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This article discusses the dynamics of iterated cubic maps
from the real or complex line to itself and will describe the
geography of the parameter space for such maps. It is a rough
survey with few precise statements or proofs and depends
strongly on work by Douady, Hubbard, Branner and Rees.

1. THE PARAMETER SPACE FOR CUBIC MAPS

Following [Branner and Hubbard 1988], any cubic
polynomial map from the complex numbers C to
C is conjugate, under a complex affine change of
variable, to a map of the form

2z f(2) = 2% —3a%2 + b, (1.1)

with critical points +a (cf. Appendix A). This nor-
mal form is unique up to the involution that car-
ries (1.1) to the map z — —f(—2) = 23— 3a?2 — b,
changing the sign of b. Thus the two numbers

A=d*  B=V (1.2)

form a complete set of coordinates for the moduli
space of complex cubic maps up to affine conjuga-
tion. The invariant A can be thought of as a kind
of discriminant, which vanishes if and only if the
two critical points coincide, whereas B is a mea-
sure of asymmetry, which vanishes if and only if f
is an odd function.

Now consider a cubic map = — g¢(z) with real
coefficients. If we reduce to normal form by a com-
plex change of coordinates, as above, we obtain a
complete set of invariants (A, B) that turn out to
be real. However, if we allow only a real change
of coordinates, there is one additional invariant,
namely the sign

o =sgng"” (1.3)

of the leading coefficient. It is not difficult to check
that o coincides with sgn B whenever B # 0. How-
ever, this additional invariant o is essential when
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Representative graphs for the four different classes of real cubic polynomials. The case f”' > 0 is

illustrated; corresponding examples with f’/ < 0 can be obtained by looking at this figure in a mirror.

B = 0, for in this case, there are two essentially
different real polynomial maps

z— z® — 3Ax and z — —z® — 3Ax,

which are conjugate over the complex numbers, but
not over the real numbers. Thus the moduli space
of real affine conjugacy classes of real cubic maps
can be described as the disjoint union of two closed
half-planes, namely the half-plane A € R, B >
0, 0 = +1, and the half-plane A€ R, B<0, 0 =
—1. Any real cubic map is real affinely conjugate
to one and only one map in the normal form

x — oz’ —3Az+./|B]. (1.4)

(When B # 0, we can use the alternate normal
form ¢ — B&3 — 3A¢ +1.) In the two quadrants
where oA > 0, note that the associated real cubic
map has real critical points, while in the remain-
ing two quadrants, where 0 A < 0, it has complex
conjugate critical points. Further details may be
found in Appendix A.

2. REAL CUBIC MAPS AS REAL DYNAMICAL SYSTEMS

Let’s try to describe the behavior of the iterates
of a cubic map f : R — R, considered as a real
dynamical system. We will denote the n-th iter-
ate of a map f by f°". It is convenient to intro-
duce the notation Kgr = Kr(f) for the compact
set consisting of all points z € R for which the
orbit {z, f(z), f(f(x)),...} is bounded. This set
Kgr can be described as the real part of the “filled
Julia set” of f (cf. Section 3).

We first introduce a very rough partition of each
parameter half-plane for real cubics into four re-
gions Ro, R1, R2 and R3. More generally, we di-
vide real polynomial maps f of degree d > 2 into

d + 1 distinct classes Ry, R1,..., Ry, as follows.
We will say that f belongs to the trivial class Ro
if Kr(f) consists of at most a single point. (More
precisely, Kr will consist of one fixed point when
the degree is odd and will be vacuous when the
degree is even.)

If f does not belong to this trivial class, there
must be at least two distinct points in Kr(f).
Let I be the smallest closed interval that contains
Kgr(f). Thus every orbit that starts outside of I
must escape to infinity, but the two endpoints of
I must have bounded orbits. In fact, it follows by
continuity that each endpoint of I must map to an
endpoint of I.

Definition. For f & R, we will say that f belongs
to the class R, if the graph of f intersected with
I x I has n distinct components (Figure 1). In
other words, f belongs to R, if the interval I can
be partitioned into n closed subintervals that map
into I (some of these intervals may be degenerate
when d > 3), together with n — 1 separating open
intervals that map strictly outside of I. Note that
n < d, since each of these open intervals must con-
tain a critical point of f.

As an example, for degree d = 2, the quadratic
map z — 2 + ¢ belongs to

Ro if c< -2,

R if —2<e¢<1/4, and

Ro if 1 / 4<c.
For any degree d, note that f belongs to the class
R if and only if the compact set KR is a nontriv-
ial interval (coinciding with I) or, in other words,
if and only if this interval I maps into itself, with

all orbits outside of I escaping to infinity. For f in
R, with n > 2, at least n — 1 of the critical orbits,



that is, the orbits of the critical points, must be
real and must escape to infinity. The case n = d is
of particular interest. If f € Ry, all of the critical
orbits escape to infinity. Furthermore, the interval
I contains d disjoint subintervals, each of which is
mapped diffeomorphically onto the entire interval
I. A rather delicate argument, following [Gucken-
heimer 1979, §52.8, 3.1], then shows that the set
KR is a Cantor set of measure zero. Furthermore,
the restriction f|Kgr is homeomorphic to a one-
sided shift on d symbols. The degree d polynomi-
als in R4 have maximal topological entropy equal
to logd. (Compare equation (2.4) and Figure 15.)
They have the property that their complex periodic
points are all distinct and contained in the real in-
terval I. It follows that their (complex) Julia set
coincides with the Cantor set Kr C R.

We now specialize to the cubic case d = 3. In or-
der to separate the four classes of real cubic maps,
we introduce four curves in the parameter plane,
as follows (Figure 2).

R’O
7(3 RZ Rl 9{0
Preper (1)2 Per2 +D
FIGURE 2. The four regions in the (A, B)-param-

eter plane, and the curves separating them.

Definition. We denote by Per, (1) be the set of pa-
rameter pairs (A, B) for which the associated cubic
map f has a periodic orbit of period p with multi-
plier (f°P)" equal to u. In particular, the curve

Peri(+1): B=4(A+ )3
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consists of all parameter pairs for which the graph
of f is tangent to the diagonal, while

Pery(+1): B =4(A-2)3

gives maps for which the graph of f o f is tangent
to the diagonal. Such points of tangency are called
saddle nodes of period one or two, respectively.

Similarly, let Preper;), be the curve of param-
eter pairs for which one critical point, say +a, is
preperiodic, with f°'(a) lying on a periodic orbit of
period p > 1. Here we assume that ¢ is minimal
and strictly positive. Thus the curve

Preper(y); : B =4A(A— 1)2

gives maps such that one critical point maps to a
fixed point of f, while

Preper(;),: B=—(1+ (2A+ 1)v/—A)?

in the quadrant A, B < 0, gives maps such that
one critical point maps to an orbit of period two.
For further details, see Appendix A.

We can pass between the cases Ry, R, R2 and
Rs only by crossing over one or more of these
curves. In fact, we need only the curves Perj(1)
and Preper(;); in the half-plane o =1, B > 0, as
can be verified by the study of Figure 1. Similarly,
we need only the curves Pery(1) and Preper(;), in
the half-plane ¢ = —1, B < 0. Graphs of these
four curves and the corresponding division of each
parameter half-plane into four regions are shown
in Figure 2, with irrelevant segments of the curves
removed.

(A similar description of the case boundaries can
be given for the (d — 1)-parameter family consist-
ing of suitably normalized polynomials of degree
d. There are analogous hypersurfaces Perg(,u,) and

Preper‘é)p that separate the d + 1 regions R;. For
d odd, the description is very much like that in the
cubic case, while for d even, we need just three hy-
persurfaces, namely Percll(—l—l) and Preper‘é)1 in all

cases, and also Preperfll)1 when d > 4.)

In the regions R; and R of the cubic parame-
ter plane, there are many possibilities for complex
behavior. Some of the different kinds of behavior
are distinguished in Figure 3. In the region R,
we know that at least one of the two critical orbits
must escape to infinity, but the other critical orbit
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may either escape (indicated by white in the fig-
ure) or remain bounded (indicated by light gray).
Similarly, in case R, the two critical orbits may
both behave chaotically (dark gray), or one or both
may converge to attracting periodic orbits (lighter
shades). The regions Ry and R3 are colored white
in this figure, since they correspond to relatively
dull dynamical behavior. For a discussion of the
methods used to make such figures, as well as their
limitations, see Appendix C.

“ i

FIGURE3. Picture of the (A, B)-parameter plane,
indicating the boundaries between regions of qual-
itatively different dynamic behavior. In the dark
region, both critical orbits behave chaotically, and
in the white region both critical orbits escape to in-
finity. Intermediate shades indicate various inter-
mediate forms of behavior. The illustrated region
is the rectangle [—1.2, 1.2] x [—1.85, .75].

Remark. For many purposes, it is more natural to
work in the (A, b)-parameter plane, for b = +v/B.
The corresponding bifurcation diagram is shown in
Figure 4. Of course, this figure incorporates only
real cubics with positive leading coefficient. For
an analogous parametrization of cubics with nega-
tive leading coefficient, we must work in the (4, d)-
plane, where b’ = £v/—B so that B = —(V')? <0
(see Figure 5). Figure 4 can be described roughly
as the “double” of the upper half-plane in Figure 3,
and Figure 5 as the double of the lower half-plane.

Inspection of Figures 3, 4, and 5 under magni-
fication shows that several characteristic patterns
are repeated many times on different scales. Note-
worthy are the swallow-shaped regions (Figure 7),
arch-shaped regions (Figure 11) and productlike
regions (Figure 13). We can partially explain these

FIGURE4. Picture in the (A, v/ B)-plane, with the
same conventions as Figure 3. The illustrated re-
gion is [—.4,1.1] x [-1,1].

FIGURE 5. Picture in the (A, —B)-plane, with
the same conventions as Figure 3. The illustrated
region is [—1.1,.7] x [-1.4,1.4].

regions in terms of the dynamics of the associated
maps [ as follows.

Definition. A smooth map f : R — R with one or
more critical points is said to be renormalizable if
there exists a neighborhood U of the set of critical
points so that

1. each component of U contains at least one crit-
ical point,

2. the first return map f from U to itself is defined
and smooth, and

3. the union U U f(U) U f°2(U) U --- has at least

two distinct components.

Condition 2 says that for each € U there exists
an integer n > 1 with f°"(z) € U, and that the
smallest such integer n = n(x) is constant on each
connected component of U. Condition 3 says that
we exclude the trivial case where U is connected
and maps into itself.
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Schematic diagrams for maps representing the centers of the four distinct classes of hyperbolic

components. Each critical point is indicated by a heavy dot, and each arrow is labeled by a corresponding

number of iterations (cf. Section 4 and Appendix B).

More explicitly, a real cubic map f with (not
necessarily distinct) real critical points is renormal-
izable if and only if it fits into one of the following
four classes (see Figure 6).

A. Adjacent Critical Points. There is an open
interval U containing both critical points and an
integer p > 2 so that the intervals U, f(U),...,
f°P=1(U) are pairwise disjoint, but f°P(U) C U.

B. Bitransitive. There exist disjoint intervals U
and U; about the two critical points so that the
first return map from the union U = Uy U U to
itself is defined and smooth, interchanging these
two components. In other words, f°P(U;) C
Us and f°1(Uy) C U; for some p > 1 and ¢ >
1. We will see that a universal model for this
behavior occurs in a “biquadratic” map, that is,
the composition of two quadratic maps.

C. Capture. (Caution: I am told that the term
“capture” is used with a different meaning in
[Wittner 1988]. Compare [Rees 1992].) There
are neighborhoods Uy and Uz as in Case B, but
the first return map carries both Uy and Us into
Us. Thus the orbit of U; is “captured” by the
periodic orbit of Us.

D. Disjoint Periodic Sinks. Again there are
disjoint neighborhoods U; and Us, but in this
case, the first return map carries each U; into
itself, say fP(U;) C Uy and f°1(Usz) C Us.

In all four cases, the corresponding configura-
tion in the (A, B)-parameter plane has a unique
well-defined center point fy, characterized by the
property that the first return map fo carries crit-
ical points to critical points (see Section 4). Thus
this center map fo has the Thurston property of be-
ing postcritically finite. In fact, fy has the sharper
property that the orbits of both critical points are
finite, and eventually superattracting. It follows
from Thurston’s theory that this center point fj is

uniquely determined by its “kneading invariants”
or, in other words, by the mutual ordering of the
various points on the two critical orbits (see [Dou-
ady and Hubbard 1984] and the analogous discus-
sion for quadratic maps in [Milnor and Thurston
1988, §13.4]). Furthermore, any ordering that can
occur for a continuous map with two eventually su-
perattracting critical orbits can actually occur for
a cubic polynomial map.

Case A is exceptional and occurs only in one
region, which has center point (4,B) = (0,—1)
corresponding to the map fo(2) = 1 —23. In Cases
B, C, D, we will see that the corresponding point of
the real (A, B)-parameter plane is associated, re-
spectively, to a swallow configuration, to an arch
configuration, or to a product configuration (Fig-
ures 7, 11, 13). There are two qualifications: If
such a configuration is immediately adjacent and
subordinated to another larger configuration, it’ll
be highly deformed. Furthermore, along the A-axis
the pictures in the (A, B)-plane are rather strange,
and one should rather work with the (A,b)- or
(A, b')-plane, as in Figures 4 and 5.

In each of these cases B,C,D, the first return
map from Uy UUs to itself can be approximated by
a map that is quadratic on each component. Hence
we can construct a simplified prototypical model
for this kind of behavior by replacing each interval
Uy by a copy k x R of the entire real line and by
replacing the smooth map f UL UU; —» Uy UUs,
which has one critical point in each component, by
a componentwise quadratic map

(kv I) = (‘P(k)v x? + Ck)

from the disjoint union {1,2} xR ~ RUR to itself.

First consider the case of a swallow configura-
tion, as illustrated in Figure 7. The prototypical
model in this case is obtained by replacing these
two intervals by disjoint copies of the real line with
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FIGURE 7. Detail of Figure 3 showing a “swal-
low configuration” centered at (4, B) = (—.5531,
—.6288). For the cubic map associated with this
central point, the two critical points +a satisfy
f(f(a)) = —a and f(f(—a)) = a. Hence both lie
on a common orbit of period 4. The region shown
is [—.6,—.53] x [-.7, —.55].

parameters x and y, respectively, and by replacing
the first return map by the quadratic map

e y=z+c, y—r=y +c, (2.1)

which interchanges the two components of the dis-
joint union RUR. Here c¢; and ¢y are real parame-
ters. Thus we obtain a universal swallow configura-
tion in the (c1, c2)-parameter plane, as illustrated
in Figure 8 (cf. [Ringland and Schell 1990]). The
central teardrop-shaped body of this swallow cor-
responds to the connectedness locus for this fam-
ily, consisting of those biquadratic maps for which
both critical orbits remain bounded (cf. Section
3). On the other hand, the wings and tails cor-
respond to maps for which only one critical orbit
is bounded.

Remark. It is interesting to note that this same
swallow configuration seems to occur in a quite dif-
ferent context, where there are no critical points at
all. Consider the two-parameter family of Hénon
maps. These are quadratic diffeomorphisms of the
plane that can be written, for example, as

(z,y) = (y, y* — @ — pu), (2.2)

with constant Jacobian determinant 3. A picture
of those parameter pairs («, 3) for which there ex-
ists an attracting periodic orbit typically exhibits

FIGURE 8. The prototype swallow configuration
in the (¢, co)-parameter plane, associated with
the family of biquadratic maps = — (22 +¢1)? +co
from the real line to itself. The region shown is
[—2.5, 1] x [-2.5, 1].

quite similar swallow-shaped configurations [El Ha-
mouly and Mira 1982]. For example, such a re-
gion is shown in Figure 9, corresponding to an
attracting orbit of period five. This phenomenon
can be explained intuitively as follows. If |3 is
small, the dynamics of the two-dimensional Hénon
map is quite similar to the dynamics of the one-
dimensional map y — y? — . In particular, the
Hénon map can be closely approximated locally by

FIGURE 9. A swallow configuration in the Hénon
parameter plane. A location (a, () is colored white
if a random search of initial conditions found an at-
tracting orbit of low period for the quadratic dif-
feomorphism (z, y) — (y, ¥*> — a — Bx); gray in-
dicates that only high periods or chaotic behavior
were found. In the black area to the lower right, no
bounded orbits were found. The graininess in the
picture is presumably due to the random nature of
the algorithm used. Region: [1.4, 1.6] x [-.3, —.1].



a linear map, except at points near the axis y = 0,
where the second derivative plays an essential role.
Similarly, the dynamics of a composition of two
Hénon maps with small determinant resembles the
dynamics of a composition of two one-dimensional
quadratic maps. Now consider a periodic orbit for
some Hénon map. If this orbit is to be attracting,
it must contain at least one point that is close to
the axis y = 0. If exactly two points of the orbit
are close to y = 0, the dynamics will resemble that
for a composition of two quadratic maps. Hence,
in this case, as we vary the parameters, we obtain
a swallow-shaped configuration within the Hénon
parameter plane.

Caution. The swallow configuration of Figures 7, 8
and 9 should not be confused with the somewhat
similar configuration shown in Figure 4, which can
perhaps be described as a “pointed swallow.” This
pointed configuration also plays a role in many dy-
namical systems. Here is a well-known example.
(I am indebted to communications from S. Ushiki
and T. Matsumoto.) Consider the two-parameter
family of circle maps

t — t+ c+ ksin(27t) (mod 1). (2.3)

These are diffeomorphisms for |27k| < 1, but have
two critical points for larger values of |k|. The cor-
responding picture in the (¢, k)-parameter plane,
shown in Figure 10, contains one immersed copy
of the configuration of Figure 4 corresponding to
each rational rotation number [Chavoya-Aceves et
al. 1985]. Each of these configurations terminates
in a “tongue” that reaches down to the correspond-
ing rational point on the £ = 0 axis. These are
known as Arnold tongues.

Next let’s consider the arch configuration, as il-
lustrated in Figure 11. Recall that a point of the
cubic parameter plane belongs to an arch configu-
ration if there are disjoint neighborhoods U; and
Uy as described earlier so that some iterate of f
maps U; into Uy, and some iterate maps Us into
itself, but so that every forward image of U; or Us
is disjoint from Uj. In this case, the universal con-
figuration, as illustrated in Figure 12, is obtained
by studying a quadratic map from R LR to itself
depending on two parameters ¢ and & as follows.
We map a point £ in the first copy of R to the point
x = +£2+ & in the second copy so that the critical
point maps to &, and we map the second copy of

Milnor: Remarks on Iterated Cubic Maps 11

FIGURE 10. Arnold tongues ending in “poin-
ted-swallow” configurations for the family of circle
maps t +— t+ c+ ksin(27t). Region: [.15,.7] x
[0, .35] in the (c, k)-parameter plane.

R to itself by = — 2? 4+ c. The real connectedness
locus in this prototypical case consists of all pairs
(¢, ) with —2 < ¢ < 1/4 and 2|z| < 1+ /1 — 4ec.
Finally, take the product configuration of Fig-
ure 13. We say that a point of the cubic parameter
plane belongs to a product configuration if there are
disjoint neighborhoods U; and U, as given earlier
R
W
N\
N

9

FIGURE 11. Detail of Figure 3 showing an arch
configuration. For the cubic map corresponding to
the center point (A, B) = (.8536, .0243), the crit-
ical points +a satisfy f(f(a)) = f(f(—a)) = *a.
Region: [.835, .885] x [.01, .03].
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FIGURE 12. The prototype arch configuration in
the (¢, &)-plane. Here we consider the orbit of the
point Z under the map z — x?+c. Dark gray indi-
cates that both & and 0 have chaotic orbits, while
white means that both escape to infinity. Region:
[—2.3, 4] x [-2.2,2.2].

o Nl AA
FIGURE 13. Detail of Figure 3 showing a product
configuration. For the map corresponding to the
center point (.8156, .0674), there are two super-
attracting periodic orbits, with periods three and
four. Region: [.814, .819] x [.0665, .0685].)

so that some iterate of f maps Uj into itself and
some iterate maps Us into itself, but no forward im-
age of either one of the U; intersects the other. In
this case, the universal model is obtained by taking
two disjoint real lines, say with parameters x and
y, and by looking at independent quadratic maps
x — 22 +c1, y — y> + co. The “real connected-
ness locus” for this two-parameter family, that is,
the set of parameter pairs for which both critical
points have bounded orbits, is evidently equal to
the square [—2, ] x [=2, 1] in the (1, ¢2)-plane,
as illustrated in Figure 14.

FIGURE 14. The prototype product configuration
in the (¢, ¢)-parameter plane.

According to [Jakobson 1981], the set of param-
eter pairs for which both critical orbits are chaotic
(indicated by dark gray in the figure) has positive
measure (see also [Benedicks and Carleson 1985]
and [Rychlik 1988]). A classical conjecture, not yet
proved, asserts that this set is totally disconnected.
Thus it seems natural to make the corresponding
conjecture for the cubic parameter plane of Figure
3 that the set of parameter pairs for which both
critical orbits are chaotic is a totally disconnected
set of positive measure.

Further discussion of these shapes, and other re-
lated ones, will be given in Section 4, which dis-
cusses the corresponding four cases for complex
cubic maps, and in Appendix B.

A useful tool for studying real polynomial map-
pings f of degree d is provided by the topological
entropy 0 < h(f) <logd of f considered as a map
from the compact interval [—oo, oo] to itself. Ac-
cording to [Rothschild 1971] and [Misiurewicz and
Szlenk 1977], the topological entropy can be com-
puted as

lim ~ log £(f°F), (2.4)

h(f) =]
— 00

where £(f°%) — 1 is the number of points along the
real axis at which the derivative z +— df°*(z)/dx
changes sign [Milnor and Thurston 1988]. In the
cubic case, a more practical algorithm for com-
puting h has recently been described [Block and
Keesling].
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s = .05.1,...,27,205,...,3
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“Curves” of constant growth number s in the (A,b)-parameter plane, for the families of maps
z — 2% — 3Ax + b (left) and z — —2® — 34z + b (right).

(Compare Figures 4 and 5.) The curves

are plotted, using an algorithm due to Block and Keesling. The regions

shown are [.57, 1.03] x [—.03, .43] (left) and [-1.05, —.02] x [—.05, 1.35] (right).

The entropy h(f) varies continuously as f varies
through polynomials of fixed degree. Furthermore,
h takes a constant value, equal to the logarithm of
an algebraic integer, throughout each hyperbolic
component (cf. Section 4). In particular, in the
cubic case, the entropy of the map = — 2% —3Az+b
depends continuously on the two parameters A and
b, and similarly the entropy of

z— —x° — 34z +b

depends continuously on the parameters A and b.
It is often convenient to set h = logs, where
the growth number s = e varies over the interval
1 < s < 3 in the cubic case. Figure 15 shows the
level sets of s in the (A, b)-plane for the families of
maps © — 23 —3Az+b (left) and x — —23—3Az+b
(right): compare Figures 4 and 5. In each case, we
see points both inside and outside the real con-
nectedness locus. At least part of the boundary
curves Preper(j); and Preper(y); for the connect-
edness locus is clearly visible in these figures as a
locus where the level sets change shape dramati-
cally. I have not tried to plot the boundary of the
region s = 1, although this would be a locus of
particular interest (cf. [MacKay and Tresser]).

In the quadratic case, it is known that the topo-
logical entropy h (or equivalently the growth num-
ber s = e?) for the map =z + 2 + ¢ is a mono-
tone decreasing function of the parameter ¢ (see,
for example, [Milnor and Thurston 1988]). A cor-

configuration in the (A, B)-plane. The illustrated
region [0.835,0.885] x [0.01,0.03] is the same as
that shown in Figure 11. The contour interval is
As = .002.

responding conjecture for the cubic case would be
that each level set s(A, b) = constant is a con-
nected subset of the (A, b)-parameter plane and, in
particular, that the continuous function (A,b) —
s(A,b) has no isolated local maxima or minima.
The conjecture applies to both families of maps,
23 —3Ar +band x — —2° — 3Ax + b.

Note that these level sets are not always curves.
They may well have interior points. For exam-
ple, this is the case for s = 1, 2, 3 and also for
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s = (14++/5)/2. It is conjectured that there are
interior points if and only if this locus contains hy-
perbolic maps. In particular, it is conjectured that
this can happen only when s is an algebraic integer
(cf. Appendix B and Figure 16.)

3. COMPLEX CUBICS: THE CONNECTEDNESS LOCUS

In this section, we consider the dynamics of a com-
plex cubic map. Following [Douady and Hubbard
1984], for any complex polynomial map f: C — C
of degree d > 2, we use the notation K(f) for the
filled Julia set, consisting of all complex numbers z
for which the orbit of z under f is bounded. This
set K(f) is connected if and only if it contains all
of the critical points of f. On the other hand, if
K(f) contains no critical points, f is a “degree
d complex horseshoe” in the sense that there ex-
ists a disk D D K(f) smoothly embedded in C so
that f~!(D) consists of d disjoint subdisks, each of
which maps diffeomorphically onto D under f. In
particular, f restricted to K(f) is isomorphic to a
one-sided shift on d symbols (compare [Blanchard
et al. 1991]).

Branner and Hubbard [1988] define the connect-
edness locus for a parametrized family of polyno-
mial maps to be the set of all parameter values
that correspond to polynomials f for which K(f)
contains all of the critical points, or equivalently
is connected. As an example, the connectedness
locus for the family of complex quadratic maps
2z + 22 + ¢ is also known as the Mandelbrot set
(Figure 17). This set has been extensively studied
by Douady and Hubbard, who show, for example,

kY

#

FIGURE 17. The Mandelbrot set.

that it is connected, with connected complement
[Douady and Hubbard 1982]. In the cubic case,
Branner and Hubbard [1988] show that the con-
nectedness locus is again compact and connected,
with connected complement. In fact, more pre-
cisely, it is “cellular”; that is, it can be expressed
as the intersection of a strictly nested sequence of
closed four-dimensional disks D1 C lo)z- in the pa-
rameter space C? [Brown 1960; 1961]. The corre-
sponding assertion for higher degrees has recently
been proved [Lavaurs 1989)].

However, there seem to be at least three signif-
icant differences between the quadratic and cubic
cases. To discuss them, we will need the following
definition. Following [Douady and Hubbard 1984],
a component of the interior of a complex connect-
edness locus is called hyperbolic if every critical or-
bit of any associated polynomial map converges to-
wards an attracting periodic orbit (cf. Section 4).

(1) The Mandelbrot set is replete with small
copies of itself. In fact, [Douady and Hubbard
1985] shows that each hyperbolic component of the
interior of the Mandelbrot set is embedded as the
central region of a small copy of the full Mandel-
brot set. However, in the cubic case, there is is not
just one kind of hyperbolic component, but rather
four essentially distinct types, each associated with
a characteristic local shape.

(2) In the quadratic case, the hyperbolic compo-
nents are organized in a one-dimensional treelike
manner. To make this statement more precise, we
could say that the hyperbolic components of pe-
riod < pg are connected to each other within the
Mandelbrot set like the vertices of a tree. In the
cubic case, there is certainly no such treelike or-
ganization. A corresponding conjecture might be
that finite sets of hyperbolic components are or-
ganized as vertices of an acyclic two-dimensional
complex.

(3) It is widely believed that the Mandelbrot
set is locally connected. Yoccoz (unpublished) has
made important progress towards a proof in re-
cent years. However, local connectivity definitely
fails for the cubic connectedness locus; see [Lavaurs
1989] as well as the following discussion. In fact,
pictures such as Figure 20 suggest that the cubic
connectedness locus may not even be pathwise con-
nected.



It is difficult to visualize this complex cubic con-
nectedness locus, which is an extremely compli-
cated four-dimensional object with fractal bound-
ary [Dewdney 1987]. A more accessible situation
arises if we consider the dynamics of cubic poly-
nomial maps f : C — C that have real coeffi-
cients and hence are effectively described by points
in the real (A, B)-parameter plane. In particular,
we can intersect the Branner—Hubbard connected-
ness locus with the real (A, B)-plane. The result-
ing intersection is shown in Figure 18. Here, for

FIGURE 18. The complex connectedness locus in-
tersected with the real (A, B)-plane. The region
shown is [-1,1] x [-1.7,.65].

parameter pairs in the outside white region, one
or both critical orbits escape to infinity, while in
the inside white regions both converge to periodic
orbits. Gray and black indicate, respectively, that
one or both critical orbits behave chaotically. In
the two quadrants where AB > 0, so that the crit-
ical points are real, the connectedness locus coin-
cides with the region R, as described in Section 2,
and is bounded by smooth curves. For parameter
values in the regions R9 and R3 of Section 2, recall
that at least one of the two critical orbits necessar-
ily escapes. Hence this region is white in the figure.
Within the two quadrants where AB > 0, the be-
havior of the iterates of f as a real dynamical sys-
tem effectively determines the behavior as a com-
plex dynamical system. However, in the two quad-
rants where the critical points are complex, this
real part of the connectedness locus is a very com-
plicated object with fractal boundary. (In these
complex quadrants, note that both critical orbits
must behave in the same way, since they are com-
plex conjugates.) The notations A-D in Figure 18
are explained in Section 2 (Figure 6), Section 4
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and Appendix B; and the sign of AB is used as
superscript.

Just as in the full complex case, this real part
of the connectedness locus is compact and cellu-
lar, as can be proved by the methods of [Branner
and Hubbard 1988]. Alternatively, using the Smith
theory, as described in [Bredon 1972, p. 145], since
the real connectedness locus is the fixed point set of
an involution on the complex connectedness locus,
which has the Cech cohomology of a point, it fol-
lows that the real connectedness locus also has the
mod 2 Cech cohomology of a point. In particular,
it is connected, with connected complement.

The shape of this locus in the two complex quad-
rants AB < 0 is reminiscent of the Mandelbrot set
(Figure 17), and, in fact, we will see in Section
4 that there are many small copies of the Man-
delbrot set embedded in these quadrants. How-
ever, these embedded copies tend to be discontin-
uously distorted at one particular point, namely
the period-one saddle node point ¢ = 1/4, also
known as the root point of the Mandelbrot set. This
phenomenon is particularly evident in the lower
right quadrant, which exhibits a very fat copy of
the Mandelbrot set with the root point stretched
out to cover a substantial segment of the saddle
node curve Pery(1) (cf. Section 2). As a result
of this stretching, the cubic connectedness locus
fails to be locally connected along this curve (Fig-
ure 19). This behavior, which has been studied
by Lavaurs [Lavaurs 1989], is in drastic contrast
to the situation for degree-two maps. In fact, as
noted earlier, it is widely believed, although not
yet proved, that the Mandelbrot set is locally con-
nected.

FIGURE 19. Detail in the lower right quadrant,
showing lack of local connectivity. The region dis-
played is [.02, .32] x [-1.15, —.7].
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4. HYPERBOLIC COMPONENTS

We continue to study the two-parameter family
of affine conjugacy classes of cubic maps. Recall
that a complex cubic map f, or the corresponding
point (A, B) in complex parameter space, belongs
to the connectedness locus if the (forward) orbits
of both critical points under f are bounded, and
it is hyperbolic if both of these critical orbits con-
verge towards attracting periodic orbits. Here, by
definition, an orbit f°P(zp) = zp of period p > 1 is
called attracting if the multiplier df°P(z)/dz (that
is, the characteristic derivative around the orbit)
has absolute value less than one. The set of all
hyperbolic points in the complex parameter plane
forms an open set, which is conjectured to be pre-
cisely equal to the interior of the connected locus
and to be everywhere dense in the connectedness
locus. Each connected component of this open set
is called a hyperbolic component of the connected-
ness locus.

These definitions make equally good sense for
the real part of the connectedness locus. Again, it
is conjectured that the hyperbolic points are every-
where dense. However, it is clearly not true that
every interior point of the real connectedness locus
is hyperbolic.

The discussion of hyperbolic components will be
strongly influenced by the work of Rees [1990], who
has studied the closely analogous problem of iter-
ated rational maps of degree two from the sphere
CUoo toitself. I am indebted to Douady for the ob-
servation that her methods and conclusions apply,
with minor modifications, to our case of iterated
cubic polynomial maps. In particular, her meth-
ods show that each hyperbolic component contains
a unique preferred point, characterized by the prop-
erty that the forward orbit of each of the two critical
points under the associated map is finite, and hence
eventually periodic. (Compare [McMullen 1988].)
Following [Douady and Hubbard 1982], this pre-
ferred point is called the center of the hyperbolic
component. If the hyperbolic component intersects
the real (A, B)-plane, note that its center must be
self-conjugate, and hence real.

These ideas are given further development in
[Milnor 1992], which studies monic centered poly-
nomial maps of any degree d > 2 over R or C,
showing that every hyperbolic component is a top-
ological cell with a preferred center point.

In analogy with [Rees 1990], the different hyper-
bolic components in the complex cubic connected-
ness locus can be roughly classified into four differ-
ent types, as follows (compare Section 2 and Fig-
ure 6). Fixing some hyperbolic cubic map f, let
U C C be the open set consisting of all complex
numbers z whose forward orbit under f converges
to an attracting periodic orbit. Note that f maps
each component of U precisely onto a component

of U.

A,. Adjacent Critical Points. Here both criti-
cal points belong to the same component Uy of
this attractive basin U. This component is nec-
essarily periodic, in the sense that f°P(Uy) = Uy
for some integer p > 1.

B, +4- Bitransitive. The two critical points be-
long to different components Uy and U; of U,
but there exist integers p,q > 0 satisfying the
conditions f°P(Up) = Uy and f°1(Uy) = Uy. We
assume that p and ¢ are minimal, so that both
Up and U; have period p + gq.

Cityp+q- Capture. Again the critical points belong
to different components, but only one of the
two, say Uy, is periodic. In this case, some for-
ward image of Uy must coincide with U;. More
precisely, there is a unique smallest integer ¢ +
p >t > 1 so that f°(Up) coincides with some
forward image f°?(Uy), and so that f'P(Up) =
Ui, where U; has period p + q. In this case, the
product tq is always two or more. However, p
may be zero, in which case we write simply C(;)4.

D, 4. Disjoint Periodic Sinks. The two critical
points belong to different components Uy and
Uy, where no forward image of Uy is equal to
Ui, and no forward image of U; is equal to Up.
In this case, each of the two components Uy and
U1 must be periodic, although their periods p
and g may be different.

In all four cases, if a component Uy of U is peri-
odic with f°P(Up) = Uy, the map fP restricted to
Up has a unique fixed point, and the orbit of every
point in Uy under f°P converges towards this fixed
point.

If f represents the “center” point of its hyper-
bolic component, the orbits of the critical points
under f can be described as follows. In the Adja-
cent Case, the two critical points coincide (in other



words, the discriminant parameter A is zero), and
this double critical point belongs to a periodic or-
bit. In the Bitransitive Case, the two critical points
belong to a common periodic orbit; in the Capture
Case, just one of them lies on a periodic orbit, while
the orbit of the other eventually hits this periodic
orbit; and in the Disjoint Case, they lie on disjoint
periodic orbits.

Now let’s look at hyperbolic components in the
real (A, B)-plane. In the Adjacent Case, there are
only two real hyperbolic components. They have
periods one and two and are centered at the ori-
gin and the point (0, —1), respectively. Both are
very special, and I will not try to discuss them. In
the Capture Case, we are necessarily in a quadrant
with AB > 0, and we obtain an arch configuration
as in Section 2.

In the Bitransitive Case, if the center lies in a
quadrant where AB > 0, we obtain a swallow con-
figuration, as discussed in Section 2. However,
if the center lies in one of the quadrants where
AB < 0, we get a quite different three-pointed
configuration, which I will call a tricorn (Figure
20). In this case, the two critical points ¢ and ¢

FIGURE 20. Detail of the right center of Figure
19, showing a small tricorn-shaped configuration.
For the center point (.27286, —.93044), the third
iterate of the cubic map carries each critical point
to its complex conjugate. Region: [.265, .281] X
[—.958, —.903].

are conjugate complex, and the first return map
from a neighborhood of ¢ to a neighborhood of ¢
is conjugate to the first return map in the other
direction. Thus we obtain a prototype model for
this behavior by replacing these two neighborhoods
by two disjoint copies of the complex numbers C,
mapping the first to the second by a quadratic
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map z — w = z° + ¢, and mapping back by the
conjugate transformation w +— z = w? + ¢. The
resulting connectedness locus in the c-parameter
plane is shown in Figure 21. This configuration

FIGURE 21. The prototype tricorn, in the c-plane
where z — (22 +¢)? + ¢

is compact and connected and has an exact three-
fold rotational symmetry. Like the real cubic con-
nectedness locus, it contains embedded copies of
the Mandelbrot set, where the root point has been
stretched out over a curve of saddle node points, so
as to yield a nonlocally connected set (Figure 22;
cf. [Winters]). Along the real axis, this prototype
tricorn coincides precisely with the Mandelbrot set.
However, as soon as we get off the real axis, the two
differ. In particular, each hyperbolic component

FIGURE 22. Detail of Figure 21, showing lack of
local connectivity. Region: [.18,.5] x [.34,.66].
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along the real axis of the Mandelbrot set gives rise
either to a small embedded Mandelbrot set in the
tricorn or to a small embedded tricorn, depending
on whether the period is even or odd.

If the center of a hyperbolic component lies pre-
cisely along the A-axis, we obtain a mixed config-
uration. In the Bitransitive Case, the part which
lies in a quadrant with AB > 0 looks like half of
a swallow configuration, and the other half looks
like half of a tricorn. The Disjoint Case is quite
similar. If the center satisfies AB > 0, we obtain
a product configuration, as discussed in Section 2.
If it satisfies AB < 0, we obtain a copy of the
Mandelbrot set, whereas if it lies exactly on the A-
axis, we obtain a mixed configuration. Such mixed
configurations must be considered as an artifact of
our choice of parametrization. They would not ap-
pear if we worked in the (A, b)-plane or the (A, ib)-
plane, as in Figures 4 and 5. However, such mixed
configurations along the A-axis of the (A, B)-plane
do help to make it clear that tricorn and swallow
(or Mandelbrot set and product configuration) are
just different real slices through a common config-
uration in C2.

In Figure 18, twenty of the hyperbolic compo-
nents in the real cubic connectedness locus have
been labeled. (Compare Appendix B.) It is note-
worthy that several of the most prominent hyper-
bolic components seem to be missing some of the
basic features of their prototypical examples. In
fact, this seems to happen whenever the given com-
ponent is immediately contiguous and subordinate
to a larger hyperbolic component. In general, we
must ask the following question: Under what con-
ditions will the configuration around a hyperbolic
component in the real or complex cubic connected-
ness locus include a complete copy of the connect-
edness locus for its prototype configuration?

For quadratic polynomials, in [Douady and Hub-
bard 1985] the authors provide a full answer to
the analogous question in their theory of “modu-
lation” or “tuning.” In the quadratic case, there is
only one kind of hyperbolic component, and they
show that every hyperbolic component in the Man-
delbrot set is embedded as the central region of a
small copy of the full Mandelbrot set.

APPENDIX A. NORMAL FORMS AND CURVES IN
PARAMETER SPACE

The barycenter of a polynomial map
z = f(x) = 12" ezt (A.1)
of degree n > 2 is the unique point

Len—

§=

n c,
at which the (n — 1)-st derivative vanishes. In the
complex case, this can be identified with the av-
erage of the n — 1 critical points f'(z) = 0. If
n > 2, it coincides with the average of the n fixed
points f(z) = z. Every polynomial map is con-
jugate by one and only one translation to a map
z +— g(z) = f(z + &) — & that is centered, in the
sense that its barycenter is zero. This is equivalent
to the requirement that the coefficient of ™! in
g (written as a sum of monomials) should be zero.
If v is a solution to the equation 7" !
the linearly conjugate polynomial z — ~vg(z/7) is
monic, that is, it has leading coefficient 1. In the
complex cubic case, note that v is uniquely de-
termined up to sign. It follows easily that every
complex cubic map is affinely conjugate to one of
the form

= Cp,

222 —3Az+0b

with critical points £a = :I:\/Z, where the numbers
A and B = b? are affine conjugacy invariants. If we
start with a polynomial in the more general form
(A.1), computation shows that

A=—f"(2)/3 = (c3 —3cic3)/9c3,
where 2 = —%cy/cg, and that b = £(f(2) — 2),/c3

or

(A.2)

B=(f(3)—%)%;.

In the real cubic case, note that Z and the invari-
ants A = a® and B = b? are real, although a and
or b may be pure imaginary.

(A.3)

The Locus Per; (1)

By definition, a pair (A, B) belongs to Per;(u) if
and only if the corresponding cubic map f has a
fixed point at which the derivative f’ equals p. If
f(z) = 23 — 3Az + b, and if the fixed point is = =
k, we can equally well work with the translation-
conjugate polynomial ¢g(z) = f(z 4+ k) — k, which



has its preferred fixed point at the origin and hence
has the form
g(x) = 23 + 3kx® + px .

Using (A.2) and (A.3), we see that A = k% — 11/3
and b = k(2k%+ 1 — ). Tt is then easy to solve for
B = b? as a function of A. Noteworthy cases are

Peri(1): B =4(A+1)?,
Peri(0): B=4A(A+3)%,
Peri(—1): B=4(A-1)(A+3)?.

(The first of these appears in Figure 2.) Here the
saddle node curve Perj(1) forms part of the up-
per boundary of the principal region, which is la-
beled A; in Figure 18, and the bifurcation locus
Per;(—1), where attracting period-one orbits bi-
furcate into attracting period-two orbits, forms the
lower boundary of this region. Both of these curves
also form part of the boundary of regions labeled

C(E)l’ ng and Dq 1 in the left-hand part of this fig-
ure. The curve Per;(0) consists of all parameter
pairs with a superattracting fixed point. Thus it
passes through the centers of the components la-
beled C(“;)l, DIL,Z’ D11 and A;. The curve
Peri(2): B=4(A+2)(A+})?

is also of interest, but for a surprising reason, which
needs some explanation. An arbitrary cubic map
has three (not necessarily distinct) complex fixed
points f(z;) = z;. Let p; = f'(z) be the cor-
responding derivatives. Evidently, any symmetric
function of the y; is an invariant of our cubic map
and hence can be expressed as a function of the
two fundamental invariants A and B. In fact, it is
most convenient to work with the elementary sym-
metric functions of the pu; — 1. With a little work,
one finds the following explicit formulas.

(i —1)=A+13, (A4)

Dicj (i = 1)(pj —1) =0, (A.5)

s T — 1) = B — 4(A+ )% (A.6)

If p1 + p2 # 2, we can solve (A.5) for ps, obtaining
1 — pape

=24+ ——. A7

1 p1 + p2 — 2 (A7)

(In fact, if g1 # pe, the two curves Perq(p1) and
Pery(p2) intersect transversally at a single point,
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which also belongs to Per;(u3).) If we exclude the
indeterminate case p; = uo = 1, it follows from
(A.7) that p3 = 2 if and only if pyus = 1.

Now suppose that a real cubic map has two com-
plex conjugate fixed points that are indifferent, in
the sense that the corresponding derivatives pu; =
i2 lie on the unit circle. Then pjps = 1, hence
w3 = 2, and the associated parameter pair (A, B)
lies on the curve Pery(2). In fact, if u; = €, we
can compute

A = Z(cos(0) — 2)

from (A.4). Thus the curve in the real (A, B)-plane
corresponding to cubics with two complex conju-
gate indifferent fixed points is precisely the seg-
ment —% <AL —% of the curve Per;(2). This
curve segment forms the upper boundary of the
region D1 in Figure 18. Note that the endpoints
of this curve segment are just the uniquely de-
fined intersection points Per;(—1) N Per;(2) and
Perl(l) N Per1(2).

To study the curve Pera(u), it is convenient to
translate coordinates of our monic polynomial so
that the period-two orbit takes the form {x, —x},
with midpoint at the origin. It is then easy to com-
pute the coefficients, and hence the invariants A
and B, as functions of k. In the case u = 1, there
is a substantial simplification. In fact, as p — 1,
the curve Pera(u) tends towards a reducible curve,
which is the union of two irreducible constituents.
One of these is the the bifurcation locus Per;(—1),
which we do not consider to be part of Perp(1),
since the period-two orbit has degenerated to a
fixed point, and the other is the required curve

Pery(1) :

where A = 2(2x? + 1). Even on this later curve,
note that the period-two orbit degenerates to a
period-one orbit at the special point A = %, B =
—4(%)3 = —%, where the two irreducible com-
ponents come together. (Figure 18 is very dis-
torted around this point. See the discussion in

Appendix C.)

Remark. A generic cubic map has three period-two
orbits. If w1, po, us are the derivatives around
these three orbits, the elementary symmetric func-
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tions o; of the u; can be expressed as polynomial
functions of A and B:

o1 =9(3 — 44),
09 = 9%(3 — 8A +164% — 12A* + 2B + 3AB),
o3 =09 —o01+1
+93(B-4(A- 2B - (A- 1A+ 2)?).

The critically preperiodic locus Preper ),

To study this locus, we must look at maps f(z) =
23 — 3a?z + b such that the critical value f(a) be-
longs to an orbit of period p, but the critical point a
does not belong to this orbit. Note that the equa-
tion f(a’) = f(a) has just one solution o’ # a,
namely the cocritical point a' = —2a. Thus this
periodic orbit must contain both the cocritical point
—2a and the critical value f(a) = b — 2a3.

In the case p = 1, we must have —2a = f(a), or
in other words, b = 2a3 — 2a. Squaring both sides,
we obtain the formula

Preper(y; : B =4A(A - 1)2,

as given in Section 2. Note that the derivative
p = f'(—2a) at the fixed critical value is equal to
9a? = 9A. We can distinguish the segment |A| <
% of this curve, which lies within the “principal
hyperbolic component” Aj, from the segment A >
%, which forms much of the upper boundary of the
real connectedness locus, and the segment A < —%,
which separates the region labeled C(1), from As.

In the case p = 2, the periodic orbit must con-
sist of the two points f(a) and —2a. Setting £ =
b — 2a3 + 2a, so that f(a) = £ — 2a, we can write
the required equation f(f(a)) = —2a as a cubic
equation in ¢ with roots £ = 0 and ¢ = 3a & v/—1,
or in other words, b = 2a3 + a £ i. If this equation
is satisfied, note that the periodic orbit consists of
—2a and f(a) = a = i. By multiplying the equa-
tion by #+¢ and squaring both sides, we obtain the
formula

—B=(V-AQA+1)+1)?,

as given in Section 2.

Points in the (A, B)-parameter plane where two
of these curves intersect may be of particular inter-
est. For example, the bifurcation locus Per;(—1),
which forms the lower part of the boundary of the
principal region A; in Figure 18, grazes the sad-
dle node curve Pery(1) tangentially at the point

Preper(y) :

A= %, B = —%, where four different hyperbolic
components Az, As, D; 4 and Bi41 come together.
(In fact, in the complex (A, B)-plane, there are six
different hyperbolic components that touch at this
point.) The saddle node curve Per;(1) grazes the

critically preperiodic curve Preper(q; tangentially

at the point A = %, B = %, which lies on the

boundary between the regions R and Ry (cf. Fig-
ure 2). Similarly, the curves Pery(1) and Preper(;y,

meet tangentially at A = —%, B = —% (or
_1; p_ 125.
a = 61, b= m@)

The top boundary of the region Dp; in Figure
18 forms part of the curve Per;(2), characterized
by the property that there are two mutually conju-
gate indifferent fixed points. This curve intersects
the saddle node curve Per;(1) transversally at the
corner point A = —%, B = % of this region. (Pre-
sumably, there are two similar transverse intersec-
tions of the saddle node curve Perp(1) with the
lower right boundary curve of the region of the hy-
perbolic component, which is labeled D5 5 in Figure
18, and also a transverse intersection with the tiny
Dy 2 on the right. One of these intersection points
is shown rather poorly in Figure 19.)

The largest value of the invariant B within the
real connectedness locus occurs at the point A = %,
B = é—g = .59259, and the smallest value occurs at

A=-1 B=—(1+/2)=-1.6184,

both on the boundary between regions R; and Ro.
The largest and smallest values of A occur at the
points A = +1, B = 0, where both critical points
are preperiodic, and where the topological entropy
takes its largest value of log 3.

APPENDIX B. CENTERS OF SOME HYPERBOLIC
COMPONENTS

Table 1 lists the centers of twenty of the hyperbolic
components in the real (A, B)-parameter plane, as
shown in Figure 18, including all those for which
both critical points have period two or less. They
are listed in order of increasing A, first for the up-
per half-plane B > 0, then for B = 0, and then for
the lower half-plane B < 0. The notations A-D in
the third column are explained in Section 4 or in
Section 2 (Figure 6). Thus we write:

A, for a component with adjacent critical points
and attracting orbit of period p. These are ex-
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A B Type Description Topological Entropy
—.55881  .08656 Ds3 cr3c, cr 3¢
AT567 33217 Clya €2 =2 0
49408 45878 Chy e 3d =2 0
62827 04135 Bi,s crd 3 0
71327 12977 Bf,, c—cd 2 log((1 + v/5)/2)
—\/5/2 0 D32 c—2c, =2 0
-1/2 0 D11 c—c, = 0
0 0 A c=c —c 0
1/2 0 Bii1 c—cd—ec 0
V2/2 0 Dyy c—2c, 2] 0
—3/4 —3/16 Chy e 2= d log 2
—.61688  —.03371 DY, c—c, =2/ 0
—.55310  —.62882 B3, c—2d—2 log 1.83929
39736 —.31371 Chyp crr2d =2 0
—.36464  —1.09040 Bf,, c¢—dm—2 log((1+ v/5)/2)
—1/4 —9/16 Cha crmdm2d 0
—.13414  —1.37344 By, c—2d—2 0
0 -1 As c=c — 2 0
1/4 ~7/16 Dy, c—2, 20
27286 —.93044 Bi,s cr»3er3c
TABLE 1.  Centers of hyperbolic components (see Appendix B for notation).

actly the hyperbolic components whose center
point lies on the line A = 0, where the critical
points coincide.

Bptq for a bitransitive component with attracting
orbit of period p + ¢, where the p-th iterate
carries the first critical point to the immediate
basin of the second, and the ¢-th iterate carries
the second back to the immediate basin of the
first. Such a component lies at the center of a
swallow-shaped configuration in the real (A, B)-
plane when AB > 0, or a tricorn configuration
when AB < 0.

C(t)p+q for a capture component (or arch-shaped
configuration), at whose center point the ¢-fold
iterate carries one critical point to an orbit of
period p + ¢ containing the other critical point,
and where the (¢ 4 p)-th image of the first crit-
ical point is equal to the second. In the special
case p = 0, we write this briefly as C;). Such
a component necessarily lies in one of the quad-
rants AB > 0, where the critical points are real
and distinct.

D, , for a component with two disjoint attracting
orbits with periods p and ¢, yielding a product
configuration when AB > 0, or a Mandelbrot
configuration when AB < 0.

Moreover, the superscript © has been added if
AB > 0 (so that the critical points are real and
distinct), and the superscript ~ has been added if
AB < 0 (so that the critical points are complex
conjugate and distinct). In the fourth column, the
notation {¢, ¢’} is used for the set of critical points,
and +» for the n-th iterate of the cubic map. For
example, ¢ ¢’ means that the third iterate car-
ries the first critical point to the second. The last
column gives the topological entropy of the real
mapping, when AB > 0.

Remark. When B = 0, there is a hyperbolic com-
ponent centered at (A, 0) if and only if there is one
centered at (—A,0). This follows from the obser-
vation that for an odd mapping, such as f(z) =
+23 — 3Az2, the second iterate f(f(z)) is equal to
—f(=f(2)), so that f and —f have quite similar
dynamical properties. For example, they have the
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same topological entropy in the real case, or the
same Julia set in the complex case, and one is hy-
perbolic if and only if the other is. However, it may
happen that one of these two belongs to a bitran-
sitive component (type B), whereas the other has
disjoint attracting orbits (type D).
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FIGURE 23. Hubbard trees for the centers of 20
hyperbolic components, as listed in Appendix B.
(In the last two diagrams, vertex 0 maps to 1, to
2, and so on.)

More information about these twenty hyperbolic
components can be read from Figure 23, which
shows the corresponding Hubbard trees [Douady
and Hubbard 1984; 1985]. Each Hubbard tree is a
simplified picture that shows how the points of the
two critical orbits are joined to each other within
the filled Julia set K(f). Since our polynomials
have real coefficients, all of these Hubbard trees
are symmetric about the real axis. Note that only
those on the second line that correspond to odd
mappings with B = 0 are also symmetric about a
vertical axis.

APPENDIX C. COMMENTS ON THE FIGURES

The basic algorithm used in making pictures in the
(A, B)-plane and in other related parameter planes
can be described as follows. Starting with the two
critical points zoi = +a, which may be either real
or conjugate complex, we compute the successive

iterates z,jfﬂ = f(zF) and also the partial deriva-
tives of 2= with respect to A and B for n up to a
few hundred, or until either |2¥| becomes large or
one of the partial derivatives becomes very large.
The given point in parameter space is considered
to be in a hyperbolic component if all of these num-
bers remain relatively small. If |2;7| becomes large,
the distance of the given point in parameter space
from the locus where the orbit of the given critical
point remains bounded is estimated, using the first
partial derivatives [Milnor 1989, §5.6; Fisher 1988].
If this distance is less than the pixel size, the given
parameter point is considered to be a boundary
point. This method enables the pictures to show
very fine filaments, which may have measure close
to zero. Similarly, if the orbit remains bounded
but some first derivative becomes large, we have a
boundary point. In many of the figures, an addi-
tional step has been taken to locate boundaries be-
tween hyperbolic components. Namely, after many
iterations, the orbits are checked for approximate
periodicity with small period; and if both critical
orbits have the same period, these two periodic or-
bits are compared. Pixels at which this periodicity
structure changes are indicated in black.

The main defect of this procedure is that it is
ineffective when the convergence to a periodic orbit
is extremely slow. This tends to happen near the
curves Pery,(£1) where there is a parabolic orbit,
and particularly near points where three or more
hyperbolic components come together. Hence the
figures are highly distorted near such points (see

Appendix A).
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