracting orbit
of period ¢q. Some representative values of p/q are
indicated along the left margin.

For o, very negative, with o,/0, = 2cos(2mip/q),
we are in a.component of type B with attract-
ing orbit of period q. Some representative values
of p/q are indicated along the left margin. For
p = 1, these are exactly the same as the compo-
nents occurring in Figure 13. In fact, the real axis
in Figure 13 corresponds exactly to the vertical line
o, = —6 in Figures 16 and 17.

The real topological classification of Figure 15 can
be compared with the complex dynamic classifica-
tion of Figures 16 and 17 as follows:

Monotone case. If f is monotone increasing, clearly
the two critical orbits must converge, either to a
single fixed point or to two distinct fixed points. If
neither fixed point is parabolic, this means that (f)
must belong either to the hyperbolic component of
type D,,; with two attracting fixed points, or to
the escape component E. Similarly, in the mono-
tone decreasing case the two critical orbits must
converge to a common fixed point or period-two
orbit. In the nonparabolic case, this means that
(f) belongs either to the escape component or to
the period-two hyperbolic component of type B.

Unimodal case. Here there is a wide range of possi-
ble dynamic behavior. In the hyperbolic case, (f)
may belong to a component of any one of the four
types B, C, D, or E. One essential restriction is
that there cannot be two attracting orbits of pe-
riod greater than one. :

Bimodal case. Not all bimodal maps can arise as
quadratic maps, since the condition that each point
has at most two preimages imposes an essential
restriction. In particular, the topological entropy
of the map I — I can be at most log 2. In the case
(= + —), there is another quite strong restriction:

Lemma 10.1. Every (— + —)-bimodat quadratic map

must have an attracting fized point.

Proof. Clearly such a map must have three fixed
points on the interval I = f(R), and two of the
three must have negative multipliers, say u;, u3 <
0. If these two fixed points were both repelling or
parabolic, p;, u3 < —1, the formula

#2=2—#1—#3
1—paps

would entail a negative (or infinite) multiplier for
the third fixed point as well, which is impossible.
g

Case of degree +2. Here the dynamics is once more
sha.rply_ restricted:

Lemma 10.2, If the real quadratic map f has com-

plex conjugate critical points, so that it induces a
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covering mapping of degree £2 from the circle R
onto itself , the (complex) Julia set J(f) is either
the circle R or a Cantor set contained in' R. Both
critical orbits converge to attracting orbits of period
at most two or to a parabolic fixed point:

The proof is not difficult, and will be omitted.

APPENDIX A. RESULTANT AND DISCRIMINANT

This will be a brief summary of standard mate-
rial. Proofs may be found, for example, in [van
der Waerden 1991]. Fix two integers m,n > 0.
Let p range over the vector space V;, of complex
polynomials

p(z) = ap2™ + -+ + am

of degree < m, and let q' range over the space V,
of polynomials

q_(z)=b0z"+-°-+bn

of degree < n. The resultant res,, (p,q) can be
characterized as the unique function from V,, x V,,
to C that is bimultiplicative,

resm1+mz,'n (p1p27 Q) = resm;,n (ph q) resma,'n (p2’ Q)

resm,n1+nz (P, 111Q2) = resm,ru (P, (11) resm,'ng (P, Q2)

and that coincides with the determinant in the case
degp =degg=1:

res;,;1(az + b,cz + d) = ad — be.
This function is (—1)™"-symmetric:
reSm,n(P, Q) = (_l)mnresn,m(Qyp)a

and bihomogeneous of degree (n,m):

A" resmn (P, q)-

Note that the subscripts m,n are essential, since
we sometimes consider polynomials with leading
coeflicient zero. However, in practice we will sup-
press these subscripts whenever they are clear from
the context.

reSm (AP, uq) =

The resultant can be expressed as an (m +n) x
(m + n) determinant, for example:

T OO0

res(az®+bz+c, pzi+qz+r) = det

o8 o8
=B 8 o
53 OO0 O

q

In the special case m = 0, note that res(ao, g) = a)
is independent of q, while, for m = 1, we have
res(p,q) = q(§) if p(z) = z — §. More generally,
whenever the leading coefficient ag is nonzero, we
can factor p as p(z) = ap(z — &) - (2 — &), and
it follows that

res(p, q) = ag ] [ a(&)-

(On the other hand, if ag = 0, then res,, »(p,q) =
(—=1)"boresm—1.n(p,q).) Similarly, if by # 0, we can
set g(z) = bo(z —m)--- (2 — n,,) and write

res(p, q) = (—1)™"b7* ﬁp("’j)
= aob"‘ HH(&: - 77.7

The resultant may well be nonzero even if one
of the leading coefficients is zero. However, if both
leading coefficients are zero, so that degp < m
and degg < n, then res,,,(p,g) = 0. In fact,
res, »(p, q) is zero if and only if one of the fol-
lowing conditions is true: p and ¢ have a root in
common, or degp < m and deggq < n.

Closely related is the discriminant of a polyno-
mial of degree m or less:, This is a polynomial
function discr,, : V,, — C, homogeneous of degree
2m — 2:

discr,; \p = A*™~2 discr p.

If the leading coefficient a, is nonzero, the discrim-
inant can be defined by the formula

. v(_l)m(m—l)/2 ,
discr,, p = _ao—"'re_sm,m—l (P,P )’
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where p’ is the derivative. Alternatively, setting
p(2) = ag(z — &) - - (2 — €m), it can be defined by
the formula

discrp = g™ * [[ (& — &)*-

i<h

(We omit the subscript m whenever it is clear from
the context.). Evidently, for such a polynomial with
ap # 0, the discriminant is nonzero if and only if p
has m distinct roots. On the other hand, if ag = 0
then discr,p = a?discr,-1p. In particular, for
any m > 2, if both of the leading coefficients a,
and a, are zero, then discr,, p is zero.

Here are explicit formulas for the cases m < 3,
which will be of interest.

discry(az + b) =1,
discra(az? + bz + ¢) = b® —4dac,
discra(az® + bz* & cz + d) = b*c® — dac® — 4b3d
— 27a%d® + 18abed.

APPENDIX B. THE SPACE Rat; OF DEGREE-d
RATIONAL MAPS

This appendix describes results from [Segal 1979],
as well as some consequences of the work therein.

For each integer d > 0 we can form the space
Rat, of all rational maps f(z) = p(z)/q(z), where

p(2) = @z %+ - + ay,

. _ B-1
g(z) = boz* + -+ + by B

are complex polynomials with no common root and
with leading coefficients ay and b, not both' zero.
Evidently Rat, is a Zariski open subset of the com-
plex projective space CP?*+! whose points are ra-
tios (ao : ...
ratios briefly as (p : g) € CP2#*1. More explicitly,
Raty can be described as the complement

CPZd'H ~ Wd,

where W, is the algebraic variety consisting of all
ratios (p : ¢) whose resultant res(p, q) = resq 4(p, q)
is equal to zero (see Appendix A). In particular,

“aqg by :...:by). We will write -such:

it follows easily that Rat,; is a smooth connected
complex manifold of complex dimension 2d + 1.

If we map each rational map f € Raty to the
image f(oo0) = ap/bp in the Riemann sphere S? =
C U o0, we obtain a fibration

Rat} — Raty — 52,

where the fiber Rat] consists of rational maps that
fix the point at infinity in S2. Let Mapy be the
infinite-dimensional space of all continuous maps
from $? to itself of degree d, and let Mapf be
the subspace consisting of maps that fix some base
point. The following fact is proved in [Segal 1979):

Assertion B.1. The two inclusions Raty C Mapy and
Rat} C Map induce homotopy eguivalences in di-
mensions up to and including d. More precisely,
the induced map of homotopy groups m, is an iso-
morphism for n < d and is onto for n = d.

As model for the fiber Ratd, Segal uses the space of
rational maps f(z) = p(z)/q(z), where p and g are
monic polynomials of degree d, so that f(oo) = +1.
With this normalization, using an argument due to
J. D. S. Jones, he proves the following.

Assertion B.2. For d > 1 the fundamental group
w1 (Ratl) is free cyclic. In fact, let (p,q) range
over pairs of monic polynomials of degree d with
no common root. Then the correspondence

sr—»r&s(p,q) € C\ {0}

defines a fibration
Rat — C\ {0}

that induces an isomorphism between fundamental
groups.

The fiber Fy of this fibration consists of.all pairs
(p, @) of monic polynomials of degree d having re-
sultant res(p, ¢) equal to 1. Thus F; can be consid-
ered as an algebraic hypersurface in the coordinate
space C?¢, As an immediate consequence:



Milnor: Geometry and Dynamics of Quadratic Rational Maps 71

Corollary B.3. The fiber F, 18 ¢ simply connected. The

universal covering space Rat) is homeomorphic to
Fd x C.

To develop these ideas further, let

Ey = {(p,q) : res(p,q) = 1}

be the affine hypersurface in C24*2 consisting of all
pairs of polynomials (p,q) of the form (B-1) and
satisfying res(p, g) = 1. We claim there is a natural
fibration

Fyj— Ed —» Cz N {(0, 0)}, (B—2)
where the projection map from E; to C? \ {(0,0)}
carries each pair (p,q) of polynomials with resul-
tant 1 to the pair (ag, by) of leading coefficients. In
fact, each matrix (¢3) in the group SL(2, C) acts
on the total space Ey, carrying each (p, g) with re-
sultant 1 to (ap + bg, cp + dg). Using the fact that
SL(2, C) is generated by elementary matrices, we
see easily that this action preserves the resultant.
Clearly this same group acts on the base space, and
the projection map is equivariant. It follows that
we do indeed have a fibration.

Assertion B.4. The fundamental group m (Rats) is
cyclic of order 2d. Furthermore, the universal cov-
ering Rat, can be identified with this affine hyper-
surface Ey.

Proof. Since the resultant of p and ¢ is bihomoge-
neous of degree (d, d) in the coefficients of p and g,
we have

res(Ap, A\g) = A\*res(p, g).

Thus, whenever the resultant of p, g is nonzero, so
that p/q is rational of degree d, there are exactly 2d
choices of A for which this expression A?%res(p, q) is
equal to +1. Evidently the group of (2d)-th roots
of unity operates freely on the locus E,, with quo-
tient space isomorphic to Raty. Thus E; is a 2d-
fold covering manifold of Raty. But E; is simply
connected, since it is the total space of a fibration
(B-2) having simply connected fiber and base. [

Now we specialize to the case d = 2 and prove
Theorem 2.1, as promised in Section 2.

Proof of 2.1. Every quadratic rational map has two
distinct critical points w; # w, in the Riemann
sphere S2. We will use the notation D8;(5?) for
the deleted symmetric product, consisting of all un-
ordered pairs of distinct elements in S2. Evidently
the correspondence f — {wi,w-}, assigning to each
f € Rat, its set of critical points, defines a contin-
uous map Rat, — D8,(S?).

On the other hand, the group Rat; = PSL(2, C)
of all Mébius transformations of S? acts freely on
Rat, by left composition, that is, by the action
Rat; x Rat; — Rat; defined by (g, f) — go f. It is
easy to check that two maps in Rat; belong to the
same orbit under this action if and only if they have
the same critical points. Thus our correspondence
f — {wi,w.} is the projection map of a principal
fiber bundle, having the group Rat; = PSL(2,C)
as fiber.

If we are interested only in the homotopy theory
of this bundle, we may as well pass to.a compact
principal subbundle

SO(3) — M® —» RP? (B-3)

which is embedded as a deformation retract. To
see this, note that the projective unitary group
PSU(2) = SO(3) is embedded in the Mdbius group
Rat, as a deformation retract, and that the pro-
jective plane RP? consisting of pairs of antipodal
points in S? is embedded in D§;(S?) as a defor-
mation retract. It is not difficult to check that the
corresponding total space M? is indeed a smooth
manifold, embedded in Rat, as a deformation re-
tract.

Such SO(3)-bundles over RP? are classified by
homotopy classes of mappings RP? — BSO(3), or
(using obstruction theory or Hopf’s Theorem) by
cohomology classes in the group

H?(RP?;m,(SO(3))) = Z/2.

In fact the bundle (B-3) must be the .nontrivial
SO(3)-bundle over RP?. For if M*® were a product,
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the fundamental group m; (M®) = 7, (Rat;) would
be the direct sum of two cyclic groups of order
two. But according to Assertion B.4, this group is
actually cyclic of order four. a

As one immediate consequence of Theorem 2.1, we
see that Rat, has the rational homology of a three-
sphere. Here is another easy consequence:

Corollary B.5. The twofold orientable covei'ing of M
is homeomorphic to the product SO(3) x S2. Hence
the universal covering of M® is homeomorphic to

S8 x 92

Proof. Geometrically, this twofold covering can be
described as the space of triples (f,w:,w,) consist-
ing of a quadratic'map in M® and its marked crit-
ical points (Section 6). The statement that the
lifted SO(3)-bundle over S? splits as a product
means that there exists some cross-section w +— f,,
that assigns to each point w € S? a quadratic ra-
tional map having w as critical point. This follows
from an easy cohomology argument, or can be con-
structed explicitly as follows. For each w in the fi-
nite plane C, consider the Mobius transformation

belonging to the compact subgroup SO(3) C Rat;.
This map carries w to co and carries the antipodal
point —1/&@ to zero. The composition

fu(2) = 923 (9.(2)*)

is then a quadratic rational ‘map in M® having w
and —1/& as critical points. This construction has
been chosen so that f,(z) tends to a well-behaved
limiting value foo(2) = 2% as w — oo. a

Remark B.6. Of course the correspondence w — f,,,
assigning to each w € S? a rational map f,, € Rat,
having w as critical point, cannot possibly be holo-
morphic. For the correspondence assigning to w
the other critical point of f,, has degree —1, and
hence is nonholomorphic.

APPENDIX C. NORMAL FORMS AND RELATIONS
BETWEEN CONJUGACY INVARIANTS

We now study three convenient normal forms for
quadratic rational maps.

Fixed-Point Normal Form

As in the proof of Lemma 3.1, let
2z (24 1)
with g us # 1. The origin is a fixed point with
multiplier y,, and infinity is fixed with multiplier
p2. The third fixed point is (1 — x3)/(1 — p2), with
multiplier

(C-1)

pig = 21— Ky — 2
— H1p2
The critical points for this map are the two roots
w = —1+1—p,
K2

of the equation pow?+2w+pu; = 0, with one critical
point at infinity when u; = 0. A brief computa-
tion shows that the corresponding critical values
are given by f(w) = —w?.

Mixed Normal Form
Now consider the normal form

ﬂ@:%@+1

z
with critical points +1 and with a fixed point of
multiplier 4 # 0 at infinity. (Compare Theorem
5.1, Example 8.3, and Figures 5, 6, 12 and 13.)
The critical values are f(+1) = a +2/u. The two
finite fixed points z, and z; can be described as the
roots of the equation

) + a, (C-2)

(1-p)z2 +apz;+1=0.

Either by direct computation, or using Lemma C.1
below, one finds that the corresponding multipliers
pi = f'(2:;) = (1 — 2;72)/p satisfy the relation

4
01=#1+#2+#=N(1—02)—2+;-
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As in the proof of Lemma 3.4, the symmetric
function o, = pjpe + pa 43 + Hopt3 can then be com-
puted from the equation

0=y’ — o1’ +oap— 03
=u —oyp’ + o — 01 + 2,
the result being

o2 = (n+ %)01 = (w+ %)

The parameter 7 = p,u, along the line Per, () is
equal to o3/p = (01 — 2)/u, hence

- (52 s

(compare Remark 6.9). Thus, for u # 0, the pa-
rameter 7. along the line Per (u) coincides with
—a?, up to translation by a constant depending only
on L.

Critical-Point Normal Form

If we put the critical points at zero and infinity, so
that f(z) = f(—z), we get the normal form

(C-3)

This form is particularly convenient for computa-
tions and for Julia set pictures, such as Figures 2-
4. (In fact, Figures 7, 10, 16 and 17 were made
by first translating into these coordinates, using
Corollary C.4.) As in Lemma 6.1, the quantities

o ab By
A== T a-p
a®p
B= ——=F _
(ad — By)?
v6°
C=—"__
(b —B7)?

are invariant under holomorphic conjugacies that
fix the two critical points. Hence A and ¥ = B4+C
are holomorphic conjugacy invariants. As noted
in Remark 6.3, we can use either the invariants
0,,0; of Section 3 or these invariants A and X

as coordinates on the moduli space M,, in order
to show that M, is isomorphic to C2. The coor-
dinates (A,X) are apparently easier to compute,
since we need only solve a quadratic equation to
find the critical points and reduce to the normal
form (C-3), while in order to find the fixed points
we must solve a cubic equation. In fact we can al-
ways compute the invariants without solving any
polynomials equations, and it is not too difficult
to compute one pair of invariants in terms of the
other.

We first prove a result about cross-ratios. Let
wy, w, be the critical points of f, and let v; = f(w;)
be the corresponding critical values. The relative
position of these four points is determined by the
cross-ratio

(v1 — wi)(v2 — wa)
p(f) - (wl _ wz)(’lh _ 'UQ)’ (C 4)
which is always a finite complex number, since the
denominator cannot vanish. Note that p = 0 if and
only if one of the critical points is fixed by f, so
that f is conjugate to a polynomial map. Similarly,
it is not hard to check that p = 1 if and only if one
critical point maps to the other.

Lemma C.1. The cross-ratio p is related to the in-
variants o; of Lemma 3.1 and to the invariant A
of Lemma 6.1 by the linear equation

p(f)=—-303=3(2—01)=1-A.

Outline of proof. If we use the normal form (C-3),
we have wy; =0, w, = 0o and v, = 8/6, v, = /7,
so the cross-ratio (C—4) reduces to the form

On the other hand, if we use the normal form
(3-4), computation shows that the critical points
and critical values are

-1++v1-bc
c

Wy = —", f(w:*:) = _wia

with b = u; and ¢ = ;. The cross-ratio (CH4)
then works out to be be(b +¢ — 2)/(8 — 8bc). By
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(3-3) and (3-2), this reduces to —303 = 3(2—01),
as required. 0

In order to relate the remaining invariants, we use
the formulas from Appendix A on the discriminant
the resultant.” The three fixed points of a quadratic
rational function f(z) = p(z)/q(z) are the roots of
the polynomial equation 2¢(2) — p(z) = 0. (This
equation is understood to have a “root at infinity”

if and only if its degree is strictly less than three.)
The discriminant of this equation is a homogeneous
function of degree four in the coefficients of p and
g, which vanishes if and only if there is a multi-
ple root. In order to make this discriminant into
an invariant of the rational function p(z)/q(z), we
must divide by the resultant of p and ¢, which is
also a homogeneous function of degree four in the
coefficients of p and q. This resultant is never zero,
since these two polynomials have nio common root.

Lemma C.2. If f = p/q a quadratic rational func-
tion, the discriminant ratio
discr(zq — p)

res(p, q)
18 a conjugacy tnvariant -that can be expressed in
terms of the invariants o; of Section 3 as

dratf=H(lh—1) =03'—'(7'24-0'1 -1

~09—3,

and in terms of the invariants A and X = B+ C
of Section 4 as

drat f =

=20'1

drat f = —8A? + 364 — 4% — 27.

Proof. Clearly this ratio is a well defined complex
number depending only of the function f = p/q.
To show that it is a conjugacy invariant, we first try
replacing f (z) by f(z+¢)—c. This has the effect of
replacing p and q by p(z+c)— cq(z+c) and g(2+c),
and of replacing the polynomial F(z) = zq(z) —
p(z) by F(z + c). It is then easy to check that
both the numerator discr F and the denominator
res(p, ¢).-remain invariant. Similarly, replacing f(z)
by 1/f(1/2) has the effect of replacing p, ¢ and .F

by 22¢(1/z), 2°p(1/z) and —2z3F(1/z). Again it is
easy to check that both discr F' and res(p, ¢) remain
invariant. Finally, if we change scale, replacing
p(2), g(2) and F(2) by p(Az), Ag(Az) and F(Az),
it is not hard to check that both numerator and
denominator are multiplied by A®. This proves that
the discriminant ratio is a holomorphic conjugacy
invariant.

In both cases, we can now simply make a direct
computation. Thus if p(z) = az? + 8 and ¢(z) =
v2% + 6 as in (C-3), it is easy to check that

r&s(p, q) = (aa - ﬂ'Y)z =1

The classical formula for the discriminant, given at
the end of Appendix A, yields

discr(zq — p) = discr(y2® — az? + 6z — B)
= —270%y* — 46°y + 180376
+ 6% — 4038.

In terms of the invariants (6-3) we can easily re-
duce this to the expression —8A? + 364 — 4(B +
C) — 27, as required.

Similarly, direct computation using the normal
form (3-5), together with (3-4), shows that

drat f = H(ui -1). 0O
Remark C.3. Lemma C.1 could also be expressed by
an analogous explicit formula
. = 18024 —p, P9 — ¢'p)
8 reS(P, q)2 ’ '
Combining Lemmas C.1 and C.2, we obtain:

Corollary C.4. The invariants 0;,A and X =B+ C
are related by

o, =8A -6, o, =8A% —20A + 4% +12.

APPENDIX D. THE GEOMETRY OF PERIODIC ORBITS

First some -elementary number theory. Let v4(n)
be the number. of periodic points of period n for
a generic polynomial map f : C — C of degree
d >.2. Since the fixed points of f°", that.is, the
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roots of the equation f°"(z) — z = 0 of degree d*,
are precisely the periodic points with period m di-
viding n, it follows that

d = Z Vd(m),

min

to be summed over all numbers m > 1 that divide
n. We can easily solve inductively for v4(n). For
example,

va(1) =

va(2) = d2 -d,
ve(3) =d°> —d,
va(d) = d4 - d?

(Using the Mobius Inversion Formula, the solution
can be written as

va(n) =) u( )

min

where the M6bius function: 4 is defined by

w(ps .. .px) = (=1)F

for a product of k distinct primes with k > 0, and
pu(m) = 0 if m is not a.product of distinct primes.
See, for example, [Hardy and Wright. 1979].) It is
easy to check that v4(n) is a.lways divisible by both
d'and n.

"Henceforth, we specialize to the case d = 2. By
the formula, the number '6f orbits of period n for a
generic quadratic polynomial map is v2(n)/n. As
in the proof of Theorem 4:2, the number of period
n hyperbolic components in the Mandelbrot set is
15(n)/2. Here are the first few values:

n 12345 6 7 8 9 10 11 12
vn)/n21236 9 18 30 5 99 186 335
r(n)/2 1.1 3 6 15 27 63 120 252 495 1023 2010

We return to the study of quadratic rational
maps. To simplify the discussion, we choose some

normal form for which the point at infinity can-
not be periodic. For example, any conjugacy class
contains a representative of the form

1
&) = aven+t
with oo — 0 — 0, so that oo is not periodic. Writ-
ing f°"(z) as a quotient p,(2)/gn(2) of two poly-
nomials, where degq = 2" > degp, it follows that
the equation

2qn(2) — pn(2) =0

for fixed points of f°" has degree exactly 2™ + 1.
Using an argument similar to the proof of Theo-

rem 4.2, we see that there are unique polynomials
®,(z) such that

an(z) —_p,,(z) = H(I)m(z)s

m|n

or, equivalently,
8, (2) = [J(2gn(2) — pu(2))#~™

min

®,(2) has degree v,(n) for n > 1, and ®,(2) has
degree 3. Let N = N(n) be given by N = 1,(n)/n
isn > 1, and N = 3 if n= 1. By definition, the
Nn roots of ®,(z), counted with multiplicity, will
be called the (formal) collection of periodic points
of period n. In the generic case, these period-n
points will all be distinct, but in special cases it
may happen either that two period-n orbits come
together, or that ‘a period-n orbit degenerates to
an orbit of lower period.

In any case, since the map f carries this collec-
tion of Nn points (counted with multiplicity) into
itself, we can group the points into N orbits of for-
mal period n (and actual period d1v1d1ng n), and
form the collection of multipliers {n{™, - -+, 7{™} of

these period-n orbits. Let.o{™, - ,O’N be the ele-

mentary symmetric functions of these multipliers.

Lemma D.1. Each o™ can be expressed as a poly-
nomial function of the two invariants o, and o2 of
Section 3.
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Outline of proof. Since oy and o, form a complete
set of conjugacy invariants, we can express a(") asa
single-valued function of (o,,0,). This functlon is
continuous, since the collection of roots of a poly-
nomial depends continuously on the polynomial. It
is algebraic (that is, its graph is an affine variety
in C?®) since the construction is purely algebraic.
But a continuous. algebraic function from C2 to C
. is necessarily a polynomial. 0
Corollary D.2. Fach locus Per,(n) C M, is an affine

algebraic variety, defined by the polynomial equa-
tion

nN _:agn)nN—l 4=t 05\?) =0.
The proof is immediate.

Example D.3. For n = 2 there is just one orbit of
period two. According to Lemma 3.6, its multiplier

nfz) is equal to

a§2) = 207 + 05.

For n = 3 there are two orbits of period 3. The
sum and product of their multipliers are

af ) —01 (201+ 02) + 301 + 3,
02 ) = (o, + 0'2)2(201 + 02) — 61(01 + 202) + 120, + 28.

In particular, o )is a quadratic polynomial in o
and o,, and a( is a cubic polynomial. I don’t
know any neat proof of these formulas. However,
they can be verified by first studying the two mul-
tipliers 17t asymptotlcally as g,,02 — 00 in or-
der to determine the degree and the leading terms

3)

of these polynomials, and then computing enough
explicit examples to uniquely determine the lower-
degree terms. Table 1 shows six easily computed
examples, which can be used to complete this com-
putation.

APPENDIX E. TOTALLY DISCONNECTED JULIA SETS
IN DEGREE d

Let f be a rational map of degree d > 2. This ap-
pendix will prove the following two lemmas, which
together imply Lemma 8.1.

Lemma E.1. If all critical values of f belong to a
single Fatou component, the Julia set J of f is
totally disconnected.

Remark E.2. A totally disconnected Julia set con-
taining no critical points is homeomorphic, with
its dynamics, to the one-sided shift on d symbols
[Przytycki; Makienko]. In particular, this is true
for rational maps satisfying the condition of the
lemma. For the polynomial case compare [Blan-
chard et al. 1991], and for the quadratic case com-
pare [Goldberg and Keen 1990]. For a study of
totally disconnected Julia sets that do contain crit-
ical points, see [Branner and Hubbard 1992].

LemmakE.3. If the Julia set J is totally disconnected,
all orbits in the Fatou set C\ J converge either to
an attracting fized point or to a pambolzc fized point
of multiplicity two.

Remark E4. A fixed point z, # oo has multiplic-
ity two if and only if the first two derivatives are
f'(z0) =1 and f"(2) # 0, so that there is exactly

f(2) | {p:}

o1 02 {77'(3)} o o 53)

22 {0,0,2) 2 o0 {8,8) 16 64

22175 {0,1+v8} 2 -7 {1, 1} 2 1

22 -2 {0,-2,4 2 -8 {8,-8} 0 —64

1/2° {-2,-2,-2} -6 12 {-8,-8)} —16 64

2(z + w)/(wz + 1) {wyw,—2w} 0 -3@ {1, 1} 2 1

2(z+@)/(@z+1) {w,0,-20} 0 —-3w {1, 1} 2 1
TABLE1. Data for Example D.3, where w = 2"%/3 = - 1(-1+14V3).
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one attracting petal in the associated Leau-Fatou
flower.

Proof of E.1 (modeled on [Rees 1990a]). Suppose
that all critical values belong to the Fatou compo-
nent U;. Then U; must be an immediate basin for
an attracting or parabolic periodic point, and must
belong to a cycle

UL,-U;— .- =2U,—-U

of Fatou components with period p > 1. Evidently
every Fatou component must eventually fall onto
this cycle. (Compare [Sullivan 1985).)

Hyperbolic case. If f is hyperbolic, the closure of
the postcritical set X splits as a disjoint union X =
X1 U---UX,, where X; is a compact subset of Us.
Choose a closed topological disk D C U; with X,
contained in the interior of D, and let T" be the
boundary of D. Note that every critical value of f
is contained in.X; C D, and that I' separates X,
from the Julia set.

Step 1. We prove that no component I', of f~"(T")
can separate points of any X;. If I';, is not con-
tained in U;, then I, certainly cannot separate X;.
For I', C U;, we work by induction on n. If 1 <
t < p, the statement follows from the induction as-
sumption, since f induces a' homeomorphism from
the pair (U;, X;) onto (Uiy1, Xi41). Thus we may
suppose that i = p, so that I', C U, with

f(I‘,,) = I‘n_l C Ul.

Suppose inductively that I',_; does not separate
X;. Choose a small disk A C U, containing X,
and disjoint from I',,_;, and let A’ be the closure
of the complementary disk € \ A. Since A’ con-
tains no critical values, f~!(A’) is a union of d
disjoint disks, and hence its complement f~1(A) is
connected.. Therefore the loop I, C f~!(A’) can-
not separate points of X, C f~!(A). This proves
Step 1. '

In particular, since I',-, cannot separate .two
critical values, each I', maps homeomorphically
onto f(I'y) =In_1.

Step 2. We use the Poincaré metric on the com-
plement of X. Since the iterated preimages of I’
remain bounded away from X, and since each com-
ponent of f~"(I') maps homeomorphically onto T,
the Poincaré diameters of the various components
of f~™(T") shrink uniformly to zero as n — oo.
Therefore the diameters of these components in the
spherical metric shrink to zero also.

Step 3. If n = Omod p, so-that f°*(X;) C X, then
f~™(T") separates X, from the Julia set. For if there
were a path joining X; to a point of J in the com-
plement of f~"(I'), its image under f°" would be a
path from X, to J in the complement of I, which
is impossible.

Step4. We now prove that J is totally disconnected
and that U, = € \ J. Using the spherical metric,
choose any € smaller than the diameter of X;, and
choose n = Omod p so large that each component
of f~"(T") has diameter less than ¢. Since X, can-
not fit inside any of these loops, every component
of J must fit inside one of them. Similarly, any
other Fatou component U’ must fit inside one of
these loops. Since € can be arbitrarily small, this
proves that J is totally disconnected, and that U, is
the unique Fatou component. In particular, p = 1.

Parabolic case. Here the argument is more delicate,
since the postcritical closure X intersects the Julia
set in a parabolic cycle. Again we can choose a disk
D that contains X, the set of postcritical points of
U, in its interior, but now D must have the para-
bolic point of X; on its boundary. Steps 1, 3 and 4
go through very much as in the hyperbolic case,
but Step 2 requires more work. Again we use the
Poincaré metric on the complement of X. This de-
creases under every branch of f~! , and decreases
by a definite factor less than 1 throughout any re-
gion bounded away from X. Let P be the union
of suitably chosen repelling petals at the points of
our parabolic cycle. Then there is a unique branch
of f~! which maps P into itself. For any compact
curve segment in P, the spherical lengths of the
successive images under this branch of f~! shrink
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to zero. Now consider an arbitrary sequence of
preimages

f:- B ST, STy =T,

where each T',, is a component of f~(I'). We must
prove that the diameter of 'y, in the sphencal met-
ncshrmkstozeroasn-—-»oo Letg,, ,F—vl" be
the branch of f~" that maps I" to I',,.

For any point z € I" there are two possibilities.
If g.(z) € P for all n > ng, the same is true, with
the same ny, for all points in some neighborhood N
of z. It follows that the spherical length of g,(N)
shrinks to zero as n — oo. In this way, we control
the points belonging to some open subset of I'.

For points z in the complementa.ry closed subset
YCT, there are infinitely many images In (z) that
do not lie in P, and hence are bounded away from
the postcritical closure X. It is easy to check that
the Poincaré arc length of g,,(Y) is finite for large n.
Thius the Poincaré length of g, (Y) can be expressed
as thé integral over Y of a function that decreases
monotomca.lly to zero as n — oo. Hence this length
shrinks to zero as n — oo, and the sphenca.l arc
length of g, (Y) must also shrink to zero. The rest
of the proof proceeds as before. O

Proofof E.3. If J is totally disconnected and contains
a parabolic ‘periodic point z, this point must be
- a fixed point of multiplicity two. For' otherwise
there would be more than one parabolic basin; but
if J is totally disconnected, the Fatou set must be
connected. O

APPENDIX F. A SIERPINSKI CARPET AS JULIA SET
(written in collaboration with Tan Lei)

We call a compact subset of the plane a Sierpiriski
carpetif it is connected, locally connected, nowhere
dense, and ‘has the property that the boundaries of
the various complementary components are pair-
wise disjoint Jordan curves. (The term “Sierpirski
curve” is commonly used in the literature. How-
ever, we. have adopted Mandelbrot’s. term [Man-
delbrot '1982], which seems more- descriptive and

serves to distinguish this object from other exam-
ples of fractals due to Sierpiniski.) All Sierpiriski
carpets are homeomorphic [Whyburn 1958). The
standard example is obtained from the unit square
by subdividing into nine subsquares, removing the
interior of the middle subsquare, then removing
the middle ninth of each of the remaining eight
subsquares, and continuing inductively.

It seems to be widely known among experts that
such a Sierpiriski carpet can occur as the Julia set
for a rational function, but we are not aware of any
explicit example in the literature.

Wittner [1988] noted that, up to conjugacy, there
is one and only one real quadratic rational map
whose two critical orbits have periods three and
four. (He also showed that this map cannot be
obtained by mating: two quadratic polynomials.)
More precisely, consider a real quadratic map

f(z)= a(z + %) + b,

so that the critical points are at 1 and there is a
fixed point of multiplier 1/a at infinity. A simple
computation shows that there are unique values
a = —.138115091, b = —.303108805 such that the
critical point z¢. = 1 has period four and the critical
point yo = —1 has period three. The critical orbits
are arranged along the real line in the order

T3<Yp<T <Y <T2 <2 < Y2,

where o — x; — I, — T3 — T, for example.

TheoremF.1. The Julia set of f is homeomorphic to
a Sierpiriski carpet.

Proof. It is convenient to conjugate f by the M6bius
transformation z « (z +4)/(iz + 1), which inter-
changes the real axis R and the unit circle S*. The
critical orbits for the resulting map g are shownin
Figure 18, and the corresponding Julia set, drawm
to the same scale, is shown in Figure 19. Note that
the critical values z; and y; divide the unit circle
SY into a shorter arc I-and a longer arc J = S'~\.I.
The map g carries both the interval [-1,1] and the
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complementary interval R~ (-1,1) homeomorphi-
cally onto I, and carries both the upper and lower
unit semicircles homeomorphically onto J. It has
a repelling fixed point at the bottom point —¢ of
the lower semicircle.

Up=H_

FIGURE 18; Critical orbits for g.

The Julia set J(g).

FIGURE 19.

It follows from Lemma 8.2 that the Julia set
J = J(g) it connected, so that each Fatou com-
ponent is simply connected. Since g is hyperbolic
on J, it follows from Lemma 7.3 that J is locally
connected. We now prove that each Fatou compo-
nent is bounded by a Jordan curve.

(Incidentally, the property that every Fatou com-
ponent is bounded by a Jordan curve seems very
common among hyperbolic rational maps with con-
nected  Julia set. It would be interesting to decide
just when'it is satisfied. But note that the bound-
ary of a fixed fully invariant Fatou component—for
example, the component containing infinity for a
polynomial map—is usually not a Jordan curve.)

We will first construct a simply connected neigh-
borhood Uy of x3 such that g°* maps U; by a
polynomial-like map of degree four onto the lower
half-space H-_. . (For definitions, se¢ [Douady and
Hubbard 1985].) In fact, for 0 <'j < 4, let U; be
the component of g~7(H-_) that contains the point
z3—; (where z_; = x3), so that

U4 — U3 — U2 — U1 — Uo =-H_.

Note that the set Uy = H_ is invariant under the
inversion' z % 1/Z in the circle S'. Since the map
g commutes with this inversion, and since each U;
contains a point z3_; of the circle, it follows induc-
tively that each U; is invariant under inversion.
Furthermore, since g(2) = g(1/z), each g~*(U;) is
invariant under 'z — 1/z, or, equivalently, under
complex conjugation. We will also show -induc-
tively that each U; is simply connected. We can
distinguish two cases. If U, contains one critical
value z, or y;, then U;.; = g~*(U;) is a ramified
twofold covering of U;. In this case, Uj.; must con-
tain the real point g or yp;/and must be invariant
under complex conjugation. On the other hand,
if U; contains no critical velue, g~!(U;) splits into
two simply connected components. Neither can in-
tersect the real'axis,so-one must lie in the upper
half-plane and the other must be its complex conju-
gate in the'lower half-plane. Just one of these two
is the component Uj4, containing 3_(;41y. (If U;
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contained both critical values, then g~—*(U;) would
not be simply connected; however, this case does
not occur.) It is now easy to check that the sets U;
are situated as illustrated in Figure 18, that they
contain postcritical points as shown, and that the
proper maps Uy — Uz — U, — U; — Up have de-
grees 1,2,2,1. Thus the composition is proper of
degree four.

Next we show that the region U, is compactly
contained m U, =. H_. Note that the successive
images of R under g are intervals a.round the unit
circle as follows:

R-1I= [y1,$1] = [y2a$2] - [1131,373] - [zo,yl],
where [a, (8] stands for the interval from & to 3 in
the counterclockwise direction around S'. Suppose
that the closure U, contains some point u belong-
ing to 8H_ = R. Then the third forward image
9°%(¢) must belong to the interval [z;,z3) C S*.
But it must also belong to g°3(U,s) = U,, which is
contained in the upper half-space, so it must belong
to the smaller interval [x;,yo). Hence g°*(u) € U,
must belong to gz, ¥ = [z2,%1] C Hy, which is
impossible. Thus g°* : U; — Uj is polynomial-like.

Let X; be the immediate attractive basin for
the superattracting point z; (equivalently, let X;
be the Fatou component containing the point. z;).
Each X; is invariant under the inversion z — 1/Z.
Also, X, and X, are contained in the upper half-
plane H., while X; is contained in the lower half-
plane H_. For if one of these sets intersected the
real axis, its image X, or X3 or X, would inter-
sect the interval g(R) = I. Hence this image,
which is simply connected and invariant under in-
version, would have a nonconnected intersection
with the unit circle; which is impossible. Since
X3 C H_ = U,, it follows by induction on i that
X3-; C U; for i = 1,2, 3,4 (again, with the conven-
tion X_; = X3). In particular, X5 C Uy.

Let K be the filled Julia set for the polynomial-
like mapping g°* : Uy — U,. By definition, K
consists of those points whose successive images
under ¢g** remain within Uy. Since X5 C Uy, and

since g°* maps the basin X3 onto itself, it follows
that X3 C K C Us.

(In fact, X3 is precisely equal to that component
of the interior of K that contains the superattrac-
tive point x3. Interior points of K certainly always
belong to the Fatou set €\ J. On the other hand,
it is not difficult to check that boundary points of
K belong to the Julia set J. It follows that each
component of the interior of K is a Fatou com-
ponent for g, that is, a connected component of
C\J)

Next we prove that X; is bounded by a Jor-
dan curve. Since J is locally connected, it follows
from a theorem of Carathéodory that the various
internal rays from z3 land at well defined points of
08X, depending continuously on the internal angle.
(Compare the discussion in [Douady and Hubbard
1984, p. 20].) Thus, to show that X3 is a Jor-
dan curve, we need only show that no two internal
rays land at a common point. But two rays from
z3 landing at a common point z € 9X; would
form a simple closed curve I' within the closure
X3 c K c Uy. Since €\ K is connected, it would
follow that I" bounds a region W C K, necessarily
contained in the Fatou set €\ J. Now some inter-
mediate ray from z; must land at a distinct point

2 # zof 0X3 (The reflection principle implies
that there ¢annot be”“an: entire interval of internal
a.ngl@ with a common landing point.) Evidently
this la.ndmg point 2’ must belong both to the re-
gion W c+€ \ J and to the boundary X3 C J
which is impossible.

It follows easily that- every iterated preimage of
X3 is also bounded by a Jordan curve.

Now let Y; be the Fatou component containing
¥i- The proof that Yz is bounded by & Jordan curve
is completely analogous, involving a nelghborhood
Vs of y2 such that the map

g% : Voo Vo=H
is polynomial-like of degree 8. In fact, let V; be

the component of g~*(H_) that contains ys_; (with
y-1 = y5). Then V; = U; for i < 3. However,
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V, is the complex conjugate (and the reciprocal)
of U;. The preimage g~}(V,) = V; is a neighbor-
hood of yo containing no critical values, so its pre-
image is the union of a component Vg containing
Y2 and a complex conjugate component. A similar
argument shows that Vg is compactly contained in
Vo = H_, and it follows that Y, C Vi is bounded
by a Jordan curve. Since every Fatou component is
an iterated preimage of either X; or Yz, this proves
that every Fatou component is bounded by a Jor-
dan curve.

Finally, we must prove that the various regions
X; and ‘Yj have no boundary points in common.
We noted above that X; and X, are contained in
the upper half-plane H,, and a similar argument
shows that Y7 C H;. On the other hand, X5 and
Y, are compactly contained in H_. This proves
that the closures X; and ¥, are disjoint from X,
and X, and Y;. It then follows easily that all of the
sets X; and }-’, are pairwise disjoint. For example,
if X, intersected ¥;, then g°4(X,) = X, would have
to intersect g°4(Y1) = Ya.

Now suppose that any pair of Fatou components
F and F’ had a boundary point in common. We
claim first that g(F) # g(F"). For if g(F) = g(F"),
there would be two internal rays from the cen-
ter point of g(F) landing on a common boundary
point. This would imply that the boundary of g(F’)
is not a Jordan curve, contradicting our previous
conclusion. Thus g(F) and g(F') must be distinct
Fatou components, with a boundary point in.com-
mon. Taking successive forward images under g,
we would eventually find that two of the X; and
Y; have a boundary point in common, which is im-
possible. This completes the proof that J(g) is a
Sierpinski carpet. O

APPENDIX G. REMARKS ON GRAPHICS

Several of the illustrations for this article are of
poor quality. The primary reason.for this is that
I don’t know any good general algorithm for pro-
ducing either Julia set pictures or parameter space
pictures. Following are more detailed comments.

The easiest Julia sets to plot are those which are
hyperbolic, with known attracting periodic points.
If there are at least two such points, then one can
easily make a color picture with one color assigned
to each of the associated attracting basins. From
that, it is not difficult to produce a black and white
picture which shows the boundaries between these
basins, alias the Julia set. This procedure was used
in Figures 2, 3, 4, and 19.

Parameter space pictures for a one-parameter
family of maps can often be handled in much the
same way. As an example, for Figure 8 each map in
the family has one critical point of period 2. Thus
there is just one “free” critical point, and we need
only follow its orbit to understand the map. We
can assign one color each to the two known attract-
ing basins, with a supplementary color for the case
that the free critical orbit does not converge to ei-
ther one of these known basins, and then proceed
as above. The procedure for Figure 9 is completely
analogous.

The case of a parabolic periodic orbit can be
handled similarly, although the convergence is very
slow, so that the picture quality is poor near any
map with a post-critical parabolic point. In Flg-
ures 5 and 6, this procedure has been modified
slightly by drawing in curves of equal convergence
rate towards the parabolic point.

However, in cases where no attracting or para-
bolic orbit is known the problem is more difficult.
One strategy, which is used in Figures 7, 10, 13,
16'and 17, is to follow the critical orbits for many
iterations, and then test for approximate period-
icity of low period. This procedure has several
weaknesses. Near a parabolic bifurcation, conver-
gence is extremely slow, so it is difficult to observe
the periodicity or to distinguish the correct period.
Further, it does not seem practical to test for high
periods.

A different strategy would be to estimate the
Liapunov exponents at the two critical values by
computing iterated derivatives. This method was
used for Figures 11 and 12. It gives reasonably
good pictures in these cases since the bifurcation
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locus is known to have positive measure. However
in an example such as the Mandelbrot set, where
the bifurcation locus (conjecturally at least) has
measure zero, it would produce a useless picture.

Evidently these procedures are only marginally
satisfactory for either a general Julia set or a gen-
eral parameter slice. More effective algorithms are
definitely needed. Possibly some combination of
the last two methods, with a more careful testing
for periodicity, would yield substantially better re-
sults.

One other step.in constructing some of these pic-
tures is worth noting. In Figures 7, 10, 16 and 17,
the quadratic rational map is first described by the
invariants o, -and oy of Section 3. Some work is
then needed to construct an actual map with these
invariants. . However, using Corollary C.4 and the
proof of Lemma 6.1, it is not difficult to find an ex-
plicit representative map in the normal form (6-1),
which is quite convenient for computation.
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