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We minimize a discrete version of the squared mean curvature

integral for polyhedral surfaces in three-space, using Brakke’s

Surface Evolver [Brakke 1992]. Our experimental results sup-

port the conjecture that the smooth minimizers exist for each

genus and are stereographic projections of certain minimal sur-

faces in the three-sphere.

1. INTRODUCTIONElastic surfaces, such as biological membranes, re-silient metal plates, and interfaces between poly-mers, are of fundamental interest in science. (See,for example, [Seifert 1991] and references therein.)A simple geometric model, proposed around 1810by Sophie Germain, sets the elastic energy E(S)of a surface S equal to the integral with respectto surface area of an even, symmetric function ofthe principal curvatures of S. The surface S maybe embedded or immersed in three-space (typicallyR3, but possibly another three-manifold of con-stant curvature, such as S3 or H3), perhaps withvolume or boundary constraints. We shall assumethat the integrand is quadratic and therefore of theform a+ bH2+ cG, where H is the mean curvatureand G the Gaussian curvature. Thus the energy isgiven by
E(S) = ZS(a+ bH2 + cG) dA:

Physically, this formula is called Hooke's law; band c here are \bending" energies, while a is asurface tension or \stretching" energy. (When thetwo sides of the elastic surface are distinguished, asin a polymer interface, our assumption of evennessmay not be satis�ed. This case can be handled byreplacing H with H �H0 in Hooke's law.)
c
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An equilibrium elastic surface S constitutes acritical point for E(S), subject to the constraintsof the problem. What this means is that, for anyvariation St of S = S0, we haveddt ����t=0E(St) = 0:Assuming S is smooth enough, this implies that Ssatis�es the Euler{Lagrange equation�H + 2(H2 � (G� a=b))H = p;where � is the Laplace{Beltrami operator of S andp is a constant, called pressure, which vanishes inthe absence of a volume constraint. If we recallthat H = � 12hN;�Xi, where X is the position ofthe surface S and N is its unit normal, we see thatthis is a fourth-order, nonlinear, elliptic partial dif-ferential equation. If the surface S has boundary,we should impose a pair of boundary conditions,such as the position of the boundary curve to-gether with the surface normal vector along thiscurve. (In the case of elastic plates, this is com-monly called a clamped boundary. At a hingedboundary, the curvature of S perpendicular to theboundary is speci�ed instead. A third possibilityis to specify H along the boundary; this is an av-erage of the clamped and hinged cases.) We shallassume instead that S is a closed surface, with noboundary.Observe that the coe�cient c of G does not enterinto the Euler{Lagrange equation. Poisson noticedthis around 1815, decades before Gauss and Bon-net showed that the third term in E(S) is actuallya topological constant:ZS GdA = 2��(S);where �(S) is the Euler characteristic of S. Thusit su�ces to consider energies of the formE(S) = ZS(a+ bH2) dA:If b = 0, the energy is just a multiple of sur-face area, for which the Euler{Lagrange equationreduces to the condition of constant mean curva-ture. We are not interested in this degenerate case,so we assume that b > 0 and, in fact, by scaling,that b = 1. We also assume that a is equal tothe curvature of the ambient three-manifold (soa = 1, 0, �1 if we are working in S3, R3, H3).

The energy is commonly denoted W in this case.If the ambient space is Euclidean|the case thathas physical signi�cance|this choice of a meansthere is no surface tension. The problem is thenclearly scale-invariant: the energy is unchanged un-der Euclidean similarities. Thus, to model a physi-cal pressure across the surface, we would now haveto impose not just a volume constraint, but a con-straint on the ratio between volume and surfacearea. We will assume there is no such constraint.It is a remarkable fact that when a is equal tothe ambient curvature, as we have assumed, the en-ergy W is conformally invariant, that is, W (S) =W (�(S)) for any conformal transformation � of theambient space. In fact, if Ŝ is a surface in S3 andS is its stereographic projection to R3 (from a polenot on Ŝ), we �nd that the two elastic energiesW (Ŝ) = ZŜ(1 +H2) dA;computed by using the H and dA induced from S3,and W (S) = ZSH2 dA;computed in Euclidean space, are equal. We callthe inverse stereographic projection map from R3to S3 conformal compacti�cation, because the sur-face S may have ends at in�nity that get compact-i�ed in Ŝ. In this case, which occurs when the poleof projection lies on Ŝ, the elastic energy of Ŝ ex-ceeds that of S by an amount equal to 4�k, wherek is the number of ends of S.Thus the symmetry group for W is the groupof M�obius (conformal) transformations. From theviewpoint of R3[f1g, this is the group generatedby Euclidean similarities and the inversion I(x) =x=jxj2 in the unit sphere.Blaschke and Thomsen [Thomsen 1924] discov-ered in the 1920s that W (S) can also be computed(up to a constant from the Gauss{Bonnet formula)as the area of the image of S under the conformalGauss map. This map assigns to each point of Sthe oriented round two-sphere tangent to S andwith the same mean curvature as S at that point.(The space of such two-spheres is naturally identi-�ed with the Lorentz four-sphere S3;1 in Minkowski�ve-space R4;1; coordinates in this �ve-space areDarboux's pentaspherical coordinates for the two-sphere in question [Darboux 1887]. Note that the
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M�obius group acts on S3;1 via its fundamental lin-ear representation as O+(4; 1).)Thus minimal surfaces in S3;1 that happen tobe conformal Gauss images of surfaces in S3 yieldcritical surfaces for W . But the conformal Gaussimage of a minimal surface S in S3 is simply thepolar surface S�, which is again minimal in S3 (andminimal in S3;1), so any such S is W -critical; sinceH � 0, we see that W (S) is the area of S. Theproblem of �nding global solutions to this minimalsurface problem was untouched for decades, per-haps because it is di�cult to get a good existencetheory for minimal surfaces in Lorentz manifolds,or because it is not clear how to handle the con-straint of being the conformal Gauss image of asurface in S3.Apparently unaware of this earlier work, Will-more [1965] observed that the round sphere attainsthe absolute minimum value of 4� among all com-pact surfaces, and is the only surface to do so.He also studied tori of revolution, which led himto conjecture that the Cli�ord torus in S3 withW = 2�2 minimizes W among all tori. Implic-itly, Willmore proposed the basic global problem of�nding compact surfaces of a given topology min-imizing W .Lawson [1970] constructed compact minimal sur-faces of every genus embedded in S3. These, bythe discussion above, provided the �rst examplesof higher-topology surfaces critical for W . Lawsonalso found immersed nonorientable minimal sur-faces in S3 of every topological type except that ofthe projective plane RP2.Bryant [1984] studied W -critical spheres, show-ing that they all arise from certain complete mini-mal surfaces in R3 via conformal compacti�cation:they all have W = 4�k, where k is the number ofends of the corresponding complete minimal sur-face. Using this idea, Kusner [1987] found a familyof W -critical projective planes, including an ab-solute minimizer, and Bryant [1988] classi�ed allminimizers. These surfaces and the round sphereare the only explicitly known W -minimizing sur-faces.In the case of tori, Simon [1986] proved that asmooth embedded W -minimizer exists, while forevery genus, Kusner [1989] showed that the W -minimizers, if they exist, are necessarily embedded.In particular, Kusner and Pinkall independentlyobserved that there is a unique embedded Lawson

minimal surface of genus g with W < 8�. Kusnerconjectured that, for each genus, this surface givesthe unique W -minimizer (up to conformal equiva-lence). From the above discussion, we see that thisconjecture can naturally be split into two parts:(i) Among surfaces of genus g, is W minimized bythe minimal surface in S3 of genus g with small-est area? (The existence of such a smallest-areasurface is guaranteed by the smooth compact-ness theorem of Choi and Schoen [1985].)(ii) Is the Lawson surface alluded to earlier theminimal surface of smallest area? As g tends toin�nity, there is theoretical evidence for this: inparticular, the Lawson surfaces and the surfacesof smallest area both must converge as varifoldsto the same limit as g increases, this limit be-ing supported on the union of two orthogonalequatorial spheres, with W = 8�.
2. EXPERIMENTAL SETUPOur interest in testing these conjectures led to theexperiments we describe below. In its simplestform, the experimental task is to 
ow a given initialsurface according to the downward gradient of Wand to see where it settles. Generically, it shouldsettle at a local minimum, and possibly the globalminimum. To test W -stability, we can start near acritical point and observe whether we 
ow towardit or away.Our experiments are now being carried out withBrakke's Surface Evolver [Brakke 1992]. A surfaceis modeled by a triangulated polyhedron in R3,and the energy is then a function of the n vertices.For any �xed triangulation, the polyhedron 
ows(in discrete time) in R3n according to the nega-tive gradient of this energy. We can also re�ne thetriangulation as necessary.Note that a polyhedron, viewed as a limit ofsmooth surfaces, has its mean curvature concen-trated along the edges: this concentration meansthatW is in�nite for the actual polyhedral surface.To use polyhedra to approximate smooth surfaces,we must de�ne a new discrete energy w, which ap-proximates the integral W over some smooth sur-face nearby.The discrete energy w used in Brakke's algo-rithm is derived from a notion of mean curvatureat each vertex v. Motion of this vertex will a�ectits star, the set of all incident triangles. Let av be
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one third of the area of this star, so that Pv av isthe total surface area. If we were moving the sur-face to decrease area, we would move the vertex vin the direction of the (logarithmic) gradient of thearea av: 2hv = �rv avav :The hv de�ned here is the discrete mean curvaturevector at the vertex v. As the mesh size of the tri-angulation gets uniformly small, this approximatesthe variational de�nition for the mean curvaturevector near v of an approximating smooth surface.(There has been some recent work at Princetonon this \polyhedral mean curvature" and its rela-tion to smooth mean curvature in the context of�nding minimal surfaces. Alice Underwood [1992]observed that if we start with a minimal surfaceand choose points on this surface in a nearly equi-lateral triangulation, hv need not approach zero asthe mesh size decreases. In fact, consider a vertexv on a minimal surface. If its neighboring verticesare not quite evenly spaced, there will surely be anonzero hv, as the neighbors may tend to be aboveor below v on average. If we take neighbors in a�ner mesh around v, but still in the same pattern,the value hv is nearly unchanged, because it scalesproperly as a curvature.However, Underwood seems to �nd that close toany polyhedral surface with h = 0 there is a min-imal surface. Similarly, our experiments suggestthat when we minimize w, the resulting surface hasw close to the value of W for a nearby smooth sur-face; perhaps the minimization process naturallyleads to triangulations on which the problems ofthe last paragraph do not arise.)Now we imagine taking h to be a constant hvover the area av. Thus, to de�ne our approxima-tion to W , we setw =Xv wv; wv = h2vav:To further test the accuracy of our discretizationw, we experiment with a simple polyhedron withonly one movable vertex. Consider a tetrahedronwith a �xed equilateral triangle as its base and afree vertex v at the tip. We expect that the 
owdecreasing wv will push v down into the plane ofthe base, resulting in a 
at simplex. We will placev initially above the center of the base triangle,

and by symmetry it will move vertically. In fact,if we start with a relatively 
at simplex (with thetop corner duller than a cube's corner), the 
owproceeds as expected. But a cube corner is a sad-dle point for wv, and if we start with a sharpercorner, the 
ow is in the opposite direction, mak-ing the corner even sharper. The problem here isthat, if v is well above the plane, rv av is roughlyindependent of its height, so hv and wv decrease tozero as the corner gets sharper. It seems that nar-row triangles (far from equilateral) can also givemisleading values for hv at their vertices.Although our experiments give us great con�-dence in w as an estimate of W for \good" trian-gulations, we must be careful to get a fairly smoothpolyhedron from which to start the evolution. Ifwe start with a cube, triangulate the faces andna��vely start 
owing by w, the cube does not rundown toward a sphere, but instead grows a long\horn" at each corner. Fortunately, there are sim-ple commands within the Evolver [Brakke 1992],such as vertex averaging (which will help removea sharp corner), edge notching (which eliminatessharp edges) and equiangulation (which helps �ndnearly equilateral triangles), which permit us toprepare an initial polyhedron properly, making itsmooth enough that we can trust the w-evolution.As we near a minimum value of w for any giventriangulation, we can then use the Evolver's re�necommand to subdivide each triangle into four.We will see later that a cube (properly preparedwith the commands shown above, and re�ned asneeded) 
ows toward a good approximation of asphere (Figure 1), and a rough polyhedral torus
ows toward a Cli�ord torus (Figure 4). In eachcase the �nal value of w is slightly less than thevalue ofW for the smooth surface we are evidentlyapproaching.These preliminary experiments suggest that thediscrete w-
ow approximates the smooth W -
owwell, but they also raise several basic computa-tional and mathematical issues.Mathematically, we might ask how good this ap-proximation is. This is a basic numerical anal-ysis problem. Our experiments with the sphereand torus suggest that a polyhedron that mini-mizes w for its combinatorial type will approximatea smooth W -minimizer, with w < W . It seemsalso that the error 1 � w=W is on the order ofl2=A, where A is the total surface area and l is the
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FIGURE 1. The evolution of a cube into a sphere (Test 1 in Section 3). The initial cube (left) must be carefullyre�ned and rounded o� to avoid having the corners grow. With 96 facets, we get a decent approximation to asphere (middle left) corresponding to the �rst full line of Table 1. One further re�nement, followed by motionto reduce the energy w, results in w = 12:39 (middle right). Further re�nements (right, with 3624 facets) weredone with \long-edge subdivision", which allows selective re�nement where most needed, but here gives a lessuniform pattern in the triangulation. This picture would already look like a smooth sphere if we omitted theedge lines. See also Table 1.longest edge length. Of course, none of this hasbeen proved; we don't even know what W -mini-mizing surface (or value) we are trying to approx-imate, except in the case of the sphere. Here anideal result would be a rigorous proof that the ex-istence of a polyhedral minimum for w guaranteesa smooth minimum for W , and that these mini-mizing surfaces are suitably close.For any computational work with surfaces, itwould be nice to have a general-purpose programfor creating initial polyhedra with a given topology,and perhaps with other desired properties, such assymmetries or moments of inertia. We have takenone step in this direction, creating the programGenus, which outputs a polyhedron of genus g tothe Evolver (Figures 5, 9 and 12).On an algorithmic level, we would like to au-tomate the procedure of properly preparing andevolving polyhedra. Currently, Evolver users mustkeep careful watch, especially near the beginning ofthe evolution, and choose when to modify the tri-angulation with one of the commands mentionedabove. We have had some success doing our testruns with an automatic script that applies thesecommands often enough to avoid trouble. Thisraises the basic issue of determining a priori whatclass of polyhedra are smooth enough to give sen-sible values of w, and proving that w can be mini-mized among these.Although these are important issues, we cannottreat them properly here. Instead we report onour ongoing Evolver experiments and summarizeour results to date.

3. MINIMIZING SPHERESAs already mentioned, it is known that the mini-mum ofW among immersed spheres is 4�, achievedonly by the round sphere (a totally umbilic embed-ding). Although the solution is known, it is usefulto conduct experiments in this case, as a way totest the Evolver's algorithm and predict the de-pendence of the discretization error on the longestedge length. Three tests were made, starting froma cube, a perturbed parallelepiped, and a noncon-vex surface.
Test 1 (see Figure 1). We begin with a unit cube,coarsely triangulated into 24 facets (left in the �g-ure). To get a better triangulation, we use theEvolver's re�ne command r, which gives a triangu-lation with 96 facets. After 20 iterations under thew-
ow, we obtain the polyhedral surface depictedin the middle left. A further re�nement gives a tri-angulation with 384 facets, which after another 20iterations give the spherelike surface in the middleright.Another way to get a �ner triangulation of thesurface (which is especially good when the trian-gles are far from equilateral) is to use the Evolver'slong-edge command l to subdivide all edges longerthan a given upper bound. For this particular ex-ample, dividing edges longer than 16 unit gives atriangulation with 1296 facets. After 80 iterations,we obtain a nearly spherical surface, as good as wecan get with this many triangles. If we now re�neagain, further iteration gives the surface shown onthe right in Figure 1. This procedure can be con-
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tinued to obtain ever �ner approximations to thesphere. The process is summarized in Table 1. No-tice that the discretized energy w approaches thevalue 4� � 12:56 as the triangulation of the surfacegets better.number approx. log10of facets �neness max. angle iterations w2496 29 29� 1 11.79384 120 15� 1 12.391296 183 15� 2 12.515008 828 8� 2 12.5412652 2207 8� 3 12.56
TABLE 1. The evolution of a cube into a sphere(Test 1). The meanings of the various quantities isdescribed in detail below. Roughly, �neness is thebest measure of the quality of a triangulation, aslong as the maximum edge angle is small enough.For a good triangulation, we expect the value of wto be just under the elastic energy W of a nearbysmooth surface. See also Figure 1.Before proceeding, we explain the meanings ofthe various quantities that appear in our tables.The �rst column gives the number of triangles inthe polyhedron. If we triangulate a surface of Eulercharacteristic � with 2n triangles, there are exactly3n edges and n+� vertices. Roughly speaking, thelarger the number of facets, the better the trian-gulation can approximate a smooth surface.For a polyhedral surface, the Gauss map is con-stant on each face, and to approximate a smoothsurface we should try to get these normal vectorsspread evenly around the sphere. Thus, for a sur-face of genus g in R3, the number of facets (or ver-tices) needed in a polyhedral approximation shoulddepend on the (unsigned) area of the Gauss imagein S2, or total absolute curvature, which satis�esZ jGj dA � 4�(1 + g):Thus the number of facets in a good triangulationshould grow linearly with the genus.We mentioned above that the discretization wis not well behaved on triangles that are far fromequilateral, so we feel that a surface is best ap-proximated by a mesh of nearly equilateral trian-gles of nearly uniform size. Thus, instead of count-ing the number of facets, we look for the longest

edge length and compute how many triangles therewould be if the total area were covered by equilat-eral triangles of this edge length. This and theconsiderations of the last paragraph lead us to de-�ne a scale-invariant �neness asA(1 + g) l2 ;where A is the total area and l is the maximumedge length. This gives a measure of triangulationquality that is independent of genus and that favorsuniform equilateral triangles. This quantity is thusa better measure of how good the triangulation isthan the number of facets alone was.Table 1 suggests that the error 1 � w=W is ap-proximately the reciprocal of the �neness; subse-quent tests for genus zero and one also supportthis. Thus, to be con�dent that we have a goodtriangulation, we shall require that the �neness beat least about 1000.Another measure of how well a polyhedron ap-proximates a surface involves the angle betweenadjacent facet normals. As noted in the Intro-duction, large edge angles will result in a severeunderestimation for the value w. So, for a goodtriangulation, we also demand that the maximumedge angle be less than 15 degrees. This maximalangle is reported in the third column of the tables,to within a factor of two. If the facet normals werespread out evenly, the maximum angle would go tozero as the reciprocal square root of the �neness.The fourth column in our tables shows the orderof magnitude of the number of iterations of gra-dient descent required to get the resulting near-equilibrium surface under the w-
ow. An entryn in the table means that the number of iterationswas within a factor ofp10 of 10n. In each iteration,motion is in the gradient direction; the distancemoved in this one-dimensional space is chosen bythe Evolver so as to minimize w. For the last tworows in each table, we used mostly evolution by theconjugate gradient method (see [Brakke 1992] fordetails). This method provides a faster rate of con-vergence to equilibrium once we are in an energyvalley.The last column gives the discretized energy wof the resulting surface. Note that in all the ta-bles, only the entry in the last row of this columnis really meaningful. When the triangulation isgood, the relative error in w should be roughly one
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FIGURE 2. The evolution of a perturbed rectangular box into a sphere (Test 2). We start with a 1 � 2 � 3rectangular box and randomly perturb the vertices. We smooth o� the resulting surface (left) with vertexaveraging (middle left). This surface can be evolved (with some long-edge subdivision) to a surface (middleright) that starts to look spherical and corresponds to the �rst full line of Table 2. With further re�nement,we get to a surface (right) with �neness 515, corresponding to the third full line in Table 2.part in 1000, and there should be a nearby smoothW -critical surface; for coarser triangulations, theunderestimation of W may be more severe.
Test 2 (see Figure 2). Here we begin with a rectan-gular box with sides of length 1, 2 and 3. Then, tobreak symmetry, we do a random perturbation ofthe surface, using the Evolver's jiggle commands jand jj to obtain the surface depicted on the leftin the �gure. We then proceed to evolve and re-�ne the surface. The results are summarized inTable 2. As before, the surface evolves toward asphere, with w approaching 4� as the triangula-tion becomes good.number approx. log10of facets �neness max. angle iterations w96152 21 31� 1 11.971590 229 15� 2 12.513204 515 8� 2 12.545514 916 6� 2 12.5514436 2543 6� 3 12.56

TABLE 2. The evolution of a perturbed box into asphere (Test 2). See also Figure 2.
Test 3 (see Figure 3). Here we start with a non-convex polyhedron of genus zero constructed byattaching to a cube a smaller, concentric cube, bymeans of a connecting rectangular cylinder. Todull the sharp facet angles of the initial polyhedron,

we use the Evolver's re�ne command r followed byvertex averaging VV (left). Table 3 summarizes theevolution process for this example. From the �gureand the table it is clear that the surface is evolv-ing toward a round sphere with corresponding wapproaching 4�.
number approx. log10of facets �neness max. angle iterations w884408 400 16� 2 25.276918 620 12� 4 14.8310174 1013 8� 4 12.5515512 2277 8� 4 12.56
TABLE 3. The evolution of a nonconvex genus-zerosurface into a sphere (Test 3). See also Figure 3.

Remarks. (a) The Evolver's jiggling commands jand jj allow us to test the stability of a putativew-minimizer. The result of Test 2 is consistentwith the fact that the round sphere isW -stable. Itwould be interesting to verify experimentally if allthe other W -critical spheres [Bryant 1984; Kusner1987] are W -unstable.(b) The w-evolution of Test 3 suggests that anembedded genus-zero surface with W � 8� willremain embedded while evolving to a round sphereunder the W -
ow. However, it seems unlikely thatthe W -
ow preserves embeddedness in general.
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FIGURE 3. The evolution of a nonconvex genus-zero surface into a sphere (Test 3). We start with a hollowed-outcube, with an opening at the top. We round o� the corners slightly (left), to get the evolution started. In themiddle left panel, the neck is starting to pull through, after much re�nement. In the middle right, there is stilla big dimple in the sphere, which is why its energy w is over 20. Further motion, however, leads to a roundsphere (right), with energy approaching 4�, as shown in Table 3.
4. MINIMIZING TORIFor genus-one surfaces, the outstanding problem isWillmore's conjecture, which states thatW � 2�2,with equality only for tori conformally equivalentto the minimal Cli�ord torus in S3. (This Cli�ordtorus stereographically projects to the anchor ringgenerated by revolving a circle of radius r aboutan axis whose distance from the center of the circleis p2r.) Indeed, Willmore [1965] has shown thatW � 2�2 for all smooth tori of revolution. Simon[1986] proved that a smooth embedded torus existsrealizing the in�mum ofW . Since the only embed-ded surface with W = 4� is the round sphere, thisimplies that the minimum value of W among toriis strictly greater than 4�.In this section we summarize a number of exper-iments that test the validity of Willmore's conjec-ture and Brakke's algorithm. We �rst study theevolution under the w-
ow of approximate tori of

revolution, such as the octagonal torus shown onthe left in Figure 4. This surface evolves towardthe Cli�ord torus shown on the right in the same�gure, with w approaching 2�2 � 19:73 as the tri-angulation becomes good. Table 4 summarizes theevolution. Similar results, shown in Table 5, areobtained for the evolution of the \cubical" torus ofFigure 5, built using the program Genus.
number approx. log10of facets �neness max. angle iterations w2561328 92 40� 2 19.265312 366 29� 2 19.657936 738 17� 3 19.7016394 1337 13� 3 19.72
TABLE 4. The evolution of an octagonal torus intoa Cli�ord torus. See also Figure 4.

FIGURE 4. An initial octagonal torus (left) and the Cli�ord torus (right) into which it evolves. See also Table 4.
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FIGURE 5. An initial cubical torus (top) evolvesinto a Cli�ord torus (bottom). See also Table 5.
number approx. log10of facets �neness max. angle iterations w642754 142 20� 3 19.585230 110 13� 4 19.678112 600 13� 4 19.7117328 1350 12� 4 19.72
TABLE 5. The evolution of an octagonal torus intoa Cli�ord torus. See also Figure 5.

Remark. Yet another test of Brakke's algorithm isto establish the invariance of w under conformaltransformations of R3. Since w is obviously invari-ant under Euclidean motions and scaling, it su�cesto check invariance under sphere inversion. (Wecreated a program Sphinv for this purpose.) In allour examples, this invariance property is satis�edwith only small deviations. For instance, take theapproximate Cli�ord torus evolved from the cubi-cal torus (with w � 19:72 < 2�2). If we invert itsvertices in a unit sphere centered at one of the cor-ners of the original cube, we get a Dupin surface(Figure 6), with w � 19:81. This surface evolvesafter about 100 iterations to a nearby one withw � 19:72 again.

FIGURE 6. Two views of the Dupin surface ob-tained by inverting the Cli�ord torus of Figure 5in a sphere centered at one of the corners of thethe original cube (Figure 5, top).Finally we consider deformations of the Cli�ordtorus, such as the one shown on the left in Fig-ure 7. The result of the evolution is shown on theright, and the statistics are given in Table 6. In ev-ery example we tried, the deformed surface appearsto evolve toward a Dupin surface with w approach-ing 2�2. This corroborates the W -stability of theCli�ord torus and its conformal images, which isknown [Weiner 1978], and lends credibility to Will-more's conjecture.
5. HIGHER-GENUS MINIMIZING SURFACESThe generalization of Willmore's conjecture to thehigher-genus setting [Kusner 1989] states that thestereographic projection to R3 of Lawson's mini-mal surface �1;g in S3 minimizesW among genus-gsurfaces. In fact, �1;1 is the Cli�ord torus|the con-jectured minimizer in the case of tori. In contrastwith the genus-one case, however, the existence of
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FIGURE 7. The deformed torus at the top evolvesinto the approximate Dupin surface at the bottom,which corresponds to the �rst full line of Table 6.number approx. log10of facets �neness max. angle iterations w14903520 194 16� 3 19.745986 425 15� 3 19.717416 739 15� 4 19.7016820 1364 13� 4 19.73
TABLE 6. The evolution of a deformed torus into aDupin surface, in a stability test for w for surfacesof genus one. See also Figure 7.a smooth minimizer for g � 2 has yet to be estab-lished.The Lawson surface �1;g has (g + 1)-fold dihe-dral symmetry (and another mirror symmetry) inthe sphere. There is a stereographic projection toR3 that preserves this symmetry, and we write �1;galso for the image of this projection, a symmetricsurface in R3.In our experiments we made a detailed study ofgenus-two and genus-three surfaces. We also madepreliminary investigations into surfaces of genusfour and �ve.

Our experiments suggest that a smooth min-imizer exists for each genus, and is conformallyLawson's genus-g surface �1;g.
Genus-Two MinimizersWe �rst study the evolution under the w-
ow ofa polyhedral approximation of Lawson's genus-twosurface �1;2, shown on the left in Figure 8. Aftera few thousand iterations, the surface appears toevolve toward �1;2, with w approaching the value21.89 (see Table 7 for a summary). The W -energyof each of the Lawson surfaces �1;g is known [Kus-ner 1989] to be less than 8� � 25:13.number approx. log10of facets �neness max. angle iterations w782932 81 20� 2 21.774924 93 15� 4 21.788742 367 13� 4 21.8612430 574 13� 4 21.8819036 1013 13� 4 21.89

TABLE 7. The evolution toward the Lawson sur-face of genus two. See also Figure 8.Next we begin with a genus-two surface shownon the left in Figure 9, obtained by fusing two cu-bical tori using the program Genus. The bottomrow of the same �gure shows the �nal product ofthe evolution. The statistics are given in Table 8.number approx. log10of facets �neness max. angle iterations w1202794 114 35� 2 29.004168 156 20� 3 21.836226 281 15� 3 21.8710192 539 15� 4 21.8920384 956 13� 4 21.90
TABLE 8. The evolution from a cubical genus-twosurface to a button surface, conformally equivalentto the Lawson surface. See also Figure 9.Notice that the end product of the evolution inFigure 9 has w very close to that of �1;2 (Figure 8,right). This suggests that these two surfaces arerelated. In fact, one can �nd a M�obius transfor-mation mapping one surface into the other. This
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FIGURE 8. A polyhedral surface (left) with the symmetry of the genus-two Lawson surface �1;2 can be roundedo� and re�ned, giving the surface in the middle left panel. This will then evolve under the w-
ow and furtherre�nements (middle right and right), yielding a close approximation to �1;2. See also Table 7.

FIGURE 9. The program Genus builds a cubical genus-two surface (top left). A smoothed version (top right),corresponding to the �rst full line of Table 8, still has energy w = 29. Under the w-
ow, the holes get smallerand move toward each other, giving the button surface shown in two views at the bottom. This surface isconformally equivalent to the Lawson surface shown on the right in Figure 8.
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can be seen as follows: consider the plane of sym-metry of the button that intersects it in two largeapproximate circles and a smaller one in between.Clearly there is a fractional linear transformationof the plane that maps this con�guration to oneconsisting of three equal plane circles centered atthe vertices of an equilateral triangle. The lat-ter approximates the intersection of �1;2 with theplane, and the fractional linear transformation ex-tends uniquely to all of three-space to give the de-sired M�obius transformation.Our experiments also suggest that �1;2 is stablefor W . Figure 10 shows a surface obtained by jig-gling �1;2, and the corresponding evolved surface,which has w � 21:89 and is evidently conformallyequivalent to �1;2.
Genus-Three MinimizersWe carried out similar experiments that indicatethat Lawson's genus-three surface �1;3 is W -stable,with w � 22:82 (Figure 11 and Table 9).We also studied the evolution of a genus-threesurface produced by Genus, which fuses three cu-bical tori together (Table 10). The minimizing sur-face (Figure 12, bottom right) in this case has wvery close to that of �1;3. One can again see thatthis surface is conformally equivalent to �1;3, usingan argument like the one for genus two.Another interesting W -critical surface of genusthree, di�erent from Lawson's example, is the ste-

reographic projection of the tetrahedral minimalsurface � in S3 discovered by Karcher, Pinkall andSterling [Karcher et al. 1988]. We were able toevolve under the w-
ow to � by starting from thepolyhedron with the same symmetry (Figure 13).number approx. log10of facets �neness max. angle iterations w1442240 83 46� 2 22.694968 201 43� 2 22.6910920 314 13� 4 22.8015550 602 13� 4 22.8127118 993 13� 4 22.82
TABLE 9. The evolution toward the genus-threeLawson surface. See also Figure 11.
number approx. log10of facets �neness max. angle iterations w1764920 149 46� 2 27.739086 154 43� 2 23.0112310 448 17� 4 22.9018280 618 15� 4 22.8126858 976 13� 4 22.83
TABLE 10. The evolution from a cubical surface ofgenus three to a button surface, conformally equiv-alent to the Lawson surface. See also Figure 12.

FIGURE 10. A deformation of the Lawson genus-two surface �1;2 (left) evolves toward a surface (right) confor-mally equivalent to �1;2.
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FIGURE 11. A polyhedral surface (left) with the symmetry of the genus-three Lawson surface �1;3 evolvestoward a close approximation to �1;3. See also Table 9.

FIGURE 12. The program Genus builds a genus-three surface out of three cubes (top left). A smoothed version(top right), corresponding to the �rst full line of Table 10, still has energy w = 28. Under the w-
ow, thesurface evolves toward the button surface shown bottom right, which is conformally equivalent to �1;3.
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FIGURE 13. A polyhedral surface (top) of genusthree with tetrahedral symmetry evolves toward aW -stable surface � (bottom) with the same sym-metry. See also Table 11.
Our experiments (summarized in Table 11) sug-gest that this surface � is a local minimum, butnot the global minimum for W among genus-threesurfaces. (Compare the values of w for � and for�1;3.)Figure 14 shows the evolution of two surfaces ob-tained from perturbations of � . Apparently, eachevolves toward a surface conformally equivalent to� with w � 23:36.It is clear, however, that some relatively large de-formations of � result in surfaces that do not evolveto � . An interesting example of this is depictedin Figure 15. This surface comes from \stretch-ing" the initial tetrahedral polyhedron to be muchtaller. From Figure 15 (middle left to right) andTable 12, it appears that this surface is evolvingtoward �1;3. This suggests an interesting problem:to prove that there is an unstable W -critical sur-face \between" the W -stable surfaces � and �1;3,and to �nd such a surface.

number approx. log10of facets �neness max. angle iterations w762240 14 80� 2 23.037344 100 15� 3 23.3110416 321 15� 4 23.3315142 569 13� 4 23.3526898 1002 12� 4 23.36
TABLE 11. The evolution to the tetrahedral sur-face � of genus three. See also Figure 13.number approx. log10of facets �neness max. angle iterations w762904 61 46� 3 22.558024 130 18� 3 22.7911388 150 13� 4 22.7819672 657 13� 4 22.8126692 981 13� 4 22.82
TABLE 12. The evolution from a stretched tetrahe-dral surface to a genus-three Lawson surface. Seealso Figure 15.

Genus-Four and Genus-Five MinimizersWe now record some preliminary experimental re-sults concerning W -minimizing surfaces of genusfour and genus �ve. We can obtain initial surfacesby fusing several cubical tori together, using theprogram Genus. The corresponding evolved sur-faces of genus four and �ve are shown in Figure16 (top). Alternatively, we can start with initialsurfaces close to Lawson's surfaces �1;4 and �1;5.Evolving these leads to the surfaces shown in Fig-ure 16 (bottom), which have w near 23.31 and23.66, respectively, quite a bit under 8� � 25:13.The button surfaces seem to be conformally equiv-alent to the Lawson surfaces, and all four appearto be W -stable.
6. FURTHER WORKWe recently implemented a computer program togenerate initial surfaces geometrically close to anyone of Lawson's minimal surfaces �m;n of genusmn.Evolution of any of these initial surfaces seems tolead to the Lawson surface; all those we have testedseem to be W -stable.
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FIGURE 14. If we deform our approximation to � with the jiggle commands, the result (top left) evolves towarda surface (top right) that is conformally equivalent to � . Similarly, if we invert � in a sphere (bottom left) andjiggle, the resulting surface again evolves to one that is conformally equivalent to � (bottom right).

FIGURE 15. Stretching the initial surface of Figure 13 vertically gives a surface (left) that no longer evolvestoward the surface � . The smoothed version (middle left) still has just the initial symmetry, but as we evolvefurther (middle right) the symmetry increases, and we approach the Lawson surface (right). See also Table 12.
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FIGURE 16. Surfaces of genus four (left) and �ve (right) minimizing the energy w. The initial con�gurationsfor surfaces in the top row were similar to the initial surface in Figure 12, and those for the bottom row wereapproximations to the Lawson surfaces.The Evolver allows the evolution of a surface un-der symmetry constraints. We can specify threeintersecting mirror planes, and the piece of a sur-face lying between them. The evolution of thispiece will proceed as if we were evolving the wholesurface, while enforcing the symmetry. In particu-lar, the surface ends up meeting each mirror planeperpendicularly.

This technique has allowed us to study morecomplicated surfaces that have the same k� 2� 2-fold Euclidean symmetry as the projection �1;k�1of the Lawson surface. One of these, a surfaceof genus k obtained by adding a single handle toLawson's surface, seems to give a heretofore un-known minimal surface in S3. We expect thatothers will provide examples of surfaces that are
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W -stable when the symmetries are enforced, butunstable when they are allowed to be broken.We intend to give a fuller description of thesesurfaces, and of some new notions of polyhedralmean curvature h, in future reports.
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