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Let G be a pseudogroup defined on a tree Z, and let I be a
finite set of generators for §. The reduced fundamental group
71(T) of T' is defined here. | give a new and experimentally
inspired proof of a result of Levitt: If 74 (T") is a free group,
there exists a finite set of generators U for G such that 71 (¥)
is free on the set W. If W has no dead ends, it is an interval
exchange.

Like Gaboriau, Levitt and Paulin [Gaboriau et al. 1992], | prove
that if G is a finitely presented group acting freely on an R-
tree and I" is a corresponding set of pseudogroup generators,
we're in one of the following situations: either G splits as a free
product with a noncyclic free abelian summand, or I' can be
reduced to an interval exchange by normalizing and removing
a finite number of dead ends, or the process of removing dead
ends from I does not terminate in a finite number of steps.

INTRODUCTION

A pseudogroup presentation I" defined on a metric
space Z is, in general, a collection of local isome-
tries, each of which takes a connected subset of Z
onto some other connected subset of Z. Such a set
of maps I' decomposes Z into orbits: Two points
are in the same orbit if it is possible to pass from
one to the other by applying a finite succession
of maps of I' or their inverses. The collection §
of these orbits is the pseudogroup generated by I'.
In general, a pseudogroup defined on a space Z is
generated by many different presentations, and one
wishes to pass from an arbitrary such presentation
to a canonical form presentation.

Perhaps the most geometrically satisfying char-
acterization of an R-tree is found at the beginning
of [Gaboriau et al. 1992]: An R-tree is a path-
connected metric space in which every arc is iso-
metric to an interval of R. From this point of
view, a tree Z is a connected, simply connected
one-complex with a metric that induces the topol-
ogy of the one-complex structure and gives Z the
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structure of an R-tree. All the fundamental results
about R-trees needed in this paper are taken from
[Rimlinger 1992], which uses results of [Alperin and
Bass 1987] developed from [Chiswell 1976], which
in turn grew out of the seminal work of Lyndon
[1963]. See also [Morgan and Shalen 1984; 1991]
and [Shalen 1987] for background information, es-
pecially the fact, proved by Morgan and Shalen,
that most surface groups act freely on R-trees.

Let I' be a finite set of generating maps for the
pseudogroup G—in other words, a finite presen-
tation of G—and let F(I') be the free group on
I'. Then F(T') has the structure of a pseudogroup
presentation of §. Indeed, a I'~word is naturally
interpreted as a composition of generating maps
or their inverses. An element o € F(I') is a cycle
if there exists a point p € Z such that a(p) = p.
An element of F(I') is a reflection if it has a fixed
point but is not an identity map. (Thus every re-
flection is a cycle.) We define the reduced funda-
mental group T, (I") to be F(I') modulo the normal
subgroup of F(I') generated by cycles: compare
[Levitt 1990a].

Let I be a pseudogroup presentation of § defined
on a tree Z. In Section 2, we show that if F'(I")
contains no reflection, 7, (I") is also a pseudogroup
presentation for §. The map associated with an
element w € 71(I') is the union of all maps a €
F(T) that project to w. We prove that this map is
in fact well-defined with connected domain.

Adopting the notation of [Gaboriau et al. 1992],
we say that a pseudogroup presentation I' has inde-
pendent generators if F/(I') is isomorphic to 7 (T").
If T has independent generators and F'(I") contains
no reflection, F'(I') contains no cycle, for the exis-
tence of a cycle would imply a nontrivial relation
among the basis elements of a free group, which is
absurd. Section 3 contains a new proof of Levitt’s
result on independent generators:

Theorem 3.10. [Levitt 1990b, Theorem 5] Let I' be a
finite pseudogroup presentation generating a pseu-
dogroup G defined on a tree Z. Suppose F(T') con-
tains no reflection. If 7, (') is a free group, there
exists a finite presentation ¥ of G that has inde-
pendent generators.

Recently, Gaboriau has significantly improved
this result (in preparation).

Let I' be a pseudogroup defined on a tree Z, and
let I be a subinterval of Z containing more than

one point. Then [ is a dead end of I' if it has max-
imal length with respect to the following property:
Each p € I is in the domain of exactly one element
of TUT~!. One may remove this dead end from
I" by restricting the domain of the offending map.
The orbits of the new pseudogroup I"” are trivial
on I. The orbits of I'" contained in Z \ I equal the
orbits of I" restricted to Z \ I. If " has a dead end,
one can again remove it. The process of remov-
ing dead ends may uncover dead ends of smaller
and smaller length, and so continue forever. Such
a pseudogroup presentation gives rise to a Leuvitt
pseudogroup. 1 am grateful to F. Paulin for point-
ing this out to me.

A pseudogroup presentation is open if its gen-
erators and their inverses are defined on open in-
tervals of Z containing no vertices of Z. An open
pseudogroup presentation I' with a finite number
of generators defined on a compact tree is an in-
terval exchange if all but a finite number of points
of Z lie in the domain of exactly zero or two maps
of TUT ! see [Veech 1978], for example. If the
process of dead-end removal discussed above termi-
nates, one obtains such an interval exchange. This
result is due to Levitt. The proof in Section 4 is
based on the point of view of [Morgan 1988].

Theorem 4.4. [Levitt 1990a, Corollary I1.5] Suppose
I' is an open pseudogroup presentation defined on
a compact tree Z, having a finite number of gener-
ators, and such that m (I') is isomorphic to F(T'),
the free group on the set I'. If ' has no dead ends,
1t is an interval exchange.

Section 5 gives the details of the connection be-
tween R-trees and pseudogroups as I understood
them as of July 1991, at the Isle of Thorns confer-
ence. See [Rimlinger a; b; ¢| for more results along
these lines, and [Gaboriau et al. 1992] for a com-
plete proof of Rips’ theorem (see Section 1) based
on the trichotomy implied in Theorem 5.8.

Theorem 5.8. (Rips: see Section 1) Let G X G —
T be a free minimal action of a finitely presented
group G on an R-tree T'. Let G be a pseudogroup
generated by an open pseudogroup presentation I
corresponding to this action. Then either

(i) G = G'xH, where H is a noncyclic free abelian
group,

or there exists a finite presentation ¥V of G with
independent generators such that either



(ii) the dead ends can be removed from ¥ in a
finite number of steps, and the corresponding
open pseudogroup presentation is an interval ex-
change, or

(iii) the dead ends cannot be removed from ¥ in a
finite number of steps.

Indirectly, Rips [Morgan 1991] proves that case
(ii) implies G = G'* H, where H is a surface group,
and that case (iii) implies G = G’ * F', where F' is
a free group of rank n for some n > 3.

The principal tool involved in the proof of The-
orem 5.8 is the fundamental group of a pseudo-
group G, denoted by m(G). Following [Haefliger
1984], Levitt considered 7 (9) in the context of fo-
liated manifolds and deduced that 71(9) is a free
product of free abelian groups [Levitt 1990b]. In
[Levitt 1990a], m1(G) was considered in the context
of partial rotations defined on open subintervals of
the circle. Levitt showed that the result of [Levitt
1990b] cited above holds in this somewhat more
combinatorial setting, mutatis mutandis. Gusmao
(in preparation) extended the result to the case of
orientation-reversing maps defined on open subin-
tervals of the circle. This extension is cited in my
proof of Theorem 5.8. In [Gaboriau et al. 1992], a
similar result is used to analyze Rips’ “unidentified
combinatorial objects”.

For arbitrary pseudogroup presentations I', the
group 7 (L") is not an invariant of the orbit space
G generated by I' (see Remark 2.5). For the case
of an open pseudogroup presentation I' generating
G, there is an exact relationship between 7, (I') and
Levitt’s fundamental group: First translate I' into
a presentation I defined on the circle, and let §'
be the pseudogroup generated by I". Then 7 (9’)
is isomorphic to 7 (I') * Z (see Remark 5.4). Hence
71(T) is free if and only if m;(9) is.

I was led to consider the notion of Nielsen trans-
formations described in this paper by working with
MacRTree, a computer program I developed for
the Macintosh II. Initially, I felt that there were
lots of exotic finitely generated groups that acted
freely on R-trees, and that these groups could be
hunted down by computer simulations. Instead,
the computer obstinately refused to yield any po-
tential counterexamples, and I began to wonder
why. As I reread the first few pages of [Lyndon and
Schupp 1987], I began to realize that the computer
was “doing Nielsen transformations”. In Section 6,
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I expand on this discussion of the specific role of
the computer in the development of my proofs of
Theorems 3.10, 4.4 and 5.8.

I am grateful to Gilbert Levitt for correspon-
dence that led me to an understanding of his work
and potential applications to R-trees.

1. BACKGROUND

In this section, I attempt to clarify the relation-
ship between my work and that of E. Rips and
G. Levitt. At the Isle of Thorns conference in
July 1991, Rips gave a major exposition of his
result that every finitely generated group G that
acts freely on an R-tree is a free product of free
abelian groups and surface groups [Morgan 1991].
His proof was based on a notion of combinatorial
complexity that Razborov [1985] used to investi-
gate equations in free groups.

I arrived at the conference planning to speak
about a process that constructs independent gen-
erators via Nielsen transformations [Nielsen 1921]
for a pseudogroup with free fundamental group. I
further wished to indicate the implications of this
work for the classification problem for free actions
on R-trees. (Levitt had previously developed a
similar result [Levitt 1990b, Theorem 5] in the con-
text of foliated manifolds. I will return to this point
below.) I quickly learned that Rips’ proof was now
accepted by many as correct. I then spoke with F.
Paulin and learned that the process of removing
dead ends from a pseudogroup presentation might
not converge. This is the so-called Levitt pseudo-
group case, advanced in [Levitt 1990a] as an in-
dication that a previously proposed proof of the
classification theorem associated with Rips was in-
complete.

Therefore, I realized that there existed two ma-
jor gaps in my understanding of a proof of the clas-
sification theorem, namely, how to prove that my
method of Nielsen transformations did not alter
the action of the corresponding action on an R-
tree, and how to deal with the Levitt pseudogroup
case.

The substance of my talk, hastily revised to ac-
count for my conversation with Paulin and the
news about Rips’ proof, was that by finding inde-
pendent generators for the pseudogroup the natu-
ral trichotomy between the free abelian case, the
interval exchange case and the Levitt pseudogroup
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case could be clearly illustrated. The principal tool
I used in this talk was Levitt’s classification of the
fundamental group of an open pseudogroup as a
free product of free abelian groups [Levitt 1990a],
as extended by Gusmao (in preparation). But, at
that time, I did not know exactly how to translate
the trichotomy involving pseudogroups to the cor-
responding trichotomy for free actions: translation
along R, surface group action and nonsimplicial
free action.

Rips’ proof uses an inductive procedure that ap-
plies uniformly to all three cases. The third case,
the Levitt pseudogroup case, involves subtle con-
vergence problems. Without Rips’ solution of this
case, the classification problem might well have re-
mained open indefinitely.

After the Isle of Thorns conference, Gaboriau,
Levitt and Paulin produced a complete proof of
Rips’ theorem [Gaboriau et al. 1992], based on the
trichotomy of cases induced by the explicit con-
struction of independent generators for the funda-
mental group of the pseudogroup. Levitt’s result
[Levitt 1990b, Theorem 5] provided a point of de-
parture for their construction of independent gen-
erators. The process expounded in [Gaboriau et
al. 1992] produces a pseudogroup with independent
generators such that the corresponding group act-
ing freely on an R-tree does not change. However,
this method alters the underlying set on which the
pseudogroup is defined. My technique of Nielsen
transformations produces independent generators
that identically reproduce the orbits of the origi-
nal pseudogroup on the original set, but the num-
ber of independent generators may be larger than
the original number of generators. Gaboriau has
improved this result by showing that it is not nec-
essary to increase the number of generators to ob-
tain independent generators.

I can now prove that the Nielsen transforma-
tion of a pseudogroup presentation does not change
the associated group that acts freely on an R-tree
[Rimlinger a; b]. In fact, any action of G based on
a finite presentation of G will remain invariant, not
just the group G. This improvement in the normal-
ization process has led me to an analysis of defining
relators in surface groups [Rimlinger c]. One inter-
esting point that needs more research is whether
the program MacRTree (Section 6) can be shown
to converge on surface group relators, possibly af-
ter the introduction of some kind of perturbation

technique. Such a result would lead to significant
improvements in the results of [Rimlinger c|.

2. THE REDUCED FUNDAMENTAL GROUP

Trees and Graphs

An R-tree is a path-connected metric space where
each arc is isometric to an interval of R. A tree Z is
a connected, simply connected one-complex with a
metric that gives Z the structure of an R-tree and
induces the topology of the one-complex structure.
If I and J are connected subsets of a tree Z, an
isometry v : I — J is called a partial isometry of
Z. We emphasize the fact that a partial isometry
has connected domain and image by definition. A
graph is defined to be a connected, simplicial one-
complex.

Free Groups

The free group on a set X is denoted by F(X).
The set X! is defined as X! = {z7! € F(X) :
x € X}. Each nonidentity element w € F(X)
can be uniquely expressed as a reduced word w =
WpWn_1 ...wq, With letters w; € X U X!, such
that w;,; # w; ! for all i. We say n is the length
of w, and denote it by ¢x(w), or simply ¢(w). By
convention, the identity element has length zero.
In general, we say w = w,Wy_1 - .. wy is reduced
if {(w) = >, ¢(w;). This allows for the appear-
ance of the identity element at any point in a re-
duced word. (Of course, we actually mean to say
that the ordered n-tuple (w,,w,_1,...,w;) is re-
duced, but this distinction must be inferred from
context.) Now suppose w; and w, in F(X) are
such that the product w;wsy has cancellation, that
is, is not reduced. Then there exists a unique u # 1
and a,b € F(X) such that w;, we and wyw, may be
expressed without cancellation as w; = au™!, wy =
ub and wyw, = ab. In this event, we say that the
parts u~! of @ and u of b have cancelled. In general,

U(wiwy) = L(wy) + L(wa) — 20(u) < L(wy) + L(ws).

Pseudogroups
Let Z denote an arbitrary fixed tree.
Definition 2.1. By a pseudogroup presentation I' de-

fined on Z we mean a set {y : I — J} of partial
isometries of Z.

Let I' be a pseudogroup presentation defined on
Z. Let F(I') be the free group with basis I". For



each element o € F'(I'), we define a partial isome-
try I'(a) as follows. Let I'(1) be the identity map
on Z. If a € F(T') has length 1, set I'(a) = « if
a€el. Ifael ™ set I'(a) =T(a)™'. Induc-
tively, suppose a,a, 1...a; € F(T') is reduced of
length n, and I'(«,,—1 ... 1) is defined with im-
age I. Let o« = ay 10,041 ... 1 be reduced of
length n+1. Let J be the domain of I'(a,,+1). Then
['(«) is the composite ['(a,41) o (a0, 1 ... 1)
defined on I'(a,...a;)"*(I N J). In particular,
['(«) is the empty map if I NJ = @. In this case,
any reduced word that has a right segment o will
also represent the empty map. Observe also that
[(af) = T'(«a) oI'(P) if af is reduced. In general,
['(ap) is an extension of I'(a) o T'(53).

We now dispense with the I'(«) notation. Thus,
given p € Z and a € F(I'), the expression a(p)
implies that p is in the domain of I'(«), and denotes
the point I'(a)(p) € Z.

Definition 2.2. We say that p,q € Z are in the
same orbit generated by I if there exists o € F(T)
such that ¢ = a(p). The set of equivalence classes
G determined by this relation on Z is called the
pseudogroup generated by I'.

Definition 2.3. We say that a partial isometry «
with domain I C Z is a reflection if o has a fixed
point p € I, that is, if a(p) = p for some p € I and
« is not the identity map of I.

Definition 2.4. Let I' be a pseudogroup presenta-
tion. An element o € F(I') such that a(p) = p
for some p € Z is called a cycle of I". (Implicit in
the statement a(p) = p is the assertion that « is
indeed defined on p.) Let N C F(I') be the normal
subgroup of F(I') generated by all the cycles of T'.
The quotient group 7, (I') = F(T") /N is the reduced
fundamental group of I, and nr : F(I') — w1 ()
denotes the natural projection map.

Remark 2.5. Suppose I' generates the pseudogroup
G. The reduced fundamental group 7, (I") is related
to the fundamental group 7;(9) defined in [Hae-
fliger 1984] and [Levitt 1990a,b] (see Definition 5.3
below). However, if ¥ is another pseudogroup pre-
sentation that generates G, it is not necessarily true
that 7, (I") and 7, (¥) are isomorphic (compare Re-
mark 5.4). For example, let Z be the closed interval
[0,2] in R. Let I' = {«, 8}, where a(t) =t + 1 for
0<t<i andf(t)=t+1for1/2 <t < 1. Let

29

¥ = {9}, where ¢(t) =t+1for 0 <t < 1. Let
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G={{t,t+1}:0 <t < 1}U{2}. Then both I
and ¥ generate the pseudogroup §. On the other
hand, it is easy to see that both 7 and my have
trivial kernels, whence 7 (") is a free group of rank
two but 71 () is a free group of rank one.

Each element of the reduced fundamental group
of a pseudogroup presentation defined on Z can
be regarded as a partial isometry of Z. We now
pursue this line of thought, which will be needed
in Section 3.

Lemma 2.6. Let I' be a pseudogroup presentation de-
fined on the tree Z, and suppose F(I') contains no
reflection. Consider o, 3 € F(T') such that there
exists z in the domain of both o and (B satisfying
a(z) = B(z). Suppose p,q € Z are such that a(p)
and (3(q) are defined. Then there is a partial isom-
etry ¢ defined on [p, q| such that ¢ (t) = a(t) if a(t)
is defined, and (t) = B(t) if B(t) is defined.

Proof. Observe that z is a fixed point of the map
B~ 'a. Since F(T') contains no reflection, a(t) =
B(t) for all t € domain(«) Ndomain(S). Since Z is
a tree, we know that the subtree of Z spanned by
p, q and z has one of the three forms illustrated in
Figure 1.

Z p q
Z q p
2 —_— —————————o
p q p Z q
z
FIGURE1. Possibilities for the subtree spanned by
p, q and z.

By definition, the domains of o and (3 are con-
nected. Thus « is defined on [p, z] and [ is defined
on [q, z]. In case (i), define 9 to be the restriction
of B to [p, ¢]. Likewise, in case (ii), v is the restric-
tion of « to [p,q]. Notice that, in case (iii), the
point labeled Z is also in the domains of o and (3,
so that we assume without loss of generality that
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z € [p,q]. Hence d(p,q) = d(p,z) + d(z,q). Ob-
serve that a(z) and ((z) are defined and equal,
and denote this common value by z’. We know
that d(a(p), 2') = d(p,2) and d(', B(q)) = d(z,q).
Thus d(a(p),B(q)) < d(p,z) + d(z,q). However,
if this inequality were strict, we would deduce the
existence of s in the images of both a and 3 sat-
isfying d(a(p),s) < d(a(p),#)) and d(s,8(q)) <
d(2',3(q)) (see Figure 2). Since a™'(s) = f7'(s),

S
p =9 af alp) Bla)
Zl
FIGURE2. Illustrating the hypothetical case when

d(a(p), B(q)) < d(p, 2) + d(z,q)-

we have the contradiction

d(p,q) < d(p,a™'(s)) + d(67(s),q)
<d(p, z) +d(z,q) = d(p, ).

Therefore d(a(p), 5(q)) = d(p, z) + d(z,q), so that
z" € [a(p), B(q)]. Defining ¥ (t) = a(t) for t € [p, 2]
and (t) = B(t) for t € [z,q] yields the desired
partial isometry of Z. O

The proof of the next lemma uses the notion of
diagrams over the free group F(I'); see [Lyndon
and Schupp 1987, p. 236] for the definition of a di-
agram. The only result we need about diagrams is
the fact that they exist [Lyndon and Schupp 1987,
Theorem 1.1]. The construction here differs from
that of [Lyndon and Schupp 1987] to reflect the fact
that elements of F'(I") are maps that compose nat-
urally from right to left; this modification does not
affect in any essential way the proof given there.

Lemma 2.7. Let I' be a pseudogroup presentation
defined on the tree Z. Suppose F(I') contains no
reflection. Suppose that o, 3 € F(I') are such that
mr(a) = 7r(B). Suppose p,q € Z are such that
a(p) and [(q) are defined. Then there exists a
partial isometry ¢ : [p,q] — [a(p), B(q)] of Z such
that 1 (p) = a(p), ¥(q) = B(q) and for all t € [p,q],
there exists 0, € F(I') such that 0,(t) = ¥(t) and
Wp(et) = WF((X).

Proof. Clearly 7'« is in the kernel of . We may
assume that 37!« is a finite product of conjugates
of one or more cycles of I', say

B la = ulclufl e UpCpl,

where each ¢; € F(I') is a cyclically reduced cy-
cle of I'. By [Lyndon and Schupp 1987, Theo-
rem 1.1], we may construct the Cayley diagram
M = M(c,...,cn), a connected and simply con-
nected planar two-complex. The two-cells of M
are in one-to-one correspondence with the cycles
¢;- We denote the one-skeleton of M by M*. Each
oriented edge of M corresponds to an element of
F(T'). Distinct edges with the same initial ver-
tex correspond to elements y; and ~y, of F(I') such
that the product 5 "7, is reduced. An oriented arc
with edges Fy, ..., Fx_; read off in order from first
to last corresponds to the reduced word

Ye—1Vk—2--- Y0

of F(I'), where each ; corresponds to E;. Reading
off the edges while traveling along the boundary
0D of a two-cell D spells out, from right to left, a
cyclically reduced product equal to the correspond-
ing ¢; or its inverse, up to cyclic permutation.

M has distinguished vertices V' and W in its
boundary. There are two oriented arcs from V' to
W in OM corresponding to a and 8 and whose
union is equal to M. In general, any path in M*
with identical initial and terminal vertices corre-
sponds to a word v € F(I') whose projection ()
is the trivial element of 7;(I").

Case 1. M is a single two-cell. Thus, 37!« is cycli-
cally reduced and equal to some cycle ¢ of I'. Take
z € Z such that ¢ is defined on 2. Since c is an iden-
tity map, ¢! is also defined on 2. Thus, a and 3
are both defined on z, and «(z) = (z). By Lemma
2.6, there exists a partial isometry 1 defined on
[p, q] such that ¢ (p) = a(p) and ¥(q) = B(q). Set-
ting 0,(t) = a(t) for t € [p, z] and 6,(t) = B(t) for
t € [z, q] proves Case 1.

Case 2. M is a union of n two-cells, and M is a
circle. Thus, 87« is cyclically reduced and equal
to a product of conjugates of n cycles ¢; € F(I).
We take as an inductive hypothesis that if 5~ a
can be expressed in this manner with fewer than n
cycles, that is, if the number of two-cells of M can
be reduced, the conclusions of the lemma hold.



For each vertex v in the boundary of a two-cell
D of M, we define a point z(v, D) € Z as follows.
Fix a cyclic ordering vy, ..., v;_; of the vertices of
0D. Fori=0,...,k—1,let 7, € F(T') correspond
to the oriented edge [v;, v;y1] of D, with indices
taken modulo k. Fix some z € Z defined on the
cycle yi_1...7 of I'. Set z(vy,D) = z, and set
2(vi,D) =i—1...7(2) fori=1,...,k— 1.

For each oriented edge E of M with initial vertex
v € M not equal to W, we define a closed inter-
val Z(E) C Z as follows. First suppose E C OM,
so E C 0D for exactly one two-cell D of M. Let
v € F(I') correspond to the arc in OM from V
to v that avoids W. Let &€ C OM be the arc
from V to W containing E. If € corresponds to «,
set Z(E) = [v(p),z(v,D)]. If € represents (3, set
Z(E) = [2(v,D),~(q)]. Finally, if E C 0D, N 0D,
for distinct two-cells Dy and D, of M, set Z(E) =
[Z(U, Dl)? Z(Ua D2)]

The proof of Case 2 given below is based on the
following simple observation. If 4y € F(I') corre-
sponds to an edge £ C M*, then v is defined on
both endpoints of Z(E) and hence on the entire
interval Z(E).

Fix some t € [p,q]. Define the graph K, C M*
as follows. Let Ey, ..., E,_; be the oriented edges
of an arc &€ = EyU...UE,_y C M! from V to
some vertex v € M. Fori=0,...,k—1, let v €
F(T) correspond to E;. Say t passes through &
ift € Z(Ey) and for ¢ = 1,...,k — 1, we have
Yic1---7(t) € Z(E;). Let K, be the union of &
such that t passes through €&.

Proposition 2.8. For all t € [p,q|, either W € K, or
we can reduce the number of two-cells of M.

For now we suppose the proposition is true, and
complete the proof of Case 2. We assume that,
W € K, for all t € [p,q]. This implies that, for
all t € [p,q], there is an arc & C M" from V to
W such that ¢ passes through &,. Fix t € [p,q|,
and let 6, € F(I") correspond to &;. Notice that &,
together with the arc from W to V in OM cor-
responding to a~!, forms a path beginning and
ending at V. Thus mp(a™'6;) is the identity ele-
ment of m(I'), and clearly 7r(a) = mr(6;). De-
fine ¥ : [p,q] — Z by setting () = 6,(t), which
is evidently defined. We verify that ¢ has image
[a(p), B(q)] and is a partial isometry of Z, as fol-
lows: Since there are only a finite number of paths
in M from V to W, ¢ may be constructed from
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a finite number of maps o« = 0,,,...,0;, = [ such
that each pair of maps 6,,,0;,,, have overlapping
domains. Applying Lemma 2.6 to each such pair,

we see that ¢ : [p,q] — [a(p),B(q)] is a partial
isometry of Z.

Case 3. M consists of unions of two-cells bounded
by circles joined together by arcs. This case follows
immediately upon applying Case 2 to each union of
two-cells of M whose boundary is a circle in M,
and then composing the maps yielded by these ap-
plications of Case 2 together with the maps along
any connecting arcs. This concludes the proof of
Lemma 2.7, assuming Proposition 2.8. U

Proof of Proposition 2.8. We use the following results,
which we prove later.

Sublemma A. Let &; and &; be two oriented arcs
in M! with initial vertex ¥V and common terminal
vertex v. Suppose W ¢ &; U &,, and suppose t €
[p, q] passes through both &; and &,. Let ; € F(T)
correspond to &; for i = 1,2. Then 7, (t) = a(t).

Sublemma B. V' is an endpoint of an edge of K.

Sublemma C. Every vertex v € K, distinct from V
and W meets at least two distinct edges of K.

Sublemma D. Either W € K, or the number of two-
cells of M can be reduced, or K; has the following
property: If S is an embedded circle in K; that
bounds a two-cell D of M, either (a) V € S, and
there is an edge in K, \ S that meets S, or (b) there
exist two distinct edges in K, \ S that meet S.

To prove the proposition, suppose first that K;
contains no embedded circle S, that is, K, is con-
tractible. By Sublemma B and the fact that K, is
compact, we see that K; contains at least two dis-
tinct vertices {v,w} such that K, \ {v,w} is con-
nected. It now follows from Sublemma C that these
two vertices must be V and W, so W € K.

Now suppose that K; does contain embedded
circles. If W € K;, we are done; otherwise, Sub-
lemma A implies that if an embedded circle bounds
more than one two-cell, this circle corresponds to
a cycle of I'. Thus we may reduce the number of
two-cells of M.

Now assume that each embedded circle in K,
bounds a single two-cell D of M. Choose an em-
bedded circle S in K;. Using Sublemma D, define
the vertices v; and v, in S as follows. If V € S, set
vy = V and let vy be the initial vertex of an edge of
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M1\ S meeting S. Otherwise, let v; and v,y be the
(not necessarily distinct) vertices of two distinct
edges E; and FEy of M!\ S meeting S. It follows
that distinct connected components of S\ {vy, v2}
lie within distinct components of K, \ {v;, v2} (oth-
erwise, some circle of K; would bound the union of
D and at least one other two-cell of M, contra-
dicting our assumption). Now let H be the graph
obtained by removing from K; a component of
K, \ {vi,v2} that meets S and does not contain
V. Observe that Sublemmas B-D remain valid
when K, is replaced by H. Since rankm (H) <
rank 71 (K;), an induction on this rank allows to
deduce that K, contains a contractible subspace
satisfying Sublemmas B-D. By the first case con-
sidered in the proof of this proposition, it now fol-
lows that W € K.

Proof of Sublemma A. Suppose first that £; U &, is
a circle, hence the boundary of a union of two-
cells of M. It follows that 7r(v2) = 7r(7y1). Since
W ¢ E,UE,, we see that €, UE, bounds fewer than
n two-cells. By the inductive hypothesis of Case 2
in the proof of Lemma 2.7, the lemma holds for
a =, 8 =7, and p =t = q. In particular,
71 (t) = Y2(t), as desired. In general, & U &, is a
graph. The result follows upon applying the above
argument to the outermost circles of this graph
and composing the resulting maps with the maps
represented by connecting arcs.

Proof of Sublemma B. Let Ey, ..., E,_; be the edges
of M with initial vertex V', read off in order pass-
ing from the edge Fy C OM contained in the arc
from V to W corresponding to « to the other edge
E, 1 C OM contained in the arc corresponding to
B. For i = 0,...,k — 2, the edges E; and F;
lie in the boundary of a common two-cell D of
M, thus 2(V,D) C Z(E;) N Z(E;+1). We con-
clude that Uf:_ol Z(E;) is connected, whence [p, q] C
UIc \ Z(E;), since p € Z(Ey) and ¢ € Z(Ep_,).
S1nce t € [p, q], we conclude that ¢ is in some Z(E;),
as desired.

Proof of Sublemma C. Certainly, at least two oriented
edges of M?! have initial vertex v. Since v € K,
and v # V, one such edge, say Fy, lies in K;. Now
enumerate the edges of M! with initial vertex v as
Ey,...,Er 1, where k > 2. Notice that Z(E;) N
Z( Z+1) # @, for « = 0,...,k — 1, with indices
taken modulo k. Let v € F (F) correspond to an

arc € from V to v through which ¢ passes. By
Sublemma A, it follows that y(t) € Z(Ey). Now
observe that both endpoints of Z(E,) are contained
in Uk ' Z(E;) and that this union is a connected
set. We conclude that «(t) € U’C ' Z(E;), whence
t passes through € U E; for some ¢ =1,...,k — 1.

Proof of Sublemma D. Let S C K; be a circle bound-
ing a two-cell D of M. Suppose there are less
than two edges in M!\ S meeting S. Then 0D C
0D’ for some two-cell D’ surrounding D. Thus
O(DUD'") =0D"\ 0D corresponds to a cycle of I,
and we can reduce the number of two-cells of M.

Henceforth, assume that W ¢ K, and that there
are at least two edges in M'\ S meeting S. Let
v € F(I') correspond to an arc from V' to v, € S
through which ¢ passes. In the event V' € S, choose
vgp = V and set v = 1. Define ¢, = 7(¢). In the
event K, \ S contains an edge with initial vertex vy,
choose such an edge and call it Ey. We can always
do this if vy # V. If vy = V and no such Ej exists,
add an oriented edge E, to M"' that meets M at
the initial vertex V of Ey. Define Z(Ey) = [p,q|.
Since t € [p,q] by hypothesis, we consider E, to
be an edge of K;. This notational device allows
us to avoid considering vy = V as a special case.
Observe that, in general, ¢ty € Z(Ey).

Fix an orientation of S and enumerate the ori-
ented edges of M'\ S with initial vertex in S as
Ey,...,E;_1, where k > 2. Assume that each ori-
ented edge F; has initial vertex v; € S, and the ori-
ented interval [v;,v;41] corresponds to v; € F(I),
1=0,...,k—1, with indices taken modulo k. Ob-
serve that v; = 1 if v; = v;41.

Fori=1,...,k=1,sett; =, ...7(to). By Sub-
lemma A, these t; are defined, since S C K,. We
assume that the third alternative of Sublemma D
fails. This means that ¢t; ¢ Z(E;) fori =1,...,k—
1. There exist points zg,...,2,_1 in Z such that

Z(Ey) = [yk-1(2k-1), 0] and
Z(E;) = [Yi—1(2iz1), 2]
fori=1,...,k—1. Thus, fori=1,...,k — 1, the

condition ¢; ¢ Z(FE;) implies that v;,_1(z;—1) and
z; lie in the same component of Z \ {¢;}. More-
over, ty_1 # 2,1 implies ty # Yr_1(2x_1), and
t1 # 7Yo(z0) implies to # zo. Since ty € Z(Ey),
we see that v,_1(zx—1) and zq are in different com-
ponents of Z \ {to}.



Now choose ¢’ € Z in the component of Z \ {to}
containing z, and satisfying

d(t', to) < min{d(yi_1(zi_1),t:),d(z;,t:) }

fori=1,...,k—1. Then y,_1...7(t') is defined
and lies in the component of Z \ {to} containing
Yk—1(2r—1). Hence, vy,_1...7 is a reflection, which
contradicts the fact that F(I') contains no reflec-
tions. Thus the third alternative of Sublemma D
must hold. This concludes the proof of the sub-
lemma and of Proposition 2.8. O

Lemma 2.7 enables us to regard each w € F(I")
as a partial isometry. The domain I of w is the set
of p € Z such that «a(p) is defined and 7r(a) = w
for some o € F(I'). By Lemma 2.7, I is con-
nected. Given p € I, define w(p) = a(p), where
« is defined on p and 7p(a) = w. Setting p = ¢
in Lemma 2.7, we deduce that w is a well-defined
function. Observe also that Lemma 2.7 implies
that d(w(p),w(q)) = d(p,q) for p,q € I, whence
w is a partial isometry of Z. Thus, m(I') is a
pseudogroup presentation, and clearly I" and 7 (T")
generate the same pseudogroup.

The following corollary indicates the relationship
between the group and pseudogroup presentation
structures of F'(I') and 7;(I"). By convention, if
z,y € T (T'), we denote by zy the element of 7 (T")
obtained from x and y by group multiplication,
and by x oy the partial isometry of Z obtained by
composition.

Corollary 2.9. Let € F(T'). Then mr(a) € 71 (T)
is an extension of a. Let x,y € 71 (I"). Then xy €
71(T) is an extension of the composite map x o y.

The reader might be tempted at this point to
think that w € m;(I") is the maximal extension of
some « € I" such that 7nr(a) = w with respect to
the property that I" and I" U {extension of a} gen-
erate the same pseudogroup G. In view of Remark
2.5, this statement is false, since it would imply
that 71 (I") depends only on the orbit space §.

3. NIELSEN TRANSFORMATIONS

The notion of a Nielsen transformation goes back
to [Nielsen 1921]. We shall use the approach given
in detail in [Lyndon and Schupp 1987, pp. 4-7].
Nielsen originally used his technique to reduce a
set of words in a free group to a basis for the
subgroup they generate. In our setting, Nielsen
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transformations are used to take the slack, so to
speak, out of a pseudogroup presentation I" gener-
ating a pseudogroup §. At the outset, we greatly
enlarge the number of partial isometries and then
toss out unnecessary ones in an orderly manner.
The result is a Nielsen-reduced pseudogroup ¥ that
also generates §. We then draw the important con-
clusion that 7y : FI(¥) — 71(¥) is a group isomor-
phism, that is, ¥ has independent generators.

We begin with a discussion of order inside a
finitely generated free group F(X). These ideas
are taken directly from [Lyndon and Schupp 1987,
pp. 4-7]. Fix a well-ordering of the elements of
X U X~'. This ordering induces a well-ordering
of all of F(X), namely, the lexicographical order-
ing of reduced-word representation. For example,
if X = {1,252}, one may order {X U X '} by the
rules z; < z; ~ and z; < x; for ¢ < j, in which case
xy 'woxy < oy 'wy ', The identity element of F(X)
is represented by the empty word, which by defi-
nition is the smallest word in the lexicographical
order.

Definition 3.1. Let F(X)* = F(X)/~, where ~
is the equivalence relation generated by the rule
w ~ w! for all w € F(X). Denote the ele-
ment {w,w '} of F(X)* by w*. We define a well-
ordering < of F(X)* as follows. Say the left half
of a word w is the initial segment L(w) of length
m, where m is the greatest integer not exceeding
s(l(w) +1). Given a word w € F(X), we may
speak of

min{L(w), L(w™")} € F(X).

The minimum is determined by the lexicographi-
cal ordering of F'(X) and depends only on w*. If
wi,wy € F*(X), say that w;y < w} if and only if
one of the following conditions holds:
(i) £(wr) < £(ws);
(i) £(wq) = €(ws) and

min{L(w,), L(w; ")} < min{L(w,), L(w;")};
(iii) £(wr) = £(w2) and

min{L(w,), L(w; ")} = min{L(w,), L(w; ")},

max{L(w;), L(w; ")} < max{L(ws), L(w,*)}.

Observe that < is a well-ordering of F/(X)*. We

also define < on F/(X)* by setting w; < wj if w] <
w; or wy = wi. The notation w; < w; should
not be confused with w; < wsy, which means that
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w; is less than ws, according to the lexicographical
ordering of F(X).

Remark 3.2. Let p,q,c € F(X). Suppose that pc
and gc are reduced and £(p) = ¢(q) < ¢(c). A mo-
ment of thought reveals that p < ¢ (lexicographi-
cally) implies (pc)* < (ge)*.

For the rest of this section, we work with a fixed
finite pseudogroup presentation I' defined on a tree
Z and generating the pseudogroup §. Our stand-
ing hypothesis is that F(I") contains no reflection
and 71 (L") is free. Fix a basis X for (') = F(X)
and an ordering of X U X', Order 7, (I") lexico-
graphically as above. Finally, well-order 7, (I")* as
in Definition 3.1.

Recall from Section 2 that each o € F(T') is a
partial isometry of Z, and 7p(«) € 71 () is an ex-
tension of . Moreover, 7, (I") generates G as a
pseudogroup presentation. We now consider the
more general situation of pseudogroup presenta-
tions ¥ that are dominated by I.

Definition 3.3. Let ¥ be a pseudogroup presenta-
tion of G, and 7 : F(¥) — 7(I") a group homo-
morphism. Suppose that, for each « € F(V), the
partial isometry m(a) € m;(I") is an extension of a.
Then we say that 7 : FI(¥) — 71,(I") is dominated
by I', or simply that ¥ is dominated by I'.

For example, Corollary 2.9 implies that I' dom-
inates itself: 7r(a) is an extension of « for each
ac F(I).

We say that « € F(¥) is defined if its domain is
nonempty. If 7 : F(¥) — 7;(I") is dominated by
I', we refer to the length of the word m(«) € 71 (I)
simply as ¢x(«) instead of the more cumbersome
lx(m(a)).

The next definition can be compared with the
one in [Lyndon and Schupp 1987, p. 6].

Definition 3.4. Suppose ¥ is dominated by I'. We
say that W is Nielsen-reduced if the following con-
ditions are satisfied.

(NO) For all a,8 € ¥, and for all p € Z, if « is
defined on p, then a(p) # p, and if a3 is defined
on p, then aB(p) # .

(N1) For all o, 3 € $U ¥, if aff is defined and
m(af) # 1, then £x(af) > max{lx(a),lx(0)};

(N2) for all a, 8,y € WUV if a3, B, and afy
are defined, and 7w(a3) # 1 and 7(57y) # 1, then
Ux(afy) > lx (o) = €x(B) + €x (7).

Our goal is to find a ¥ that is dominated by
I' and Nielsen-reduced. We now construct a finite
set of partial isometries ¥, that constitutes a “first
approximation” to such a .

Definition 3.5. Let 2* € 7;(I')* be the maximum of
the finite set of elements

{r()em@) :vel}
Let ¥, C 71(T) be such that ¥, N ¥,' = & and
Vo Ut ={wemT):w <z w# 1}

By definition, nr(T') \ {1} € ¥y C 71(T"), whence
W, generates §. Observe that the inclusion map
Uy C 71(T) induces a group homomorphism 7 :
F(¥y) — m(T"). Endow the free group F(¥,) with
the pseudogroup presentation structure induced by
U,. By Corollary 2.9, we see that m(a) € 7, (T) is
an extension of a for all @ € F(¥;). Thus 7 :
F(¥y) — (1) is dominated by T

Let w € ¥y and suppose that w(p) is defined
for some p € Z. If w(p) = p, we have mr(a) = w
and a(p) = p for some a € F(I'). Thus «a is a
cycle of T', so w = np(a) = 1, contradicting the
definition of ¥y. Thus w(p) # p. Similarly, z,y €
U, and zy(p) = p implies x = y~*, contradicting
UyNU;' = @. Thus zy(p) # p. We conclude
that ¥, satisfies condition (NO) of Definition 3.4.
In general, ¥y does not satisfy (N1) or (N2).

Definition 3.6. Suppose ¥ is dominated by I' and
satisfies (NO). Let («, 3) be a pair of elements of
U U U~ such that af is defined. We say («, 3) is
(N1)-reducible if m(af3) # 1 and

lx(af) < max{lx(a),lx(B)}.

We say («, () is (N2)-reducible if {x(a) = Lx(af)
and 7(af)* < m(a)*.

Observe that the (N1)-reducibility of («, ) im-
plies that of (37, a™'). In general, this is not true
of (N2)-reducibility.

In the following remarks, we suppose that «, 3 €
U U P! and that ¥ is dominated by I'. Set z =
() and y = w(f).

Remarks 3.7. (a) Suppose af € F(I') is defined
and 7(af) # 1. Suppose («, ) is (N1)-reduced, so
that £(zy) > max{/(x),f(y)}. Let u be the part
of y that cancels into x. Then ¢(z) < l(zy) =
0(x)+4(y)—24(u), so that £(u) < £(y)/2. Similarly,



(y) < {(zy) implies £(u) < £(z)/2. Thus neither
x nor y cancels more than halfway into xy.

(b) Suppose (a, ) is (N1)- or (N2)-reducible.
Let u € (") be such that

v = max{m(a)*,m(3)"}.

It follows immediately that w(af)* < u*, whence
n(0f) ¢ {u,u'}.

(c) If (e, B) is (N1)-reducible and x = 1, then
l(y) < max{l(y),0} = £(y), which is a contradic-
tion. Thus z # 1, and similarly, y # 1. If (o, 3) is
(N2)-reducible, we again have y # 1 (since y = 1
would imply z* < z*) and © # 1 (since x = 1
would imply ¢(y) =0 and y = 1).

(d) Suppose (a,3) is (N1)-reducible. We show
that 3 ¢ {a,a™'}. Certainly 8 # a™!, since we
have m(af) # 1. Now suppose 8 = «. Thus
0(x?) < (x). Suppose z = au ! and z = ub are re-
duced and such that z? = ab is reduced. Observe
that ¢(a) = ¢(b) and {(a) + £(b) < l(u) + £(b),
whence ¢(a) = ¢(b) < l(u). From the formula
au~! = ub, with both sides reduced, we see that
a is a left segment of u, and b is a right segment of
u~!. Since ab is reduced, we deduce that a = b = 1.
Thus 22 = 1, which implies z = 1, since the free
group 71(I") is a fortiori torsion-free. This contra-
dicts the previous remark.

(e) Suppose (a, ) is (N2)-reducible. We claim
that 8 ¢ {a,a '}. First suppose 3 = a. Suppose
x = au™! and x = ub are reduced and such that
z? = ab is reduced. Since £x(a) = £x(af) by hy-
pothesis, we have £(x) = £(x?), so £(a) + £(u™") =
l(a) + £(b), whence £(u~') = £(b). From the for-
mula au~! = ub, with both sides reduced, we infer
that @ = u. Since au™! is reduced, we deduce that
a =u =1. Thus x = au™' = 1, which contra-
dicts Remark 3.7(c). Now suppose 3 = a~!. Since
lx(a) = Lx(af), we have l(x) = l(zz™') = 0,
whence = = 1, contradicting Remark 3.7(c).

The next lemma should be compared with Prop-
osition 2.2 in Chapter 1 of [Lyndon and Schupp
1987].

Lemma 3.8. Suppose ¥ is dominated by I' and sat-
isfies (NO). Suppose no pair («,3) of elements of
U U Pt gs (N1)- or (N2)-reducible. Then ¥ is
Nielsen-reduced.

Proof. 1t is clear that W satisfies (N1). Let o, €
¥ U ¥~ and suppose that af, Sy and afy are
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defined and that w(af) # 1 and w(B7y) # 1. Let
z = m(a), y = w(B), and z = w(y). By Remark
3.7(a), we have z = ap™t, y = pbg~!, z = qc, all
reduced, and zy = abq™!, yz = pbe, vyz = abe, all
reduced. If b # 1,

1

(zyz) = l(x)
> {(z)

(y) + £(2) + 2¢(b)
(y) + (=),

and so (N2) holds for the triple (a, 3,7).

Suppose now that b = 1, that is, z = ap™!,
y = pqg ', and z = ge. It follows that (N2) is vio-
lated, so we must show that this case is impossible.
Observe first that £(p) < 10(y), £(q) < 3¢(y), and
U(p) + £(q) = £(y). It follows that £(p) = $4(y) =
£(q). Moreover, the part of = that cancels into zy
is less than or equal to half of z, and likewise the
part of z that cancels into yz is less than or equal
to half of z. Thus £(p) = ¢(q) < min{/(a), ¢(c)}.

Since y # 1 and y = pg~*, either p < ¢ lexico-
graphically, or else ¢ < p. If p < ¢, Remark 3.2
implies that (pc)* < (qc)*, or, equivalently, that
(ctp™H)* < (¢7t¢71)*. Thus

(BT =Ty ) = (T
<(clg ) =) =m0,

—/
—/

which contradicts the fact that (y~*, 37!) is (N2)-
reduced. On the other hand, suppose ¢ < p. By
Remark 3.2, (ga™)* < (pa™')*. Thus m(af)* =
zy* = (ag™)* < (ap™)* = 2* = 7()*, which con-
tradicts the fact that («, ) is (N2)-reduced. Thus
b# 1, so that ¥ satisfies (N2). O

Lemma3.9. There exists a pseudogroup presentation
W of G that is dominated by I' and Nielsen-reduced.

Proof. In Definition 3.5 we built a pseudogroup pre-
sentation ¥, of § dominated by I' and satisfying
(NO). Let N be the finite number of partial isome-
tries contained in W,. Let H(n) stand for the fol-
lowing inductive hypotheses:

(i) m : ¥, — 7([) is dominated by T', and ¥,
satisfies (NO).

(ii) Let R, = {m(a)* € m ()" : (a0, B) or (B, ) is
(N1)- or (N2)-reducible, with o, 5 € ¥, U, 1}
Then the set R,, has at most N — n elements.

(iii) If R, # @, let z* be the maximum of R,. If
w e (') \ {1} is such that w* < z*, then w is
in W, UT.
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It is clear that W, satisfies (i) and (ii) of 3((0). If
Ry = @, Lemma 3.8 implies that ¥, is Nielsen-
reduced and we are done. Otherwise, z* € Ry ex-
ists and W, satisfies (iii).

Inductively, suppose VU, satisfies H(n) and R,, is
nonempty. By part (iii) of the inductive hypoth-
esis, there exists © € ¥,, U ¥, * such that for all
w e m(), if w* < z* and w # 1, then w €
U, U Wt Choose the notation so that =z € ¥,,.
Let A=W, U¥ 1\ {z,z7}.

Sublemma A. Let v € ¥,, U ¥;! and set

(o, 8) € {(z,7), (=71, 7), (v, 2), (v, 27 )}

Suppose («, 3) is (N1)- or (N2)-reducible. Then
{r(ap),7(7)} C A

Proof. Let y = m(y). Then y* < z* by maximality
of z* = {z,z"'}. By Remark 3.7(c), y # 1. Thus
hypothesis (iii) implies that y € ¥, U ¥ 1. By
Remarks 3.7(d) and (e), we see that y ¢ {z,z"'}.
We conclude that 7(y) = y € A and 7(af3) # 1. By
Remark 3.7(b), m(af)* < z*, whence w(af3) € A.
This concludes the proof of Sublemma A.

Let v € ¥,, U 1. We say that a point p in the
domain of z is a point of reduction if

(R1) (=,7) is (N1)- or (N2)-reducible and v~!(p)
is defined, or

(R2) (z1,7) is (N1)- or (N2)-reducible and
v Y(z(p)) is defined, or

(R3) (v, z) is (N1)- or (N2)-reducible and ~(z(p))
is defined, or

(R4) (v,z7') is (N1)- or (N2)-reducible and v(p)
is defined.

Sublemma B. If p is a point of reduction, there exist
maps h,k € A such that ho k(p) = z(p).

Proof. Let y = m(7y). From Sublemma A, y € A.
We deduce that y=* € A, since A is closed under
inverses. We consider the four cases of a point of
reduction. In case (R1), zy € A by Sublemma
A. From part (i) of the induction hypothesis H(n)
and from Corollary 2.9, y~*(p) is defined, and zy o
y~(p) = woyoy~'(p) = x(p). Thus, setting h = zy
and k = y ! yields the result. In case (R2), we
set h = y, k = y'z. Notice that k& € A, since
z7'y € A by Sublemma A and from the fact that
A is closed under inverses. In case (R3), we set
h = y=', k = yx. Finally, in case (R4), we set

h = zy~!, k = y. This concludes the proof of

Sublemma B.

Let Z be the restriction of x to the points in its
domain that are not points of reduction. We may
regard = as a finite set of partial isometries, each
defined on a connected component of the domain of
z. Set ¥, = ¥, \{z}UZ. Since A C ¥, , UV 1},
Sublemma B implies that U, ; generates G.

Define a map 7 : ¥,,,; — 7;(I") as follows. For
each v € ¥, \{z}, the image 7 () is defined by part
(i) of H(n), and 7(y) = z for each v € . Clearly,
m(7y) is an extension of «y for all v € ¥,, ., so that
m: W, — 7 ([) is dominated by I'. Evidently,
R,i1 C R, \ {z*}, so that |R,41|] < N — (n + 1),
and ¥, satisfies parts (ii) and (iii) of H(n + 1).
By induction, we have R, = @ for some n < N,
and by Lemma 3.8, ¥, is Nielsen-reduced. ]

Theorem 3.10. [Levitt 1990b, Theorem 5] Let I' be a
finite pseudogroup presentation generating a pseu-
dogroup G defined on a tree Z. Suppose F(I') con-
tains no reflection. If 7 (I') is a free group, there
exists a finite presentation ¥ of G that has inde-
pendent generators.

Proof. By Lemma 3.9, there exists a finite pre-
sentation ¥ of § and a group homomorphism 7 :
F(¥) — 71 () that is dominated by I" and Nielsen-
reduced. Suppose p € Z, and a € F(¥) is such
that o # 1 and «(p) is defined. We must prove
that a(p) # p. By Lemma 2.7, it suffices to show
that 7(a) # 1 € m (T).

Let a,, a1 ... a7 = a be the reduced-word rep-
resentation of a € F(¥). Set w; = m(ay) for each
i=1,...,n. Since V¥ satisfies (NO), we deduce that
wiy1 # w; " for each i = 1,...,n — 1. Thus (N1)
implies that ¢(w;w;) > max{l(w;), l(w;1+1)}, and
(N2) implies that each triple (w; 2, w;41,w;) satis-
fies K(wiﬁw”lwi) > K(wiﬁ) - E(U}i+1) + ﬁ(wl)

For n < 3, (NO) implies that w # 1. If n =
3, then (N1) and (N2) taken together imply that
we can write ws = ap~ !, wy, = pbgt, wy = qc,
wswy = abg™!, wow; = pbe and wswow; = abc,
with all right-hand sides reduced and b # 1 (see
the proof of Lemma 3.8). In particular, w # 1.

Inductively, suppose for all words w,, ...w; of
length n > 3 with consecutive pairs satisfying (N1)
and consecutive triples satisfying (N2), we have

— -1 _ -1 —
Wp =ap -, Wp-1 = pbq y Wp—2...W1 = (C,

_ -1
Wy Wp—1 = abq )



Wy—_1Wy—o ... w; = pbc and w,, ... w; = abc, with
all right-hand sides reduced. Now suppose w,, ;1 is
such that w,,; = alpl_l, w, = plblql_l, Wp_1 =
qic1, Wnpw, = aibiqy’, wyw,_1 = pibie; and
Wy 1WaWy, 1 = ai1biey, with all right-hand sides
reduced, and b, # 1. Evidently, ¢;" is the part of
w,, that cancels into w, _,. It follows that ¢, = p.

Since pc; = w,_1 = pbg~ !, we deduce that ¢; =
bg—', whence w,w, 1 = pibic; = p1bibg™!, which
is reduced. Thus

(wnwn—l)(wn—Q e wl) - (plblbqil)(qc)
= plblbca

which is reduced. Now set ¢y = be. Then we have
-1 —1
Wp+1 = 1Py 5, Wy = p1b1q1 y Wp—1...W1 = pr -

q1C2, Wn41Wn = 0:1blql_1, WpWp_1 ... W1 = Prbicy
and Wy 1Wy, ... w1 = a1bicy, with all right-hand
sides reduced and b; # 1. By induction, w # 1 for
all n. 0

4. ERGODIC THEORY

In general, 7, (T") is closely related to groups that
act freely on R-trees. See [Rimlinger a; b] for
further development of this point of view. These
papers, as well as Theorem 5.8 below, are based
on the pseudogroup theory of [Haefliger 1984] and
[Levitt 1990a,b]. This theory requires the partial
isometries to be defined on open intervals. Accord-
ingly, we begin this section with a discussion of
the relationship between general pseudogroup pre-
sentations and those whose maps are defined on
open intervals. We then use a technique of Mor-
gan [Morgan 1988] to prove Theorem 4.4, stated in
the Introduction.

Let I' be a pseudogroup presentation defined on
the tree Z. An endpoint of a connected subset
I C Z is a point p € I such that no neighborhood
of p contained in [ is isometric to an open interval
of R. Let Z° be the vertices of Z. For each v € T,
let 4 be the restriction of v to the set J, defined
as the domain of ~y, minus its endpoints, minus
Z°U~y~1Z% Observe that

domain(¥) Uimage(¥) C Z \ Z°.

We regard v as a pseudogroup presentation where
each map is defined on a connected component of
J. Following [Gaboriau et al. 1992], we set I' =

Uwer 4. Thus Iis a pseudogroup presentation of
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Z such that no map of ' UT'! has an endpoint in
its domain, and each map of I'UT! has a domain
contained in Z \ Z°.

We say that a pseudogroup presentation I' de-
fined on a tree is open if ' = I'. Observe that if T
is open, then so is I'"1. In general, if I" is a pseu-
dogroup presentation defined on a tree, there is a
projection map I' — I that sends each map in ¥
to . This projection determines a group homo-
morphism F(I') — F(T'). Clearly, every cycle of I
maps to a cycle of ', so there is an induced group
homomorphism 7 (I') — 7 (T').

Let I' be an open pseudogroup presentation gen-
erating the pseudogroup G defined on a compact
tree Z. It follows that the number of components of
Z\Z" is finite. Fix an injectivemap x : Z\Z° - R
that is isometric on each component of Z\ Z°. De-
fine the pseudogroup I', on R as the collection of
maps {7, }er, where domain(vy, ) = x(domain(vy)),
image(y,) = r(image(7)), and 7,.(t) = rys~*(t)
for all t € domain(+y,). The correspondence v — 7,
induces a group isomorphism « : F(I') — F(T,).
It is easy to verify that ¢ € F(T') is a cycle of T
if and only if ¢, € F(I';) is a cycle of I',,. It fol-
lows that v — =, induces a group isomorphism
k(D) = (L)

Recall that a pseudogroup presentation is finite
if it contains a finite number of generators.

Remark 4.1. Let ' be a finite open pseudogroup
presentation defined on a compact tree Z, and let
p € Z. Set T'y(p) = {p}, and, inductively,

Loii(p) =Tu(p)U{y(r) € Z:r € Ty(p), y e TUT T}

We claim that the orbit of p generated by I' has
polynomial growth, that is, the sequence [T, (p)|
is bounded above by f(n) for some polynomial f.
(In fact, this growth rate is an invariant of the
pseudogroup generated by I': see [Levitt 1990a].)
Fix k : Z\ Z° — R as above. Certainly, the growth
rate of p with respect to I' is the same as that of
k(p) with respect to I',,. Now extend each map of
I'; to all of R to obtain generators for a finitely
generated subgroup of the isometry group of R.
Such groups are well known to have polynomial
growth, hence the orbit of p has polynomial growth
with respect to I

Definition 4.2. By an interval exchange we under-
stand an open pseudogroup presentation I' with a
finite number of generators, defined on a compact
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tree Z, such that any p € Z, with finitely many
exceptions, is contained in the domain of exactly
zero or two elements of DU T 1.

Definition 4.3. Let I' be a pseudogroup defined on a
tree Z, and let I be a subinterval of Z containing
more than one point. Then [ is a dead end of I' if
it has maximal length with respect to the following
property: Any p € I is in the domain of exactly
one element of U T~

Observe that, if I' is an open pseudogroup and
p € Z is contained in the domain of two elements
a, € T UL, there exists a neighborhood of p
isometric to an open interval of R with this prop-
erty.

Theorem 4.4. [Levitt 1990a, Corollary I1.5] Suppose
I' is an open pseudogroup presentation defined on
a compact tree Z, having a finite number of gener-
ators, and such that m (I') is isomorphic to F(T'),
the free group on the set I'. If ' has no dead ends,
it 18 an interval exchange.

Proof. We adjust the proof of Theorem 7.1 in [Mor-
gan 1988] to account for the pseudogroup presenta-
tion I'. Morgan’s original theorem was concerned
with words whose letters alternated between two
sides of a free product with amalgamation. In the
present case, the words are just elements of F'(T).
Given any point p € Z, we define the multiplicity
m(p) of p to be 1 less than the cardinality of

{y €T UT":4(p) is defined}.

Remarks 4.5. (a) Suppose a(p) is defined for some
p € Zand o € UL Then m(a(p)) is the
number of reduced words of the form (o that are
defined on p.

(b) Since each v € T UT! has an open do-
main, we may assume that m(p) > 2 for all p in
some nonempty open interval of Z. Otherwise I is
clearly an interval exchange, since it has no dead
ends and contains only a finite number of maps.
Moreover, the hypothesis that I' has no dead ends
implies that m(p) > 1 for all p in the domain of
some element of U1,

Let Y be the space of infinite sequences

(py 1 (p), 21 (p), - . )

such that each «, ..., € F(I') is a reduced word
defined on p. We topologize Y as a subspace of

the infinite product [];° ) Z and fiber Y over the
disjoint union of the domains of the maps of I' U
1. Specifically, let B C Z x T UT' ! be defined
as

B = {domain(a) x {a} :a € TUT™'}.

The fiber map Y — B sends (p, a1(p), azay (p), . . .)
to (p,a1). This map is well-defined because the
equality a;(p) = B(p) for some S € TUT ™! implies
that ;47! is a relation in 7;(I'). The hypothe-
sis that F'(I") is isomorphic to 7; implies that the
projection F(I') — 71 (") is an isomorphism, since
finitely generated free groups are Hopfian. Thus
ﬁ = (7.

Let F(p, «) denote the fiber over a point (p, ) €
B. A basic open set of F(p,«), say

V(p7 a(p)vp27 L 7pn)7

for n > 2, consists of all sequences with an initial
segment of the form

s Pn) =
(pv Oé(p), Oézoé(p), -

(D, p1,p2, - -
y Oy . 2(D)).
We define the weight of such a segment to be

1
m(p1) ... m(pn-1)

Define a Borel measure p(p,«) on F(p,«) by set-
ting

Wt(p7p17p27 . e 7pn) -

M(paa)v(pvphp?v L 7pn) - Wt(p7p17p27 L 7pn)-

Thus, the measure of a basic open set is the weight
of its initial segment. The axioms for a measure
can be directly verified. By Remark 4.5(a), exactly
N = m(a(p)) elements {fi,..., x} contained in
LU~ are such that B;a(p) is defined and S« is
reduced. Thus,

N
= Z _ — N(i) -1

— m(a(p)) N
Thus, the total mass of p(p,«) is 1. The integral
of the measures p(p, ) with respect to Lebesgue
measure dp on B induced from the metric on Z
gives a Borel measure p on Y. It has total mass

equal to the sum of the lengths of the domains of
the elements of ' U1,



Let S:Y — Y be the truncation map

(p07p17p27 .. ) — (p17p27 .. )

We claim that p is measure-preserving, that is,
w(U) = u(S™*(U)) for any measurable set U C Y.
A basic open set U of Y has the form

U= J{V a®),p - .o}

pel

where each p; = «;...a2a(p), and «,, ... ac is
reduced and defined for all p in an interval 7. Ad-
ditionally, we may assume that m(p) is constant on
I, say N = m(p). Notice that N is the cardinality
of the set

{BeT'NI'": af is reduced, 37" is defined on p}.
Accordingly, let ﬂl, ..., On be such that af; is de-
fined on ¢; = B, (p). We compute that

u(S~HU))

\

(i, Bi)V(qis 0, (p), D2, - - - s Pn)dgi

B:—1(1)

/ -1(1) %< (a (p)m(pzl)...

= %Z/ju(p,a)‘/(na(p),pz,...

N
-2
N
2 m(pn_o)dqi

s Pn)dp

We now apply the following result, which can be
found in [Morgan 1988, §7.5].

Theorem 4.6 (First Ergodic Theorem). Let (Y, 1) be a
measure space of finite total measure, and let the
map S : (Y,u) — (Y,u) be measure-preserving.
Let f:Y — R be integrable. Then

f(p) = lim ( )Zf (S*(p

A

exists for almost all p € Y. Furthermore, f is
integrable and fY fdu = fy fdu.

To use this theorem, define f : ¥ — R by the
formula

f(po,p1,...) = In(m(p1)).
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Now set

fn pO;pla--- po,pl,...))

Zf

- ant(p07p17 e 7pn+1)-

This paragraph and the next are quoted with slight
alterations from [Morgan 1988, p. 621]. By the
First Ergodic Theorem, f = lim, .., f./n exists
almost everywhere and has same integral as f. By
Remark 4.5(b), m(p) > 2 for some nonempty open
interval (I,a) C B. Moreover, m(p) > 1 for al-
most all (p,8) € B. Thus [, fdu = Ku(B) for
some K > 0. By Fubini’s theorem, this means
that there is a point (p,«a) € B such that fis
defined almost everywhere on the fiber F(p,a),
and fF(p‘a) fdu(p,a) > K. Hence, there is a sub-
set E C F(p,a) of positive u(p,a)-measure, say
w(p,a)(E) = v > 0, on which f > K. There
is an integer N such that for all n > N and all
a € E C F(p,a), we have f,(a)/n > K/2, or
equivalently, f,(a) > nK/2. By the formula for f,,
this means that for any (p, a(p),...) € E, we have
the inequality —Inwt(p, a(p),...,pny1) > nK/2,
or, equivalently, that

,U/(pa a)V(pv Oé(p), o 7pn+1) = Wt(pa a(p)a e 7pn+1)

< exp(—nk/2)

for all n > N.

Since the total mass of F is v and since sets of the
form V(pa a(p)a v 7pn+1)mE7 as (pa Oé(p), v 7pn+1)
ranges over initial sequences of points of F, form a
covering of E, it follows that, for all n > N, there
are at least vexp(nk/2) sequences of the form
(p,a(p), ..., Pny1) that occur as initial sequences
of points of E and a fortiori as points of F(p, ).
This means that, for all n > N, the number of el-
ements of F(I') of length n 4 1 defined at p is at
least v exp(nk/2).

By Remark 4.1, the orbit of p generated by I’
has polynomial growth. Thus, there must be two
distinct reduced words ;1,32 € F(I') such that
B1(p) = B2(p). As we noted earlier in this proof,
the hypothesis that F(I') and 7(I") are isomor-
phic implies that the projection F(I') — 71 (T") is
an isomorphism. Thus §; = (B, which is a contra-
diction; and therefore, the assumption made in Re-
mark 4.5(b) cannot hold, that is, the case m(p) > 2
for all p in some nonempty open interval of Z is
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impossible. We conclude that I' is an interval ex-
change. O

5. FREE ACTIONS ON R-TREES

A group G acts freely on an R-tree T if for any
p € T, the only element g € G such that gp = p is
the identity. G acts by isometriesifeach g : T'— T
is an isometry. G acts minimally if there is no
proper subtree S C T such that GS = S. For
an arbitrary group G acting on metric spaces M
and N, a continuous map ¢ : M — N is a G-map
if p(gp) = ge(p) for all g € G and p € M. An
action of G on a set M is quasifree if there exists
a subgroup S of G such that, for all p € M, the
stabilizer of p by the action of G is §. If G acts
quasifreely on M with stabilizer S, then G/S acts
freely on M. If G; and G5 act on M, their actions
are equivalent if there is a group isomorphism ¢ :
G, — G such that gp = «(g)p for all g € G; and
pE M.

We assume in this section that G x T" — T is
a free, minimal action by isometries of a finitely
presented group G on an R-tree T'. By [Rimlinger
1992, Theorem 5.7], there is a compact graph K
with universal cover 7 and a 7y (K)-map ¢ : 7 — T.
(The space 7 is a tree in the sense of this paper:
7 inherits a metric structure from that of 7". The
map ¢ is a morphism in the category of folds of 7
along an equivalence relation determined by the ac-
tion of G on T'. See [Rimlinger 1992] for details.)
The action of m1(K) on 7 is by covering transla-
tions. The action of 7;(K) on T is quasifree, so
that 71 (K)/S acts freely on T', where S is the sta-
bilizer of the action of 7y (K'). The groups m (K)/S
and G are isomorphic, and the actions of these
groups on I’ are equivalent.

Let b € 7 be the basepoint of 7. Fix a pre-
sentation (X : R) for G, so that R C F(X) is a
finite set of relators and G ~ F(X)/((R)). Let
Z7r = Uyeglb; abl, so that Z. is a compact subtree
of 7. Notice that Z = ¢Z, is the continuous image
of a compact connected set and hence a compact
connected subset of T'. It follows that Z has a sim-
plicial structure that agrees with the metric of 7.
Thus Z is a compact tree.

Let I'; C m(K) be the set of covering transla-
tions of 7 that do not move Z, off of itself:

I''={aem(K):aZ NZ # o}

Observe that I'; is a finite subset of 7 (K). Since
¢ is a m (K )-map, we may view I', as a finite pseu-
dogroup presentation defined on Z. Given a € T';,
the domain of o is Z Na (Z). Let I = I, as
defined at the beginning of Section 4. Thus I is an
open pseudogroup with a finite number of genera-
tors defined on a compact tree Z.

Remark 5.1. From [Rimlinger 1992, Theorem 4.1],
it follows that G is determined up to isomorphism
by I'. The proof of this relies heavily on ideas from
[Rimlinger 1992], so we just give a sketch here. (We
do not use this result deductively in this paper.)
The map ¢ : 7 — T is determined by a certain
equivalence relation on K, say D C K x K. This
equivalence relation is constructed in the proof of
[Rimlinger 1992, Theorem 5.7]. However, I' also
determines an equivalence relation D(I') on K as
follows. Say p,q € K are equivalent if there are lifts
D, G to T such that ¢(p) and ¢(q) are in Z, and some
element of F(T') takes ¢(p) to ¢(q). Let D(T') be
the induced segment-closed equivalence relation on
K [Rimlinger 1992, Definition 2.1]. It is easy to see
that D(I') € D. From [Rimlinger 1992, Theorem
4.1], there exists an R-tree T and a commutative
diagram of m; (K )-maps,

|

|
o
\

T

where ¢ : 7 — T is induced by D(I') and ¢ : T — 7
is induced by D. The action of m;(K) on T is
quasifree. Let S be the stabilizer of the action of
m(K) on T. The fact that D(T) is constructed
from a presentation for G is used to show that
T (K)/S ~ 7 (K)/S ~ G, although T and T may
differ. The essential point is that ¢(ab) = ¢(b) for
each a € R. Thus G is determined up to isomor-
phism by I'.

Remark 5.2. Let p, : I', — G be the restriction of
the map 7 (K) — m(K)/S ~ G. Observe that
p- induces a map p, : F(I';) — G. Now suppose
a € ker(F(I';) — m(T',)), so that a(p) = p for
some p € Z. Since ¢ : 7 — T is a 7 (K )-map, we
observe that p(«), viewed as an isometry of T', is an
extension of «. Since G acts freely on T', we deduce
that p.(a) = 1, so that p, : F(I';) — G induces a



homomorphism p, : 71 (I';) = G. From Section 4,
we have a group homomorphism 7 (I') — 71(L,).
It follows that there is a group homomorphism
p : (') — G obtained by composing this ho-
momorphism with p,.

An open pseudogroup presentation defined on
the circle R/Z is a finite collection ¥ of maps
defined on open subintervals of R/Z of the form
P(t) =a+torP(t) = a—t, for some constant a.
The collection of orbits generated by these maps
and their inverses is the open pseudogroup defined
on the circle. The maps of positive derivative are
ortentation-preserving and those of negative deriv-
ative are orientation-reversing [Levitt 1990a, § L.5].
We now pass from the open pseudogroup I' de-
fined on Z to an open pseudogroup I', defined on
the circle. As in Section 4, choose an injection
k: Z\ Z° — R that is locally isometric on each
component of Z \ Z° Arrange for x(Z) to lie in
the open interval (0,1) C R by composing the orig-
inal k with a constant scaling factor followed by a
translation. Now regard x as a map from 7\ Z° to
the circle R/Z. Observe that the image of k avoids
the image of 0 in R/Z. Define I',; as in Section 4.
It is easily verified that I',; is an open pseudogroup
presentation defined on the circle.

Definition 5.3. [Levitt 1990a, §1.5] Suppose ¥ is
an open pseudogroup presentation defined on the
circle R/Z, generating the open pseudogroup §.
The fundamental group m1(9) is defined relative to
the universal covering map R — R/Z. For each ¢ :
I — Jin W, lift ¢ to ) : I — J, where length(]) =
length(J) = length(I). Let ¥ = {4}, and let v :
R — R be the map t — t4 1. Let F(¥ U {1}) be
the free group on the set W U {ty}. Then m;(T) =
F(U U {t})/{(N)), where N is the set of reduced
words o € F(¥U{thy}) such that a(t) = ¢ for some
teR.

By [Haefliger 1984] and [Levitt 1990a], m;(G) de-
pends only on G, not on the specific presentation
chosen to generate G.

Remark 5.4. Let G, be the open pseudogroup gen-
erated by I'.. We consider the relation between
71 (') and m(G,). Notice that each ~, : I — J
lifts to 4, : I — J such that I, J C (0,1). It
follows that any reduced word in F(T', U {1})
that contains an occurrence of 1, is not trivial

in 7,(I'x). Thus N C F(I,), where F(T,) is the
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subgroup of F(T', U {t}) generated by I',. We
deduce that 7,(G,) ~ F(T.)/{{N)) * Z. Clearly,
the map v — 7, — 9, induces an isomorphism
T () = F(I'y)/{((N)), so that m(G,) =~ 71 (I") * Z.
Thus 71(G,) is free if and only if 7 (I") is.

Definition 5.5. [Levitt 1990a, §1.4] A complete min-
imal component of an open pseudogroup G defined
on R/Z is a maximal open interval I such that

(i) for all p € I, the orbit G, of p is dense in I, and

(ii) forallt € Rand y € I, if [p,p+t] and [g,q+1]
are contained in I, then ¢+t € G, if and only
ifge§,.

We now state Levitt’s structure theorem for open
pseudogroups of the circle.

Theorem 5.6. (Levitt, Gusmao) Let G be an open
pseudogroup defined on R/Z. The fundamental
group m1(9G) is isomorphic to a free product of a
finitely generated free group and a finite number
of noncyclic finitely generated free abelian groups.
These free abelian groups are in one-to-one corre-
spondence with the complete minimal components

of G.

This is proved in [Levitt 1990a, §1.5] for the case
of orientation-preserving maps. Gusmao (in prepa-
ration) recently extended the result to the case of
orientation-reversing maps.

Lemma 5.7. If m(S,) contains a free abelian sub-
group of rank greater than 1, so does G.

Proof. Suppose m(G,) contains a noncyclic free
abelian subgroup. By Theorem 5.6, G, has a com-
plete minimal component I. Let G be the pseudo-
group defined on Z generated by I'. Given p € Z,
let G, denote the orbit of p by the maps of T'
and their inverses. There exists an open interval
J C Kk (I) of Z and a point p € J such that

(i) 9, N J is dense in J, and

(ii) forallt € Rand q € J, if [p,p+t] and [g,q+1]
are contained in J, then ¢+t € G, if and only
iftqgeg,.

Now suppose [p,p + t] and [q,q + t] are contained

in J, and ¢ € §,. By the compactness of [p,p + ],

there exists a finite sequence ay,...,a, in 7 ()
such that

[p,p+t] C U domain(«;),

a;
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domain(e;) N domain(e,;1) # @ for each 4, and
a;(p+r) = g+r for every r € [0, t] such that p+r €
domain(e;). Each a;je; is trivial in 7, (T), being
the image of a cycle in F(T'). Recalling the ho-
momorphism p : 7 (I') — G from Remark 5.2, we
deduce that p(a;) = p(as) = -+ = p(a,). Thus,
there exists g € G such that g[p,p+t] = [¢,q + t],
where ¢ acts by translation in the amount d(p, q).

Fix p € J. By (i) and (ii) above, we may find ¢y,
g2 € G(p) and t > 0 such that

(iii) d(p,q:) and d(p, ¢g2) are linearly independent,
(iv) [p,p+t]U[q, 1 +t]U[g2,q2 +1t] C J, and
(v) d(p,q1) +d(p,q2) <t.

Let g1,92 € G be such that g; translates [p,p + ]
to [gi,q: + t], for : = 1,2. Tt follows that g,g2(p) =
9291(p), so g1 and g commute in G. Since the
translation lengths of g; and g, are linearly inde-
pendent, we deduce that g; and g, generate a rank-
two free abelian subgroup of G. U

Theorem 5.8. (Rips: see Section 1) Let G X G —
T be a free minimal action of a finitely presented
group G on an R-tree T'. Let G be a pseudogroup
generated by an open pseudogroup presentation I
corresponding to this action. Then either

(i) G = G'«xH, where H is a noncyclic free abelian
group,

or there exists a finite presentation ¥V of G with
independent generators such that either

(ii) the dead ends can be removed from ¥ in a
finite number of steps, and the corresponding
open pseudogroup presentation is an interval ex-
change, or

(ii) the dead ends cannot be removed from ¥ in a
finite number of steps.

Proof. Let G, be the pseudogroup presentation on
R/Z corresponding to I';. First suppose m(G,)
is not free. By Theorem 5.6, m(G,) contains a
noncyclic free abelian subgroup. By Lemma 5.7,
G contains a noncyclic free abelian subgroup. By
a theorem in [Morgan and Skora], G = G’ x H, as
desired.

Now suppose m;(G,) is free. By Remark 5.4,
71 (") is free. By Theorem 3.10, G is generated
by a pseudogroup presentation ¥ such that 71 (¥)
is isomorphic to F'(¥), the free group on the set
U. Let ¥ = {¢,;} and suppose I C domain(t);)
is a dead end. Let 1&1- be the restriction of ; to

domain(e;) — I. Thus ¥; = {¢; : j # i} U{%}
is the pseudogroup presentation formed by remov-
ing the dead end I from W¥. Since 7;(¥) is free,
it follows that 7;(W¥;) is free. (In general, these
two groups are not isomorphic: If domain(~;) \
is not connected, rank 7 (¥;) > rankm(¥).) A
similar argument applies for a dead end I in the
image of ¢;. Thus the process of dead-end removal
preserves the freeness of the reduced fundamen-
tal group. Suppose the dead ends can be removed
in a finite number of steps. We arrive at a pseu-
dogroup presentation ¥,, such that 71 (¥,) is free.
Thus 71 (¥,,) is free. Theorem 4.4 now implies that
\ifn is an interval exchange. (|

6. THE COMPUTER EXPERIMENT

The discovery by Morgan and Shalen that most
surface groups act freely on R-trees [Morgan and
Shalen 1984; 1991] caused speculation about what
other finitely generated groups, if any, could act
freely on R-trees. It was quickly realized that
surface group actions corresponded to interval ex-
changes with a dense orbit. More generally, any fi-
nite pseudogroup presentation I' defined on a com-
pact tree Z such that F(I') contains no reflection
corresponds to a free action of a finitely generated
group on an R-tree (see [Rimlinger 1992, Theorem
4.1], for example).

Years ago, I realized that the technique used in
[Morgan 1988] implied that if a pseudogroup pre-
sentation I' with no dead ends was not an interval
exchange, F'(I') must contain cycles (compare The-
orem 4.4). (I mistakenly dismissed the case of pre-
sentations with dead ends as irrelevant.) I felt that
such cycles corresponded to “spurious relations” in
the corresponding group G acting freely on an R-
tree. I thought that the “exotic” free actions on
R-trees would be those in which these “spurious
relations” exhibited some recognizable kind of pat-
tern. In other words, if one fixed a point p € Z and
displayed the finite set of points a(p) € Z such that
a € F(I') has reduced length n and «a(p) is defined,
some kind of fractal-like image would emerge as n
became large. I reasoned that perhaps one could
infer from the stability properties of such an image
that the corresponding group acting freely on an
R-tree was not finitely presented.

I therefore set out to “simulate free actions on R-
trees”. By this, I meant plotting orbits in search of



the elusive stable patterns of cycles. The first con-
ceptual problem involved determining, for a given
choice of I', whether or not F'(I') contained a reflec-
tion. I restricted my attention to the case where Z
is a closed interval of R, and empirically observed
that if I' contained an orientation-reversing map,
F(T') was sure to have a reflection. (Obviously
there are surface-group presentations that contain
orientation-reversing maps, but such presentations
are not “stable” in some sense.) Therefore, I fur-
ther restricted my attention to the case where I'
contains only orientation-preserving maps.

These early computer experiments were disap-
pointing. No patterns emerged. I should have
given up, but I could not let go of the idea that
the exotic free actions were out there waiting to
be discovered. Therefore, I decided to play the
devil’s advocate and tried to develop an algorithm
that would either “simplify” every I' to an inter-
val exchange or discover a noncyclic free abelian
subgroup of 7;(I'). At that point I started work-
ing with the Macintosh and specifically with the
Think C development system. The incredibly so-
phisticated programming environment of the Mac
is not something dilettante programmers can read-
ily embrace, but Think C gave me all the hints and
support I needed to get started. My feeling was
that my earlier experiments probably had failed
because my code was faulty. I felt that the power-
ful real-time graphics available on the Mac would
give me the positive feedback I needed to verify
that algorithms were working as intended.

The algorithm for detecting interval exchanges
was quite elementary. Starting with a presenta-
tion I'y with no dead ends, there exist a and ( in
['yUL'y " such that domain(a) = [p, g], domain(3) =
[p,7], and [p,q] C [p,r]. Therefore, one constructs
[ from Ty by replacing o with v = a7, where
domain(y) = B[p, q]. In the implementation, I'y ac-
tually has a somewhat special form determined by
a “top word” and a “bottom word”. This special
form is inherited by I" and implies that [p,q| is a
dead end of I'V. Discard this dead end, obtaining a
presentation I';. Now repeat the operation to get
a sequence 'y, I'y,I'5,.... If some I'} is an inter-
val exchange, the pseudogroup § generated by I'
has a presentation consisting of 'y, together with
a collection of maps corresponding to “removable
dead ends” (Theorem 5.8). In the actual imple-
mentation, there may be several maps aq,...,q;
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defined on [p,q]. These maps are identifiable in
the display because their domains and ranges are
all drawn in the same color. All these maps are si-
multaneously replaced by 87 'ay,..., 3 tay. The
interval [p, q] then becomes a dead end and is dis-
carded. I dubbed this algorithm the “relabeling
algorithm” because of the way the colors dance on
the screen as the new domains are drawn.

The algorithm for detecting noncyclic abelian
subgroups of 7 (I') involved searching for elements
of F(I') with relatively small translation lengths
defined on the same relatively large interval. This
algorithm eventually evolved into Lemma 5.7. In
the implementation, I quickly discovered that each
time a noncyclic abelian subgroup was found, one
could plot its rank against the detected subinter-
val of its complete minimal component (Defini-
tion 5.5). The resulting graphics are beautiful to
watch—they look like skyscrapers sprouting up in
a dense city skyline—but are unfortunately utterly
devoid of any scientific meaning. I called this al-
gorithm the “painting algorithm”, in honor of the
Macintosh system A-trap PaintRect.

To implement these algorithms, I overcame for-
midable technical challenges in the area of effi-
cient dynamic memory management of data with a
variable number of dimensions and a variable-type
definition. I have developed intelligent general-
purpose object-oriented memory management soft-
ware, which I will be happy to share with other
Think C developers.

And so MacRtree was born. I fed MacRtree
dozens and dozens of presentations. In almost all
cases, either the relabeling algorithm yielded an
interval exchange after a finite number of steps,
or the painting algorithm discovered a noncyclic
abelian subgroup. In a few instances, the relabel-
ing algorithm failed to converge when it “should”
have. I attributed this to the “biased” way in
which MacRtree chose the intervals [p, ¢] and [p, r].
My feeling is that the relabeling algorithm can be
“randomized” in such a way that it will always
yield a positive result when fed a presentation gen-
erating a pseudogroup G such that G has an interval
exchange presentation. Such a result would have
implications for some recent theoretical work on
presentations of surface groups [Rimlinger c].

At length, I realized that the relabeling algo-
rithm was just a form of Nielsen transformation.
From Lyndon and Schupp I gleaned the technical
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expertise to concoct a theoretical Nielsen transfor-
mation of I' that converges to a pseudogroup ¥
with independent generators if 71 (") is free (The-
orem 3.10). From combining this result with the
technique of [Morgan 1988], it follows that ¥ is an
interval exchange if it has no dead ends (Theorem
4.4). To avoid worries about endpoints while per-
forming the Nielsen reduction, I generalized the no-
tion of Levitt’s fundamental group to partial maps
with connected domain (see Lemma 2.7 and Corol-
lary 2.9). Considering these results in the light of
Levitt’s structure theorem for 7 (9) (see Theorem
5.6), I began to believe there were no “exotic ac-
tions” living in the chimerical world between the
interval exchange and the free abelian case (com-
pare Theorem 5.8).
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