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Conjecturally, any “algebraic” automorphic representation onGL(n) should have an n-dimensional Galois representation

attached. Many examples of algebraic automorphic represen-

tations come from the cohomology overC of congruence sub-

groups of GL(n;Z). On the other hand, the first author has

conjectured that for any Hecke eigenclass in the mod p coho-

mology of a congruence subgroup of GL(n;Z) there should

be an attached n-dimensional Galois representation.

By computer, we found Hecke eigenclasses in the mod p co-

homology of certain congruence subgroups of SL(3;Z). In

a range of examples, we then found a Galois representation

(uniquely determined up to isomorphism by our data) that

seemed to be attached to the Hecke eigenclass.

INTRODUCTIONThe method of attaching Galois representations toholomorphic modular forms for GL(2) has providedmany examples of two-dimensional representationsof the absolute Galois group of Q. The idea hasbeen expanded to become part of the Langlandsphilosophy, so that, conjecturally, any \algebraic"automorphic representation on GL(n) should havean n-dimensional Galois representation attached.Many examples of automorphic representationscome from the cohomology over C of congruencesubgroups � � SL(n;Z). On the other hand, the�rst author has made conjectures about the mod pcohomology that parallel the ones for complex co-homology. In particular, Conjecture 1 in Section 1would attach a three-dimensional Galois represen-tation to any Hecke eigenclass in the mod p co-homology of a congruence subgroup of SL(3;Z).For further discussion of these conjectures and of
c
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their relationship, with references to the history,see [Ash 1992a,b] and [Ash et al. 1991].In the summer of 1991, we wrote and ran com-puter programs to �nd Hecke eigenclasses in themod p cohomology of certain congruence subgroupsof SL(3;Z). We then chose a variety of examples, ofdi�erent degrees of di�culty, for which the searchfor the attached three-dimensional Galois represen-tation seemed feasible. In each example, we did�nd a Galois representation (uniquely determinedup to isomorphism by our data) that seemed to beattached to the Hecke eigenclass. We say \seemed"because all we could do was check the conjectureat a �nite number of primes l and at in�nity. (Wecomputed Hecke eigenvalues for Tl; l � 97.) Allthe cases we could handle involved reducible Galoisrepresentations. Nevertheless, they provide strik-ing evidence for the conjecture, since the cohomol-ogy classes they are based on are in no obvious way\reducible" to GL(2)-classes.Two desiderata remain. First, in any example,we would like to prove that the Galois representa-tion we found is really attached; that is, we wouldlike to verify the conjecture for all l. Secondly,when p = 3, 7, 17 or 23, our data predict Ga-lois representations whose image is the full groupSL(3;Z=p). We would like to �nd these represen-tations with large nonsolvable image.Serre's conjecture [Serre 1987] would give an ap-proach to the �rst problem in the reducible case,where the Galois representation has an odd two-dimensional component. The modular form pre-dicted by Serre's conjecture could be found, andthe appropriate relations could be proved betweenits Fourier coe�cients mod p and the Hecke eigen-values of the GL(3)-cohomology class in question.Alternatively, one might be able to prove a congru-ence mod p between our given class and an Eisen-stein cohomology class. We have few approachesto suggest for the second problem, of �nding rep-resentations with image SL(3;Z=p).In Section 1, we recall the mod p conjecture inthe form in which we tested it by computer, andwe discuss its signi�cance. In Section 2, we discussthe algorithms we used to compute the mod p co-homology of congruence subgroups of SL(3;Z) asa Hecke module. In Section 3, we summarize theoutput of our programs and discuss the reliabil-ity of our computations. In Section 4, we explainhow we found the attached Galois representations

(when we could). We summarize our results in ta-bles throughout the paper.In 1986, Philip Green (unpublished) computedthe mod p cohomology of certain congruence sub-groups of SL(3;Z) (without the Hecke action) onan IBM PC. These computations assured us thatwe would obtain interesting results, and we thankhim for sharing his data with us. We will dis-cuss his work in more detail in Section 3. Wethank Nicole Schulte for sharing tables of quarticand cubic number �elds. We also thank B. Gross,B. Mazur, J.-P. Serre and D. Wright for helpfulcomments and suggestions.
1. REVIEW OF THE CONJECTUREWe state all de�nitions and conjectures in termsadapted to this paper. For the statements in thecase of general congruence subgroups of GL(n) forany n � 2 and for general coe�cients, see [Ash1992a,b].We start with a brief review of the de�nition ofthe Hecke algebra and its action on cohomologyclasses. A Hecke pair is a pair (�; S), where � is asubgroup of SL(3;Z) and S � � is a subsemigroupof GL(3;Q)+. The Hecke algebra of integral linearcombinations of double cosets �s�, for s 2 S, willbe denoted H(�; S), or just H if no confusion islikely. We shall use the notation Ts for the doublecoset �s� in H(�; S).For example, if N is an integer, let S0(N ; 3) bethe set of 
 2 GL(3;Q)+ \M(3;Z) whose top rowis of the form (�; 0; 0) (mod N) and which satisfy(det 
;N) = 1. Let �0(N ; 3) = S0(N ; 3)\SL(3;Z).Then H(�0(N ; 3); S0(N ; 3)) is a Hecke algebra; wecall it H(N) for short.Now we de�ne the action of H(�; S) on coho-mology with trivial coe�cients A. For any s 2 S,set �(s) = s�1�s\ �. We have two morphisms i; jof �(s) into �, given by i(x) = x and j(x) = sxs�1:For each � 2 H�(�; A), de�neTs(�) = i�j�(�);where i� is the transfer with respect to i and j� isthe pullback with respect to j.Recall that H(N) is a polynomial ring over Zgenerated by the elementsT (l; k) = �0(N; 3) diag(1; : : : ; 1; l; : : : ; l| {z }k times )�0(N; 3);
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where k = 1; 2; 3 and l runs over all primes notdividing N . We set T (l; 0) = 1 for all l.Suppose � 6= 0 and T (l; k)� = a(l; k)� for all k.Then the Hecke polynomial attached to � at l isde�ned to be
P (�; l) = 3Xk=0(�1)klk(k�1)=2a(l; k)Xk:

For each l unrami�ed in an extension E of Q, wewrite Frobl for the geometric Frobenius element inthe Galois group of E=Q (de�ned up to conjugacy).Thus Frob�1l acts on the residue �eld of a primeabove l by raising to the l-th power. Also, let cbe the complex conjugation element in Gal(E=Q)(de�ned up to conjugacy).Let GQ denote Gal( �Q=Q). Take N � 1. Wehave the following conjecture:
Conjecture 1. Let (�; S) = (�0(N ; 3); S0(N ; 3)). Letp be a prime and F a �nite �eld of characteristicp. Suppose � 2 H i(�;F) is an eigenclass for theaction of the Hecke algebra H(N), with eigenvaluesa(l; k) in F. Then there exists a semisimple con-tinuous representation � : GQ ! GL(3;F), unram-i�ed outside pN , such thatdet(I � �(Frobl)�1X) = P (�; l)for all primes l not dividing pN . Furthermore, �(c)has eigenvalues 1, 1 and �1.We refer to [Ash 1992b] for discussion of the conjec-ture and of some cases in which it can be proved. Inparticular, theorems of Eichler and Shimura [Shi-mura 1971, Theorem 7.11] and of Deligne [1971]show that the analogous conjecture for GL(2) holdstrue. Conversely, Serre [1987] conjectured that allodd irreducible representations ofGQ into GL(2;F)arise this way.The purpose of this paper is to investigate Con-jecture 1 when the level N is prime.
2. ALGORITHMSFor this whole section, we refer to [Ash et al. 1984]for background. Let � = �0(N ; 3) and H = H(N)for some prime level N . Let X be the symmet-ric space for SL(3;R), where � acts on X on theright. Let A be a trivial coe�cient module for �.Rather than compute H i(�; A), we will compute

Hi(X=�; A). We view all homology and cohomol-ogy groups (with their Hecke structure) as AH-modules.
Remark. Hi(X=�; A) and Hi(�; A) are isomorphicexcept in characteristics 2 and 3. In those char-acteristics, the equivariant homology spectral se-quence relates the two, and the classes we computebelow in Hi(X=�; A) actually live also in Hi(�; A).We don't verify this claim here, since our position isthat any Hecke eigenclass, whether in Hi(X=�; A)or in Hi(�; A), should have a Galois representationattached.The homology for i = 3, together with the ho-mology of the Borel{Serre boundary of X=�, de-termines all the homology groups as AH-modules.Therefore we concentrate on �nding H3(X=�; A).If A = F is a �eld, H3(X=�;F) and H3(X=�;F)are dual to each other as FH-modules, so Con-jecture 1 applies as well to H3(X=�;F). In fact,we will be testing the conjecture using H3 ratherthan H3. What is more, by the universal coef-�cient theorem, we are at the same time testingthe analogous conjecture for p-torsion classes inthe integral homology and cohomology. For in-stance,H3(X=�;Z) is torsion-free, but the cokernelof H3(X=�;Z)
F! H3(X=�;F) is isomorphic tothe torsion in H2(X=�;Z).From [Ash et al. 1984, x 3], we recall the followingmethod of computing H3(�; A) for any prime levelN and trivial coe�cient module A. Although theresult is stated there for complex coe�cients, itworks just as well for any A.Let W (N;A) denote the A-module of functionsf : (Z=N)3 ! A that satisfyf(x; y; z) = f(ax; ay; az) for a 6= 0 in Z=N ;f(x; y; z) = �f(�y; x; z);f(x; y; z) = f(y; z; x);f(x; y; z) + f(�y; x� y; z) + f(y � x;�x; z) = 0:(2.1)
The moduleW (N;A) is isomorphic toH3(X=�; A).The Hecke action can be computed using the Ash{Rudolph algorithm for GL(3)-modular symbols, ex-actly as explained in [Ash et al. 1984, xx 4, 6(B)].Solving the set of linear equations (2.1) for theunknowns f(x; y; z) is easy using standard Gauss-ian elimination, once the equations are set up. Let
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G1 � GL(3;Z=N) be generated by the scalars,0@ 0 �1 01 0 00 0 1
1A and 0@ 0 1 00 0 11 0 0

1A :
G1 acts on (Z=N)3, and the �rst three equalitiesin (2.1) are relations holding within each G1-orbitseparately. We use those three equalities to reducethe number of unknowns to one for each G1-orbit,and we construct a conversion table correlating therepresentative of each orbit with any given (x; y; z),keeping track of the sign in the second equality. Wethen set up the last equality as a system in theseunknowns and solve by row reduction.Although the system is initially sparse, we didn'tuse special sparse matrix methods. (If we wishedto extend the range of N , these methods might be-come useful.) Since we are working with A = Z=p,we used exact integers and didn't have to worryabout numerical stability.This part of the calculation is relatively quick,even for N � 200, and even though we have ap-proximately 124N 2 unknowns and 112N 2 equations.The bulk of the time is taken later, in the calcula-tion of the Hecke operators on the homology.The sketch just given di�ers from our actual pro-cedure in one way. Before solving the initial sys-tem, we added some equations (2.2) designed to re-move a portion of the solution space whose Heckeeigenvalues we knew to be uninteresting. Then,before computing the Hecke operators, we changedbases in the solution space so that the matrix rep-resentation of the Hecke operators would be blockupper triangular, with the �rst block consistingagain of uninteresting eigenvalues. In the rest ofthis section we explain this in more detail.We denote by Y the Borel{Serre compacti�ca-tion of X=�, and by B the boundary of Y . We letW �(N;A) be the image of H3(B;A) in H3(Y;A),viewed as a submodule of W (N;A). A descriptionof W �(N;A) is given in [Ash et al. 1984, Theo-rem 3.19] in the case A = C, and it works as wellfor A = Z=p unless N � 1 is a multiple of p. Asimple modi�cation of that theorem and its proof 1leads to the following construction.1We note here an error in the proof of Theorem 3.19 in [Ash etal. 1984]. On p. 422, f 0 should be de�ned by the same formulaas f 00 except with P2 replaced by tP2. In the third paragraph onthat page, �(m) should equal 1, not 3. This error does not a�ectthe result, which is correctly stated in the theorem.

Let V (N) denote the Z-module of functions � :(Z=N)2 ! Z that satisfy�(x; y) = �(ax; ay) for a 6= 0 in Z=N ;�(1; 0) = 0;�(x; y) = �(�x; y);�(x; y) = ��(y; x);�(x; y) + �(�y; x� y) + �(y � x;�x) = 0:Given � in V (N), we de�ne �� 2 W (N;Z=p)and �� 2W (N;Z=p) as follows. Let D denote thegreatest common divisor of the elements �(x; y) +�(y; z) + �(z; x), where x; y; z range over Z=N ,with xyz 6= 0. (It can be shown that D = 1 when-ever N � 1 is prime to p.) If xyz 6= 0, we set��(x; y; z) equal to the reduction modulo p of(�(x; y) + �(y; z) + �(z; x))=D;if not, we set ��(x; y; z) = 0. We de�ne �� by��(x; y; z) = 0 if xyz 6= 0;��(0; y; z) = �(y; z);��(x; y; 0) = �(x; y);��(x; 0; z) = �(z; x):Then W �(N;Z=p) consists of the span of the im-ages of � and �.As explained in [Ash and Stevens 1986], W �(N;Z=p) is a Hecke submodule of W (N;Z=p), and theHecke eigenvalues can be written in terms of Heckeeigenvalues of classical holomorphic modular formsof weight 2 (corresponding to the �'s). Since Con-jecture 1 holds in the classical case, when n = 2,we conclude that it holds also for the eigenclassesin W �(N;Z=p). Hence we call these eigenclassesuninteresting (for our present purposes).We can construct a complement to the image of� in W (N;Z=p) by imposing on W (N;Z=p) thefurther conditionsf(x; y; z) = 0 if xyz = 0: (2.2)These are the extra equations alluded to above, theones we use before beginning Gaussian elimination.They simply set some of our variables equal to 0.We take them into account in the programs bythrowing out the corresponding variables, takingcare when setting up the third set of equalities in(2.1) to replace by 0 any term of the form f(x; y; z)if xyz = 0.
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We could try to construct a complement to theimage of � as in [Ash et al. 1984], by requiringPz f(x; y; z) = 0 for all x; y. However, these areO(N 2) additional nonsparse equations, and theyare not respected by the Hecke operators. It is farmore e�cient and \Hecke-equivariant" to deal withthe image of � in the following way.If h(�; �; �) is any function of three variables, let�xh(�; �; �) = h(�+1; �; �)�h(�; �; �). De�ne �y,�z similarly. After we solve equations (2.1){(2.2),getting a basis for the solution space W 0, we im-pose the linear conditions �x�y�zf(�; �; �) = 0for some values of �; �; �. These conditions for all1 � �; �; � � 12(N � 1) cut out a linear subspaceof f 's that contains the image of �. In practice,for N � 251, using these conditions just for all1 � �; �; � � 8 gave a basis for exactly the im-age of �. (Because of the �rst condition, theseare only 64 additional equations.) We then ex-tended this to a basis for W 0 by randomly adjoin-ing dimW 0�dim Im� elements from the previouslyfound basis of W 0, testing for linear independence,and repeating as needed.With respect to this new basis, we computedthe Hecke operators T (l; 1) and T (l; 2) for l 6= N inexactly the way explained in [Ash et al. 1984]. Thematrix of T (l; k) with respect to this new basis wasin upper triangular block form, since we arranged� in such a way that T (l; k) would preserve itsimage. By focussing on the interesting diagonalblock, we got the matrix for T (l; k) acting on thequotient space ofW that has the interesting Heckeeigenvalues. We call this quotient space W qc, forquasicuspidal. It is isomorphic as a Hecke moduleto the quotient W=W �. (If our coe�cients hadbeen C as opposed to Z=p, thenW=W � would havebeen dual to the cuspidal cohomology of �; henceour terminology.)Our computer output consists of the Hecke ma-trices on a �xed basis of W qc. The advantage ofsplitting o� W qc is that W � is generally quite big,whereas W qc is usually much smaller.
3. COHOMOLOGY RESULTS. CONSISTENCY TESTSOur results fall into two parts. First, we com-puted a basis forW qc(N;Z=p) for every prime N �223 and every p � 23, and for a few larger pairs(N; p). Table 1 shows the dimension d(N; p) ofW qc(N;Z=p).

p (characteristic)N 2 3 5 7 11 13 17 19 2329 137 141 143 1�53 2 2 2 2 2 2 2 2 259 1�61 2 2 2 2 2 2 2 2 267 271 273 2�79 3 2 2 2 2 2 2 2 283 4�89 3 2 2 2 2 2 2 2 297 3101 4103 2107 5109 6113 6127 5 2131 5137 7 2139 6149 10151 7 2157 6 2163 8 2167 6 2173 9179 9181 9191 8 2193 11 6197 14 4199 8211 15 6 2�223 12 2 2 2 2 2 2 2 2227 13 4 { { { { {229 15 2 { { { { {233 15 10 { { { { {239 11 { { { { {241 13 4 { { { { {251 ?? 2 { { { { {
TABLE 1. Dimension D(N; p) of the quasicuspidalcohomology of �0(N) with coe�cients in Fp, forprime N � 251 and p � 23. Blank entries andomitted values of N indicate that D(N; p) = 0.A dash indicates that the calculation was not per-formed, and ?? indicates that the size of the kerneloverran our program. The starred values of N arespecial: see next page. Results for p = 37 andp = 691 are the same as for p = 11; 13; 19.
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It is striking that d(N; p) was always found to beeven, except when p = 2. We have no explanationfor this.For N = 53, 61, 79 and 89, there exists a pairof linearly independent classes in H3cusp(�;C), by[Ash et al. 1984]. The same is almost certainlytrue for N = 223, as our data shows, although thecomputation for N = 223 with coe�cients in Chas not been performed.We also computed d(N; 37) and d(N; 691) forN � 223. In these cases the result is 0, exceptfor the �ve values of N in the previous paragraph,where it is 2.The second type of computation is as follows.Whenever d(N; p) 6= 0, we computed the Heckematrices with respect to our basis of W qc(N;Z=p),for the Hecke operators T (l; 1) for all l � 97 andT (l; 2) for all l � 19.The Hecke operators T (l; 2) for 19 < l � 97(l 6= N) can be deduced from these data as fol-lows. The automorphism ' of GL(3) that sends gto the conjugate of tg�1 by diag(N; 1; 1) preserves� and switches diag(1; 1; l) with diag(1; l; l) mod-ulo scalar matrices. Hence ' acts on the homologyof � and intertwines T (l; 1) and T (l; 2). Therefore,the Hecke matrices for T (l; 1) and T (l; 2) have thesame characteristic polynomial. Moreover, fromthe Hecke matrices for the �rst few l, we can inpractice determine a simultaneous Hecke eigenbasisand then observe the relationship between T (l; 1)and T (l; 2)|whether they are always equal, or atleast have the same semisimpli�cation, or are trans-poses of each other. In every case coming from ourdata, we can then determine a(l; 2) from a(l; 1) forall l � 97 (l 6= N).In Section 4 we supply lists of the computedHecke eigenvalues for the quasicuspidal classes wediscuss.Both parts of the computation were performedin Fortran on a Sun SPARCstation 2 and otherSuns at the Ohio State University.Here are some compelling reasons for believingthe output of our computations:� Every computation was in exact integer arith-metic or arithmetic mod p.� Each algorithm was checked by hand on smallexamples.� Each matrix whose nullspace we were comput-ing had many more rows than columns. The

fact that this nullspace was always nonzero isa very strong indication that the matrices wereset up properly.� The dimension of the nullspace was always atleast dim Im�, which is the genus of the modu-lar curve X0(N) = g(N).� The Hecke operators as computed always leftthe nullspace stable and acted on it in blockdiagonal form, with blocks of sizes g(N) andd(N; p)�g(N) with respect to the new basis, asdescribed near the end of Section 2.� Spot checking showed that the matrices of theHecke operators acting on our new basis com-muted with one another.� T (l; 1) and T (l; 2) always had the same charac-teristic polynomial for l � 19.� In all cases we attempted, we found Galois rep-resentations compatible with Conjecture 1 andthe computed values of the Hecke eigenvalues(Section 4).� Our tabulation of d(N; p) agrees with the un-published 1986 computations of Philip Greenfor all p � 7 and all N � 223, with the ex-ception of d(197; 5), which we computed to be 4and Green reported to be 2. We believe Greenmade an error in the letter in which he commu-nicated his results to us.
4. GALOIS REPRESENTATIONSIn this section we describe our e�orts to �nd theGalois extensions of Q and the representations ofthe Galois groups predicted by Conjecture 1. Af-ter some preliminary comments, we discuss our re-sults, grouping them by common values of the coef-�cient characteristic p; see Table 2 for a summary.As before, let F be a �nite �eld of characteris-tic p. Suppose we have a representation � as inConjecture 1. Then det �(Frobl)�1 = l3 for each loutside pN . Let ! : GQ ! F�p be the reductionmod p of the cyclotomic character, which satis�es!(Frob�1l ) = l for each l not dividing p. If we re-place � with the twist �0 = !�1�, then �0 takesvalues in SL(3;F). (Here we use a special featureof n = 3.) This change makes it slightly easierto discuss our results. Thus we can rephrase theconjecture in terms of this twist and the usual char-acteristic polynomial:
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N q Im �0 f(x)characteristic p = 229 2 S x3 + 2x+ 437 2 S x3 � 4x+ 241 2 f1g x43 2 S x3 + 4x+ 453 2 S x3 � x2 � 4x+ 859 2 S x3 + 2x+ 161 2 S x3 + x+ 667 4 A x5 + 2x3 + 4x2 + 6x+ 471 2 S x3 � 10x� 873 4 A x5 + 2x3 + 4x2 � 2x� 479 2 S x3 � 7x+ 283 2 S x3 + 8x+ 189 2 S x3 � 7x+ 897 8 � SO(3)101 2 S x3 � 8x+ 4101 8 � SO(3)103 4 A x5 + x4 � 4x3 � 6x2 � 2x+ 18149 2 S x3 + 13x+ 50197 2 S x3 � x2 � 7x� 3223 2 S x3 � x2 � 8x+ 10

N q Im �0 f(x)characteristic p = 361 3 f1g � SL(2) see [Ash et al. 1991]79 3 f1g � SL(2) see text127 3 f1g � SL(2) see text137 3 SL(3)151 9 � SU(3)characteristic p = 5163 5 � GL(1)�GL(2)197 625211 5 C4 x4 + x3 + x2 + x+ 1characteristic p = 7167 7 SL(3)characteristic p = 17191 17 SL(3)characteristic p = 23157 23 SL(3)
TABLE 2. Summary of the information obtained about Galois representations seemingly attached to quasicus-pidal cohomology of arithmetic subgroups of SL(3;Z). Each row is devoted to a single Hecke eigenclass; p andN are as in Table 1, but certain combinations don't appear here because our Hecke operator programs ran intomachine limitations. The column labeled q gives the number of elements in the �eld F generated over the prime�eld by the Hecke eigenvalues. The next column gives information about the image of �0 (see Conjecture 10).The image is predicted to be the whole listed group, unless it is pre�xed by �. We use the abbreviations Sfor O(3;F2), which is isomorphic to the symmetric group S3, and A for O(3;F4), which is isomorphic to thealternating group A5. (Note that, in characteristic 2, the orthogonal groups are not irreducible.) C4 denotes asubgroup of the diagonal matrices isomorphic to F�5 . The last column gives a polynomial f(x) whose splitting�eld is the �xed �eld of the kernel of �0.

Conjecture 1’. Let(�; S) = (�0(N ; 3); S0(N ; 3)):Let p be a prime and F a �nite �eld of charac-teristic p. Suppose � 2 H i(�;F) is an eigenclassfor the action of the Hecke algebra H(N), with ei-genvalues al = a(l; 1) and bl = a(l; 2) in F. Thenthere exists a semisimple continuous representation�0 : GQ ! SL(3;F), unrami�ed outside pN , suchthatdet(X��0(Frobl)�1) = X3�all�1X2+ bll�1X � 1(4.1)for all primes l not dividing pN . Furthermore,�0(c) has eigenvalues 1, �1 and �1.The rest of this paper involves examples of �0for Conjecture 10, with one exception: when p = 3

and N = 127, we do not twist � by the cyclo-tomic character, but instead work with Conjec-ture 1. The reason is that, in this case, twistingwould obscure the fact that the �eld cut out bythe two-dimensional component � of � (see discus-sion preceding (4.2)) is totally real.
Definition. If we have � and �0 as in Conjecture 10such that condition (4.1) holds for every l � 97 notdividing pN , we say that �0 seems to be attachedto �, or to the corresponding system of Hecke ei-genvalues fal; blg. If (4.1) holds for all l not divid-ing pN , and if the statement about �0(c) holds, weshall say �0 is attached to �, or to the system ofeigenvalues.Suppose that �0 is attached to �. IfX3 � aX2 + bX � 1
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is the characteristic polynomial of a matrix g, thenX3�bX2+aX�1 is the characteristic polynomialof g�1. Now suppose � is either an involution of For the identity map, and that al = �(bl) for all l notdividing pN . It follows by the Tchebetarov densitytheorem and the Brauer{Nesbitt theorem that �0 isequivalent to �(t�0�1); that is, for some invertiblematrix M , we have M�0(x) = �(t�0(x�1))M for ev-ery x in GQ. It follows that the nondegeneratesesquilinear form corresponding to M (bilinear if� = 1) is preserved by Im �0. The same is truefor �(tM), and hence for M + �(tM). If this sumis nonzero, it is a nonzero symmetric sesquilinearform preserved by Im �0; if the sum is 0, M itself isa nondegenerate antisymmetric sesquilinear formpreserved by Im �0. These statements still hold ifcharF = 2, but the notions of symmetry and anti-symmetry coincide.Thus, if al = �(bl) for all l not dividing pN ,either �0 is reducible or its image lies in the corre-sponding unitary or orthogonal group. In the ex-amples below, wherever we �nd a �0 that seems tobe attached to �, it will turn out that al = �(bl) forsome � (for all the l for which we have data), and�0 will be reducible. We shall comment on severalexamples where �0 must be surjective (and henceirreducible) if it exists, but we do not know howto look for �0 in those cases, because Im �0 is then(conjecturally) a very large almost simple group.If the package of Hecke eigenvalues for � werecongruent mod p to another package coming froma cohomology class ~� for a � of level ~N (e.g., ~N =Npk for some k), and if ~� were the reduction of anontorsion class in the integral cohomology, thenConjecture 4.1 in [Clozel 1990], applied to the auto-morphic representation corresponding to ~�, wouldlead us to include the condition at in�nity in Con-jectures 1 and 10 (see [Ash 1992a]). In all of theexamples we have calculated, �0(c) does possess thedesired eigenvalues. The conjecture for �0(c) hasno content, of course, when p = 2; in these cases,sometimes c lies in the kernel of �0 and sometimesit does not.We now describe our computations in more detail.
Classes in Characteristic p = 2Here we have many examples. We have looked atall systems of Hecke eigenvalues occurring for N �103, and we have done spot-checking for N = 149,

197 and 223, where we looked at all systems that liein the prime �eld. In all these cases, al = bl for all lnot dividing 2N , so that we may take � = id. (Wedo not know whether this is a general rule whenp = 2.) In all these cases, except N = 97 and onesystem for N = 101, the �eld generated by Heckeeigenvalues is F2 or F4, and we have found theGalois representation that seems to be attached toeach system. When N = 97 or 101, the �eld gen-erated by Hecke eigenvalues is F8, and we haven'tattempted to �nd the Galois representation.As explained above, since al = bl, the image ofthe attached �0 (if it exists) must stabilize a non-trivial symmetric bilinear form. But in character-istic 2, the stabilizer of any nontrivial symmetricbilinear form is reducible. (If the form is nonde-generate, this can be checked directly. Otherwise,Im �0 is contained in a parabolic subgroup; sincethe representation is semisimple, the image mustbe contained in GL(1)�GL(2).)We ask whether the Galois representations at-tached to Hecke eigenclasses in characteristic 2 arealways reducible, or even whether al always equalsbl in these cases. Both conjectures are compatiblewith the data in this paper and in [Ash et al. 1984].Hence we are looking for �0 of the form � � �,where � is two-dimensional and � is a character.In all our examples, the data forces � = 1, so that� maps to the special linear group. We end upthen searching for a semisimple, continuous repre-sentation � : GQ ! SL(2;F), unrami�ed outside2N and such thatTr�(Frobl)�1 = all � 1 for l 6= 2; N: (4.2)Now SL(2;F2) is isomorphic to the symmetricgroup S3, and SL(2;F4) is isomorphic to the alter-nating group A5. It is easy to see that, in all butone of our cases, � is surjective. (In the exceptionalcase, we have N = 41, all the al = 1, and � is thetrivial representation.) Finding � is equivalent to�nding the �xed �eldM of ker�; thisM will be anSL(2;F)-extension of Q, unrami�ed outside 2N .When F = F2, M will be the splitting �eld ofan irreducible cubic polynomial over Q with non-square discriminant divisible by at most 2 and N .We searched for the polynomial either by look-ing in the tables of [Delone and Faddeev 1964],by looking in tables sent to us by Nicole Schulte(unpublished), or by searching the space of cubics
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using Mathematica on a Macintosh SE/30. WhenF = F4, M will be the splitting �eld of an ir-reducible quintic polynomial over Q with squarediscriminant divisible by at most 2 and N . Wesearched for the polynomial either by looking in thetables of [Buhler 1978] or by searching the space ofquintics using Mathematica on a Sun SPARCsta-tion 2 at the Ohio State University. With a poly-nomial in hand, we tested the conjecture by com-puting the splitting of prime ideals in the splitting�eld of the polynomial. We continued the searchuntil we found a polynomial that seemed to satisfythe conjecture. Usually it was the �rst polynomialwe tried.When F = F4, there is an additional check toperform: we can distinguish between the two con-jugacy classes of elements of order 5 in A5, usinga simple test involving the discriminant. We didthe test using Mathematica on a Macintosh SE/30.Since the computation becomes rather lengthy asl increases, we only checked the �rst �ve valuesof l in each example for which �(Frobl) has order5. This gave four independent checks, and theyalways worked correctly.We give one example of each type.� N = 29: This is the lowest level with nontriv-ial quasicuspidal cohomology, and the quasicuspi-dal cohomology group is one-dimensional. We arelooking for a semisimple, continuous representation� : GQ ! SL(2;F2), unrami�ed outside 2 � 29 andsuch thatTr�(Frobl)�1 = all � 1 = al + 1for l 6= 2; 29. The values of al areal = 0 for l = 3; 5; 11; 13; 31; 43; 47; 53; 79;al = 1 for l = 2; 7; 17; 19; 23; 37; 41; 59;61; 67; 71; 73; 83; 89; 97:So we need to have Tr�(Frobl)�1 = 0 if al = 1,and Tr�(Frobl)�1 = 1 if al = 0.We list the six elements in SL(2;F2) and �ndthat we need �(Frobl) to have order 1 or 2 if al = 1,and order 3 if al = 0. Since our list contains both0 and 1 as values for al, we know the image of �must be cyclic of order 3 or all of SL(2;F2). It'seasy to �nd the cyclic extensions of order 3 of Qthat are unrami�ed outside 2 � 29 and to see thatthey don't �t the data.

Hence we are looking for a degree-6 extensionK of Q that is the splitting �eld of some irre-ducible cubic f(x) with rational coe�cients, whichfactors mod l if al = 1 and stays irreducible mod lif al = 0. We can �nd K by using class �eld theoryon Q(pd), where d = (�1)a2b29c, trying variousvalues of a; b; c = 0; 1. Or, more easily, we searchthe tables of cubics x3 + bx+ c with integer b; c asfound in [Delone and Faddeev 1964]. We �nd thatK is uniquely determined by our requirements andhappens to be the splitting �eld of x3 + 2x+ 4.� N = 103: In this case, the cohomology is two-dimensional and the Hecke eigenvalues lie in F4.We obtain a pair of conjugate Hecke eigenclassesand study one of them. We are looking for a semi-simple, continuous representation�0 : GQ ! SL(3;F4);unrami�ed outside 2 � 103 and such thatTr �0(Frobl)�1 = all = alfor each l 6= 2; 103. The values of al areal = 0 for l = 3; 7; 31; 37; 43; 67;al = 1 for l = 11; 23; 29; 41; 89; 97;al = j for l = 19; 53; 61; 83;al = j0 for l = 2; 5; 13; 17; 47; 59; 71; 73; 79(where j and j0 denote the roots of x2 + x+ 1).Since the image of �0 preserves a nonzero sym-metric bilinear form over F4, it must lie in[GL(2;F4)�GL(1;F4)] \ SL(3;F4):This is isomorphic to SL(2;F4)�GL(1;F4) by themap (M;�)! (�M;�). Write �0 �= ���. If � 6= 1,the kernel of � has as �xed �eld L the unique cycliccubic extension of Q unrami�ed outside 2 � 103.From [Gras 1975], we see that L is the splitting�eld of x3 + x2 � 34x� 61.We list the characteristic polynomials of the ele-ments of SL(3;F4) and �nd that we need �0(Frobl)to have order 3 if al = 0; 1 or 2 if al = 1; and 5 ifal = j; j0. From our list of Hecke eigenvalues, wesee that �(Frob5) must equal 1. Since 5 does notsplit in L, this implies that the image of �0 must liein SL(2;F4)�fIg. It is easy to see that �0 must besurjective. So we are looking for an A5-extensionKof Q, the splitting �eld of some quintic, unrami�edoutside 2 � 103, and such that the order of Frobl inSL(2;F4) depends on al in the way just speci�ed.
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We searched the space of quintics f(x) = x5 +ax4 + bx3 + cx2 + dx+ e for a = 0; 1; 2 and �20 �b; c; d; e � 20 using Mathematica, looking for thosewith square discriminant divisible by at most 2 and103. After discarding those whose discriminantswere divisible by primes other than 2 and 103, westill had several candidates. One of them, namelyf(x) = x5+x4� 4x3� 6x2� 2x+18, matched ourdata: it factors mod l into two linear terms andone cubic term when al = 0, it factors mod l intoone linear and two quadratic terms when al = 1,and it stays irreducible mod l when al = j or j0.We were also able to discriminate between thetwo conjugacy classes of elements of order 5 in A5and to check that they matched up properly withj versus j0. The method is attributed to Serre byBuhler [Buhler 1974]. Let D be the discriminantof f , which equals 26 � 1032: Choose a square root� of D by �xing an ordering of the roots �1; : : : ; �5of f and setting � =Qi<j(�i��j). If z = Frobl inGal(K=Q) has order 5, computedl =Yi<j(zi�1 � zj�1) mod l:
If z induces a permutation of the roots conjugateto (12345), this number dl is congruent to � mod l;if z is in the other conjugacy class, dl � �� mod l.We chose � to be the positive square root of D.One can't a priori distinguish j from j0, so we usedFrob5 to �x the correspondence so that j0 occurredwhen dl � � mod l. We then checked the consis-tency for the next four l's, namely l = 11; 13; 17; 19:al = j0 when dl � � mod l, and al = j whendl � �� mod l.
Classes in Characteristic p = 3� N = 127. We concentrate on this case, whichamong the examples we looked at involved the mostintensive computing.The quasicuspidal cohomology has dimension 2,but the Hecke operators do not act semisimply onit. Thus we have just one package of Hecke eigen-values, lying in F3:al = 0 for l = 2; 5; 13; 47; 53; 59; 71; 79; 97; 101;al = 1 for l = 17; 19; 31; 41; 43; 67; 73; 103;al = 2 for l = 3; 7; 11; 23; 29; 37; 61; 83; 89; 107;109; 113:

Here al = bl. We carried the computations be-yond l = 97 because of our special interest in thisexample.Considerations such as those in [Ash et al. 1991,xx 3.1{3.3] (the role played there by Q(p�3) isplayed here by F3, since these are the �elds of def-inition of the Hecke eigenvalues in the respectivepapers) tell us that the nonzero bilinear form �xedby the image of � is alternating, and hence that �is reducible, of the form � � �. As mentioned atthe beginning of this section, we work here withthe untwisted �, so det � is the cube of the cyclo-tomic character ! mod 3, that is, det � = !. Thus,� takes values in SL(2;F3), since it �xes a non-degenerate alternating form, and � = !. In sum,we are looking for a semisimple, continuous repre-sentation � : GQ ! SL(2;F3), unrami�ed outside3 � 127 and such thatTr�(Frobl)�1 = al � lfor all l 6= 3; 127.It's not hard to see that if � exists it must be sur-jective. Thus, �nding � is equivalent to �nding the�xed �eld M of ker�; this M will be an SL(2;F3)-extension ofQ, unrami�ed outside 3�127. We haveindeed obtained an M that seems to be attachedto the given package of Hecke eigenvalues, as wewill explain shortly. As usual, the extension isuniquely determined, even highly overdetermined,by the data.
Remarks. (a) M is totally real, and the inertia at127 has order 3. As mentioned before, these factsare consonant with Conjecture 4.1 in [Clozel 1990].So we wonder if there is a characteristic 0 objectwhose Hecke eigenvalues are congruent mod 3 tothose we are studying here.(b) As in [Ash et al. 1991], we �nd a posteriorithat there should be a congruence of Hecke eigen-values mod 3 between our torsion class of level 127and an Eisenstein series built from a Maass form onGL(2). We see no way of predicting its existencea priori, and no way of verifying Conjecture 1 forthis class at all values of l.We follow the method of [Ash et al. 1991], explain-ing where our current task became considerablymore di�cult because of large class numbers.There is a �ltration of SL(2;F3) with successivequotients C2, C2 � C2 and C3. So if � exists, and
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if we let M be the �xed �eld of ker�, we obtain adiagram of �elds Mj C2Lj C2�C2Kj C3Q
;

where K, L and M should be Galois over Q withGalois groups C3, A4 and SL(2;F3), respectively.All the �elds should be unrami�ed outside 3 and127 (we will see below thatM=K is also unrami�edat 127).We found K, L and M in succession. We beganby looking for a Galois cubic extensionK ofQ, un-rami�ed outside 3 � 127 and such that the splittingof primes in K is compatible with the conjecture.There are four Galois cubic �elds unrami�ed out-side 3 � 127: those inside the 9th and 127th rootsof unity, and two �elds of conductor 9 � 127. As in[Ash et al. 1991], one checks that the K we want isdetermined uniquely by the Hecke data. We haveK = Q(�), where � is a root of the polynomial�3 � 381� � 127 = 0.Let � be a generator of GalK=Q. By [Gras1975], the ring of integers OK is Z[1; �; ��], the classnumber of K is 12, and the fundamental units are" and "�, where " = 19+ �+2��. One checks thatL3 = (3; 1��) and L127 = (�) are the unique primeideals of OK over 3 and 127, respectively.By studying the group structure of SL(2;F3),one can show for primes l 6= 3; 127 that, if � exists,the way (l) splits in L and in M is determined bythe trace Tr�(Frobl)�1 = al � l and by the way lsplits in K. The precise results are summarized inTable 3.
Tr�(Frobl)�1 in K in L in M�1 1 4 8�1 3 12 240 3 6 61 1 4 41 3 12 12

TABLE 3. Number of primes in the factorization of(l) over the �elds K, L, M (see text for notation).

We now look for L. Since L=K is a C2 � C2Galois extension with K=Q cubic Galois and L=Qnonabelian, we must haveL = Lx = K(px;px�;px��)for some squarefree x 2 OK such that the normNK=Q(x) is a square in Z. To study the rami�ca-tion in L=K, we cannot proceed as in [Ash et al.1991], since K has class number greater than 1.Instead, we use a lemma, whose proof we omit.
Lemma. Let E=F be a quadratic extension of num-ber �elds with E = F (p�) for � 2 F . If l is a primeideal of OF not dividing 2, then E=F is unrami�edover l if and only if the prime ideal factorization ofthe principal ideal (�) � OF contains l to an evenpower . E=F is unrami�ed at the primes over 2 ifand only if � is the product of a nonzero square inF and an element of 1 + 4OF .If L = Lx exists, the lemma implies that the princi-pal ideal (x) is of the form Li3Lj127A2, where i; j � 0and A is an ideal of OK not divisible by L3 or L127.Since NK=Q(x) must be a square, i and j mustbe even. Furthermore, we are free to alter x bysquares in K. Dividing by �2 as often as necessary,we may assume j = 0. Dividing by 9 as often asnecessary, we may assume i = 0, 2 or 4. Dividingby other squares, we may assume A runs through aset of representatives of the ideal class group of OK,which we may take to be prime to 2 � 3 � 127.So, to �nd L, it su�ces to enumerate the idealsLi3A2 (4.3)that are principal, where i = 0; 2; 4 and A runsthrough a set of representatives of the ideal classgroup of OK. It su�ces to look at only one ideal ofthis form in a given Gal(K=Q)-orbit. Let y 2 OKbe a generator of the ideal. Consider only the caseswhere y is not a square in OK , but where the normNK=Q(y) is a square in Z. Let x = "k1("�)k2y,where k1; k2 run through the set f0; 1g. Ignore thex's that are not in ((OK=4OK)�)2. Then if our Lexists, it is of the form L = Lx for one of the x wehave just enumerated.To enumerate the ideals of the form (4.3), onemust understand the ideal class group of K. Wefactored many principal ideals (a� b�) into primesof OK in order to get relations in the class group.Since we already knew the class number, it was
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straightforward to show that the class group is C6�C2 (generated by the ideals (11; 2+�) and (19; 5+�)of orders 6 and 2), and to �nd where a given primeL of OK lies in the group.To �nd y, one must be able to �nd elements ofgiven norm in a given ideal. We used the very fastalgorithm in [Pohst and Zassenhaus 1989, pp. 338{343].The computations described in the last few para-graphs were done in TI Scheme on the second au-thor's Compaq 80286-based machine. From thispoint on, however, we worked with Mathematicaon a SPARCstation 1+ at Oklahoma State Uni-versity.For each x enumerated above, we computed theminimal polynomial fx for the primitive elementpx + px� of Lx=Q. We factored fx mod l forall l for which we had Hecke data; as long as l didnot divide the discriminant of fx, the factorizationmod l of the polynomial determined how the ideal(l) split in Lx. Comparing the results with thetable of splitting behavior given above, we foundthere was exactly one �eld L = Lx that met all ourconditions, and that this L was highly overdeter-mined by the Hecke data. Here x = 22� 2� � ��;we have (x) = (19; 2 + �)2, the square of a primeof K. Note that L=K is unrami�ed outside 3; inparticular, it is unrami�ed over 2 because x is thesquare of 1 + � + �� in (OK=4OK)�.We remark that the discriminant of fx (for thespeci�c x above) was divisible by 11, 13 and 19 andby no other primes l � 113, l 6= 3. Replacing theprimitive element px +px� with px + kpx� forvarious k 2 Z, we found primitive elements of L=Qwhose minimal polynomials did not have discrimi-nant divisible by 11 or 19; we could then check thatL matched our Hecke data for 11 and 19. Also, L isthe splitting �eld overQ of g(�) = �4�33�2�19�+195, where � = px +px� +px�� 2 OL is a rootof g(�). The discriminant of g(�) is not divisibleby 13, and g splits into linear factors mod 13; thisimplies that 13 is unrami�ed and splits completelyin L, as predicted by our Hecke data.Next, we looked for a quadratic extension M =L(�0) for �0 2 OL, with M=L unrami�ed outside 3and such that Gal(M=Q) �= SL(2;F3). A theoremof Serre [1984] gives a criterion for an A4-extensionL of Q to be liftable to an SL(2;F3)-extension. Atheorem of Crespo [1989] says that if L is liftable,all the extensions must be of the form L(pq�),

where q 2 Q and � is an element of L that canbe computed explicitly. In our case, we found thatL does lift to SL(2;F3)-extensions of Q, and wecomputed � using Crespo's procedure.The problem was now to choose q such thatM = L(pq�) matched our Hecke data. We foundthat the norm NL=Q(�) = 2243613619121278. Bythe lemma above, M can be unrami�ed outside 3only if jqj is a squarefree product of primes fromthe set f2; 3; 13; 19; 127g. If any prime of L over 13occurred to an odd power in the ideal factorizationof (�), all the primes over 13 would occur in (�)to an odd power (since M=Q is Galois). Since 13splits completely in L, this would imply 1312 di-vides NL=Q(�), a contradiction. This proves thatL(p�) is unrami�ed over 13. So M = L(pq�) canbe unrami�ed outside 3 only ifq = (�1)i12i23i319i4127i5for some i1; : : : ; i5 2 f0; 1g.For the 32 values of q in the preceding paragraph,we found the minimal polynomial of pq� over Qand factored it mod l (for l not dividing the polyno-mial's discriminant). We found that only for thecase q = 2 � 3 � 19 = 114 did M = L(pq�) seemto match our Hecke data. For this reason we set�0 = 114�, M = L(�0) from now on. Let f�0 be theminimal polynomial of �0 over Q.Of the primes l � 113, l 6= 3, only 2, 5, 13, 17 and19 divided the discriminant of f�0 . The cases l = 5,13, 17, 19 are handled as follows. Since 5 is inertinK, it must split into four or eight primes ofM . Ifit split into eight primes, f�0 would factor over Z=5as a product of (not necessarily distinct) cubics;but instead, it factors into sextics over Z=5. Hence5 splits into four primes in M , as predicted by theHecke data. The cases of 13 and 17 are handledsimilarly. The number �0=192 is an integer of Lwhose minimal polynomial has discriminant primeto 19; this allowed us to check thatM matched ourHecke data at 19.To show that 2 splits in M=Q as predicted bythe Hecke data, we proceed as follows. 2 is inert inK and splits into four primes T1; : : : ;T4 in L. Wemust show that M=L is unrami�ed at 2 and thatthe Tj do not split in M . (This last requirementcomes from Table 3, since TrFrob�12 = a2 � 2 =1.) First, 14�0 is an integer of L; we may writeM = L(p�0=4) to check the rami�cation of M
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t24 � 29708856t22 + 367756718678640t20� 2509261723108363425984t18+ 10493414013632298034200374016t16� 28231091051345399970505044540776448t14+ 49826431592977952027309794944666858749952t12� 57718043555211781748624179267556096459760943104t10+ 43208960836690540832718220117973653453008401011507200t8� 20229808135005646521374508186867852379514853356997205819392t6+ 5572654593389916393890345337765572725020351415545850175202263040t4� 796761793283233463108285449803241699225351432742561065212688050683904t2+ 42602857864455392953080378726862429471523771128678783018077832852575092736Minimal polynomial of a generator of the extension M=Q that seems to be attached to our cohomology classfor p = 3, N = 127.at 2. Second, as above, L is the splitting �eld overQ of g(�) = �4� 33�2� 19� +195. There are fourembeddings of L into �Q2, the algebraic closure ofthe local �eld Q2; they are given by mapping theroots of g in L to the roots of g in �Q2 in a Galois-compatible way. Let �1; : : : ;�4 � �Q2 be the im-ages of these embeddings. We explicitly found allfour �j, representing elements of �Q2 as polynomi-als with coe�cients in Z=2iZ for su�ciently large i(we used i = 5). We showed that the image of14�0 in �1 was 0 mod 16, and that its image in �j(j = 2; 3; 4) was a square and a unit in O�j=4O�j .A norm check shows that ( 14�0) is divisible by ex-actly the fourth power of T1 and by no other Tj. Alocal version of the lemma above then shows thatM=L is unrami�ed at 2. We also showed that 14�0 isnot a square mod 8O�j in O�j for j = 2; 3; 4, whichimplies that the corresponding Tj (and hence T1,by Galois symmetry) remain inert in M .This proves that there is a unique SL(2;F3)-extension M=Q that is unrami�ed outside 3 and127 and seems to be attached to our Hecke datafor all primes l � 113, l 6= 3. A primitive elementfor this extension is p�0, whose minimal polyno-mial over Q is given in the sidebar above.

A Sturm sequence calculation showsM is totallyreal. Also, �2 divides �0; this means NL=Q(�0=�2) isprime to 127, implying M=L is unrami�ed at 127.Hence the inertia group of a prime of M over 127is a 3-group.� N = 79. We have also found the SL(2;F3)-extension of Q that seems to be attached to thereduction mod 3 of the nontorsion class of level 79,a task left undone in [Ash et al. 1991]. It is gener-ated by the element �0 whose minimal polynomialover Q is given in the sidebar below.We have also checked that the extension foundin [Ash et al. 1991] for the class mod 3 of level 61�ts the conjecture for all l � 97. (The data usedin [Ash et al. 1991] only went up through l � 29.)Another interesting example for p = 3 is discussedat the end of this section.
Classes in Characteristic p = 5� N = 211. This was the only example we treated.The cohomology is two-dimensional, but the Heckeoperators do not act semisimply. For the unique

t24 � 585282103380t22 + 142731308557048753093500t20� 19024710548794458071527989093462840t18+ 1533435092622632409189133072771812461476126230t16�78248926098756426995934677567978420923190921357305533360t14+ 2574967972111922063830119637343308142744649083165130411563837409900t12� 54591958847150480063266262701963853654370309889327462424415478598163511436520t10+ 731025140388824047905475632040397574593692705325644284009329098911304616211947806961265t8� 5906556772866323819598811265539996132647732060303752233074558760661404667448172450527082011444060t6+ 26057449566611087017311340468163132961306213067432065252100488667444523161199799085253912812377706454918160t4� 47927005108884046145290775816310133341971359727388968108241884027811968893343835675390502 : : :974510245280538620760600320t2+ 20349383950397218475731573328284923364215794458810741531181581666490100224575160506197783 : : :5906691614496073810999490796097536Minimal polynomial of a generator of the extension of Q that seems to be attached to the reduction modulo 3of the cohomology class for N = 79 in [Ash et al. 1991].
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Hecke eigenclass we get this table of Hecke eigen-values for al = bl:al = 1 for l = 5; 19; 29; 59; 79; 89;al = 2 for l = 2; 7; 17; 37; 47; 67; 97;al = 3 for l = 3; 11; 13; 23; 31; 41; 43; 53;61; 71; 73; 83:In this case, we �nd that the image of �0 must be di-agonal. In fact, by factoring the Hecke polynomialX3� all�1X2+ all�1X � 1, we see that �0 must beisomorphic to the representation 1�!�!3, where !is the cyclotomic character of Gal(Q(�5)=Q). This�ts our data for all l � 97.The other example feasible to check would be N =163, where we expect �0 to be reducible and to givean icosahedral representation of GQ.
Examples Where �0 Will Have Maximal ImageHere we have four examples; in each case, the co-homology is two-dimensional, and al 6= bl in gen-eral. We take each example in turn, and explainwhy �0 should have maximal image SL(3;Fp). The�rst case is the model, and the others di�er onlyslightly. Let gl = �0(Frobl)�1.� p = 3, N = 137. According to our data, g2has irreducible characteristic polynomial over F3.Hence the order of g2 divides 1 + p+ p2 = 13, thenumber of elements in F�p3 that have norm 1; thismeans g2 has order 13. Now [Mitchell 1911] (seealso [Bloom 1967]) gives the complete classi�ca-tion of subgroups of PSL(3;F) for any �nite �eldF of characteristic 6= 2, and moreover PSL(3;Fp) =SL(3;Fp) whenever p 6� 1 (mod 3). It follows fromthe classi�cation that the only proper subgroup ofPSL(3;F3) with order divisible by 13 is the nor-malizer of a nonsplit Cartan, which is a subgroupof order 39. So to show �0 has maximal image, itsu�ces to exhibit an l for which gl has order not adivisor of 39. The characteristic polynomial of g7splits over F3 into a linear and a quadratic factor,so this element has order 4 or 8, and we are done.� p = 23, N = 157. Since g3 has irreducible char-acteristic polynomial x3+14x2+19x� 1, its orderdivides 1+23+232 = 7�79. If �0 does not have max-imal image, it follows from [Mitchell 1911] that theimage must lie either in the normalizer of a non-split Cartan, a group of order 3 � 7 � 79, or in a

p = 3 p = 7 p = 17 p = 23T (2; 1) � 10 00� � 30 03� � 04 612� � 1921 1315�T (2; 2) � 00 01� � 30 03� � 1213 110� � 152 1019�T (3; 1) � 10 01� � 60 13� � 42 310� � 316 1112�T (3; 2) � 10 01� � 30 66� � 1015 144� � 127 123�T (5; 1) � 20 01� � 20 30� � 44 616� � 111 513�T (5; 2) � 10 02� � 00 42� � 1613 114� � 1322 1811�T (7; 1) � 00 01� � 10 15� � 109 53� � 190 019�T (7; 2) � 10 00� � 50 61� � 38 1210� � 190 019�T (11; 1) � 00 01� � 20 02� � 115 169� � 193 152�T (11; 2) � 10 00� � 20 02� � 912 111� � 220 819�T (13; 1) � 10 01� � 30 31� � 1416 711� � 1718 217�T (13; 2) � 10 01� � 10 43� � 111 1014� � 75 217�T (17; 1) � 00 00� � 60 20� � 68 1213� � 2122 1819�T (17; 2) � 00 00� � 00 56� � 139 56� � 191 521�T (19; 1) � 10 00� � 60 06� � 24 614� � 192 100�T (19; 2) � 00 01� � 60 06� � 1413 112� � 021 1319�T (23; 1) � 20 02� � 00 00� � 00 00� � 815 615�
TABLE 4. Hecke matrices for �0 that have maximalimage SL(3;Fp).certain subgroup of order 168. But g3 is conjugateover F23 to its rational canonical form

g03 = 0@ 0 0 11 0 �190 1 �14
1A :

We check that (g03)7 6= I, which rules out the groupof order 168. Next, the characteristic polynomialof g2 splits as (x + 5)(x2 + 19x + 9). Since �5 isof order 11 (mod 23), g2 cannot lie in a group oforder 3 � 7 � 79.� p = 7, N = 167. Since g13 has irreducible charac-teristic polynomial, its order is 19 or 57. As before,if the image of �0 in PSL(3;F7) were not maximal,it would be contained in the normalizer N of a non-split Cartan, a group of order 3�19. The image of �0in SL(3;F7) would be contained in the lift of N toSL, a group of order 32 �19. On the other hand, thecharacteristic polynomial of g2 splits into a linearand a quadratic factor, and calculations like thoseabove show g2 must have even order.
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� p = 17, N = 191. This is like the �rst two cases:g2 has irreducible characteristic polynomial, and g3splits into a linear and a quadratic factor.We have few ideas on how to �nd �0. We list inTable 4 the Hecke matrices for l � 23. (We haveon �le all the T (l; 1)'s for l � 97.)
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