Experimental Indications

of Three-dimensional Galois Representations
from the Cohomology of SL(3, Z)

Avner Ash and Mark McConnell

CONTENTS

Introduction

1. Review of the Conjecture

2. Algorithms

3. Cohomology Results. Consistency Tests
4. Galois Representations

References

Ash’s research was partially supported by NSF Grant
DMS-8919696.

Conjecturally, any “algebraic” automorphic representation on
GL(n) should have an n-dimensional Galois representation
attached. Many examples of algebraic automorphic represen-
tations come from the cohomology over C of congruence sub-
groups of GL(n,Z). On the other hand, the first author has
conjectured that for any Hecke eigenclass in the mod p coho-
mology of a congruence subgroup of GL(n, Z) there should
be an attached n-dimensional Galois representation.

By computer, we found Hecke eigenclasses in the mod p co-
homology of certain congruence subgroups of SL(3,Z). In
a range of examples, we then found a Galois representation
(uniquely determined up to isomorphism by our data) that
seemed to be attached to the Hecke eigenclass.

INTRODUCTION

The method of attaching Galois representations to
holomorphic modular forms for GL(2) has provided
many examples of two-dimensional representations
of the absolute Galois group of Q. The idea has
been expanded to become part of the Langlands
philosophy, so that, conjecturally, any “algebraic”
automorphic representation on GL(n) should have
an n-dimensional Galois representation attached.
Many examples of automorphic representations
come from the cohomology over C of congruence
subgroups I' C SL(n,Z). On the other hand, the
first author has made conjectures about the mod p
cohomology that parallel the ones for complex co-
homology. In particular, Conjecture 1 in Section 1
would attach a three-dimensional Galois represen-
tation to any Hecke eigenclass in the mod p co-
homology of a congruence subgroup of SL(3,Z).
For further discussion of these conjectures and of
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their relationship, with references to the history,
see [Ash 1992a,b] and [Ash et al. 1991].

In the summer of 1991, we wrote and ran com-
puter programs to find Hecke eigenclasses in the
mod p cohomology of certain congruence subgroups
of SL(3,Z). We then chose a variety of examples, of
different degrees of difficulty, for which the search
for the attached three-dimensional Galois represen-
tation seemed feasible. In each example, we did
find a Galois representation (uniquely determined
up to isomorphism by our data) that seemed to be
attached to the Hecke eigenclass. We say “seemed”
because all we could do was check the conjecture
at a finite number of primes [ and at infinity. (We
computed Hecke eigenvalues for 7;, [ < 97.) All
the cases we could handle involved reducible Galois
representations. Nevertheless, they provide strik-
ing evidence for the conjecture, since the cohomol-
ogy classes they are based on are in no obvious way
“reducible” to GL(2)-classes.

Two desiderata remain. First, in any example,
we would like to prove that the Galois representa-
tion we found is really attached; that is, we would
like to verify the conjecture for all [. Secondly,
when p = 3, 7, 17 or 23, our data predict Ga-
lois representations whose image is the full group
SL(3,Z/p). We would like to find these represen-
tations with large nonsolvable image.

Serre’s conjecture [Serre 1987] would give an ap-
proach to the first problem in the reducible case,
where the Galois representation has an odd two-
dimensional component. The modular form pre-
dicted by Serre’s conjecture could be found, and
the appropriate relations could be proved between
its Fourier coefficients mod p and the Hecke eigen-
values of the GL(3)-cohomology class in question.
Alternatively, one might be able to prove a congru-
ence mod p between our given class and an Eisen-
stein cohomology class. We have few approaches
to suggest for the second problem, of finding rep-
resentations with image SL(3,Z/p).

In Section 1, we recall the mod p conjecture in
the form in which we tested it by computer, and
we discuss its significance. In Section 2, we discuss
the algorithms we used to compute the mod p co-
homology of congruence subgroups of SL(3,Z) as
a Hecke module. In Section 3, we summarize the
output of our programs and discuss the reliabil-
ity of our computations. In Section 4, we explain
how we found the attached Galois representations

(when we could). We summarize our results in ta-
bles throughout the paper.

In 1986, Philip Green (unpublished) computed
the mod p cohomology of certain congruence sub-
groups of SL(3,Z) (without the Hecke action) on
an IBM PC. These computations assured us that
we would obtain interesting results, and we thank
him for sharing his data with us. We will dis-
cuss his work in more detail in Section 3. We
thank Nicole Schulte for sharing tables of quartic
and cubic number fields. We also thank B. Gross,
B. Mazur, J.-P. Serre and D. Wright for helpful
comments and suggestions.

1. REVIEW OF THE CONJECTURE

We state all definitions and conjectures in terms
adapted to this paper. For the statements in the
case of general congruence subgroups of GL(n) for
any n > 2 and for general coefficients, see [Ash
1992a,b).

We start with a brief review of the definition of
the Hecke algebra and its action on cohomology
classes. A Hecke pair is a pair (I', S), where I' is a
subgroup of SL(3,Z) and S D I is a subsemigroup
of GL(3,Q)*". The Hecke algebra of integral linear
combinations of double cosets I'sIT", for s € S, will
be denoted H(T',S), or just H if no confusion is
likely. We shall use the notation 7 for the double
coset I'sI" in H(T', S).

For example, if N is an integer, let Sy(N;3) be
the set of v € GL(3,Q)* N M (3,Z) whose top row
is of the form (x,0,0) (mod N) and which satisfy
(det, N) = 1. Let To(N;3) = So(IN;3)NSL(3, Z).
Then H(I'o(N;3),S0(N;3)) is a Hecke algebra; we
call it H(N) for short.

Now we define the action of H(I',S) on coho-
mology with trivial coefficients A. For any s € S,
set I'(s) = s I'sN . We have two morphisms 4, j
of I'(s) into T, given by i(z) = z and j(x) = szs™*.
For each g € H*(I', A), define

T.(B) = ix3"(B),

where %, is the transfer with respect to ¢ and j* is
the pullback with respect to j.

Recall that H(N) is a polynomial ring over Z
generated by the elements

T(l,k) = To(N, 3) diag(1,...,1,1,...,1)[o(N,3),

k times
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where k£ = 1,2,3 and [ runs over all primes not
dividing N. We set T'(1,0) = 1 for all [.

Suppose a # 0 and T'(l, k)a = a(l, k)« for all k.
Then the Hecke polynomial attached to « at [ is
defined to be

3
P(a,1) =Y (=DM FD20(1 k) X"

k=0

For each [ unramified in an extension E of Q, we
write Frob, for the geometric Frobenius element in
the Galois group of E/Q (defined up to conjugacy).
Thus Frob, ' acts on the residue field of a prime
above [ by raising to the [-th power. Also, let ¢
be the complex conjugation element in Gal(E/Q)
(defined up to conjugacy).

Let Gq denote Gal(Q/Q). Take N > 1. We
have the following conjecture:

Conjecture 1. Let (I', S) = (I'o(N;3), S0(N;3)). Let
p be a prime and F a finite field of characteristic
p. Suppose 3 € H'(I',F) is an eigenclass for the
action of the Hecke algebra H(N'), with eigenvalues
a(l,k) in F. Then there exists a semisimple con-
tinuous representation p : Gq — GL(3,F), unram-
ified outside pIN, such that

det(I — p(Frob;)™'X) = P(3,1)

for all primes | not dividing pN. Furthermore, p(c)
has eigenvalues 1, 1 and —1.

We refer to [Ash 1992b] for discussion of the conjec-
ture and of some cases in which it can be proved. In
particular, theorems of Eichler and Shimura [Shi-
mura 1971, Theorem 7.11] and of Deligne [1971]
show that the analogous conjecture for GL(2) holds
true. Conversely, Serre [1987] conjectured that all
odd irreducible representations of Gq into GL(2, F)
arise this way.

The purpose of this paper is to investigate Con-
jecture 1 when the level N is prime.

2. ALGORITHMS

For this whole section, we refer to [Ash et al. 1984]
for background. Let I' = I'y(N;3) and H = H(N)
for some prime level N. Let X be the symmet-
ric space for SL(3,R), where I" acts on X on the
right. Let A be a trivial coefficient module for T'.
Rather than compute H*(I', A), we will compute

H;,(X/T', A). We view all homology and cohomol-
ogy groups (with their Hecke structure) as AH-
modules.

Remark. H;(X/I'; A) and H;(I', A) are isomorphic
except in characteristics 2 and 3. In those char-
acteristics, the equivariant homology spectral se-
quence relates the two, and the classes we compute
below in H;(X/T", A) actually live also in H;(T", A).
We don’t verify this claim here, since our position is
that any Hecke eigenclass, whether in H;(X/I', A)
or in H;(I', A), should have a Galois representation
attached.

The homology for ¢ = 3, together with the ho-
mology of the Borel-Serre boundary of X/I', de-
termines all the homology groups as AH-modules.
Therefore we concentrate on finding H3(X/I', A).

If A=Fisafield, H3(X/I',F) and H*(X/T',F)
are dual to each other as FH-modules, so Con-
jecture 1 applies as well to H3(X/I',F). In fact,
we will be testing the conjecture using Hj; rather
than H3. What is more, by the universal coef-
ficient theorem, we are at the same time testing
the analogous conjecture for p-torsion classes in
the integral homology and cohomology. For in-
stance, H3(X/I', Z) is torsion-free, but the cokernel
of H3(X/I',Z) ® F — H3(X/T',F) is isomorphic to
the torsion in Hy(X/I',Z).

From [Ash et al. 1984, § 3], we recall the following
method of computing H3(I", A) for any prime level
N and trivial coefficient module A. Although the
result is stated there for complex coefficients, it
works just as well for any A.

Let W (N, A) denote the A-module of functions
f:(Z/N)*> — A that satisfy

f(z,y,2) = f(az,ay,az) for a #0in Z/N;
f(mayaz) = _f(_yaxaz)a (21)
f(2,y,2) = [y, 2,2);
f(.’I),y,Z)—i-f(—y,.’I)—y,Z)+f(y—.’L‘,—$,Z) =0.

The module W (N, A) is isomorphic to Hs(X/T", A).
The Hecke action can be computed using the Ash—
Rudolph algorithm for GL(3)-modular symbols, ex-
actly as explained in [Ash et al. 1984, §§4, 6(B)].
Solving the set of linear equations (2.1) for the
unknowns f(z,y, z) is easy using standard Gauss-
ian elimination, once the equations are set up. Let
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G1 C GL(3,Z/N) be generated by the scalars,

0 -1 0 01 0
1 0 0 and 0 0 1
0 0 1 1 0 0

G, acts on (Z/N)?, and the first three equalities
in (2.1) are relations holding within each G;-orbit
separately. We use those three equalities to reduce
the number of unknowns to one for each Gi-orbit,
and we construct a conversion table correlating the
representative of each orbit with any given (z,y, 2),
keeping track of the sign in the second equality. We
then set up the last equality as a system in these
unknowns and solve by row reduction.

Although the system is initially sparse, we didn’t
use special sparse matrix methods. (If we wished
to extend the range of N, these methods might be-
come useful.) Since we are working with A = Z/p,
we used exact integers and didn’t have to worry
about numerical stability.

This part of the calculation is relatively quick,
even for N =~ 200, and even though we have ap-
proximately 5z N? unknowns and 5 N? equations.
The bulk of the time is taken later, in the calcula-
tion of the Hecke operators on the homology.

The sketch just given differs from our actual pro-
cedure in one way. Before solving the initial sys-
tem, we added some equations (2.2) designed to re-
move a portion of the solution space whose Hecke
eigenvalues we knew to be uninteresting. Then,
before computing the Hecke operators, we changed
bases in the solution space so that the matrix rep-
resentation of the Hecke operators would be block
upper triangular, with the first block consisting
again of uninteresting eigenvalues. In the rest of
this section we explain this in more detail.

We denote by Y the Borel-Serre compactifica-
tion of X/T", and by B the boundary of Y. We let
W*(N,A) be the image of H3(B,A) in H;(Y, A),
viewed as a submodule of W (N, A). A description
of W*(N,A) is given in [Ash et al. 1984, Theo-
rem 3.19] in the case A = C, and it works as well
for A = Z/p unless N — 1 is a multiple of p. A
simple modification of that theorem and its proof!
leads to the following construction.

1'We note here an error in the proof of Theorem 3.19 in [Ash et
al. 1984]. On p. 422, f’ should be defined by the same formula
as f' except with P> replaced by !Ps. In the third paragraph on
that page, v(m) should equal 1, not 3. This error does not affect
the result, which is correctly stated in the theorem.

Let V(N) denote the Z-module of functions & :
(Z/N)? — Z that satisfy

O(z,y) = ®(azx, ay) for a # 0 in Z/N;
®(1,0) = 0;

O(z,y) = ®(—,y);

P(z,y) = —(y, 7);

P(z,y) + P(-y,x —y) + Py —z,—z) =0

Given @ in V(N), we define a® € W(N,Z/p)
and f® € W(N,Z/p) as follows. Let D denote the
greatest common divisor of the elements ®(z,y) +
®(y,z) + ®(z,x), where z,y,z range over Z/N,
with zyz # 0. (It can be shown that D = 1 when-
ever N — 1 is prime to p.) If zyz # 0, we set
a®(z,y, z) equal to the reduction modulo p of

(®(z,y) + 2(y, 2) + ®(2,2))/D;
if not, we set a®(z,y,z) = 0. We define S by

Be(z,y,2) =0  ifzyz #0;
Be(0,y,2) = 2(y,2);
Be(z,y,0) = (z,y);
BP(z,0,z) = &(z,z).

Then W*(N,Z/p) consists of the span of the im-
ages of a and (3.

As explained in [Ash and Stevens 1986], W*(N,
Z/p) is a Hecke submodule of W (N, Z/p), and the
Hecke eigenvalues can be written in terms of Hecke
eigenvalues of classical holomorphic modular forms
of weight 2 (corresponding to the ®’s). Since Con-
jecture 1 holds in the classical case, when n = 2,
we conclude that it holds also for the eigenclasses
in W*(N,Z/p). Hence we call these eigenclasses
uninteresting (for our present purposes).

We can construct a complement to the image of
B in W(N,Z/p) by imposing on W(N,Z/p) the
further conditions

f('/’v7y7z) :0

These are the extra equations alluded to above, the
ones we use before beginning Gaussian elimination.
They simply set some of our variables equal to 0.
We take them into account in the programs by
throwing out the corresponding variables, taking
care when setting up the third set of equalities in
(2.1) to replace by 0 any term of the form f(x,y, z)
if xyz = 0.

if xyz = 0. (2.2)
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We could try to construct a complement to the p (characteristic)
image of o as in [Ash et al. 1984], by requiring N 2 3 5 7 11 13 17 19 23
> f(z,y,2) = 0 for all z,y. However, these are 29 1
O(N?) additional nonsparse equations, and they 37 1
are not respected by the Hecke operators. It is far 41 1
more efficient and “Hecke-equivariant” to deal with 43 1
the image of « in the following way. *53 2 2 2 2 2 2 2 2 2
If h(&,m, C) is any function of three variables, let 59 1
Ach(E, C) = h(E+1,7,C) — h(¢, 7, C). Define A,, 6l | 2 222 2 2 2 2 2
A, similarly. After we solve equations (2.1)—(2.2), 67 2
getting a basis for the solution space W', we im- 7l 2
pose the linear conditions A A A, f(&,1,() =0 *;g g 9 9 9 9 9 9 9 9
for some values of &,n,(. These conditions for all 83 1
1 <&mn,¢ < 3(N —1) cut out a linear subspace 489 3 9 92 9 9 9 9 9 9
of f’s that contains the image of . In practice, 97 3
for N < 251, using these conditions just for all 101 4
1 < &n,¢ < 8 gave a basis for exactly the im- 103 2
age of a. (Because of the first condition, these 107 5
are only 64 additional equations.) We then ex- 109 6
tended this to a basis for W’ by randomly adjoin- 113 6
ing dim W’'—dim Im « elements from the previously }g; g 2
found basis of W', testing for linear independence, 137 -
and repeating as needed. 139 6
With respect to this new basis, we computed 149 10
the Hecke operators T'(1,1) and T'(,2) for [ # N in 151 7 92
exactly the way explained in [Ash et al. 1984]. The 157 6 2
matrix of T'(1, k) with respect to this new basis was 163 8 2
in upper triangular block form, since we arranged 167 6 2
a in such a way that T'(l,k) would preserve its 173 9
image. By focussing on the interesting diagonal 179 9
block, we got the matrix for 7°(l, k) acting on the }S} g )
quotient space of W that has the interesting Hecke 103 1 6
eigenvalues. We call this quotient space W9, for 197 14 4
quasicuspidal. It is isomorphic as a Hecke module 199 8
to the quotient W/W*. (If our coefficients had 211 15 6 2
been C as opposed to Z/p, then W/W* would have %223 12 2 2 2 2 2 2 2 2
been dual to the cuspidal cohomology of I'; hence 227 13 4 - - - - =
our terminology.) 229 15 2 - - = = =
Our computer output consists of the Hecke ma- 233 15 10 - - - - =
trices on a fixed basis of W. The advantage of 239 11 - - - - =
splitting off W4° is that W* is generally quite big, 241 134 I
. 251 77 2 - - - - -
whereas W9 is usually much smaller.

TABLE1. Dimension D(N,p) of the quasicuspidal

cohomology of I'y(N) with coefficients in Fy,, for
3. COHOMOLOGY RESULTS. CONSISTENCY TESTS prime N < 251 and p < 23. Blank entries and

omitted values of N indicate that D(N,p) = 0.

O Its fall into t ts. First -
U TESWS 1all mbo BWO parss 1S, we com A dash indicates that the calculation was not per-

puted a basis for W“(N, Z/p) for every prime N‘S formed, and 7?7 indicates that the size of the kernel
223 and every p < 23, and for a few larger pairs overran our program. The starred values of N are
(N,p). Table 1 shows the dimension d(NV,p) of special: see next page. Results for p = 37 and
W (N,Z/p). p = 691 are the same as for p = 11,13, 19.
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It is striking that d(N, p) was always found to be
even, except when p = 2. We have no explanation
for this.

For N = 53, 61, 79 and 89, there exists a pair
of linearly independent classes in H3, (T, C), by
[Ash et al. 1984]. The same is almost certainly
true for N = 223, as our data shows, although the
computation for N = 223 with coefficients in C
has not been performed.

We also computed d(N,37) and d(N,691) for
N < 223. In these cases the result is 0, except
for the five values of N in the previous paragraph,
where it is 2.

The second type of computation is as follows.
Whenever d(N,p) # 0, we computed the Hecke
matrices with respect to our basis of W9 (N, Z/p),
for the Hecke operators 7'(l,1) for all [ < 97 and
T(1,2) for all 1 < 19.

The Hecke operators T'(1,2) for 19 < [ < 97
(I # N) can be deduced from these data as fol-
lows. The automorphism ¢ of GL(3) that sends g
to the conjugate of g~ by diag(N, 1,1) preserves
I' and switches diag(1,1,1) with diag(1,l,1) mod-
ulo scalar matrices. Hence ¢ acts on the homology
of I and intertwines T'({, 1) and T'(l, 2). Therefore,
the Hecke matrices for T'(1, 1) and T'(1,2) have the
same characteristic polynomial. Moreover, from
the Hecke matrices for the first few [, we can in
practice determine a simultaneous Hecke eigenbasis
and then observe the relationship between T'(1,1)
and T'(I,2)—whether they are always equal, or at
least have the same semisimplification, or are trans-
poses of each other. In every case coming from our
data, we can then determine a(l,2) from a(l, 1) for
all ] <97 (I # N).

In Section 4 we supply lists of the computed
Hecke eigenvalues for the quasicuspidal classes we
discuss.

Both parts of the computation were performed
in Fortran on a Sun SPARCstation 2 and other
Suns at the Ohio State University.

Here are some compelling reasons for believing
the output of our computations:

e Every computation was in exact integer arith-
metic or arithmetic mod p.

e Fach algorithm was checked by hand on small
examples.

e FBach matrix whose nullspace we were comput-
ing had many more rows than columns. The

fact that this nullspace was always nonzero is
a very strong indication that the matrices were
set up properly.

e The dimension of the nullspace was always at
least dim Im «, which is the genus of the modu-
lar curve Xo(N) = g(NV).

e The Hecke operators as computed always left
the nullspace stable and acted on it in block
diagonal form, with blocks of sizes g(/N) and
d(N,p) — g(N) with respect to the new basis, as
described near the end of Section 2.

e Spot checking showed that the matrices of the
Hecke operators acting on our new basis com-
muted with one another.

e T(l,1) and T'(I,2) always had the same charac-
teristic polynomial for [ < 19.

e In all cases we attempted, we found Galois rep-
resentations compatible with Conjecture 1 and
the computed values of the Hecke eigenvalues
(Section 4).

e Our tabulation of d(N,p) agrees with the un-
published 1986 computations of Philip Green
for all p < 7 and all N < 223, with the ex-
ception of d(197,5), which we computed to be 4
and Green reported to be 2. We believe Green
made an error in the letter in which he commu-
nicated his results to us.

4. GALOIS REPRESENTATIONS

In this section we describe our efforts to find the
Galois extensions of Q and the representations of
the Galois groups predicted by Conjecture 1. Af-
ter some preliminary comments, we discuss our re-
sults, grouping them by common values of the coef-
ficient characteristic p; see Table 2 for a summary.

As before, let F be a finite field of characteris-
tic p. Suppose we have a representation p as in
Conjecture 1. Then det p(Frob;) ' = [* for each [
outside pN. Let w : Gq — F be the reduction
mod p of the cyclotomic character, which satisfies
w(Frob; ") = [ for each [ not dividing p. If we re-
place p with the twist p’ = w™!p, then p’ takes
values in SL(3,F). (Here we use a special feature
of n = 3.) This change makes it slightly easier
to discuss our results. Thus we can rephrase the
conjecture in terms of this twist and the usual char-
acteristic polynomial:
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N ¢ Imyp f(z) N ¢ Im p’ f(x)
characteristic p = 2 characteristic p = 3
20 2 S 3 +2r+4 61 3 {1} x SL(2) see [Ash et al. 1991]
37 2 S 3 —dx + 2 79 3 {1} x SL(2) see text
41 2 {1} x 127 3 {1} x SL(2) see text
43 2 S 3+ 4x +4 137 3 SL(3)
53 2 S 8 — 2% — 4w+ 8 151 9 C SU(3)
59 2 S 2+ 2z +1
61 2 S 2+z+6 characteristic p = 5
67 4 A 1‘5 + 2373 + 4372 + 6x + 4 163 5 C GL(l) % GL(Z)
71 2 S 1‘3 —10x — 8 197 625
73 4 A v° 4227 + 4o — 20— 4 211 5 Cy R I |
79 2 S x> — Tz +2
83 2 S mi +8x+1 characteristic p = 7
89 2 S x> —Tr+8
97 8  CS0(3) 167 7 SL(3)
3
18} ; c S%(?;) z° — 8z +4 characteristic p = 17
103 4 A o5 4 ot —4a® — 622 — 20418 | 191 17 SL(3)
149 2 S 23 + 13z + 50 .
197 2 g 23 22 e _3 characteristic p = 23
223 2 S 23— 22 -8z +10 157 23 SL(3)
TABLE 2. Summary of the information obtained about Galois representations seemingly attached to quasicus-

pidal cohomology of arithmetic subgroups of SL(3,Z). Each row is devoted to a single Hecke eigenclass; p and
N are as in Table 1, but certain combinations don’t appear here because our Hecke operator programs ran into
machine limitations. The column labeled ¢ gives the number of elements in the field F generated over the prime
field by the Hecke eigenvalues. The next column gives information about the image of p’ (see Conjecture 1’).
The image is predicted to be the whole listed group, unless it is prefixed by C. We use the abbreviations S
for O(3,F3), which is isomorphic to the symmetric group S3, and A for O(3,F4), which is isomorphic to the
alternating group As. (Note that, in characteristic 2, the orthogonal groups are not irreducible.) Cy denotes a
subgroup of the diagonal matrices isomorphic to F; . The last column gives a polynomial f(z) whose splitting

field is the fixed field of the kernel of p'.

Conjecture 1’. Let
(', S) = (T'o(N; 3), So(N;3)).

Let p be a prime and F a finite field of charac-
teristic p. Suppose 3 € H'(I',F) is an eigenclass
for the action of the Hecke algebra H(N), with ei-
genvalues a; = a(l,1) and b, = a(l,2) in F. Then
there exists a semisimple continuous representation
P Gq — SL(3,F), unramified outside pN, such
that

det(X — p'(Frob) ™) = X? —q 7' X2+ 417" X — 1

(4.1)
for all primes | not dividing pN. Furthermore,
p'(c) has eigenvalues 1, —1 and —1.

The rest of this paper involves examples of p’
for Conjecture 1’, with one exception: when p = 3

and N = 127, we do not twist p by the cyclo-
tomic character, but instead work with Conjec-
ture 1. The reason is that, in this case, twisting
would obscure the fact that the field cut out by
the two-dimensional component 7 of p (see discus-
sion preceding (4.2)) is totally real.

Definition. If we have 0 and p’ as in Conjecture 1’
such that condition (4.1) holds for every | < 97 not
dividing pN, we say that p' seems to be attached
to B, or to the corresponding system of Hecke ei-
genvalues {a;, b }. If (4.1) holds for all [ not divid-
ing pN, and if the statement about p’(c) holds, we
shall say p' is attached to B, or to the system of
eigenvalues.

Suppose that p’ is attached to 5. If

X? —aX?+0bX -1



216  Experimental Mathematics, Vol. 1 (1992), No. 3

is the characteristic polynomial of a matrix g, then
X?—bX?%+aX —1 is the characteristic polynomial
of g=!. Now suppose o is either an involution of F
or the identity map, and that a; = o(b;) for all [ not
dividing pN. It follows by the Tchebetarov density
theorem and the Brauer—Nesbitt theorem that p' is
equivalent to (‘o' '); that is, for some invertible
matrix M, we have Mp'(x) = o(p (7)) M for ev-
ery z in Gq. It follows that the nondegenerate
sesquilinear form corresponding to M (bilinear if
o = 1) is preserved by Imp’. The same is true
for o("M), and hence for M + o(*M). If this sum
is nonzero, it is a nonzero symmetric sesquilinear
form preserved by Im p’; if the sum is 0, M itself is
a nondegenerate antisymmetric sesquilinear form
preserved by Im p’. These statements still hold if
char F = 2, but the notions of symmetry and anti-
symmetry coincide.

Thus, if @ = o(b;) for all I not dividing pN,
either p’ is reducible or its image lies in the corre-
sponding unitary or orthogonal group. In the ex-
amples below, wherever we find a p’ that seems to
be attached to 3, it will turn out that a; = o(b;) for
some o (for all the [ for which we have data), and
P will be reducible. We shall comment on several
examples where p’ must be surjective (and hence
irreducible) if it exists, but we do not know how
to look for p’ in those cases, because Im p’ is then
(conjecturally) a very large almost simple group.

If the package of Hecke eigenvalues for 5 were
congruent mod p to another package coming from
a cohomology class 3 for a T of level N (e.g., N =
Np* for some k), and if B were the reduction of a
nontorsion class in the integral cohomology, then
Conjecture 4.1 in [Clozel 1990], applied to the auto-
morphic representation corresponding to 8, would
lead us to include the condition at infinity in Con-
jectures 1 and 1’ (see [Ash 1992a]). In all of the
examples we have calculated, p(c) does possess the
desired eigenvalues. The conjecture for p/(c) has
no content, of course, when p = 2; in these cases,
sometimes c lies in the kernel of p’ and sometimes
it does not.

We now describe our computations in more detail.

Classes in Characteristic p = 2

Here we have many examples. We have looked at
all systems of Hecke eigenvalues occurring for N <
103, and we have done spot-checking for N = 149,

197 and 223, where we looked at all systems that lie
in the prime field. In all these cases, a; = b; for all [
not dividing 2N, so that we may take o =id. (We
do not know whether this is a general rule when
p = 2.) In all these cases, except N = 97 and one
system for N = 101, the field generated by Hecke
eigenvalues is F, or F,, and we have found the
Galois representation that seems to be attached to
each system. When N = 97 or 101, the field gen-
erated by Hecke eigenvalues is Fg, and we haven’t
attempted to find the Galois representation.

As explained above, since a; = b;, the image of
the attached p’ (if it exists) must stabilize a non-
trivial symmetric bilinear form. But in character-
istic 2, the stabilizer of any nontrivial symmetric
bilinear form is reducible. (If the form is nonde-
generate, this can be checked directly. Otherwise,
Im p’ is contained in a parabolic subgroup; since
the representation is semisimple, the image must
be contained in GL(1) x GL(2).)

We ask whether the Galois representations at-
tached to Hecke eigenclasses in characteristic 2 are
always reducible, or even whether a, always equals
b; in these cases. Both conjectures are compatible
with the data in this paper and in [Ash et al. 1984].

Hence we are looking for p’ of the form 7 & ¥,
where 7 is two-dimensional and yx is a character.
In all our examples, the data forces x = 1, so that
7 maps to the special linear group. We end up
then searching for a semisimple, continuous repre-
sentation 7 : Gq — SL(2,F), unramified outside
2N and such that

a

Trw(Frob)) ™' = — — 1

7 for [ #£2,N. (4.2)

Now SL(2,F,) is isomorphic to the symmetric
group S3, and SL(2, F,) is isomorphic to the alter-
nating group As. It is easy to see that, in all but
one of our cases, 7 is surjective. (In the exceptional
case, we have N = 41, all the a; = 1, and = is the
trivial representation.) Finding 7 is equivalent to
finding the fixed field M of ker 7; this M will be an
SL(2, F)-extension of Q, unramified outside 2N

When F = F,, M will be the splitting field of
an irreducible cubic polynomial over Q with non-
square discriminant divisible by at most 2 and N.
We searched for the polynomial either by look-
ing in the tables of [Delone and Faddeev 1964],
by looking in tables sent to us by Nicole Schulte
(unpublished), or by searching the space of cubics
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using Mathematica on a Macintosh SE/30. When
F = F,, M will be the splitting field of an ir-
reducible quintic polynomial over Q with square
discriminant divisible by at most 2 and N. We
searched for the polynomial either by looking in the
tables of [Buhler 1978] or by searching the space of
quintics using Mathematica on a Sun SPARCsta-
tion 2 at the Ohio State University. With a poly-
nomial in hand, we tested the conjecture by com-
puting the splitting of prime ideals in the splitting
field of the polynomial. We continued the search
until we found a polynomial that seemed to satisfy
the conjecture. Usually it was the first polynomial
we tried.

When F = F4, there is an additional check to
perform: we can distinguish between the two con-
jugacy classes of elements of order 5 in Aj, using
a simple test involving the discriminant. We did
the test using Mathematica on a Macintosh SE/30.
Since the computation becomes rather lengthy as
[ increases, we only checked the first five values
of [ in each example for which 7(Frob;) has order
5. This gave four independent checks, and they
always worked correctly.

We give one example of each type.

e N = 29: This is the lowest level with nontriv-
ial quasicuspidal cohomology, and the quasicuspi-
dal cohomology group is one-dimensional. We are
looking for a semisimple, continuous representation
7 : Gq — SL(2,F,), unramified outside 2 - 29 and
such that

Tr w(Frob;) ' = % —1l=aq+1

for | # 2,29. The values of a; are

ay =0 forl=3,5,11,13,31,43,47,53,79;
o =1 forl=2717,19,23,37,41,59,
61,67,71,73,83,89,97.

So we need to have Trm(Frob;)™* = 0 if ¢, = 1,
and Tr7(Frob,) ! =1 if ¢, = 0.

We list the six elements in SL(2,F2) and find
that we need 7(Frob;) to have order 1 or 2ifa; = 1,
and order 3 if ¢; = 0. Since our list contains both
0 and 1 as values for a;, we know the image of 7
must be cyclic of order 3 or all of SL(2,F,). It’s
easy to find the cyclic extensions of order 3 of Q
that are unramified outside 2 - 29 and to see that
they don’t fit the data.

Hence we are looking for a degree-6 extension
K of Q that is the splitting field of some irre-
ducible cubic f(x) with rational coefficients, which
factors mod [ if ¢; = 1 and stays irreducible mod
if a; = 0. We can find K by using class field theory
on Q(vd), where d = (—1)#2°29¢, trying various
values of a,b,c = 0,1. Or, more easily, we search
the tables of cubics x® + bz + ¢ with integer b, ¢ as
found in [Delone and Faddeev 1964]. We find that
K is uniquely determined by our requirements and
happens to be the splitting field of 23 + 2z + 4.

e N = 103: In this case, the cohomology is two-
dimensional and the Hecke eigenvalues lie in F,.
We obtain a pair of conjugate Hecke eigenclasses
and study one of them. We are looking for a semi-
simple, continuous representation

p': Gq — SL(3,Fy),
unramified outside 2 - 103 and such that

rI‘I‘pI(FI'Obl)il = %

for each [ # 2,103. The values of a,; are

a=0 forl=3,7,31,37,43,67;

a=1 forl=11,23,29,41,89,97;

ap =73 forl=19,53,61,83;

ay =7 forl=2,513,17,47,59,71,73,79

:al

(where j and j' denote the roots of x* + x + 1).
Since the image of p’ preserves a nonzero sym-
metric bilinear form over Fy, it must lie in

[GL(2,F4) x GL(1,F4)] N SL(3,Fy).

This is isomorphic to SL(2, F4) x GL(1, F4) by the
map (M, ) = (AM, ). Write p' 2w x. If x # 1,
the kernel of x has as fixed field L the unique cyclic
cubic extension of Q unramified outside 2 - 103.
From [Gras 1975], we see that L is the splitting
field of 23 + 2? — 34x — 61.

We list the characteristic polynomials of the ele-
ments of SL(3,F,) and find that we need p’(Frob)
to have order 3 if a; = 0; 1 or 2 if @; = 1; and 5 if
a; = j,7'. From our list of Hecke eigenvalues, we
see that x(Frobs) must equal 1. Since 5 does not
split in L, this implies that the image of p’ must lie
in SL(2,F4) x {I}. It is easy to see that p’ must be
surjective. So we are looking for an As-extension K
of Q, the splitting field of some quintic, unramified
outside 2 - 103, and such that the order of Frob; in
SL(2,F,4) depends on a; in the way just specified.



218  Experimental Mathematics, Vol. 1 (1992), No. 3

We searched the space of quintics f(z) = z° 4+
ax* + bx® + cx? +dr+e fora=0,1,2 and —20 <
b,c,d, e < 20 using Mathematica, looking for those
with square discriminant divisible by at most 2 and
103. After discarding those whose discriminants
were divisible by primes other than 2 and 103, we
still had several candidates. One of them, namely
f(z) = 2° + z* — 423 — 62? — 22 + 18, matched our
data: it factors mod [ into two linear terms and
one cubic term when a; = 0, it factors mod [ into
one linear and two quadratic terms when a; = 1,
and it stays irreducible mod [ when a; = j or j'.

We were also able to discriminate between the
two conjugacy classes of elements of order 5 in Ay
and to check that they matched up properly with
j versus j'. The method is attributed to Serre by
Buhler [Buhler 1974]. Let D be the discriminant
of f, which equals 2° - 1032. Choose a square root
6 of D by fixing an ordering of the roots ay, ..., as
of f and setting § = [[,_; (i — ;). If z = Frob; in
Gal(K/Q) has order 5, compute

d, = H(zial —Za;) mod I.

1<j

If z induces a permutation of the roots conjugate
to (12345), this number d; is congruent to § mod I;
if z is in the other conjugacy class, d; = —d mod .

We chose § to be the positive square root of D.
One can’t a priori distinguish j from j’, so we used
Frobs to fix the correspondence so that j' occurred
when d; = 6 mod [. We then checked the consis-
tency for the next four I’s, namely [ = 11,13,17,19:
a;, = j when d; = 6 mod [, and a; = j when
d; = —60 mod [.

Classes in Characteristic p = 3

e N = 127. We concentrate on this case, which
among the examples we looked at involved the most
intensive computing.

The quasicuspidal cohomology has dimension 2,
but the Hecke operators do not act semisimply on
it. Thus we have just one package of Hecke eigen-
values, lying in Fj:

a =0 forl=2,513,47,53,59,71,79,97,101;

a =1 forl=17,19,31,41,43,67,73,103;

a =2 forl=3,711,23,29,37,61,83,89,107,
109, 113.

Here a; = b;. We carried the computations be-
yond [ = 97 because of our special interest in this
example.

Considerations such as those in [Ash et al. 1991,
§63.1-3.3] (the role played there by Q(y/—3) is
played here by F3, since these are the fields of def-
inition of the Hecke eigenvalues in the respective
papers) tell us that the nonzero bilinear form fixed
by the image of p is alternating, and hence that p
is reducible, of the form 7 & x. As mentioned at
the beginning of this section, we work here with
the untwisted p, so det p is the cube of the cyclo-
tomic character w mod 3, that is, det p = w. Thus,
7 takes values in SL(2,F3), since it fixes a non-
degenerate alternating form, and x = w. In sum,
we are looking for a semisimple, continuous repre-
sentation 7 : Gq — SL(2,F3), unramified outside
3127 and such that

TI"]I'(FI'Obl)_l =a; — l

for all | # 3,127.

It’s not hard to see that if 7 exists it must be sur-
jective. Thus, finding 7 is equivalent to finding the
fixed field M of ker 7; this M will be an SL(2, F3)-
extension of Q, unramified outside 3-127. We have
indeed obtained an M that seems to be attached
to the given package of Hecke eigenvalues, as we
will explain shortly. As usual, the extension is
uniquely determined, even highly overdetermined,
by the data.

Remarks. (a) M is totally real, and the inertia at
127 has order 3. As mentioned before, these facts
are consonant with Conjecture 4.1 in [Clozel 1990].
So we wonder if there is a characteristic 0 object
whose Hecke eigenvalues are congruent mod 3 to
those we are studying here.

(b) As in [Ash et al. 1991], we find a posteriori
that there should be a congruence of Hecke eigen-
values mod 3 between our torsion class of level 127
and an Fisenstein series built from a Maass form on
GL(2). We see no way of predicting its existence
a priori, and no way of verifying Conjecture 1 for
this class at all values of [.

We follow the method of [Ash et al. 1991], explain-
ing where our current task became considerably
more difficult because of large class numbers.
There is a filtration of SL(2, F3) with successive
quotients Cy, Cy X Cy and C5. So if 7 exists, and
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if we let M be the fixed field of ker m, we obtain a
diagram of fields

M

| o

L

| coxcs
K

| &

Q

where K, L and M should be Galois over Q with
Galois groups C3, A, and SL(2,F3), respectively.
All the fields should be unramified outside 3 and
127 (we will see below that M /K is also unramified
at 127).

We found K, L and M in succession. We began
by looking for a Galois cubic extension K of Q, un-
ramified outside 3 - 127 and such that the splitting
of primes in K is compatible with the conjecture.
There are four Galois cubic fields unramified out-
side 3 - 127: those inside the 9th and 127th roots
of unity, and two fields of conductor 9-127. As in
[Ash et al. 1991], one checks that the K we want is
determined uniquely by the Hecke data. We have
K = Q(#), where 6 is a root of the polynomial
6® — 38160 — 127 = 0.

Let o be a generator of Gal K/Q. By [Gras
1975], the ring of integers O is Z[1, 0, 07], the class
number of K is 12, and the fundamental units are
€ and €7, where € = 19 + 6 4+ 26°. One checks that
L3 = (3,1—0) and £27 = () are the unique prime
ideals of O over 3 and 127, respectively.

By studying the group structure of SL(2,Fs3),
one can show for primes [ # 3,127 that, if 7 exists,
the way () splits in L and in M is determined by
the trace Trm(Frob;) ! = a; — [ and by the way [
splits in K. The precise results are summarized in
Table 3.

Trr(Frob))™ in K inL inM
-1 1 4 8
-1 3 12 24
0 3 6 6
1 1 4 4
1 3 12 12

TABLE3. Number of primes in the factorization of
(1) over the fields K, L, M (see text for notation).

We now look for L. Since L/K is a Cy x Cy
Galois extension with K/Q cubic Galois and L/Q
nonabelian, we must have

L= L, = K(/&, Va7, Va7)

for some squarefree © € Oy such that the norm
Nk ,q(x) is a square in Z. To study the ramifica-
tion in L/K, we cannot proceed as in [Ash et al.
1991], since K has class number greater than 1.
Instead, we use a lemma, whose proof we omit.

Lemma. Let E/F be a quadratic extension of num-
ber fields with E = F(\/€) for & € F. Iflis a prime
ideal of O not dividing 2, then E/F is unramified
over | if and only if the prime ideal factorization of
the principal ideal (§) C Op contains [ to an even
power. E/F is unramified at the primes over 2 if
and only if € is the product of a nonzero square in
F and an element of 1 +40p.

If L = L, exists, the lemma implies that the princi-
pal ideal () is of the form £4€7,.22, where i,j > 0
and 2 is an ideal of Qg not divisible by £3 or £57.
Since Nk q(r) must be a square, i and j must
be even. Furthermore, we are free to alter x by
squares in K. Dividing by 6? as often as necessary,
we may assume j = 0. Dividing by 9 as often as
necessary, we may assume ¢ = 0, 2 or 4. Dividing
by other squares, we may assume 2 runs through a
set of representatives of the ideal class group of O,
which we may take to be prime to 2 -3 - 127.

So, to find L, it suffices to enumerate the ideals

£L0? (4.3)

that are principal, where ¢ = 0,2,4 and 2 runs
through a set of representatives of the ideal class
group of O. It suffices to look at only one ideal of
this form in a given Gal(K/Q)-orbit. Let y € Ok
be a generator of the ideal. Consider only the cases
where y is not a square in Og, but where the norm
Nk/q(y) is a square in Z. Let z = &k (e7)r2y,
where ky, ks run through the set {0,1}. Ignore the
z’s that are not in ((Ox/40k)*)?. Then if our L
exists, it is of the form L = L, for one of the = we
have just enumerated.

To enumerate the ideals of the form (4.3), one
must understand the ideal class group of K. We
factored many principal ideals (a — bf) into primes
of Ok in order to get relations in the class group.
Since we already knew the class number, it was
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straightforward to show that the class group is Cg x
C, (generated by the ideals (11, 2+6) and (19, 540)
of orders 6 and 2), and to find where a given prime
£ of Ok lies in the group.

To find y, one must be able to find elements of
given norm in a given ideal. We used the very fast
algorithm in [Pohst and Zassenhaus 1989, pp. 338
343].

The computations described in the last few para-
graphs were done in TI Scheme on the second au-
thor’s Compaq 80286-based machine. From this
point on, however, we worked with Mathematica
on a SPARCstation 1+ at Oklahoma State Uni-
versity.

For each x enumerated above, we computed the
minimal polynomial f, for the primitive element
VZ + V27 of L,/Q. We factored f, mod [ for
all [ for which we had Hecke data; as long as [ did
not divide the discriminant of f,, the factorization
mod [ of the polynomial determined how the ideal
(1) split in L,. Comparing the results with the
table of splitting behavior given above, we found
there was exactly one field L = L, that met all our
conditions, and that this L was highly overdeter-
mined by the Hecke data. Here x = 22 — 260 — 0°;
we have (z) = (19,2 + 0)?, the square of a prime
of K. Note that L/K is unramified outside 3; in
particular, it is unramified over 2 because x is the
square of 1 + 6 + 67 in (Ox/40k)*.

We remark that the discriminant of f, (for the
specific x above) was divisible by 11, 13 and 19 and
by no other primes [ < 113, [ # 3. Replacing the
primitive element \/z + /2% with /= + kv/z° for
various k € Z, we found primitive elements of L/Q
whose minimal polynomials did not have discrimi-
nant divisible by 11 or 19; we could then check that
L matched our Hecke data for 11 and 19. Also, L is
the splitting field over Q of g(v) = v*—33v*—19v+
195, where v = /z + /27 + V277 € O is a root
of g(v). The discriminant of g(v) is not divisible
by 13, and ¢ splits into linear factors mod 13; this
implies that 13 is unramified and splits completely
in L, as predicted by our Hecke data.

Next, we looked for a quadratic extension M =
L(¢") for ¢’ € Oy, with M /L unramified outside 3
and such that Gal(M/Q) = SL(2,F;). A theorem
of Serre [1984] gives a criterion for an A-extension
L of Q to be liftable to an SL(2, F3)-extension. A
theorem of Crespo [1989] says that if L is liftable,
all the extensions must be of the form L(1/gd),

where ¢ € Q and ¢ is an element of L that can
be computed explicitly. In our case, we found that
L does lift to SL(2,F;)-extensions of Q, and we
computed § using Crespo’s procedure.

The problem was now to choose g such that
M = L(\/qd) matched our Hecke data. We found
that the norm Ny ,q(8) = 2243613619'2127%. By
the lemma above, M can be unramified outside 3
only if |¢| is a squarefree product of primes from
the set {2, 3, 13,19, 127}. If any prime of L over 13
occurred to an odd power in the ideal factorization
of (), all the primes over 13 would occur in ()
to an odd power (since M/Q is Galois). Since 13
splits completely in L, this would imply 13'% di-
vides Ny, /q(0), a contradiction. This proves that
L(+/$) is unramified over 13. So M = L(,/qd) can
be unramified outside 3 only if

q=(—1)"2"3%19"127%

for some 41, ...,i5 € {0,1}.

For the 32 values of ¢ in the preceding paragraph,
we found the minimal polynomial of 1/qd over Q
and factored it mod [ (for [ not dividing the polyno-
mial’s discriminant). We found that only for the
case ¢ = 2-3-19 = 114 did M = L(1/qd) seem
to match our Hecke data. For this reason we set
0’ =114, M = L(d") from now on. Let fs be the
minimal polynomial of ¢’ over Q.

Of the primes [ < 113, # 3, only 2, 5, 13, 17 and
19 divided the discriminant of f5. The cases [ = 5,
13, 17, 19 are handled as follows. Since 5 is inert
in K, it must split into four or eight primes of M. If
it split into eight primes, fs5 would factor over Z/5
as a product of (not necessarily distinct) cubics;
but instead, it factors into sextics over Z/5. Hence
5 splits into four primes in M, as predicted by the
Hecke data. The cases of 13 and 17 are handled
similarly. The number §'/19% is an integer of L
whose minimal polynomial has discriminant prime
to 19; this allowed us to check that M matched our
Hecke data at 19.

To show that 2 splits in M/Q as predicted by
the Hecke data, we proceed as follows. 2 is inert in
K and splits into four primes ¥;,...,%, in L. We
must show that M/L is unramified at 2 and that
the ¥, do not split in M. (This last requirement
comes from Table 3, since TrFrob,' = a, — 2 =
1.) First, 16’ is an integer of L; we may write
M = L(4/d§/4) to check the ramification of M
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24 — 2970885622 + 367756718678640t2° — 2509261723108363425984¢'8 + 10493414013632298034200374016¢°
— 28231091051345399970505044540776448t* + 49826431592977952027309794944666858749952¢ 12
— 57718043555211781748624179267556096459760943104¢°
+ 43208960836690540832718220117973653453008401011507200¢%
— 20229808135005646521374508186867852379514853356997205819392¢5
+ 55726545933899163938903453377655727250203514155458501752022630404*
— 796761793283233463108285449803241699225351432742561065212688050683904¢>
+ 42602857864455392953080378726862429471523771128678783018077832852575092736

Minimal polynomial of a generator of the extension M/Q that seems to be attached to our cohomology class

forp =3, N =127.

at 2. Second, as above, L is the splitting field over
Q of g(v) = v* — 3302 — 19v + 195. There are four
embeddings of L into Q,, the algebraic closure of
the local field Q; they are given by mapping the
roots of g in L to the roots of g in Q, in a Galois-
compatible way. Let Ay,...,A; C Q, be the im-
ages of these embeddings. We explicitly found all
four A;, representing elements of Q, as polynomi-
als with coefficients in Z/2'Z for sufficiently large 4
(we used i = 5). We showed that the image of
20’ in Ay was 0 mod 16, and that its image in A;
(j = 2,3,4) was a square and a unit in Oy, /40,,.
A norm check shows that (14') is divisible by ex-
actly the fourth power of ¥y and by no other T;. A
local version of the lemma above then shows that
M /L is unramified at 2. We also showed that 16" is
not a square mod 80y, in 04, for j = 2,3, 4, which
implies that the corresponding ¥; (and hence ¥y,
by Galois symmetry) remain inert in M.

This proves that there is a unique SL(2,F;)-
extension M/Q that is unramified outside 3 and
127 and seems to be attached to our Hecke data
for all primes [ < 113, ] # 3. A primitive element
for this extension is V4’ , whose minimal polyno-
mial over Q is given in the sidebar above.

A Sturm sequence calculation shows M is totally
real. Also, 6% divides ¢'; this means Np,,q(0'/6%) is
prime to 127, implying M /L is unramified at 127.
Hence the inertia group of a prime of M over 127
is a 3-group.

e N =T79. We have also found the SL(2,Fj)-
extension of Q that seems to be attached to the
reduction mod 3 of the nontorsion class of level 79,
a task left undone in [Ash et al. 1991]. It is gener-
ated by the element ¢’ whose minimal polynomial
over Q is given in the sidebar below.

We have also checked that the extension found
in [Ash et al. 1991] for the class mod 3 of level 61
fits the conjecture for all [ < 97. (The data used
in [Ash et al. 1991] only went up through [ < 29.)

Another interesting example for p = 3 is discussed
at the end of this section.

Classes in Characteristic p = 5

e N = 211. This was the only example we treated.
The cohomology is two-dimensional, but the Hecke
operators do not act semisimply. For the unique

24 — 585282103380t22 + 142731308557048753093500t2° — 19024710548794458071527989093462840t8
+ 1533435092622632409189133072771812461476126230t -6 — 78248926098 7564269959346 7756 7978420923190921 3573055333604+
+ 2574967972111922063830119637343308142744649083165130411563837409900¢ 12
— 54591958847150480063266262701963853654370309889327462424415478598163511436520¢°
+ 731025140388824047905475632040397574593692705325644284009329098911304616211947806961265t
— 590655677286632381959881126553999613264773206030375223307455876066140466744817245052708201 14440605
+ 26057449566611087017311340468163132961306213067432065252100488667444523161199799085253912812377706454918160£*
— 47927005108884046145290775816310133341971359727388968108241884027811968893343835675390502. . .

974510245280538620760600320¢>

+ 20349383950397218475731573328284923364215794458810741531181581666490100224575160506197783.. . .

5906691614496073810999490796097536

Minimal polynomial of a generator of the extension of Q that seems to be attached to the reduction modulo 3

of the cohomology class for N = 79 in [Ash et al. 1991].
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Hecke eigenclass we get this table of Hecke eigen-
values for a; = b;:

a;=1 forl=5,19,29,59,79,89;

a; =2 forl=2,717,37,47,67,97;

a; =3 forl=3,11,13,23,31,41,43,53,
61,71,73,83.

In this case, we find that the image of p’ must be di-
agonal. In fact, by factoring the Hecke polynomial
X3 —aql ' X%+ aq)l7' X — 1, we see that p’ must be
isomorphic to the representation 1®w®w?, where w
is the cyclotomic character of Gal(Q((s)/Q). This
fits our data for all [ < 97.

The other example feasible to check would be N =
163, where we expect p’ to be reducible and to give
an icosahedral representation of Gq.

Examples Where p’ Will Have Maximal Image

Here we have four examples; in each case, the co-
homology is two-dimensional, and a; # b; in gen-
eral. We take each example in turn, and explain
why p’ should have maximal image SL(3,F,). The
first case is the model, and the others differ only
slightly. Let g; = p'(Frob;)~*.

e p =3, N = 137. According to our data, g,
has irreducible characteristic polynomial over Fj.
Hence the order of g, divides 1 + p + p* = 13, the
number of elements in F;s that have norm 1; this
means g, has order 13. Now [Mitchell 1911] (see
also [Bloom 1967]) gives the complete classifica-
tion of subgroups of PSL(3,F) for any finite field
F of characteristic # 2, and moreover PSL(3,F,) =
SL(3,F,) whenever p # 1 (mod 3). It follows from
the classification that the only proper subgroup of
PSL(3,F3) with order divisible by 13 is the nor-
malizer of a nonsplit Cartan, which is a subgroup
of order 39. So to show p’ has maximal image, it
suffices to exhibit an [ for which g, has order not a
divisor of 39. The characteristic polynomial of g,
splits over F3 into a linear and a quadratic factor,
so this element has order 4 or 8, and we are done.

e p =23, N = 157. Since g3 has irreducible char-
acteristic polynomial z* + 1422 + 19z — 1, its order
divides 14+23+232 = 7-79. If p’ does not have max-
imal image, it follows from [Mitchell 1911] that the
image must lie either in the normalizer of a non-
split Cartan, a group of order 3 -7 -79, or in a

p=3 p=7 p=17 p=23
T2 (o) (03) (i) i)
722 (1) (s Gil) (51
TG0 (1) (s (w) (61
62 (1) (e G (775)
6.0 (1) (o) (1) (1)
762 (2) (2 (5% (20)
@D G Gs) (53 (5
T2 (o) (1) () (o)
rany 1) G2 (5% (57%)
T112) (o) (2) (2u) (o)
T3 (1) (1) Goua) G%)
T13.2) (1) (os) (h3) (547)
Ta7.1) (o) (o) (s1) ()
Ta7,2) (5o) (oe) (58 (a1)
79,1 (o0) (oa) (ia) (55
719,2) (57) (o) (5%) (o)
73,1 (52) (o) (o 0) (51)

TABLE4. Hecke matrices for p’ that have maximal

image SL(3,F,).

certain subgroup of order 168. But g3 is conjugate
over Fy3 to its rational canonical form

0 0 1
gg=11 0 =19
0 1 -14

We check that (g5)” # I, which rules out the group
of order 168. Next, the characteristic polynomial
of gy splits as (z + 5)(z* + 192z + 9). Since —5 is
of order 11 (mod 23), g» cannot lie in a group of
order 3-7-79.

e p=7T7, N = 167. Since g3 has irreducible charac-
teristic polynomial, its order is 19 or 57. As before,
if the image of p’ in PSL(3, F;) were not maximal,
it would be contained in the normalizer N of a non-
split Cartan, a group of order 3-19. The image of p’
in SL(3, F7) would be contained in the lift of N to
SL, a group of order 3%-19. On the other hand, the
characteristic polynomial of g, splits into a linear
and a quadratic factor, and calculations like those
above show g, must have even order.
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e p=17, N = 191. This is like the first two cases:
g» has irreducible characteristic polynomial, and g3
splits into a linear and a quadratic factor.

We have few ideas on how to find p’. We list in
Table 4 the Hecke matrices for [ < 23. (We have
on file all the T'(1,1)’s for [ < 97.)
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