Reduction of Huge, Sparse Matrices over Finite
Fields Via Created Catastrophes

Carl Pomerance and J. W. Smith

CONTENTS

1. Introduction

2. Description of the Method
3. Outline of Experiments

4. Conclusion
Acknowledgements
References

The authors’ research was supported in part by NSF grants.

We present a heuristic method for the reduction modulo 2 of
a large, sparse bit matrix to a smaller, dense bit matrix that
can then be solved by conventional means, such as Gaussian
elimination. This method worked effectively for us in reducing
matrices as large as 100,000 x 100,000 to much smaller, but
denser square matrices.

1. INTRODUCTION

The last stage of several algorithms to factor in-
tegers, notably the quadratic sieve [Pomerance et
al. 1988] and the number field sieve [Buhler et al.],
involves the reduction of a huge, sparse bit ma-
trix. (By a bit matriz we mean a matrix over the
field with two elements: every element is 0 or 1
and arithmetic is modulo 2.) Although the matri-
ces involved can be truly huge—100,000 rows and
columns is no longer unusual—they may have as
few as twenty 1’s per row. Another feature of these
matrices is that the first few columns tend to be
denser than the rest: typically, about half of all of
the 1’s appear in the first v/M columns, out of a
total of M columns.

In this paper we describe a heuristic method for
obtaining linear dependencies among the rows of
such matrices. In addition, we present data from
experimental runs with randomly generated square
matrices of size 50,000 and 100,000.

Odlyzko [1985] introduced a simple, two-step al-
gorithm for dealing with these matrices. First, a
certain fraction of the columns (the heaviest ones,
which are mostly on the left side of the matrix)
are declared “inactive”, and are temporarily re-
moved from the sparse data structure holding the
matrix. What is left is a very sparse matrix with
fewer columns than rows. Odlyzko then follows
the Markowitz rule for row reduction in the active

(©Jones and Bartlett Publishers, Inc.
1058-6458/92 $0.50 per page

90 Experimental Mathematics, Vol. 1 (1992), No. 2

part of the matrix. This is a local rule that at each
stage chooses as pivot an entry that minimizes the
Markowitz count (r — 2)(c — 2) — 2, where r is the
number of 1’s in the active part of the row and c is
the number of 1’s in the column. The Markowitz
count is the trivial upper bound for the net amount
of fill-in that may occur when the given element is
used as a pivot. When the sparse active part is fi-
nally eliminated, the history of the row operations
performed is recalled, and repeated on the dense
part. This results in a much smaller square matrix
that can then be reduced via conventional Gaus-
sian elimination.

Note that since arithmetic is modulo 2, there is
never a problem with numerical stability. Thus the
Markowitz rule can be used in its pure form.

Odlyzko observed experimentally that, if enough
columns are put in the inactive portion of the ma-
trix, the entire sparse active portion can be elimi-
nated without the Markowitz count ever becoming
positive. That is, there is no fill-in at all in the
active part of the matrix. We call such an event
a catastrophe. (The word “miracle” has been sug-
gested to us as more appropriate. We use “catas-
trophe” in the sense of R. Thom’s theory, where a
small change can produce a large effect.)

In our initial experiments with Odlyzko’s algo-
rithm, we found that, for matrices as dense as the
ones we actually were encountering with factoriza-
tion algorithms, we had to pay too high a price to
produce a catastrophe. Namely, we had to declare
too many columns inactive, so that the resulting
matrix, while smaller than the original, was un-
comfortably large for conventional Gaussian elim-
ination. In addition, there did not seem to be
any reliable rule for deciding what was the opti-
mal number of columns to declare inactive at the
start of the process.

Our method is based on Odlyzko’s two-step al-
gorithm, but with the following changes. First, a
much smaller number of columns are initially de-
clared inactive. Second, we only do Gaussian elim-
ination on the active part so long as no rows fill
in. When this becomes impossible, we declare a
few more columns inactive. This typically allows
a few more elimination steps to be performed. We
continue in this way, trying to coax a catastrophe
into occurring. When it finally does, we find that
many fewer columns have been declared inactive
than in Odlyzko’s original method.

Our experiments suggest that when the average
number of 1’s per row in the active part of the ma-
trix reaches a certain critical level of about 3.3+0.3,
the catastrophe is about ready to occur. An un-
usual graph-theoretic model may be needed to ex-
plain this phenomenon (see Section 4). In particu-
lar, the development of the “giant connected com-
ponent” in the evolution of a random graph [Bol-
lobas 1985] may be relevant to the explanation.

The coordinate recurrence method from [Wiede-
mann 1986], which uses the Berlekamp—Massey al-
gorithm for finding the minimum polynomial of a
linear recurrence over a finite field, can also be used
for this problem. The idea here is that if A is an
n X n matrix and & and ¥ are fixed n-vectors, the
sequence A*Z-i for k = 0,1,... is linear recurrent,
easily computable if A is sparse, and its minimum
polynomial is likely to be an important factor of
the minimum polynomial of A. After a little cal-
culating, we decided that while the coordinate re-
currence method should eventually be the method
of choice for sufficiently large problems, for our ma-
trices it was perhaps five times slower.

In [LaMacchia and Odlyzko 1991], other meth-
ods for reducing sparse matrices modulo 2 (and,
more generally, over a finite field) are discussed, in-
cluding the conjugate gradient method, the Lanc-
zos method and the coordinate recurrence method.

2. DESCRIPTION OF THE METHOD

Our goal is to find several, say ten, independent
row dependencies in our given matrix. This may
be accomplished via Gaussian elimination with ei-
ther row or column operations. It is convenient
to use row operations because, while the rows are
uniformly sparse, some columns are fairly dense.
We thus are able to make vertical cuts in the ma-
trix to segregate the heaviest columns in which we
delay row reduction. The row reduction proceeds
with very simple Gaussian elimination steps on the
sparsest portion of the matrix. We must remem-
ber the history of operations on this sparse portion,
since it must be repeated on the inactive portion
later.

We attempt to find the row dependencies by row
reduction until the matrix is in upper triangular
form, and then use back-substitution. We are not
concerned with permuting rows and columns so
that the upper triangular form is actually visible;

Pomerance and Smith: Reduction of Huge, Sparse Matrices over Finite Fields Via Created Catastrophes 91

this can be kept track of internally. After an el-
ement is used as pivot, we consider its row and
column to have been eliminated, though of course
a record of what was done must be kept to obtain
the final dependencies.

By the weight of a column we mean the number
of 1’s in the column corresponding to rows that
have not yet been eliminated. By the weight of a
row we mean the number of 1’s in the row corre-
sponding to active columns that have not yet been
eliminated. Thus, whenever more columns are de-
clared inactive, row weights either remain constant
or decrease.

Step 0. Identify a certain number of columns as
“inactive”. This, in effect, temporarily removes
these columns from the matrix. We initially des-
ignate as inactive the 5% heaviest columns of the
entire matrix. (For particularly sparse matrices, it
may be appropriate to designate fewer columns in-
active, but there is no particular reason with our
method to ever initially designate more than 5%
inactive.) Processing on the inactive columns is de-
ferred; Steps 1-4 apply only to the active columns
of the matrix.

Step 1. Eject columns of weight 0, since they play
no role in any row dependency.

Step 2. Eliminate each column of weight 1 and the
corresponding row, since such a row cannot be in-
volved in any row dependency. This procedure may
create more columns of weight 0 or 1, so we cy-
cle through Steps 1 and 2 until there are no more
columns of weight 0 or 1.

Step 3. Eject excess rows. Because of Step 1, we
may now discover that our matrix is more overde-
termined than it needs to be—the difference be-
tween the number of rows and columns may be
higher than the number of row dependencies that
we need. We just delete these rows from the matrix
until the row surplus equals the number of target
row dependencies (typically about ten in factoring
applications). The choice of rows to be deleted
is completely up to us. We eliminate the heavi-
est rows, though other strategies, such as deleting
rows that contain 1’s in many columns of weight 2,
may be worthwhile. We cycle through Steps 1-3
until no more deletions are possible.

Step 4. Use rows of weight 1 to eliminate the cor-
responding column. This amounts to deleting the

row and column from the sparse structure, record-
ing what happened so it can be duplicated later in
the inactive portion of the matrix. Repeat Step 4
until no more moves are possible.

If the original matrix is sparse enough, it is possi-
ble that at this point everything has been removed
from our sparse data structure, leaving only the in-
active columns to deal with. Repeating the history
of row operations performed on the sparse part on
the relatively few inactive columns then creates a
small, near square (and dense) matrix that may be
now reduced with conventional Gaussian elimina-
tion.

However, what do we do next if, at the end of
Step 4, there is still a large matrix? Odlyzko [1985]
originally proposed to proceed with Gaussian elim-
ination on the sparse part in a manner so as to
minimize fill-in. For example, we might next use a
row that intersects a column of weight 2 in order
to eliminate that column. After there are no more
rows or columns of weight < 2, we could look for
rows of weight 3 intersecting columns of weight 3,
and so on.

Our method is both simpler and apparently more
effective. We simply return to Step 0, designating
an additional 0.1% (rather than 5%) of the remain-
ing columns as inactive. Again, we choose for this
role the heaviest columns remaining.

This, then, is the entire method. We iterate
Steps 0—4 until there is nothing left in the sparse
part. On the second and subsequent passes through
Step 0, we remove from the sparse structure the
heaviest 0.1% of the columns present (actually the
smallest integer not less than 0.1% of the number
of columns).

The process must terminate because, if we apply
Step 0 often enough, we remove everything from
the sparse structure. In the worst case, if the in-
put is a dense bit matrix, it is likely there will never
be anything to do in Steps 1-4. We will continu-
ally repeat Step 0, calling columns inactive until
nothing is left.

We consider the method successful if, at the con-
clusion, the inactive columns are few enough to be
handled by conventional matrix methods. For ex-
ample, with an initial square matrix having 64,000
columns, we may be left at the end with 10,000
inactive columns. This is few enough to handle
conventionally.

92 Experimental Mathematics, Vol. 1 (1992), No. 2

For sparse inputs, the reduction winds down in
an interesting way, which we did not at first ex-
pect. At some point in the reduction procedure
the density and structure of the sparse portion of
the matrix are such that Step 4 “explodes”: when
the column intersecting a row of weight 1 is elimi-
nated, other rows acquire weight 1, and the proce-
dure continues to propagate in this way until noth-
ing is left. This is the catastrophe referred to in the
Introduction.

Note that our algorithm is quite greedy. At no
step do we increase the number of 1’s in the sparse
portion. We refuse to allow any fill-in at all. In
addition, no row or column in the sparse portion
ever gets heavier.

One variation of this scheme seems to work a lit-
tle better in practice. Notice that it is not necessar-
ily harmful to create heavier columns, since they
may be deleted in the next pass through Step 0
anyway. We thus delay our return to Step 0, by
following Step 4 with the following.

Step 5. Use each row of weight 2 to eliminate the
lighter of the two corresponding columns. The
row and column are deleted from the sparse ma-
trix structure. The other column intersecting the
deleted row is replaced by its sum with the removed
column (since we are working modulo 2, the sum
is the same as the exclusive-or).

The effect on the matrix would of course be ex-
actly the same if we used the row to eliminate the
heavier of the two columns, but the history record
(the list of rows to which our weight-2 row is added)
would be longer.

This step usually reduces the number of 1’s in
the sparse matrix by two (coming from the deleted
row itself), but sometimes other 1’s are deleted in
this process. We now cycle through Steps 4-5 until
no further reductions are possible.

Try as we might, we could not otherwise im-
prove significantly on the simple scheme described
above. For example, we tried changing the per-
centage of columns declared inactive at each run
through Step 0 (5% and 0.1% for the initial and
subsequent passes). For nearby choices, the re-
sults were similar, and for grossly different choices,
the results were worse. We tried other schemes
for declaring columns inactive, such as choosing
columuns that intersect many rows of weight 3. We
tried allowing elimination to continue so long as

the Markowitz count stayed nonpositive. The dif-
ferent variations we tried were often not worse than
the above method, but we could not find any that
were appreciably better, and the elegant simplicity
of the above method eventually led us to stick with
it, rather than a more complicated variant.

(We have heard from Odlyzko that, if the orig-
inal matrix is very overdetermined, it pays to do
Step 3 in stages, rather than all at once. If there
are enough excess rows to eliminate, one may also
allow steps that increase some row weights. In par-
ticular, Step 5 may be supplemented with a step
that uses a row that intersects a column of weight 2
in order to eliminate that column.)

We note a few more technical points. After the
second pass through Step 0, there is little or, more
likely, nothing to do in Steps 1-3: we are essentially
just cycling through Steps 0 and 4 (or Steps 0, 4
and 5). But occasionally there is some action in
these steps, and it does not cost much to look.
Also, the catastrophe, when it comes, comes in
Step 3. Thus, we leave these steps in the main loop.

When a column is called inactive it may not be
the same as in the original matrix: it may have
been affected by earlier row operations, if we per-
form Step 5. The matrix of inactive columns on
which we later perform the history operations must
consist of original columns only. Thus, when we
call a column inactive, we just note its number and
compile the numbered columns from the original
matrix at the end of the run.

3. OUTLINE OF EXPERIMENTS

We ran a program that implements the algorithm
described in the previous section on 44 test ma-
trices of various sizes and densities. More pre-
cisely, the program incorporates the algorithm un-
til the occurrence of a catastrophe and the elimi-
nation of the sparse part of the matrix. Actually
finding nontrivial row dependencies requires dupli-
cating the recorded row operations on the inac-
tive portion of the matrix, reducing the resulting
dense matrix, and back-substituting. These op-
erations require considerably more time than the
sparse-matrix processing of Steps 0-5 above. We
did not include them in our timings because they
are of a routine nature and, except for the back-
substitution step, are done with the normal {0, 1}-
encoding for dense bit matrices.

Pomerance and Smith: Reduction of Huge, Sparse Matrices over Finite Fields Via Created Catastrophes 93

Our test matrices were randomly generated and
designed to approximate the matrices that occur in
factorization algorithms. In particular, for an M x
M matrix occurring in factorization algorithms,
the number of 1’s in column ¢ is approximately
DM /i, for some constant D. This is not a theorem,
but a rough observation supported by heuristics.

For each value of D ranging from 2 to 3 in in-
crements of 0.1, we randomly constructed three
square matrices of size M = 50,000, in such a way
that the probability of each entry being 1 was D/i
for ¢ > 2D and % for ¢ < 2D, where 7 is the en-
try’s column number. We ran the program for each
matrix on a Sun 3/160 workstation with 20MB of
memory, and averaged together the benchmarks for
each group of matrices having the same value of
D. In addition, we ran the same experiment for
M = 100,000 and the same values of D, using only
one sample per value of D. The results are shown
in Table 1.

M = 50,000 M = 100,000
D c W T c w T
20 3168 3.19 0:43 6476 3.25 1:05
2.1 3652 3.27 0:55 7296 3.37 1:44
2.2 4152 3.43 1:.03 8446 3.33 2:08
23 4716 3.38 118 9339 3.29 2:38
24 5255 337 1:33 10380 3.49 2:54
2.5 5833 3.57 1:40 11485 345 3:33
26 6466 3.54 1:55 12732 3.58 3:43
277 7028 3.61 2:05 13964 3.60 4:06
2.8 7655 3.44 2:33 15211 3.63 4:32
29 8221 336 2:50 16510 3.65 5:30
3.0 8825 3.51 3:00 17566 3.68 5:46

TABLE 1. Benchmarks for the algorithm of Sec-
tion 2, applied to matrices of size M and density
min(%, D/i), where i is the column number. C is
the number of columns that had to be made in-
active before a catastrophe was triggered. W is
the average number of 1’s per row in the active
sparse structure just prior to the catastrophe. T is
the running time, in hours and minutes, on a Sun
3/160 workstation with 20MB of memory.

The number of 1’s per row just prior to the catas-
trophe (denoted W) ranged from 3.01, for a matrix
with D = 2.1 and M = 50,000, to 3.68, for the ma-
trix with D = 3.0 and M = 100,000. As one can
see from Table 1, there is a slight tendency for this
number to increase as the density of the original

matrix increases. Table 1 also suggests that there
is an approximately linear relation between D and
the number C of columns that are made inactive,
at least for the given range of D values. Despite
the imperfect relationship between W and the oc-
currence of the catastrophe, we could not find a
better predictor with our data.

Further experiments, especially with smaller and
larger values of D, would be of interest. It should
be noted that, the larger D is, the more main
memory is required for handling the sparse data
structure. Of course, disk memory could also be
used, but paging will slow down the process. It
may also be of interest to do experiments with ran-
dom models other than the D/i model described
above. For applications to discrete logarithm prob-
lems [LaMacchia and Odlyzko 1991], it would also
be good to try experiments over finite fields with
more than two elements.

4. CONCLUSION

We now propose a graph-theoretic interpretation of
our results. Consider the graph where the vertices
are the active columuns in the matrix and where
two columns are connected by an edge if there is
a row of weight 2 whose 1’s are in these columns.
Suppose this graph is connected. If just one more
column is declared inactive, the remainder of the
matrix will be eliminated using just Steps 1-4 in
our algorithm. That is, the catastrophe is ready
to occur. If the catastrophe is not ready to occur,
we declare more columns inactive, which has the
effect of reducing the average row weight in the
active portion, and thus increasing the number of
edges in our graph (and reducing the number of
vertices). Thus the graph is now more likely to be
connected.

Actually our situation is somewhat more compli-
cated. Some row of weight 3 may be “promoted”
to a row of weight 2 while we are eliminating a row
of weight 1. Thus a graph that does not at first
glance look ready for a catastrophe may indeed be
ready. A full graph-theoretic interpretation of a
catastrophe, then, should include not only pairs
of columns, but also triples, quadruples, etc. It
should be a hypergraph. There may be lurking here
a theory of evolution of random hypergraphs anal-
ogous to the well-known theory for graphs. For
graphs, it is known that if there are % + ¢ times

94 Experimental Mathematics, Vol. 1 (1992), No. 2

as many edges as vertices, it is highly likely that
the graph has a connected component comprising
a positive proportion of the vertices. Our results
suggest that, if the average row weight is a little
over three, a catastrophe is highly likely to occur.
This suggests a possible theorem on sparse random
bit matrices.

ACKNOWLEDGEMENTS

We take this opportunity to thank several friends
who helped with various aspects of our work, no-
tably W. R. Alford, Renet Lovorn, Colette Pirie
and Randy Tuler.

REFERENCES

[Bollobas 1985] B. Bollobas, Random Graphs, Aca-
demic Press, Orlando, FL, 1985.

[Buhler et al.] J. Buhler, H. W. Lenstra, Jr. and Carl
Pomerance, “Factoring integers with the number
field sieve” (preprint).

[LaMacchia and Odlyzko 1991] B. A. LaMacchia and
A. M. Odlyzko, “Solving large sparse linear systems
over finite fields”, pp. 109-133, in Advances in
Cryptology: Crypto 90 (edited by A. Menzes and S.
Vanstone), Lecture Notes in Computer Science 537,
Springer-Verlag, Berlin, 1991.

[Odlyzko 1985] A. M. Odlyzko, “Discrete logarithms
in finite fields and their cryptographic significance”,
pp- 224-314, in Advances in Cryptology: Proceedings
of Eurocrypt 84 (edited by T. Beth, N. Cot and I.
Ingemarsson), Lecture Notes in Computer Science
209, Springer-Verlag, Berlin, 1985.

[Pomerance et al. 1988] C. Pomerance, J. W. Smith
and R. Tuler, “A pipeline architecture for factoring
large integers with the quadratic sieve algorithm”,
SIAM J. Comput. 17 (1988), 387-403.

[Wiedemann 1986] D. H. Wiedemann, “Solving sparse
linear equations over finite fields”, IEEE Trans.
Information Theory 32 (1986), 54—62.

Carl Pomerance, Department of Mathematics, University of Georgia, Athens, GA 30602 (carl@joe.math.uga.edu)

J. W. Smith, Department of Computer Science, University of Georgia, Athens, GA 30602 (jws@pollux.cs.uga.edu)

Received August 27, 1991; revised August 7, 1992

