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Let G be a pseudogroup defined on a tree Z, and let � be a

finite set of generators for G. The reduced fundamental group��1(�) of � is defined here. I give a new and experimentally

inspired proof of a result of Levitt: If ��1(�) is a free group,

there exists a finite set of generators 	 for G such that ��1(	)
is free on the set 	. If 	 has no dead ends, it is an interval

exchange.

Like Gaboriau, Levitt and Paulin [Gaboriau et al. 1992], I prove

that if G is a finitely presented group acting freely on an R-

tree and � is a corresponding set of pseudogroup generators,

we’re in one of the following situations: eitherG splits as a free

product with a noncyclic free abelian summand, or � can be

reduced to an interval exchange by normalizing and removing

a finite number of dead ends, or the process of removing dead

ends from � does not terminate in a finite number of steps.

INTRODUCTIONA pseudogroup presentation � de�ned on a metricspace Z is, in general, a collection of local isome-tries, each of which takes a connected subset of Zonto some other connected subset of Z. Such a setof maps � decomposes Z into orbits: Two pointsare in the same orbit if it is possible to pass fromone to the other by applying a �nite successionof maps of � or their inverses. The collection Gof these orbits is the pseudogroup generated by �.In general, a pseudogroup de�ned on a space Z isgenerated by many di�erent presentations, and onewishes to pass from an arbitrary such presentationto a canonical form presentation.Perhaps the most geometrically satisfying char-acterization of an R-tree is found at the beginningof [Gaboriau et al. 1992]: An R-tree is a path-connected metric space in which every arc is iso-metric to an interval of R. From this point ofview, a tree Z is a connected, simply connectedone-complex with a metric that induces the topol-ogy of the one-complex structure and gives Z thec
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structure of anR-tree. All the fundamental resultsabout R-trees needed in this paper are taken from[Rimlinger 1992], which uses results of [Alperin andBass 1987] developed from [Chiswell 1976], whichin turn grew out of the seminal work of Lyndon[1963]. See also [Morgan and Shalen 1984; 1991]and [Shalen 1987] for background information, es-pecially the fact, proved by Morgan and Shalen,that most surface groups act freely on R-trees.Let � be a �nite set of generating maps for thepseudogroup G|in other words, a �nite presen-tation of G|and let F (�) be the free group on�. Then F (�) has the structure of a pseudogrouppresentation of G. Indeed, a �-word is naturallyinterpreted as a composition of generating mapsor their inverses. An element � 2 F (�) is a cycleif there exists a point p 2 Z such that �(p) = p.An element of F (�) is a re
ection if it has a �xedpoint but is not an identity map. (Thus every re-
ection is a cycle.) We de�ne the reduced funda-mental group ��1(�) to be F (�) modulo the normalsubgroup of F (�) generated by cycles: compare[Levitt 1990a].Let � be a pseudogroup presentation of G de�nedon a tree Z. In Section 2, we show that if F (�)contains no re
ection, ��1(�) is also a pseudogrouppresentation for G. The map associated with anelement w 2 ��1(�) is the union of all maps � 2F (�) that project to w. We prove that this map isin fact well-de�ned with connected domain.Adopting the notation of [Gaboriau et al. 1992],we say that a pseudogroup presentation � has inde-pendent generators if F (�) is isomorphic to ��1(�).If � has independent generators and F (�) containsno re
ection, F (�) contains no cycle, for the exis-tence of a cycle would imply a nontrivial relationamong the basis elements of a free group, which isabsurd. Section 3 contains a new proof of Levitt'sresult on independent generators:
Theorem 3.10. [Levitt 1990b, Theorem 5] Let � be a�nite pseudogroup presentation generating a pseu-dogroup G de�ned on a tree Z. Suppose F (�) con-tains no re
ection. If ��1(�) is a free group, thereexists a �nite presentation 	 of G that has inde-pendent generators.Recently, Gaboriau has signi�cantly improvedthis result (in preparation).Let � be a pseudogroup de�ned on a tree Z, andlet I be a subinterval of Z containing more than

one point. Then I is a dead end of � if it has max-imal length with respect to the following property:Each p 2 I is in the domain of exactly one elementof � [ ��1. One may remove this dead end from� by restricting the domain of the o�ending map.The orbits of the new pseudogroup �0 are trivialon I. The orbits of �0 contained in Z n I equal theorbits of � restricted to Z nI. If �0 has a dead end,one can again remove it. The process of remov-ing dead ends may uncover dead ends of smallerand smaller length, and so continue forever. Sucha pseudogroup presentation gives rise to a Levittpseudogroup. I am grateful to F. Paulin for point-ing this out to me.A pseudogroup presentation is open if its gen-erators and their inverses are de�ned on open in-tervals of Z containing no vertices of Z. An openpseudogroup presentation � with a �nite numberof generators de�ned on a compact tree is an in-terval exchange if all but a �nite number of pointsof Z lie in the domain of exactly zero or two mapsof � [ ��1: see [Veech 1978], for example. If theprocess of dead-end removal discussed above termi-nates, one obtains such an interval exchange. Thisresult is due to Levitt. The proof in Section 4 isbased on the point of view of [Morgan 1988].
Theorem 4.4. [Levitt 1990a, Corollary II.5] Suppose� is an open pseudogroup presentation de�ned ona compact tree Z, having a �nite number of gener-ators, and such that ��1(�) is isomorphic to F (�),the free group on the set �. If � has no dead ends,it is an interval exchange.Section 5 gives the details of the connection be-tween R-trees and pseudogroups as I understoodthem as of July 1991, at the Isle of Thorns confer-ence. See [Rimlinger a; b; c] for more results alongthese lines, and [Gaboriau et al. 1992] for a com-plete proof of Rips' theorem (see Section 1) basedon the trichotomy implied in Theorem 5.8.
Theorem 5.8. (Rips: see Section 1) Let G � G !T be a free minimal action of a �nitely presentedgroup G on an R-tree T . Let G be a pseudogroupgenerated by an open pseudogroup presentation �corresponding to this action. Then either(i) G = G0�H, where H is a noncyclic free abeliangroup,or there exists a �nite presentation 	 of G withindependent generators such that either
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(ii) the dead ends can be removed from 	 in a�nite number of steps, and the correspondingopen pseudogroup presentation is an interval ex-change, or(iii) the dead ends cannot be removed from 	 in a�nite number of steps.Indirectly, Rips [Morgan 1991] proves that case(ii) implies G = G0�H, where H is a surface group,and that case (iii) implies G = G0 � F , where F isa free group of rank n for some n � 3.The principal tool involved in the proof of The-orem 5.8 is the fundamental group of a pseudo-group G, denoted by �1(G). Following [Hae
iger1984], Levitt considered �1(G) in the context of fo-liated manifolds and deduced that �1(G) is a freeproduct of free abelian groups [Levitt 1990b]. In[Levitt 1990a], �1(G) was considered in the contextof partial rotations de�ned on open subintervals ofthe circle. Levitt showed that the result of [Levitt1990b] cited above holds in this somewhat morecombinatorial setting, mutatis mutandis. Gusmao(in preparation) extended the result to the case oforientation-reversing maps de�ned on open subin-tervals of the circle. This extension is cited in myproof of Theorem 5.8. In [Gaboriau et al. 1992], asimilar result is used to analyze Rips' \unidenti�edcombinatorial objects".For arbitrary pseudogroup presentations �, thegroup ��1(�) is not an invariant of the orbit spaceG generated by � (see Remark 2.5). For the caseof an open pseudogroup presentation � generatingG, there is an exact relationship between ��1(�) andLevitt's fundamental group: First translate � intoa presentation �0 de�ned on the circle, and let G0be the pseudogroup generated by �0. Then �1(G0)is isomorphic to ��1(�)�Z (see Remark 5.4). Hence��1(�) is free if and only if �1(G) is.I was led to consider the notion of Nielsen trans-formations described in this paper by working withMacRTree, a computer program I developed forthe Macintosh II. Initially, I felt that there werelots of exotic �nitely generated groups that actedfreely on R-trees, and that these groups could behunted down by computer simulations. Instead,the computer obstinately refused to yield any po-tential counterexamples, and I began to wonderwhy. As I reread the �rst few pages of [Lyndon andSchupp 1987], I began to realize that the computerwas \doing Nielsen transformations". In Section 6,

I expand on this discussion of the speci�c role ofthe computer in the development of my proofs ofTheorems 3.10, 4.4 and 5.8.I am grateful to Gilbert Levitt for correspon-dence that led me to an understanding of his workand potential applications to R-trees.
1. BACKGROUNDIn this section, I attempt to clarify the relation-ship between my work and that of E. Rips andG. Levitt. At the Isle of Thorns conference inJuly 1991, Rips gave a major exposition of hisresult that every �nitely generated group G thatacts freely on an R-tree is a free product of freeabelian groups and surface groups [Morgan 1991].His proof was based on a notion of combinatorialcomplexity that Razborov [1985] used to investi-gate equations in free groups.I arrived at the conference planning to speakabout a process that constructs independent gen-erators via Nielsen transformations [Nielsen 1921]for a pseudogroup with free fundamental group. Ifurther wished to indicate the implications of thiswork for the classi�cation problem for free actionson R-trees. (Levitt had previously developed asimilar result [Levitt 1990b, Theorem 5] in the con-text of foliated manifolds. I will return to this pointbelow.) I quickly learned that Rips' proof was nowaccepted by many as correct. I then spoke with F.Paulin and learned that the process of removingdead ends from a pseudogroup presentation mightnot converge. This is the so-called Levitt pseudo-group case, advanced in [Levitt 1990a] as an in-dication that a previously proposed proof of theclassi�cation theorem associated with Rips was in-complete.Therefore, I realized that there existed two ma-jor gaps in my understanding of a proof of the clas-si�cation theorem, namely, how to prove that mymethod of Nielsen transformations did not alterthe action of the corresponding action on an R-tree, and how to deal with the Levitt pseudogroupcase.The substance of my talk, hastily revised to ac-count for my conversation with Paulin and thenews about Rips' proof, was that by �nding inde-pendent generators for the pseudogroup the natu-ral trichotomy between the free abelian case, theinterval exchange case and the Levitt pseudogroup



98 Experimental Mathematics, Vol. 1 (1992), No. 2

case could be clearly illustrated. The principal toolI used in this talk was Levitt's classi�cation of thefundamental group of an open pseudogroup as afree product of free abelian groups [Levitt 1990a],as extended by Gusmao (in preparation). But, atthat time, I did not know exactly how to translatethe trichotomy involving pseudogroups to the cor-responding trichotomy for free actions: translationalong R, surface group action and nonsimplicialfree action.Rips' proof uses an inductive procedure that ap-plies uniformly to all three cases. The third case,the Levitt pseudogroup case, involves subtle con-vergence problems. Without Rips' solution of thiscase, the classi�cation problem might well have re-mained open inde�nitely.After the Isle of Thorns conference, Gaboriau,Levitt and Paulin produced a complete proof ofRips' theorem [Gaboriau et al. 1992], based on thetrichotomy of cases induced by the explicit con-struction of independent generators for the funda-mental group of the pseudogroup. Levitt's result[Levitt 1990b, Theorem 5] provided a point of de-parture for their construction of independent gen-erators. The process expounded in [Gaboriau etal. 1992] produces a pseudogroup with independentgenerators such that the corresponding group act-ing freely on an R-tree does not change. However,this method alters the underlying set on which thepseudogroup is de�ned. My technique of Nielsentransformations produces independent generatorsthat identically reproduce the orbits of the origi-nal pseudogroup on the original set, but the num-ber of independent generators may be larger thanthe original number of generators. Gaboriau hasimproved this result by showing that it is not nec-essary to increase the number of generators to ob-tain independent generators.I can now prove that the Nielsen transforma-tion of a pseudogroup presentation does not changethe associated group that acts freely on an R-tree[Rimlinger a; b]. In fact, any action of G based ona �nite presentation of G will remain invariant, notjust the group G. This improvement in the normal-ization process has led me to an analysis of de�ningrelators in surface groups [Rimlinger c]. One inter-esting point that needs more research is whetherthe program MacRTree (Section 6) can be shownto converge on surface group relators, possibly af-ter the introduction of some kind of perturbation

technique. Such a result would lead to signi�cantimprovements in the results of [Rimlinger c].
2. THE REDUCED FUNDAMENTAL GROUP

Trees and GraphsAn R-tree is a path-connected metric space whereeach arc is isometric to an interval ofR. A tree Z isa connected, simply connected one-complex with ametric that gives Z the structure of an R-tree andinduces the topology of the one-complex structure.If I and J are connected subsets of a tree Z, anisometry 
 : I ! J is called a partial isometry ofZ. We emphasize the fact that a partial isometryhas connected domain and image by de�nition. Agraph is de�ned to be a connected, simplicial one-complex.
Free GroupsThe free group on a set X is denoted by F (X).The set X�1 is de�ned as X�1 = fx�1 2 F (X) :x 2 Xg. Each nonidentity element w 2 F (X)can be uniquely expressed as a reduced word w =wnwn�1 : : : w1, with letters wi 2 X [ X�1, suchthat wi+1 6= w�1i for all i. We say n is the lengthof w, and denote it by `X(w), or simply `(w). Byconvention, the identity element has length zero.In general, we say w = wnwn�1 : : : w1 is reducedif `(w) = Pni=1 `(wi). This allows for the appear-ance of the identity element at any point in a re-duced word. (Of course, we actually mean to saythat the ordered n-tuple (wn; wn�1; : : : ; w1) is re-duced, but this distinction must be inferred fromcontext.) Now suppose w1 and w2 in F (X) aresuch that the product w1w2 has cancellation, thatis, is not reduced. Then there exists a unique u 6= 1and a; b 2 F (X) such that w1; w2 and w1w2 may beexpressed without cancellation as w1 = au�1, w2 =ub and w1w2 = ab. In this event, we say that theparts u�1 of a and u of b have cancelled. In general,`(w1w2) = `(w1) + `(w2)� 2`(u) � `(w1) + `(w2).
PseudogroupsLet Z denote an arbitrary �xed tree.
Definition 2.1. By a pseudogroup presentation � de-�ned on Z we mean a set f
 : I ! Jg of partialisometries of Z.Let � be a pseudogroup presentation de�ned onZ. Let F (�) be the free group with basis �. For
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each element � 2 F (�), we de�ne a partial isome-try �(�) as follows. Let �(1) be the identity mapon Z. If � 2 F (�) has length 1, set �(�) = � if� 2 �. If � 2 ��1, set �(�) = �(��1)�1. Induc-tively, suppose �n�n�1 : : : �1 2 F (�) is reduced oflength n, and �(�n�n�1 : : : �1) is de�ned with im-age I. Let � = �n+1�n�n�1 : : : �1 be reduced oflength n+1. Let J be the domain of �(�n+1). Then�(�) is the composite �(�n+1) � �(�n�n�1 : : : �1)de�ned on �(�n : : : �1)�1(I \ J). In particular,�(�) is the empty map if I \ J = ?. In this case,any reduced word that has a right segment � willalso represent the empty map. Observe also that�(��) = �(�) � �(�) if �� is reduced. In general,�(��) is an extension of �(�) � �(�).We now dispense with the �(�) notation. Thus,given p 2 Z and � 2 F (�), the expression �(p)implies that p is in the domain of �(�), and denotesthe point �(�)(p) 2 Z.
Definition 2.2. We say that p; q 2 Z are in thesame orbit generated by � if there exists � 2 F (�)such that q = �(p). The set of equivalence classesG determined by this relation on Z is called thepseudogroup generated by �.
Definition 2.3. We say that a partial isometry �with domain I � Z is a re
ection if � has a �xedpoint p 2 I, that is, if �(p) = p for some p 2 I and� is not the identity map of I.
Definition 2.4. Let � be a pseudogroup presenta-tion. An element � 2 F (�) such that �(p) = pfor some p 2 Z is called a cycle of �. (Implicit inthe statement �(p) = p is the assertion that � isindeed de�ned on p.) Let N � F (�) be the normalsubgroup of F (�) generated by all the cycles of �.The quotient group ��1(�) = F (�)=N is the reducedfundamental group of �, and �� : F (�) ! ��1(�)denotes the natural projection map.
Remark 2.5. Suppose � generates the pseudogroupG. The reduced fundamental group ��1(�) is relatedto the fundamental group �1(G) de�ned in [Hae-
iger 1984] and [Levitt 1990a,b] (see De�nition 5.3below). However, if 	 is another pseudogroup pre-sentation that generates G, it is not necessarily truethat ��1(�) and ��1(	) are isomorphic (compare Re-mark 5.4). For example, let Z be the closed interval[0; 2] in R. Let � = f�; �g, where �(t) = t+ 1 for0 � t < 12 , and �(t) = t + 1 for 1=2 � t < 1. Let	 = f g, where  (t) = t + 1 for 0 � t < 1. Let

G = fft; t + 1g : 0 � t < 1g [ f2g. Then both �and 	 generate the pseudogroup G. On the otherhand, it is easy to see that both �� and �	 havetrivial kernels, whence ��1(�) is a free group of ranktwo but ��1(	) is a free group of rank one.Each element of the reduced fundamental groupof a pseudogroup presentation de�ned on Z canbe regarded as a partial isometry of Z. We nowpursue this line of thought, which will be neededin Section 3.
Lemma 2.6. Let � be a pseudogroup presentation de-�ned on the tree Z, and suppose F (�) contains nore
ection. Consider �; � 2 F (�) such that thereexists z in the domain of both � and � satisfying�(z) = �(z). Suppose p; q 2 Z are such that �(p)and �(q) are de�ned . Then there is a partial isom-etry  de�ned on [p; q] such that  (t) = �(t) if �(t)is de�ned , and  (t) = �(t) if �(t) is de�ned .
Proof. Observe that z is a �xed point of the map��1�. Since F (�) contains no re
ection, �(t) =�(t) for all t 2 domain(�)\ domain(�). Since Z isa tree, we know that the subtree of Z spanned byp, q and z has one of the three forms illustrated inFigure 1.

p ~z q
z

p z q
z q p
z p q

FIGURE 1. Possibilities for the subtree spanned byp, q and z.By de�nition, the domains of � and � are con-nected. Thus � is de�ned on [p; z] and � is de�nedon [q; z]. In case (i), de�ne  to be the restrictionof � to [p; q]. Likewise, in case (ii),  is the restric-tion of � to [p; q]. Notice that, in case (iii), thepoint labeled ~z is also in the domains of � and �,so that we assume without loss of generality that
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z 2 [p; q]. Hence d(p; q) = d(p; z) + d(z; q). Ob-serve that �(z) and �(z) are de�ned and equal,and denote this common value by z0. We knowthat d(�(p); z0) = d(p; z) and d(z0; �(q)) = d(z; q).Thus d(�(p); �(q)) � d(p; z) + d(z; q). However,if this inequality were strict, we would deduce theexistence of s in the images of both � and � sat-isfying d(�(p); s) < d(�(p); z0)) and d(s; �(q)) <d(z0; �(q)) (see Figure 2). Since ��1(s) = ��1(s),
�(p) s �(q)

z0
�; �p z q

FIGURE 2. Illustrating the hypothetical case whend(�(p); �(q)) < d(p; z) + d(z; q).
we have the contradictiond(p; q) � d(p; ��1(s)) + d(��1(s); q)< d(p; z) + d(z; q) = d(p; q):Therefore d(�(p); �(q)) = d(p; z) + d(z; q), so thatz0 2 [�(p); �(q)]. De�ning  (t) = �(t) for t 2 [p; z]and  (t) = �(t) for t 2 [z; q] yields the desiredpartial isometry of Z. �The proof of the next lemma uses the notion ofdiagrams over the free group F (�); see [Lyndonand Schupp 1987, p. 236] for the de�nition of a di-agram. The only result we need about diagrams isthe fact that they exist [Lyndon and Schupp 1987,Theorem 1.1]. The construction here di�ers fromthat of [Lyndon and Schupp 1987] to re
ect the factthat elements of F (�) are maps that compose nat-urally from right to left; this modi�cation does nota�ect in any essential way the proof given there.
Lemma 2.7. Let � be a pseudogroup presentationde�ned on the tree Z. Suppose F (�) contains nore
ection. Suppose that �; � 2 F (�) are such that��(�) = ��(�). Suppose p; q 2 Z are such that�(p) and �(q) are de�ned . Then there exists apartial isometry  : [p; q] ! [�(p); �(q)] of Z suchthat  (p) = �(p),  (q) = �(q) and for all t 2 [p; q],there exists �t 2 F (�) such that �t(t) =  (t) and��(�t) = ��(�).

Proof. Clearly ��1� is in the kernel of ��. We mayassume that ��1� is a �nite product of conjugatesof one or more cycles of �, say��1� = u1c1u�11 : : : uncnu�1n ;where each ci 2 F (�) is a cyclically reduced cy-cle of �. By [Lyndon and Schupp 1987, Theo-rem 1.1], we may construct the Cayley diagramM = M(c1; : : : ; cn), a connected and simply con-nected planar two-complex. The two-cells of Mare in one-to-one correspondence with the cyclesci. We denote the one-skeleton of M by M 1. Eachoriented edge of M 1 corresponds to an element ofF (�). Distinct edges with the same initial ver-tex correspond to elements 
1 and 
2 of F (�) suchthat the product 
�12 
1 is reduced. An oriented arcwith edges E0; : : : ; Ek�1 read o� in order from �rstto last corresponds to the reduced word
k�1
k�2 : : : 
0of F (�), where each 
i corresponds to Ei. Readingo� the edges while traveling along the boundary@D of a two-cell D spells out, from right to left, acyclically reduced product equal to the correspond-ing ci or its inverse, up to cyclic permutation.M has distinguished vertices V and W in itsboundary. There are two oriented arcs from V toW in @M corresponding to � and � and whoseunion is equal to @M . In general, any path in M 1with identical initial and terminal vertices corre-sponds to a word 
 2 F (�) whose projection ��(
)is the trivial element of ��1(�).
Case 1. M is a single two-cell. Thus, ��1� is cycli-cally reduced and equal to some cycle c of �. Takez 2 Z such that c is de�ned on z. Since c is an iden-tity map, c�1 is also de�ned on z. Thus, � and �are both de�ned on z, and �(z) = �(z). By Lemma2.6, there exists a partial isometry  de�ned on[p; q] such that  (p) = �(p) and  (q) = �(q). Set-ting �t(t) = �(t) for t 2 [p; z] and �t(t) = �(t) fort 2 [z; q] proves Case 1.
Case 2. M is a union of n two-cells, and @M is acircle. Thus, ��1� is cyclically reduced and equalto a product of conjugates of n cycles ci 2 F (�).We take as an inductive hypothesis that if ��1�can be expressed in this manner with fewer than ncycles, that is, if the number of two-cells of M canbe reduced, the conclusions of the lemma hold.
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For each vertex v in the boundary of a two-cellD of M , we de�ne a point z(v;D) 2 Z as follows.Fix a cyclic ordering v0; : : : ; vk�1 of the vertices of@D. For i = 0; : : : ; k� 1, let 
i 2 F (�) correspondto the oriented edge [vi; vi+1] of @D, with indicestaken modulo k. Fix some z 2 Z de�ned on thecycle 
k�1 : : : 
0 of �. Set z(v0;D) = z, and setz(vi;D) = 
i�1 : : : 
0(z) for i = 1; : : : ; k � 1.For each oriented edge E ofM with initial vertexv 2 M not equal to W , we de�ne a closed inter-val Z(E) � Z as follows. First suppose E � @M ,so E � @D for exactly one two-cell D of M . Let
 2 F (�) correspond to the arc in @M from Vto v that avoids W . Let E � @M be the arcfrom V to W containing E. If E corresponds to �,set Z(E) = [
(p); z(v;D)]. If E represents �, setZ(E) = [z(v;D); 
(q)]. Finally, if E � @D1 \ @D2for distinct two-cells D1 and D2 of M , set Z(E) =[z(v;D1); z(v;D2)].The proof of Case 2 given below is based on thefollowing simple observation. If 
 2 F (�) corre-sponds to an edge E � M 1, then 
 is de�ned onboth endpoints of Z(E) and hence on the entireinterval Z(E).Fix some t 2 [p; q]. De�ne the graph Kt � M 1as follows. Let E0; : : : ; Ek�1 be the oriented edgesof an arc E = E0 [ : : : [ Ek�1 � M 1 from V tosome vertex v 2 M . For i = 0; : : : ; k � 1, let 
i 2F (�) correspond to Ei. Say t passes through Eif t 2 Z(E0) and for i = 1; : : : ; k � 1, we have
i�1 : : : 
0(t) 2 Z(Ei). Let Kt be the union of Esuch that t passes through E.
Proposition 2.8. For all t 2 [p; q], either W 2 Kt orwe can reduce the number of two-cells of M .For now we suppose the proposition is true, andcomplete the proof of Case 2. We assume that,W 2 Kt for all t 2 [p; q]. This implies that, forall t 2 [p; q], there is an arc Et � M 1 from V toW such that t passes through Et. Fix t 2 [p; q],and let �t 2 F (�) correspond to Et. Notice that E,together with the arc from W to V in @M cor-responding to ��1, forms a path beginning andending at V . Thus ��(��1�t) is the identity ele-ment of ��1(�), and clearly ��(�) = ��(�t). De-�ne  : [p; q] ! Z by setting  (t) = �t(t), whichis evidently de�ned. We verify that  has image[�(p); �(q)] and is a partial isometry of Z, as fol-lows: Since there are only a �nite number of pathsin M from V to W ,  may be constructed from

a �nite number of maps � = �t1 ; : : : ; �tk = � suchthat each pair of maps �ti ; �ti+1 have overlappingdomains. Applying Lemma 2.6 to each such pair,we see that  : [p; q] ! [�(p); �(q)] is a partialisometry of Z.
Case 3. M consists of unions of two-cells boundedby circles joined together by arcs. This case followsimmediately upon applying Case 2 to each union oftwo-cells of M whose boundary is a circle in @M ,and then composing the maps yielded by these ap-plications of Case 2 together with the maps alongany connecting arcs. This concludes the proof ofLemma 2.7, assuming Proposition 2.8. �
Proof of Proposition 2.8. We use the following results,which we prove later.
Sublemma A. Let E1 and E2 be two oriented arcsin M 1 with initial vertex V and common terminalvertex v. Suppose W =2 E1 [ E2, and suppose t 2[p; q] passes through both E1 and E2. Let 
i 2 F (�)correspond to Ei for i = 1; 2. Then 
1(t) = 
2(t).
Sublemma B. V is an endpoint of an edge of Kt.
Sublemma C. Every vertex v 2 Kt distinct from Vand W meets at least two distinct edges of Kt.
Sublemma D. EitherW 2 Kt, or the number of two-cells of M can be reduced, or Kt has the followingproperty: If S is an embedded circle in Kt thatbounds a two-cell D of M , either (a) V 2 S, andthere is an edge inKt n S that meets S, or (b) thereexist two distinct edges in Kt n S that meet S.To prove the proposition, suppose �rst that Ktcontains no embedded circle S, that is, Kt is con-tractible. By Sublemma B and the fact that Kt iscompact, we see that Kt contains at least two dis-tinct vertices fv; wg such that Kt n fv; wg is con-nected. It now follows from Sublemma C that thesetwo vertices must be V and W , so W 2 Kt.Now suppose that Kt does contain embeddedcircles. If W 2 Kt, we are done; otherwise, Sub-lemma A implies that if an embedded circle boundsmore than one two-cell, this circle corresponds toa cycle of �. Thus we may reduce the number oftwo-cells of M .Now assume that each embedded circle in Ktbounds a single two-cell D of M . Choose an em-bedded circle S in Kt. Using Sublemma D, de�nethe vertices v1 and v2 in S as follows. If V 2 S, setv1 = V and let v2 be the initial vertex of an edge of
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M 1 n S meeting S. Otherwise, let v1 and v2 be the(not necessarily distinct) vertices of two distinctedges E1 and E2 of M 1 n S meeting S. It followsthat distinct connected components of S n fv1; v2glie within distinct components of Ktnfv1; v2g (oth-erwise, some circle of Kt would bound the union ofD and at least one other two-cell of M , contra-dicting our assumption). Now let H be the graphobtained by removing from Kt a component ofKt n fv1; v2g that meets S and does not containV . Observe that Sublemmas B{D remain validwhen Kt is replaced by H. Since rank�1(H) <rank�1(Kt), an induction on this rank allows todeduce that Kt contains a contractible subspacesatisfying Sublemmas B{D. By the �rst case con-sidered in the proof of this proposition, it now fol-lows that W 2 Kt.
Proof of Sublemma A. Suppose �rst that E1 [ E2 isa circle, hence the boundary of a union of two-cells of M . It follows that ��(
2) = ��(
1). SinceW =2 E1[E2, we see that E1[E2 bounds fewer thann two-cells. By the inductive hypothesis of Case 2in the proof of Lemma 2.7, the lemma holds for� = 
1, � = 
2, and p = t = q. In particular,
1(t) = 
2(t), as desired. In general, E1 [ E2 is agraph. The result follows upon applying the aboveargument to the outermost circles of this graphand composing the resulting maps with the mapsrepresented by connecting arcs.
Proof of Sublemma B. Let E0; : : : ; Ek�1 be the edgesof M 1 with initial vertex V , read o� in order pass-ing from the edge E0 � @M contained in the arcfrom V to W corresponding to � to the other edgeEk�1 � @M contained in the arc corresponding to�. For i = 0; : : : ; k � 2, the edges Ei and Ei+1lie in the boundary of a common two-cell D ofM , thus z(V;D) � Z(Ei) \ Z(Ei+1). We con-clude thatSk�1i=0 Z(Ei) is connected, whence [p; q] �Sk�1i=0 Z(Ei), since p 2 Z(E0) and q 2 Z(Ek�1).Since t 2 [p; q], we conclude that t is in some Z(Ei),as desired.
Proof of Sublemma C. Certainly, at least two orientededges of M 1 have initial vertex v. Since v 2 Ktand v 6= V , one such edge, say E0, lies in Kt. Nowenumerate the edges of M 1 with initial vertex v asE0; : : : ; Ek�1, where k � 2. Notice that Z(Ei) \Z(Ei+1) 6= ?, for i = 0; : : : ; k � 1, with indicestaken modulo k. Let 
 2 F (�) correspond to an

arc E from V to v through which t passes. BySublemma A, it follows that 
(t) 2 Z(E0). Nowobserve that both endpoints of Z(E0) are containedin Sk�1i=1 Z(Ei) and that this union is a connectedset. We conclude that 
(t) 2 Sk�1i=1 Z(Ei), whencet passes through E [Ei for some i = 1; : : : ; k � 1.
Proof of Sublemma D. Let S � Kt be a circle bound-ing a two-cell D of M . Suppose there are lessthan two edges in M 1 n S meeting S. Then @D �@D0 for some two-cell D0 surrounding D. Thus@(D[D0) = @D0 n @D corresponds to a cycle of �,and we can reduce the number of two-cells of M .Henceforth, assume that W =2 Kt and that thereare at least two edges in M 1 n S meeting S. Let
 2 F (�) correspond to an arc from V to v0 2 Sthrough which t passes. In the event V 2 S, choosev0 = V and set 
 = 1. De�ne t0 = 
(t). In theeventKt n S contains an edge with initial vertex v0,choose such an edge and call it E0. We can alwaysdo this if v0 6= V . If v0 = V and no such E0 exists,add an oriented edge E0 to M 1 that meets M atthe initial vertex V of E0. De�ne Z(E0) = [p; q].Since t 2 [p; q] by hypothesis, we consider E0 tobe an edge of Kt. This notational device allowsus to avoid considering v0 = V as a special case.Observe that, in general, t0 2 Z(E0).Fix an orientation of S and enumerate the ori-ented edges of M 1 n S with initial vertex in S asE0; : : : ; Ek�1, where k � 2. Assume that each ori-ented edge Ei has initial vertex vi 2 S, and the ori-ented interval [vi; vi+1] corresponds to 
i 2 F (�),i = 0; : : : ; k� 1, with indices taken modulo k. Ob-serve that 
i = 1 if vi = vi+1.For i = 1; : : : ; k�1, set ti = 
i : : : 
0(t0). By Sub-lemma A, these ti are de�ned, since S � Kt. Weassume that the third alternative of Sublemma Dfails. This means that ti =2 Z(Ei) for i = 1; : : : ; k�1. There exist points z0; : : : ; zk�1 in Z such thatZ(E0) = [
k�1(zk�1); z0] andZ(Ei) = [
i�1(zi�1); zi]for i = 1; : : : ; k � 1. Thus, for i = 1; : : : ; k � 1, thecondition ti =2 Z(Ei) implies that 
i�1(zi�1) andzi lie in the same component of Z n ftig. More-over, tk�1 6= zk�1 implies t0 6= 
k�1(zk�1), andt1 6= 
0(z0) implies t0 6= z0. Since t0 2 Z(E0),we see that 
k�1(zk�1) and z0 are in di�erent com-ponents of Z n ft0g.
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Now choose t0 2 Z in the component of Z n ft0gcontaining z0 and satisfyingd(t0; t0) < minfd(
i�1(zi�1); ti); d(zi; ti)gfor i = 1; : : : ; k � 1. Then 
k�1 : : : 
0(t0) is de�nedand lies in the component of Z n ft0g containing
k�1(zk�1). Hence, 
k�1 : : : 
0 is a re
ection, whichcontradicts the fact that F (�) contains no re
ec-tions. Thus the third alternative of Sublemma Dmust hold. This concludes the proof of the sub-lemma and of Proposition 2.8.Lemma 2.7 enables us to regard each w 2 F (�)as a partial isometry. The domain I of w is the setof p 2 Z such that �(p) is de�ned and ��(�) = wfor some � 2 F (�). By Lemma 2.7, I is con-nected. Given p 2 I, de�ne w(p) = �(p), where� is de�ned on p and ��(�) = w. Setting p = qin Lemma 2.7, we deduce that w is a well-de�nedfunction. Observe also that Lemma 2.7 impliesthat d(w(p); w(q)) = d(p; q) for p; q 2 I, whencew is a partial isometry of Z. Thus, ��1(�) is apseudogroup presentation, and clearly � and ��1(�)generate the same pseudogroup.The following corollary indicates the relationshipbetween the group and pseudogroup presentationstructures of F (�) and ��1(�). By convention, ifx; y 2 ��1(�), we denote by xy the element of ��1(�)obtained from x and y by group multiplication,and by x � y the partial isometry of Z obtained bycomposition.
Corollary 2.9. Let � 2 F (�). Then ��(�) 2 ��1(�)is an extension of �. Let x; y 2 ��1(�). Then xy 2��1(�) is an extension of the composite map x � y.The reader might be tempted at this point tothink that w 2 ��1(�) is the maximal extension ofsome � 2 � such that ��(�) = w with respect tothe property that � and � [ fextension of �g gen-erate the same pseudogroup G. In view of Remark2.5, this statement is false, since it would implythat ��1(�) depends only on the orbit space G.
3. NIELSEN TRANSFORMATIONSThe notion of a Nielsen transformation goes backto [Nielsen 1921]. We shall use the approach givenin detail in [Lyndon and Schupp 1987, pp. 4{7].Nielsen originally used his technique to reduce aset of words in a free group to a basis for thesubgroup they generate. In our setting, Nielsen

transformations are used to take the slack, so tospeak, out of a pseudogroup presentation � gener-ating a pseudogroup G. At the outset, we greatlyenlarge the number of partial isometries and thentoss out unnecessary ones in an orderly manner.The result is a Nielsen-reduced pseudogroup 	 thatalso generates G. We then draw the important con-clusion that �	 : F (	)! ��1(	) is a group isomor-phism, that is, 	 has independent generators.We begin with a discussion of order inside a�nitely generated free group F (X). These ideasare taken directly from [Lyndon and Schupp 1987,pp. 4{7]. Fix a well-ordering of the elements ofX [ X�1. This ordering induces a well-orderingof all of F (X), namely, the lexicographical order-ing of reduced-word representation. For example,if X = fx1; x2g, one may order fX [X�1g by therules xi < x�1i and xi < xj for i < j, in which casex�11 x2x1 < x�11 x�12 . The identity element of F (X)is represented by the empty word, which by de�-nition is the smallest word in the lexicographicalorder.
Definition 3.1. Let F (X)� = F (X)=�, where �is the equivalence relation generated by the rulew � w�1 for all w 2 F (X). Denote the ele-ment fw;w�1g of F (X)� by w�. We de�ne a well-ordering < of F (X)� as follows. Say the left halfof a word w is the initial segment L(w) of lengthm, where m is the greatest integer not exceeding12(`(w) + 1). Given a word w 2 F (X), we mayspeak of minfL(w); L(w�1)g 2 F (X):The minimum is determined by the lexicographi-cal ordering of F (X) and depends only on w�. Ifw�1; w�2 2 F �(X), say that w�1 < w�2 if and only ifone of the following conditions holds:(i) `(w1) < `(w2);(ii) `(w1) = `(w2) andminfL(w1); L(w�11 )g < minfL(w2); L(w�12 )g;(iii) `(w1) = `(w2) andminfL(w1); L(w�11 )g = minfL(w2); L(w�12 )g;maxfL(w1); L(w�11 )g < maxfL(w2); L(w�12 )g:Observe that < is a well-ordering of F (X)�. Wealso de�ne � on F (X)� by setting w�1 � w�2 if w�1 <w�2 or w�1 = w�2. The notation w�1 < w�2 shouldnot be confused with w1 < w2, which means that
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w1 is less than w2, according to the lexicographicalordering of F (X).
Remark 3.2. Let p; q; c 2 F (X). Suppose that pcand qc are reduced and `(p) = `(q) � `(c). A mo-ment of thought reveals that p < q (lexicographi-cally) implies (pc)� < (qc)�.For the rest of this section, we work with a �xed�nite pseudogroup presentation � de�ned on a treeZ and generating the pseudogroup G. Our stand-ing hypothesis is that F (�) contains no re
ectionand ��1(�) is free. Fix a basis X for ��1(�) = F (X)and an ordering of X [ X�1. Order ��1(�) lexico-graphically as above. Finally, well-order ��1(�)� asin De�nition 3.1.Recall from Section 2 that each � 2 F (�) is apartial isometry of Z, and ��(�) 2 ��1(�) is an ex-tension of �. Moreover, ��1(�) generates G as apseudogroup presentation. We now consider themore general situation of pseudogroup presenta-tions 	 that are dominated by �.
Definition 3.3. Let 	 be a pseudogroup presenta-tion of G, and � : F (	) ! ��1(�) a group homo-morphism. Suppose that, for each � 2 F (	), thepartial isometry �(�) 2 ��1(�) is an extension of �.Then we say that � : F (	) ! ��1(�) is dominatedby �, or simply that 	 is dominated by �.For example, Corollary 2.9 implies that � dom-inates itself: ��(�) is an extension of � for each� 2 F (�).We say that � 2 F (	) is de�ned if its domain isnonempty. If � : F (	) ! ��1(�) is dominated by�, we refer to the length of the word �(�) 2 ��1(�)simply as `X(�) instead of the more cumbersome`X(�(�)).The next de�nition can be compared with theone in [Lyndon and Schupp 1987, p. 6].
Definition 3.4. Suppose 	 is dominated by �. Wesay that 	 is Nielsen-reduced if the following con-ditions are satis�ed.(N0) For all �; � 2 	, and for all p 2 Z, if � isde�ned on p, then �(p) 6= p, and if �� is de�nedon p, then ��(p) 6= p.(N1) For all �; � 2 	 [ 	�1, if �� is de�ned and�(��) 6= 1, then `X(��) � maxf`X(�); `X(�)g;(N2) for all �; �; 
 2 	 [	�1, if ��, �
, and ��
are de�ned, and �(��) 6= 1 and �(�
) 6= 1, then`X(��
) > `X(�)� `X(�) + `X(
).

Our goal is to �nd a 	 that is dominated by� and Nielsen-reduced. We now construct a �niteset of partial isometries 	0 that constitutes a \�rstapproximation" to such a �.
Definition 3.5. Let x� 2 ��1(�)� be the maximum ofthe �nite set of elementsf�(
)� 2 ��1(�)� : 
 2 �g:Let 	0 � ��1(�) be such that 	0 \	�10 = ? and	0 [	�10 = fw 2 ��1(�) : w� � x�; w 6= 1g:By de�nition, ��(�) n f1g � 	0 � ��1(�), whence	0 generates G. Observe that the inclusion map	0 � ��1(�) induces a group homomorphism � :F (	0)! ��1(�). Endow the free group F (	0) withthe pseudogroup presentation structure induced by	0. By Corollary 2.9, we see that �(�) 2 ��1(�) isan extension of � for all � 2 F (	0). Thus � :F (	0)! ��1(�) is dominated by �.Let w 2 	0 and suppose that w(p) is de�nedfor some p 2 Z. If w(p) = p, we have ��(�) = wand �(p) = p for some � 2 F (�). Thus � is acycle of �, so w = ��(�) = 1, contradicting thede�nition of 	0. Thus w(p) 6= p. Similarly, x; y 2	0 and xy(p) = p implies x = y�1, contradicting	0 \ 	�10 = ?. Thus xy(p) 6= p. We concludethat 	0 satis�es condition (N0) of De�nition 3.4.In general, 	0 does not satisfy (N1) or (N2).
Definition 3.6. Suppose 	 is dominated by � andsatis�es (N0). Let (�; �) be a pair of elements of	 [	�1 such that �� is de�ned. We say (�; �) is(N1)-reducible if �(��) 6= 1 and`X(��) < maxf`X(�); `X(�)g:We say (�; �) is (N2)-reducible if `X(�) = `X(��)and �(��)� < �(�)�.Observe that the (N1)-reducibility of (�; �) im-plies that of (��1; ��1). In general, this is not trueof (N2)-reducibility.In the following remarks, we suppose that �; � 2	 [ 	�1 and that 	 is dominated by �. Set x =�(�) and y = �(�).
Remarks 3.7. (a) Suppose �� 2 F (�) is de�nedand �(��) 6= 1. Suppose (�; �) is (N1)-reduced, sothat `(xy) � maxf`(x); `(y)g. Let u be the partof y that cancels into x. Then `(x) � `(xy) =`(x)+`(y)�2`(u), so that `(u) � `(y)=2. Similarly,
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`(y) � `(xy) implies `(u) � `(x)=2. Thus neitherx nor y cancels more than halfway into xy.(b) Suppose (�; �) is (N1)- or (N2)-reducible.Let u 2 ��1(�) be such thatu� = maxf�(�)�; �(�)�g:It follows immediately that �(��)� < u�, whence�(��) =2 fu; u�1g.(c) If (�; �) is (N1)-reducible and x = 1, then`(y) < maxf`(y); 0g = `(y), which is a contradic-tion. Thus x 6= 1, and similarly, y 6= 1. If (�; �) is(N2)-reducible, we again have y 6= 1 (since y = 1would imply x� < x�) and x 6= 1 (since x = 1would imply `(y) = 0 and y = 1).(d) Suppose (�; �) is (N1)-reducible. We showthat � =2 f�; ��1g. Certainly � 6= ��1, since wehave �(��) 6= 1. Now suppose � = �. Thus`(x2) < `(x). Suppose x = au�1 and x = ub are re-duced and such that x2 = ab is reduced. Observethat `(a) = `(b) and `(a) + `(b) < `(u) + `(b),whence `(a) = `(b) < `(u). From the formulaau�1 = ub, with both sides reduced, we see thata is a left segment of u, and b is a right segment ofu�1. Since ab is reduced, we deduce that a = b = 1.Thus x2 = 1, which implies x = 1, since the freegroup ��1(�) is a fortiori torsion-free. This contra-dicts the previous remark.(e) Suppose (�; �) is (N2)-reducible. We claimthat � =2 f�; ��1g. First suppose � = �. Supposex = au�1 and x = ub are reduced and such thatx2 = ab is reduced. Since `X(�) = `X(��) by hy-pothesis, we have `(x) = `(x2), so `(a) + `(u�1) =`(a) + `(b), whence `(u�1) = `(b). From the for-mula au�1 = ub, with both sides reduced, we inferthat a = u. Since au�1 is reduced, we deduce thata = u = 1. Thus x = au�1 = 1, which contra-dicts Remark 3.7(c). Now suppose � = ��1. Since`X(�) = `X(��), we have `(x) = `(xx�1) = 0,whence x = 1, contradicting Remark 3.7(c).The next lemma should be compared with Prop-osition 2.2 in Chapter 1 of [Lyndon and Schupp1987].
Lemma 3.8. Suppose 	 is dominated by � and sat-is�es (N0). Suppose no pair (�; �) of elements of	 [ 	�1 is (N1)- or (N2)-reducible. Then 	 isNielsen-reduced .
Proof. It is clear that 	 satis�es (N1). Let �,� 2	 [ 	�1, and suppose that ��, �
 and ��
 are

de�ned and that �(��) 6= 1 and �(�
) 6= 1. Letx = �(�), y = �(�), and z = �(
). By Remark3.7(a), we have x = ap�1, y = pbq�1, z = qc, allreduced, and xy = abq�1, yz = pbc, xyz = abc, allreduced. If b 6= 1,`(xyz) = `(x)� `(y) + `(z) + 2`(b)> `(x)� `(y) + `(z);and so (N2) holds for the triple (�; �; 
).Suppose now that b = 1, that is, x = ap�1,y = pq�1, and z = qc. It follows that (N2) is vio-lated, so we must show that this case is impossible.Observe �rst that `(p) � 12`(y), `(q) � 12`(y), and`(p) + `(q) = `(y). It follows that `(p) = 12`(y) =`(q). Moreover, the part of x that cancels into xyis less than or equal to half of x, and likewise thepart of z that cancels into yz is less than or equalto half of z. Thus `(p) = `(q) � minf`(a); `(c)g.Since y 6= 1 and y = pq�1, either p < q lexico-graphically, or else q < p. If p < q, Remark 3.2implies that (pc)� < (qc)�, or, equivalently, that(c�1p�1)� < (c�1q�1)�. Thus�(
�1��1)� = (z�1y�1)� = (c�1p�1)�< (c�1q�1)� = (z�1)� = �(
�1)�;which contradicts the fact that (
�1; ��1) is (N2)-reduced. On the other hand, suppose q < p. ByRemark 3.2, (qa�1)� < (pa�1)�. Thus �(��)� =xy� = (aq�1)� < (ap�1)� = x� = �(�)�, which con-tradicts the fact that (�; �) is (N2)-reduced. Thusb 6= 1, so that 	 satis�es (N2). �
Lemma 3.9. There exists a pseudogroup presentation	 of G that is dominated by � and Nielsen-reduced .
Proof. In De�nition 3.5 we built a pseudogroup pre-sentation 	0 of G dominated by � and satisfying(N0). Let N be the �nite number of partial isome-tries contained in 	0. Let H(n) stand for the fol-lowing inductive hypotheses:(i) � : 	n ! ��1(�) is dominated by �, and 	nsatis�es (N0).(ii) Let Rn = f�(�)� 2 ��1(�)� : (�; �) or (�; �) is(N1)- or (N2)-reducible, with �; � 2 	n[	�1n g.Then the set Rn has at most N � n elements.(iii) If Rn 6= ?, let x� be the maximum of Rn. Ifw 2 ��1(�) n f1g is such that w� � x�, then w isin 	n [	�1n .
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It is clear that 	0 satis�es (i) and (ii) of H(0). IfR0 = ?, Lemma 3.8 implies that 	0 is Nielsen-reduced and we are done. Otherwise, x� 2 R0 ex-ists and 	0 satis�es (iii).Inductively, suppose 	n satis�es H(n) and Rn isnonempty. By part (iii) of the inductive hypoth-esis, there exists x 2 	n [ 	�1n such that for allw 2 ��1(�), if w� � x� and w 6= 1, then w 2	n [ 	�1n . Choose the notation so that x 2 	n.Let � = 	n [	�1n n fx; x�1g.
Sublemma A. Let 
 2 	n [	�1n and set(�; �) 2 f(x; 
); (x�1; 
); (
; x); (
; x�1)g:Suppose (�; �) is (N1)- or (N2)-reducible. Thenf�(��); �(
)g � �.
Proof. Let y = �(
). Then y� � x� by maximalityof x� = fx; x�1g. By Remark 3.7(c), y 6= 1. Thushypothesis (iii) implies that y 2 	n [ 	�1n . ByRemarks 3.7(d) and (e), we see that y =2 fx; x�1g.We conclude that �(
) = y 2 � and �(��) 6= 1. ByRemark 3.7(b), �(��)� < x�, whence �(��) 2 �.This concludes the proof of Sublemma A.Let 
 2 	n [ 	�1n . We say that a point p in thedomain of x is a point of reduction if(R1) (x; 
) is (N1)- or (N2)-reducible and 
�1(p)is de�ned, or(R2) (x�1; 
) is (N1)- or (N2)-reducible and
�1(x(p)) is de�ned, or(R3) (
; x) is (N1)- or (N2)-reducible and 
(x(p))is de�ned, or(R4) (
; x�1) is (N1)- or (N2)-reducible and 
(p)is de�ned.
Sublemma B. If p is a point of reduction, there existmaps h; k 2 � such that h � k(p) = x(p).
Proof. Let y = �(
). From Sublemma A, y 2 �.We deduce that y�1 2 �, since � is closed underinverses. We consider the four cases of a point ofreduction. In case (R1), xy 2 � by SublemmaA. From part (i) of the induction hypothesis H(n)and from Corollary 2.9, y�1(p) is de�ned, and xy �y�1(p) = x�y�y�1(p) = x(p). Thus, setting h = xyand k = y�1 yields the result. In case (R2), weset h = y, k = y�1x. Notice that k 2 �, sincex�1y 2 � by Sublemma A and from the fact that� is closed under inverses. In case (R3), we seth = y�1, k = yx. Finally, in case (R4), we set

h = xy�1, k = y. This concludes the proof ofSublemma B.Let x̂ be the restriction of x to the points in itsdomain that are not points of reduction. We mayregard x̂ as a �nite set of partial isometries, eachde�ned on a connected component of the domain ofx. Set 	n+1 = 	nnfxg[x̂. Since � � 	n+1[	�1n+1,Sublemma B implies that 	n+1 generates G.De�ne a map � : 	n+1 ! ��1(�) as follows. Foreach 
 2 	nnfxg, the image �(
) is de�ned by part(i) of H(n), and �(
) = x for each 
 2 x̂. Clearly,�(
) is an extension of 
 for all 
 2 	n+1, so that� : 	n+1 ! ��1(�) is dominated by �. Evidently,Rn+1 � Rn n fx�g, so that jRn+1j � N � (n + 1),and 	n+1 satis�es parts (ii) and (iii) of H(n+ 1).By induction, we have Rn = ? for some n � N ,and by Lemma 3.8, 	n is Nielsen-reduced. �
Theorem 3.10. [Levitt 1990b, Theorem 5] Let � be a�nite pseudogroup presentation generating a pseu-dogroup G de�ned on a tree Z. Suppose F (�) con-tains no re
ection. If ��1(�) is a free group, thereexists a �nite presentation 	 of G that has inde-pendent generators.
Proof. By Lemma 3.9, there exists a �nite pre-sentation 	 of G and a group homomorphism � :F (	)! ��1(�) that is dominated by � and Nielsen-reduced. Suppose p 2 Z, and � 2 F (	) is suchthat � 6= 1 and �(p) is de�ned. We must provethat �(p) 6= p. By Lemma 2.7, it su�ces to showthat �(�) 6= 1 2 ��1(�).Let �n�n�1 : : : �1 = � be the reduced-word rep-resentation of � 2 F (	). Set wi = �(�i) for eachi = 1; : : : ; n. Since 	 satis�es (N0), we deduce thatwi+1 6= w�1i for each i = 1; : : : ; n � 1. Thus (N1)implies that `(wi+1wi) � maxf`(wi); `(wi+1)g, and(N2) implies that each triple (wi+2; wi+1; wi) satis-�es `(wi+2wi+1wi) > `(wi+2)� `(wi+1) + `(wi).For n < 3, (N0) implies that w 6= 1. If n =3, then (N1) and (N2) taken together imply thatwe can write w3 = ap�1, w2 = pbq�1, w1 = qc,w3w2 = abq�1, w2w1 = pbc and w3w2w1 = abc,with all right-hand sides reduced and b 6= 1 (seethe proof of Lemma 3.8). In particular, w 6= 1.Inductively, suppose for all words wn : : : w1 oflength n � 3 with consecutive pairs satisfying (N1)and consecutive triples satisfying (N2), we havewn = ap�1, wn�1 = pbq�1, wn�2 : : : w1 = qc,wnwn�1 = abq�1;



Rimlinger: R-Trees and Normalization of Pseudogroups 107

wn�1wn�2 : : : w1 = pbc and wn : : : w1 = abc, withall right-hand sides reduced. Now suppose wn+1 issuch that wn+1 = a1p�11 , wn = p1b1q�11 , wn�1 =q1c1, wn+1wn = a1b1q�11 , wnwn�1 = p1b1c1 andwn+1wnwn�1 = a1b1c1, with all right-hand sidesreduced, and b1 6= 1. Evidently, q�11 is the part ofwn that cancels into wn�1. It follows that q1 = p.Since pc1 = wn�1 = pbq�1, we deduce that c1 =bq�1, whence wnwn�1 = p1b1c1 = p1b1bq�1, whichis reduced. Thus(wnwn�1)(wn�2 : : : w1) = (p1b1bq�1)(qc)= p1b1bc;which is reduced. Now set c2 = bc. Then we havewn+1 = a1p�11 , wn = p1b1q�11 , wn�1 : : : w1 = pbc =q1c2, wn+1wn = a1b1q�11 , wnwn�1 : : : w1 = p1b1c2and wn+1wn : : : w1 = a1b1c2, with all right-handsides reduced and b1 6= 1. By induction, w 6= 1 forall n. �
4. ERGODIC THEORYIn general, ��1(�) is closely related to groups thatact freely on R-trees. See [Rimlinger a; b] forfurther development of this point of view. Thesepapers, as well as Theorem 5.8 below, are basedon the pseudogroup theory of [Hae
iger 1984] and[Levitt 1990a,b]. This theory requires the partialisometries to be de�ned on open intervals. Accord-ingly, we begin this section with a discussion ofthe relationship between general pseudogroup pre-sentations and those whose maps are de�ned onopen intervals. We then use a technique of Mor-gan [Morgan 1988] to prove Theorem 4.4, stated inthe Introduction.Let � be a pseudogroup presentation de�ned onthe tree Z. An endpoint of a connected subsetI � Z is a point p 2 I such that no neighborhoodof p contained in I is isometric to an open intervalof R. Let Z0 be the vertices of Z. For each 
 2 �,let �
 be the restriction of 
 to the set J , de�nedas the domain of 
, minus its endpoints, minusZ0 [ 
�1Z0. Observe thatdomain(�
) [ image(�
) � Z n Z0:We regard �
 as a pseudogroup presentation whereeach map is de�ned on a connected component ofJ . Following [Gaboriau et al. 1992], we set �� =S
2��
. Thus �� is a pseudogroup presentation of

Z such that no map of ��[���1 has an endpoint inits domain, and each map of ��[���1 has a domaincontained in Z n Z0.We say that a pseudogroup presentation � de-�ned on a tree is open if � = ��. Observe that if �is open, then so is ��1. In general, if � is a pseu-dogroup presentation de�ned on a tree, there is aprojection map �� ! � that sends each map in �
to 
. This projection determines a group homo-morphism F (��)! F (�). Clearly, every cycle of ��maps to a cycle of �, so there is an induced grouphomomorphism ��1(��)! ��1(�).Let � be an open pseudogroup presentation gen-erating the pseudogroup G de�ned on a compacttree Z. It follows that the number of components ofZnZ0 is �nite. Fix an injective map � : ZnZ0 ! Rthat is isometric on each component of Z nZ0. De-�ne the pseudogroup �� on R as the collection ofmaps f
�g
2�, where domain(
�) = �(domain(
)),image(
�) = �(image(
)), and 
�(t) = �
��1(t)for all t 2 domain(
�). The correspondence 
 ! 
�induces a group isomorphism � : F (�) ! F (��).It is easy to verify that c 2 F (�) is a cycle of �if and only if c� 2 F (��) is a cycle of ��. It fol-lows that 
 ! 
� induces a group isomorphism� : ��1(�)! ��1(��).Recall that a pseudogroup presentation is �niteif it contains a �nite number of generators.
Remark 4.1. Let � be a �nite open pseudogrouppresentation de�ned on a compact tree Z, and letp 2 Z. Set �0(p) = fpg, and, inductively,�n+1(p) = �n(p)[f
(r) 2 Z : r 2 �n(p), 
 2 �[��1g:We claim that the orbit of p generated by � haspolynomial growth, that is, the sequence j�n(p)jis bounded above by f(n) for some polynomial f .(In fact, this growth rate is an invariant of thepseudogroup generated by �: see [Levitt 1990a].)Fix � : ZnZ0 ! R as above. Certainly, the growthrate of p with respect to � is the same as that of�(p) with respect to ��. Now extend each map of�� to all of R to obtain generators for a �nitelygenerated subgroup of the isometry group of R.Such groups are well known to have polynomialgrowth, hence the orbit of p has polynomial growthwith respect to �.
Definition 4.2. By an interval exchange we under-stand an open pseudogroup presentation � with a�nite number of generators, de�ned on a compact
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tree Z, such that any p 2 Z, with �nitely manyexceptions, is contained in the domain of exactlyzero or two elements of � [ ��1.
Definition 4.3. Let � be a pseudogroup de�ned on atree Z, and let I be a subinterval of Z containingmore than one point. Then I is a dead end of � ifit has maximal length with respect to the followingproperty: Any p 2 I is in the domain of exactlyone element of � [ ��1.Observe that, if � is an open pseudogroup andp 2 Z is contained in the domain of two elements�; � 2 � [ ��1, there exists a neighborhood of pisometric to an open interval of R with this prop-erty.
Theorem 4.4. [Levitt 1990a, Corollary II.5] Suppose� is an open pseudogroup presentation de�ned ona compact tree Z, having a �nite number of gener-ators, and such that ��1(�) is isomorphic to F (�),the free group on the set �. If � has no dead ends,it is an interval exchange.
Proof. We adjust the proof of Theorem 7.1 in [Mor-gan 1988] to account for the pseudogroup presenta-tion �. Morgan's original theorem was concernedwith words whose letters alternated between twosides of a free product with amalgamation. In thepresent case, the words are just elements of F (�).Given any point p 2 Z, we de�ne the multiplicitym(p) of p to be 1 less than the cardinality off
 2 � [ ��1 : 
(p) is de�nedg:
Remarks 4.5. (a) Suppose �(p) is de�ned for somep 2 Z and � 2 � [ ��1. Then m(�(p)) is thenumber of reduced words of the form �� that arede�ned on p.(b) Since each 
 2 � [ ��1 has an open do-main, we may assume that m(p) � 2 for all p insome nonempty open interval of Z. Otherwise � isclearly an interval exchange, since it has no deadends and contains only a �nite number of maps.Moreover, the hypothesis that � has no dead endsimplies that m(p) � 1 for all p in the domain ofsome element of � [ ��1.Let Y be the space of in�nite sequences(p; �1(p); �2�1(p); : : :)such that each �n : : : �1 2 F (�) is a reduced wordde�ned on p. We topologize Y as a subspace of

the in�nite product Q1i=0 Z and �ber Y over thedisjoint union of the domains of the maps of � [��1. Speci�cally, let B � Z � � [ ��1 be de�nedas B = fdomain(�)� f�g : � 2 � [ ��1g:The �ber map Y ! B sends (p; �1(p); �2�1(p); : : :)to (p; �1). This map is well-de�ned because theequality �1(p) = �(p) for some � 2 �[��1 impliesthat �1��1 is a relation in ��1(�). The hypothe-sis that F (�) is isomorphic to ��1 implies that theprojection F (�) ! ��1(�) is an isomorphism, since�nitely generated free groups are Hop�an. Thus� = �1.Let F (p; �) denote the �ber over a point (p; �) 2B. A basic open set of F (p; �), sayV (p; �(p); p2; : : : ; pn);for n � 2, consists of all sequences with an initialsegment of the form(p; p1; p2; : : : ; pn) =(p; �(p); �2�(p); : : : ; �n : : : �2�(p)):We de�ne the weight of such a segment to bewt(p; p1; p2; : : : ; pn) = 1m(p1) : : :m(pn�1) :De�ne a Borel measure �(p; �) on F (p; �) by set-ting�(p; �)V (p; p1; p2; : : : ; pn) = wt(p; p1; p2; : : : ; pn):Thus, the measure of a basic open set is the weightof its initial segment. The axioms for a measurecan be directly veri�ed. By Remark 4.5(a), exactlyN = m(�(p)) elements f�1; : : : ; �Ng contained in� [ ��1 are such that �i�(p) is de�ned and �i� isreduced. Thus,�(p; �)F (p; �) = NXi=1 �(p; �)V (p; �(p); �i�(p))= NXi=1 1m(�(p)) = N� 1N� = 1:
Thus, the total mass of �(p; �) is 1. The integralof the measures �(p; �) with respect to Lebesguemeasure dp on B induced from the metric on Zgives a Borel measure � on Y . It has total massequal to the sum of the lengths of the domains ofthe elements of � [ ��1.
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Let S : Y ! Y be the truncation map(p0; p1; p2; : : :)! (p1; p2; : : :):We claim that � is measure-preserving, that is,�(U) = �(S�1(U)) for any measurable set U � Y .A basic open set U of Y has the formU = [p2IfV (p; �(p); p2; : : : ; pn)g;where each pi = �i : : : �2�(p), and �n : : : �2� isreduced and de�ned for all p in an interval I. Ad-ditionally, we may assume thatm(p) is constant onI, say N = m(p). Notice that N is the cardinalityof the setf� 2 �\��1 : �� is reduced, ��1 is de�ned on pg:Accordingly, let �1; : : : ; �N be such that ��i is de-�ned on qi = ��1i (p). We compute that�(S�1(U))= NXi=1 Z�i�1(I) �(qi; �i)V (qi; p; �(p); p2; : : : ; pn)dqi= NXi=1 Z�i�1(I) 1N � 1m(�(p)m(p2) : : :m(pn�1)�dqi= 1N NXi=1 ZI �(p; �)V (p; �(p); p2; : : : ; pn)dp= �(U):We now apply the following result, which can befound in [Morgan 1988, x 7.5].
Theorem 4.6 (First Ergodic Theorem). Let (Y; �) be ameasure space of �nite total measure, and let themap S : (Y; �) ! (Y; �) be measure-preserving .Let f : Y ! R be integrable. Then

f̂(p) = limn!1� 1n� n�1Xk=0 f(Sk(p))
exists for almost all p 2 Y . Furthermore, f̂ isintegrable and RY f̂d� = RY fd�.To use this theorem, de�ne f : Y ! R by theformula f(p0; p1; : : :) = ln(m(p1)):

Now setfn(p0; p1; : : :) = n�1Xk=0 f(Sk(p0; p1; : : :))= � lnwt(p0; p1; : : : ; pn+1):This paragraph and the next are quoted with slightalterations from [Morgan 1988, p. 621]. By theFirst Ergodic Theorem, f̂ = limn!1 fn=n existsalmost everywhere and has same integral as f . ByRemark 4.5(b), m(p) � 2 for some nonempty openinterval (I; �) � B. Moreover, m(p) � 1 for al-most all (p; �) 2 B. Thus RY fd� = K�(B) forsome K > 0. By Fubini's theorem, this meansthat there is a point (p; �) 2 B such that f̂ isde�ned almost everywhere on the �ber F (p; �),and RF (p;�) f̂d�(p; �) � K. Hence, there is a sub-set E � F (p; �) of positive �(p; �)-measure, say�(p; �)(E) = � > 0, on which f̂ � K. Thereis an integer N such that for all n � N and alla 2 E � F (p; �), we have fn(a)=n > K=2, orequivalently, fn(a) > nK=2. By the formula for fn,this means that for any (p; �(p); : : :) 2 E, we havethe inequality � lnwt(p; �(p); : : : ; pn+1) > nK=2,or, equivalently, that�(p; �)V (p; �(p); : : : ; pn+1) = wt(p; �(p); : : : ; pn+1)< exp(�nK=2)for all n � N .Since the total mass ofE is � and since sets of theform V (p; �(p); : : : ; pn+1)\E, as (p; �(p); : : : ; pn+1)ranges over initial sequences of points of E, form acovering of E, it follows that, for all n � N , thereare at least � exp(nK=2) sequences of the form(p; �(p); : : : ; pn+1) that occur as initial sequencesof points of E and a fortiori as points of F (p; �).This means that, for all n � N , the number of el-ements of F (�) of length n + 1 de�ned at p is atleast � exp(nK=2).By Remark 4.1, the orbit of p generated by �has polynomial growth. Thus, there must be twodistinct reduced words �1; �2 2 F (�) such that�1(p) = �2(p). As we noted earlier in this proof,the hypothesis that F (�) and ��1(�) are isomor-phic implies that the projection F (�) ! ��1(�) isan isomorphism. Thus �1 = �2, which is a contra-diction; and therefore, the assumption made in Re-mark 4.5(b) cannot hold, that is, the casem(p) � 2for all p in some nonempty open interval of Z is
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impossible. We conclude that � is an interval ex-change. �
5. FREE ACTIONS ONR-TREESA group G acts freely on an R-tree T if for anyp 2 T , the only element g 2 G such that gp = p isthe identity. G acts by isometries if each g : T ! Tis an isometry. G acts minimally if there is noproper subtree S ( T such that GS = S. Foran arbitrary group G acting on metric spaces Mand N , a continuous map ' : M ! N is a G-mapif '(gp) = g'(p) for all g 2 G and p 2 M . Anaction of G on a set M is quasifree if there existsa subgroup S of G such that, for all p 2 M , thestabilizer of p by the action of G is S. If G actsquasifreely on M with stabilizer S, then G=S actsfreely on M . If G1 and G2 act on M , their actionsare equivalent if there is a group isomorphism � :G1 ! G2 such that gp = �(g)p for all g 2 G1 andp 2M .We assume in this section that G � T ! T isa free, minimal action by isometries of a �nitelypresented group G on an R-tree T . By [Rimlinger1992, Theorem 5.7], there is a compact graph Kwith universal cover � and a �1(K)-map ' : � ! T .(The space � is a tree in the sense of this paper:� inherits a metric structure from that of T . Themap ' is a morphism in the category of folds of �along an equivalence relation determined by the ac-tion of G on T . See [Rimlinger 1992] for details.)The action of �1(K) on � is by covering transla-tions. The action of �1(K) on T is quasifree, sothat �1(K)=S acts freely on T , where S is the sta-bilizer of the action of �1(K). The groups �1(K)=Sand G are isomorphic, and the actions of thesegroups on T are equivalent.Let b 2 � be the basepoint of � . Fix a pre-sentation hX : Ri for G, so that R � F (X) is a�nite set of relators and G � F (X)=hhRii. LetZ� = S�2R[b; �b], so that Z� is a compact subtreeof � . Notice that Z = 'Z� is the continuous imageof a compact connected set and hence a compactconnected subset of T . It follows that Z has a sim-plicial structure that agrees with the metric of T .Thus Z is a compact tree.Let �� � �1(K) be the set of covering transla-tions of � that do not move Z� o� of itself:�� = f� 2 �1(K) : �Z� \ Z� 6= ?g:

Observe that �� is a �nite subset of �1(K). Since' is a �1(K)-map, we may view �� as a �nite pseu-dogroup presentation de�ned on Z. Given � 2 �� ,the domain of � is Z \ ��1(Z). Let � = ��� , asde�ned at the beginning of Section 4. Thus � is anopen pseudogroup with a �nite number of genera-tors de�ned on a compact tree Z.
Remark 5.1. From [Rimlinger 1992, Theorem 4.1],it follows that G is determined up to isomorphismby �. The proof of this relies heavily on ideas from[Rimlinger 1992], so we just give a sketch here. (Wedo not use this result deductively in this paper.)The map ' : � ! T is determined by a certainequivalence relation on K, say D � K �K. Thisequivalence relation is constructed in the proof of[Rimlinger 1992, Theorem 5.7]. However, � alsodetermines an equivalence relation D(�) on K asfollows. Say p; q 2 K are equivalent if there are lifts~p; ~q to � such that '(~p) and '(~q) are in Z, and someelement of F (�) takes '(~p) to '(~q). Let D(�) bethe induced segment-closed equivalence relation onK [Rimlinger 1992, De�nition 2.1]. It is easy to seethat D(�) � D. From [Rimlinger 1992, Theorem4.1], there exists an R-tree T̂ and a commutativediagram of �1(K)-maps,� '̂ - T̂@@@@R' ?�Twhere '̂ : � ! T̂ is induced byD(�) and ' : T ! �is induced by D. The action of �1(K) on T̂ isquasifree. Let Ŝ be the stabilizer of the action of�1(K) on T̂ . The fact that D(�) is constructedfrom a presentation for G is used to show that�1(K)=Ŝ � �1(K)=S � G, although T̂ and T maydi�er. The essential point is that '̂(�b) = '̂(b) foreach � 2 R. Thus G is determined up to isomor-phism by �.
Remark 5.2. Let �� : �� ! G be the restriction ofthe map �1(K) ! �1(K)=S � G. Observe that�� induces a map �� : F (�� ) ! G. Now suppose� 2 ker(F (��) ! ��1(��)), so that �(p) = p forsome p 2 Z. Since ' : � ! T is a �1(K)-map, weobserve that �(�), viewed as an isometry of T , is anextension of �. Since G acts freely on T , we deducethat �� (�) = 1, so that �� : F (��) ! G induces a
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homomorphism �� : ��1(�� ) ! G. From Section 4,we have a group homomorphism ��1(�) ! ��1(��).It follows that there is a group homomorphism� : ��1(�) ! G obtained by composing this ho-momorphism with �� .An open pseudogroup presentation de�ned onthe circle R=Z is a �nite collection 	 of mapsde�ned on open subintervals of R=Z of the form (t) = a + t or  (t) = a � t, for some constant a.The collection of orbits generated by these mapsand their inverses is the open pseudogroup de�nedon the circle. The maps of positive derivative areorientation-preserving and those of negative deriv-ative are orientation-reversing [Levitt 1990a, x I.5].We now pass from the open pseudogroup � de-�ned on Z to an open pseudogroup �� de�ned onthe circle. As in Section 4, choose an injection� : Z n Z0 ! R that is locally isometric on eachcomponent of Z n Z0. Arrange for �(Z) to lie inthe open interval (0; 1) � R by composing the orig-inal � with a constant scaling factor followed by atranslation. Now regard � as a map from Z nZ0 tothe circleR=Z. Observe that the image of � avoidsthe image of 0 in R=Z. De�ne �� as in Section 4.It is easily veri�ed that �� is an open pseudogrouppresentation de�ned on the circle.
Definition 5.3. [Levitt 1990a, x I.5] Suppose 	 isan open pseudogroup presentation de�ned on thecircle R=Z, generating the open pseudogroup G.The fundamental group �1(G) is de�ned relative tothe universal covering mapR! R=Z. For each  :I ! J in 	, lift  to ~ : ~I ! ~J , where length(~I) =length( ~J) = length(I). Let ~	 = f ~ g, and let  0 :R! R be the map t! t+1. Let F ( ~	[f 0g) bethe free group on the set ~	 [ f 0g. Then �1(�) =F ( ~	 [ f 0g)=hhNii, where N is the set of reducedwords � 2 F ( ~	[f 0g) such that �(t) = t for somet 2 R.By [Hae
iger 1984] and [Levitt 1990a], �1(G) de-pends only on G, not on the speci�c presentationchosen to generate G.
Remark 5.4. Let G� be the open pseudogroup gen-erated by ��. We consider the relation between��1(�) and �1(G�). Notice that each 
� : I ! Jlifts to ~
� : ~I ! ~J such that ~I, ~J � (0; 1). Itfollows that any reduced word in F (~�� [ f 0g)that contains an occurrence of  0 is not trivialin �1(��). Thus N � F (~��), where F (~��) is the

subgroup of F (~�� [ f 0g) generated by ~��. Wededuce that �1(G�) � F (~��)=hhNii � Z. Clearly,the map 
 ! 
� ! ~
� induces an isomorphism��1(�) � F (~��)=hhNii, so that �1(G�) � ��1(�) � Z.Thus �1(G�) is free if and only if ��1(�) is.
Definition 5.5. [Levitt 1990a, x I.4] A complete min-imal component of an open pseudogroup G de�nedon R=Z is a maximal open interval I such that(i) for all p 2 I, the orbit Gp of p is dense in I, and(ii) for all t 2 R and y 2 I, if [p; p+ t] and [q; q+ t]are contained in I, then q+ t 2 Gp+t if and onlyif q 2 Gp.We now state Levitt's structure theorem for openpseudogroups of the circle.
Theorem 5.6. (Levitt, Gusmao) Let G be an openpseudogroup de�ned on R=Z. The fundamentalgroup �1(G) is isomorphic to a free product of a�nitely generated free group and a �nite numberof noncyclic �nitely generated free abelian groups.These free abelian groups are in one-to-one corre-spondence with the complete minimal componentsof G.This is proved in [Levitt 1990a, x I.5] for the caseof orientation-preserving maps. Gusmao (in prepa-ration) recently extended the result to the case oforientation-reversing maps.
Lemma 5.7. If �1(G�) contains a free abelian sub-group of rank greater than 1, so does G.
Proof. Suppose �1(G�) contains a noncyclic freeabelian subgroup. By Theorem 5.6, G� has a com-plete minimal component I. Let G be the pseudo-group de�ned on Z generated by �. Given p 2 Z,let Gp denote the orbit of p by the maps of �and their inverses. There exists an open intervalJ � ��1(I) of Z and a point p 2 J such that(i) Gp \ J is dense in J , and(ii) for all t 2 R and q 2 J , if [p; p+ t] and [q; q+ t]are contained in J , then q+ t 2 Gp+t if and onlyif q 2 Gp.Now suppose [p; p + t] and [q; q + t] are containedin J , and q 2 Gp. By the compactness of [p; p+ t],there exists a �nite sequence �1; : : : ; �n in ��1(�)such that [p; p+ t] �[�i domain(�i);
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domain(�i) \ domain(�i+1) 6= ? for each i, and�i(p+r) = q+r for every r 2 [0; t] such that p+r 2domain(�i). Each ��1i+1�i is trivial in ��1(�), beingthe image of a cycle in F (�). Recalling the ho-momorphism � : ��1(�) ! G from Remark 5.2, wededuce that �(�1) = �(�2) = � � � = �(�n). Thus,there exists g 2 G such that g[p; p+ t] = [q; q + t],where g acts by translation in the amount d(p; q).Fix p 2 J . By (i) and (ii) above, we may �nd q1,q2 2 G(p) and t > 0 such that(iii) d(p; q1) and d(p; q2) are linearly independent,(iv) [p; p+ t] [ [q1; q1 + t] [ [q2; q2 + t] � J , and(v) d(p; q1) + d(p; q2) < t.Let g1; g2 2 G be such that gi translates [p; p + t]to [qi; qi + t], for i = 1; 2. It follows that g1g2(p) =g2g1(p), so g1 and g2 commute in G. Since thetranslation lengths of g1 and g2 are linearly inde-pendent, we deduce that g1 and g2 generate a rank-two free abelian subgroup of G. �
Theorem 5.8. (Rips: see Section 1) Let G � G !T be a free minimal action of a �nitely presentedgroup G on an R-tree T . Let G be a pseudogroupgenerated by an open pseudogroup presentation �corresponding to this action. Then either(i) G = G0�H, where H is a noncyclic free abeliangroup,or there exists a �nite presentation 	 of G withindependent generators such that either(ii) the dead ends can be removed from 	 in a�nite number of steps, and the correspondingopen pseudogroup presentation is an interval ex-change, or(ii) the dead ends cannot be removed from 	 in a�nite number of steps.
Proof. Let G� be the pseudogroup presentation onR=Z corresponding to ��. First suppose �1(G�)is not free. By Theorem 5.6, �1(G�) contains anoncyclic free abelian subgroup. By Lemma 5.7,G contains a noncyclic free abelian subgroup. Bya theorem in [Morgan and Skora], G = G0 �H, asdesired.Now suppose �1(G�) is free. By Remark 5.4,��1(�) is free. By Theorem 3.10, G is generatedby a pseudogroup presentation 	 such that ��1(	)is isomorphic to F (	), the free group on the set	. Let 	 = f ig and suppose I � domain( i)is a dead end. Let  ̂i be the restriction of  i to

domain( i) � I. Thus 	1 = f j : j 6= ig [ f
̂igis the pseudogroup presentation formed by remov-ing the dead end I from 	. Since ��1(	) is free,it follows that ��1(	1) is free. (In general, thesetwo groups are not isomorphic: If domain(
i) n Iis not connected, rank ��1(	1) > rank ��1(	).) Asimilar argument applies for a dead end I in theimage of  i. Thus the process of dead-end removalpreserves the freeness of the reduced fundamen-tal group. Suppose the dead ends can be removedin a �nite number of steps. We arrive at a pseu-dogroup presentation 	n such that ��1(	n) is free.Thus ��1(�	n) is free. Theorem 4.4 now implies that�	n is an interval exchange. �
6. THE COMPUTER EXPERIMENTThe discovery by Morgan and Shalen that mostsurface groups act freely on R-trees [Morgan andShalen 1984; 1991] caused speculation about whatother �nitely generated groups, if any, could actfreely on R-trees. It was quickly realized thatsurface group actions corresponded to interval ex-changes with a dense orbit. More generally, any �-nite pseudogroup presentation � de�ned on a com-pact tree Z such that F (�) contains no re
ectioncorresponds to a free action of a �nitely generatedgroup on an R-tree (see [Rimlinger 1992, Theorem4.1], for example).Years ago, I realized that the technique used in[Morgan 1988] implied that if a pseudogroup pre-sentation � with no dead ends was not an intervalexchange, F (�) must contain cycles (compare The-orem 4.4). (I mistakenly dismissed the case of pre-sentations with dead ends as irrelevant.) I felt thatsuch cycles corresponded to \spurious relations" inthe corresponding group G acting freely on an R-tree. I thought that the \exotic" free actions onR-trees would be those in which these \spuriousrelations" exhibited some recognizable kind of pat-tern. In other words, if one �xed a point p 2 Z anddisplayed the �nite set of points �(p) 2 Z such that� 2 F (�) has reduced length n and �(p) is de�ned,some kind of fractal-like image would emerge as nbecame large. I reasoned that perhaps one couldinfer from the stability properties of such an imagethat the corresponding group acting freely on anR-tree was not �nitely presented.I therefore set out to \simulate free actions onR-trees". By this, I meant plotting orbits in search of
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the elusive stable patterns of cycles. The �rst con-ceptual problem involved determining, for a givenchoice of �, whether or not F (�) contained a re
ec-tion. I restricted my attention to the case where Zis a closed interval of R, and empirically observedthat if � contained an orientation-reversing map,F (�) was sure to have a re
ection. (Obviouslythere are surface-group presentations that containorientation-reversing maps, but such presentationsare not \stable" in some sense.) Therefore, I fur-ther restricted my attention to the case where �contains only orientation-preserving maps.These early computer experiments were disap-pointing. No patterns emerged. I should havegiven up, but I could not let go of the idea thatthe exotic free actions were out there waiting tobe discovered. Therefore, I decided to play thedevil's advocate and tried to develop an algorithmthat would either \simplify" every � to an inter-val exchange or discover a noncyclic free abeliansubgroup of ��1(�). At that point I started work-ing with the Macintosh and speci�cally with theThink C development system. The incredibly so-phisticated programming environment of the Macis not something dilettante programmers can read-ily embrace, but Think C gave me all the hints andsupport I needed to get started. My feeling wasthat my earlier experiments probably had failedbecause my code was faulty. I felt that the power-ful real-time graphics available on the Mac wouldgive me the positive feedback I needed to verifythat algorithms were working as intended.The algorithm for detecting interval exchangeswas quite elementary. Starting with a presenta-tion �0 with no dead ends, there exist � and � in�0[��10 such that domain(�) = [p; q], domain(�) =[p; r], and [p; q] � [p; r]. Therefore, one constructs�0 from �0 by replacing � with 
 = ���1, wheredomain(
) = �[p; q]. In the implementation, �0 ac-tually has a somewhat special form determined bya \top word" and a \bottom word". This specialform is inherited by �0 and implies that [p; q] is adead end of �0. Discard this dead end, obtaining apresentation �1. Now repeat the operation to geta sequence �0;�1;�2; : : : . If some �k is an inter-val exchange, the pseudogroup G generated by �has a presentation consisting of �k, together witha collection of maps corresponding to \removabledead ends" (Theorem 5.8). In the actual imple-mentation, there may be several maps �1; : : : ; �k

de�ned on [p; q]. These maps are identi�able inthe display because their domains and ranges areall drawn in the same color. All these maps are si-multaneously replaced by ��1�1; : : : ; ��1�k. Theinterval [p; q] then becomes a dead end and is dis-carded. I dubbed this algorithm the \relabelingalgorithm" because of the way the colors dance onthe screen as the new domains are drawn.The algorithm for detecting noncyclic abeliansubgroups of ��1(�) involved searching for elementsof F (�) with relatively small translation lengthsde�ned on the same relatively large interval. Thisalgorithm eventually evolved into Lemma 5.7. Inthe implementation, I quickly discovered that eachtime a noncyclic abelian subgroup was found, onecould plot its rank against the detected subinter-val of its complete minimal component (De�ni-tion 5.5). The resulting graphics are beautiful towatch|they look like skyscrapers sprouting up ina dense city skyline|but are unfortunately utterlydevoid of any scienti�c meaning. I called this al-gorithm the \painting algorithm", in honor of theMacintosh system A-trap PaintRect.To implement these algorithms, I overcame for-midable technical challenges in the area of e�-cient dynamic memory management of data with avariable number of dimensions and a variable-typede�nition. I have developed intelligent general-purpose object-oriented memory management soft-ware, which I will be happy to share with otherThink C developers.And so MacRtree was born. I fed MacRtreedozens and dozens of presentations. In almost allcases, either the relabeling algorithm yielded aninterval exchange after a �nite number of steps,or the painting algorithm discovered a noncyclicabelian subgroup. In a few instances, the relabel-ing algorithm failed to converge when it \should"have. I attributed this to the \biased" way inwhich MacRtree chose the intervals [p; q] and [p; r].My feeling is that the relabeling algorithm can be\randomized" in such a way that it will alwaysyield a positive result when fed a presentation gen-erating a pseudogroup G such that G has an intervalexchange presentation. Such a result would haveimplications for some recent theoretical work onpresentations of surface groups [Rimlinger c].At length, I realized that the relabeling algo-rithm was just a form of Nielsen transformation.From Lyndon and Schupp I gleaned the technical
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expertise to concoct a theoretical Nielsen transfor-mation of � that converges to a pseudogroup 	with independent generators if ��1(�) is free (The-orem 3.10). From combining this result with thetechnique of [Morgan 1988], it follows that 	 is aninterval exchange if it has no dead ends (Theorem4.4). To avoid worries about endpoints while per-forming the Nielsen reduction, I generalized the no-tion of Levitt's fundamental group to partial mapswith connected domain (see Lemma 2.7 and Corol-lary 2.9). Considering these results in the light ofLevitt's structure theorem for �1(G) (see Theorem5.6), I began to believe there were no \exotic ac-tions" living in the chimerical world between theinterval exchange and the free abelian case (com-pare Theorem 5.8).
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