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We minimize a discrete version of the squared mean curvature
integral for polyhedral surfaces in three-space, using Brakke’s
Surface Evolver [Brakke 1992]. Our experimental results sup-
port the conjecture that the smooth minimizers exist for each
genus and are stereographic projections of certain minimal sur-
faces in the three-sphere.

1. INTRODUCTION

Elastic surfaces, such as biological membranes, re-
silient metal plates, and interfaces between poly-
mers, are of fundamental interest in science. (See,
for example, [Seifert 1991] and references therein.)
A simple geometric model, proposed around 1810
by Sophie Germain, sets the elastic energy E(S)
of a surface S equal to the integral with respect
to surface area of an even, symmetric function of
the principal curvatures of S. The surface S may
be embedded or immersed in three-space (typically
R?, but possibly another three-manifold of con-
stant curvature, such as S* or H?), perhaps with
volume or boundary constraints. We shall assume
that the integrand is quadratic and therefore of the
form a+bH?+ cG, where H is the mean curvature
and G the Gaussian curvature. Thus the energy is
given by

E(S) = /S(a +bH? + ¢G) dA.

Physically, this formula is called Hooke’s law; b
and ¢ here are “bending” energies, while a is a
surface tension or “stretching” energy. (When the
two sides of the elastic surface are distinguished, as
in a polymer interface, our assumption of evenness
may not be satisfied. This case can be handled by
replacing H with H — H, in Hooke’s law.)
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An equilibrium elastic surface S constitutes a
critical point for E(S), subject to the constraints
of the problem. What this means is that, for any
variation S; of S = S, we have

d

E - E(St) - 0

Assuming S is smooth enough, this implies that S
satisfies the Euler—Lagrange equation

AH +2(H? — (G —a/b))H = p,

where A is the Laplace—Beltrami operator of S and
p is a constant, called pressure, which vanishes in
the absence of a volume constraint. If we recall
that H = —$(N,AX), where X is the position of
the surface S and N is its unit normal, we see that
this is a fourth-order, nonlinear, elliptic partial dif-
ferential equation. If the surface S has boundary,
we should impose a pair of boundary conditions,
such as the position of the boundary curve to-
gether with the surface normal vector along this
curve. (In the case of elastic plates, this is com-
monly called a clamped boundary. At a hinged
boundary, the curvature of S perpendicular to the
boundary is specified instead. A third possibility
is to specify H along the boundary; this is an av-
erage of the clamped and hinged cases.) We shall
assume instead that S is a closed surface, with no
boundary.

Observe that the coefficient ¢ of G does not enter
into the Euler-Lagrange equation. Poisson noticed
this around 1815, decades before Gauss and Bon-
net showed that the third term in E(S) is actually
a topological constant:

/ GdA =2mx(9),
s

where x(S) is the Euler characteristic of S. Thus
it suffices to consider energies of the form

E(S) = /S(a + bH?) dA.

If b = 0, the energy is just a multiple of sur-
face area, for which the Euler—Lagrange equation
reduces to the condition of constant mean curva-
ture. We are not interested in this degenerate case,
so we assume that b > 0 and, in fact, by scaling,
that b = 1. We also assume that a is equal to
the curvature of the ambient three-manifold (so
a =1, 0, —1 if we are working in S?, R3 H?).

The energy is commonly denoted W in this case.
If the ambient space is Fuclidean—the case that
has physical significance—this choice of a means
there is no surface tension. The problem is then
clearly scale-invariant: the energy is unchanged un-
der Euclidean similarities. Thus, to model a physi-
cal pressure across the surface, we would now have
to impose not just a volume constraint, but a con-
straint on the ratio between volume and surface
area. We will assume there is no such constraint.
It is a remarkable fact that when a is equal to
the ambient curvature, as we have assumed, the en-
ergy W is conformally invariant, that is, W(S) =
W (1(S)) for any conformal transformation u of the
ambient space. In fact, if S is a surface in S3 and
S is its stereographic projection to R* (from a pole
not on 9 ), we find that the two elastic energies

W) = /(1 + H?)dA,
s

computed by using the H and dA induced from S3,

and

W(S) = /SH2 dA,

computed in Euclidean space, are equal. We call
the inverse stereographic projection map from R?
to S3 conformal compactification, because the sur-
face S may have ends at infinity that get compact-
ified in 9. In this case, which occurs when the pole
of projection lies on S, the elastic energy of S ex-
ceeds that of S by an amount equal to 47k, where
k is the number of ends of S.

Thus the symmetry group for W is the group
of Mobius (conformal) transformations. From the
viewpoint of R*U{oo}, this is the group generated
by Euclidean similarities and the inversion I(x) =
x/|z|? in the unit sphere.

Blaschke and Thomsen [Thomsen 1924] discov-
ered in the 1920s that W (S) can also be computed
(up to a constant from the Gauss—Bonnet formula)
as the area of the image of S under the conformal
Gauss map. This map assigns to each point of S
the oriented round two-sphere tangent to S and
with the same mean curvature as S at that point.
(The space of such two-spheres is naturally identi-
fied with the Lorentz four-sphere S*! in Minkowski
five-space R*!; coordinates in this five-space are
Darboux’s pentaspherical coordinates for the two-
sphere in question [Darboux 1887]. Note that the
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Mobius group acts on S*! via its fundamental lin-
ear representation as O (4,1).)

Thus minimal surfaces in S*! that happen to
be conformal Gauss images of surfaces in S?® yield
critical surfaces for W. But the conformal Gauss
image of a minimal surface S in S* is simply the
polar surface S*, which is again minimal in S* (and
minimal in S*!), so any such S is W-critical; since
H = 0, we see that W(S) is the area of S. The
problem of finding global solutions to this minimal
surface problem was untouched for decades, per-
haps because it is difficult to get a good existence
theory for minimal surfaces in Lorentz manifolds,
or because it is not clear how to handle the con-
straint of being the conformal Gauss image of a
surface in S3.

Apparently unaware of this earlier work, Will-
more [1965] observed that the round sphere attains
the absolute minimum value of 47 among all com-
pact surfaces, and is the only surface to do so.
He also studied tori of revolution, which led him
to conjecture that the Clifford torus in S* with
W = 27? minimizes W among all tori. Implic-
itly, Willmore proposed the basic global problem of
finding compact surfaces of a given topology min-
imizing W.

Lawson [1970] constructed compact minimal sur-
faces of every genus embedded in S®. These, by
the discussion above, provided the first examples
of higher-topology surfaces critical for W. Lawson
also found immersed nonorientable minimal sur-
faces in S® of every topological type except that of
the projective plane RP2.

Bryant [1984] studied W-critical spheres, show-
ing that they all arise from certain complete mini-
mal surfaces in R? via conformal compactification:
they all have W = 4rk, where k is the number of
ends of the corresponding complete minimal sur-
face. Using this idea, Kusner [1987] found a family
of W-critical projective planes, including an ab-
solute minimizer, and Bryant [1988] classified all
minimizers. These surfaces and the round sphere
are the only explicitly known W-minimizing sur-
faces.

In the case of tori, Simon [1986] proved that a
smooth embedded W-minimizer exists, while for
every genus, Kusner [1989] showed that the W-
minimizers, if they exist, are necessarily embedded.
In particular, Kusner and Pinkall independently
observed that there is a unique embedded Lawson

minimal surface of genus g with W < 8w. Kusner
conjectured that, for each genus, this surface gives
the unique W-minimizer (up to conformal equiva-
lence). From the above discussion, we see that this
conjecture can naturally be split into two parts:

(i) Among surfaces of genus g, is W minimized by
the minimal surface in S® of genus g with small-
est area? (The existence of such a smallest-area
surface is guaranteed by the smooth compact-
ness theorem of Choi and Schoen [1985].)

(ii) Is the Lawson surface alluded to earlier the
minimal surface of smallest area? As g tends to
infinity, there is theoretical evidence for this: in
particular, the Lawson surfaces and the surfaces
of smallest area both must converge as varifolds
to the same limit as g increases, this limit be-
ing supported on the union of two orthogonal
equatorial spheres, with W = 8.

2. EXPERIMENTAL SETUP

Our interest in testing these conjectures led to the
experiments we describe below. In its simplest
form, the experimental task is to flow a given initial
surface according to the downward gradient of W
and to see where it settles. Generically, it should
settle at a local minimum, and possibly the global
minimum. To test W-stability, we can start near a
critical point and observe whether we flow toward
it or away.

Our experiments are now being carried out with
Brakke’s Surface Evolver [Brakke 1992]. A surface
is modeled by a triangulated polyhedron in R?,
and the energy is then a function of the n vertices.
For any fixed triangulation, the polyhedron flows
(in discrete time) in R®" according to the nega-
tive gradient of this energy. We can also refine the
triangulation as necessary.

Note that a polyhedron, viewed as a limit of
smooth surfaces, has its mean curvature concen-
trated along the edges: this concentration means
that W is infinite for the actual polyhedral surface.
To use polyhedra to approximate smooth surfaces,
we must define a new discrete energy w, which ap-
proximates the integral W over some smooth sur-
face nearby.

The discrete energy w used in Brakke’s algo-
rithm is derived from a notion of mean curvature
at each vertex v. Motion of this vertex will affect
its star, the set of all incident triangles. Let a, be
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one third of the area of this star, so that ) a, is
the total surface area. If we were moving the sur-
face to decrease area, we would move the vertex v
in the direction of the (logarithmic) gradient of the
area a,:

-V, a,

Ay

2h,

The h, defined here is the discrete mean curvature
vector at the vertex v. As the mesh size of the tri-
angulation gets uniformly small, this approximates
the variational definition for the mean curvature
vector near v of an approximating smooth surface.

(There has been some recent work at Princeton
on this “polyhedral mean curvature” and its rela-
tion to smooth mean curvature in the context of
finding minimal surfaces. Alice Underwood [1992]
observed that if we start with a minimal surface
and choose points on this surface in a nearly equi-
lateral triangulation, h, need not approach zero as
the mesh size decreases. In fact, consider a vertex
v on a minimal surface. If its neighboring vertices
are not quite evenly spaced, there will surely be a
nonzero h,, as the neighbors may tend to be above
or below v on average. If we take neighbors in a
finer mesh around v, but still in the same pattern,
the value h, is nearly unchanged, because it scales
properly as a curvature.

However, Underwood seems to find that close to
any polyhedral surface with A = 0 there is a min-
imal surface. Similarly, our experiments suggest
that when we minimize w, the resulting surface has
w close to the value of W for a nearby smooth sur-
face; perhaps the minimization process naturally
leads to triangulations on which the problems of
the last paragraph do not arise.)

Now we imagine taking h to be a constant h,
over the area a,. Thus, to define our approxima-
tion to W, we set

w = E Wy,
v

To further test the accuracy of our discretization
w, we experiment with a simple polyhedron with
only one movable vertex. Consider a tetrahedron
with a fixed equilateral triangle as its base and a
free vertex v at the tip. We expect that the flow
decreasing w, will push v down into the plane of
the base, resulting in a flat simplex. We will place
v initially above the center of the base triangle,

W, = hzav.

and by symmetry it will move vertically. In fact,
if we start with a relatively flat simplex (with the
top corner duller than a cube’s corner), the flow
proceeds as expected. But a cube corner is a sad-
dle point for w,, and if we start with a sharper
corner, the flow is in the opposite direction, mak-
ing the corner even sharper. The problem here is
that, if v is well above the plane, V, a, is roughly
independent of its height, so h, and w, decrease to
zero as the corner gets sharper. It seems that nar-
row triangles (far from equilateral) can also give
misleading values for h, at their vertices.

Although our experiments give us great confi-
dence in w as an estimate of W for “good” trian-
gulations, we must be careful to get a fairly smooth
polyhedron from which to start the evolution. If
we start with a cube, triangulate the faces and
naively start flowing by w, the cube does not run
down toward a sphere, but instead grows a long
“horn” at each corner. Fortunately, there are sim-
ple commands within the Evolver [Brakke 1992],
such as vertex averaging (which will help remove
a sharp corner), edge notching (which eliminates
sharp edges) and equiangulation (which helps find
nearly equilateral triangles), which permit us to
prepare an initial polyhedron properly, making it
smooth enough that we can trust the w-evolution.
As we near a minimum value of w for any given
triangulation, we can then use the Evolver’s refine
command to subdivide each triangle into four.

We will see later that a cube (properly prepared
with the commands shown above, and refined as
needed) flows toward a good approximation of a
sphere (Figure 1), and a rough polyhedral torus
flows toward a Clifford torus (Figure 4). In each
case the final value of w is slightly less than the
value of W for the smooth surface we are evidently
approaching.

These preliminary experiments suggest that the
discrete w-flow approximates the smooth W-flow
well, but they also raise several basic computa-
tional and mathematical issues.

Mathematically, we might ask how good this ap-
proximation is. This is a basic numerical anal-
ysis problem. Our experiments with the sphere
and torus suggest that a polyhedron that mini-
mizes w for its combinatorial type will approximate
a smooth W-minimizer, with w < W. It seems
also that the error 1 — w/W is on the order of
I?/A, where A is the total surface area and [ is the
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FIGURE 1.
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The evolution of a cube into a sphere (Test 1 in Section 3). The initial cube (left) must be carefully

refined and rounded off to avoid having the corners grow. With 96 facets, we get a decent approximation to a
sphere (middle left) corresponding to the first full line of Table 1. One further refinement, followed by motion
to reduce the energy w, results in w = 12.39 (middle right). Further refinements (right, with 3624 facets) were
done with “long-edge subdivision”, which allows selective refinement where most needed, but here gives a less
uniform pattern in the triangulation. This picture would already look like a smooth sphere if we omitted the

edge lines. See also Table 1.

longest edge length. Of course, none of this has
been proved; we don’t even know what W-mini-
mizing surface (or value) we are trying to approx-
imate, except in the case of the sphere. Here an
ideal result would be a rigorous proof that the ex-
istence of a polyhedral minimum for w guarantees
a smooth minimum for W, and that these mini-
mizing surfaces are suitably close.

For any computational work with surfaces, it
would be nice to have a general-purpose program
for creating initial polyhedra with a given topology,
and perhaps with other desired properties, such as
symmetries or moments of inertia. We have taken
one step in this direction, creating the program
Genus, which outputs a polyhedron of genus g to
the Evolver (Figures 5, 9 and 12).

On an algorithmic level, we would like to au-
tomate the procedure of properly preparing and
evolving polyhedra. Currently, Evolver users must
keep careful watch, especially near the beginning of
the evolution, and choose when to modify the tri-
angulation with one of the commands mentioned
above. We have had some success doing our test
runs with an automatic script that applies these
commands often enough to avoid trouble. This
raises the basic issue of determining a priori what
class of polyhedra are smooth enough to give sen-
sible values of w, and proving that w can be mini-
mized among these.

Although these are important issues, we cannot
treat them properly here. Instead we report on
our ongoing Evolver experiments and summarize
our results to date.

3. MINIMIZING SPHERES

As already mentioned, it is known that the mini-
mum of W among immersed spheres is 47, achieved
only by the round sphere (a totally umbilic embed-
ding). Although the solution is known, it is useful
to conduct experiments in this case, as a way to
test the Evolver’s algorithm and predict the de-
pendence of the discretization error on the longest
edge length. Three tests were made, starting from
a cube, a perturbed parallelepiped, and a noncon-
vex surface.

Test 1 (see Figure 1). We begin with a unit cube,
coarsely triangulated into 24 facets (left in the fig-
ure). To get a better triangulation, we use the
Evolver’s refine command r, which gives a triangu-
lation with 96 facets. After 20 iterations under the
w-flow, we obtain the polyhedral surface depicted
in the middle left. A further refinement gives a tri-
angulation with 384 facets, which after another 20
iterations give the spherelike surface in the middle
right.

Another way to get a finer triangulation of the
surface (which is especially good when the trian-
gles are far from equilateral) is to use the Evolver’s
long-edge command 1 to subdivide all edges longer
than a given upper bound. For this particular ex-
ample, dividing edges longer than % unit gives a
triangulation with 1296 facets. After 80 iterations,
we obtain a nearly spherical surface, as good as we
can get with this many triangles. If we now refine
again, further iteration gives the surface shown on
the right in Figure 1. This procedure can be con-
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tinued to obtain ever finer approximations to the
sphere. The process is summarized in Table 1. No-
tice that the discretized energy w approaches the
value 47 = 12.56 as the triangulation of the surface
gets better.

number approx. log,,
of facets fineness max. angle iterations w
24
96 29 29° 1 11.79
384 120 15° 1 12.39
1296 183 15° 2 12.51
5008 828 8° 2 12.54
12652 2207 8° 3 12.56
TABLE 1. The evolution of a cube into a sphere

(Test 1). The meanings of the various quantities is
described in detail below. Roughly, fineness is the
best measure of the quality of a triangulation, as
long as the maximum edge angle is small enough.
For a good triangulation, we expect the value of w
to be just under the elastic energy W of a nearby
smooth surface. See also Figure 1.

Before proceeding, we explain the meanings of
the various quantities that appear in our tables.
The first column gives the number of triangles in
the polyhedron. If we triangulate a surface of Euler
characteristic xy with 2n triangles, there are exactly
3n edges and n+ x vertices. Roughly speaking, the
larger the number of facets, the better the trian-
gulation can approximate a smooth surface.

For a polyhedral surface, the Gauss map is con-
stant on each face, and to approximate a smooth
surface we should try to get these normal vectors
spread evenly around the sphere. Thus, for a sur-
face of genus ¢ in R?, the number of facets (or ver-
tices) needed in a polyhedral approximation should
depend on the (unsigned) area of the Gauss image
in S2, or total absolute curvature, which satisfies

/|G| dA > 47 (1 + g).

Thus the number of facets in a good triangulation
should grow linearly with the genus.

We mentioned above that the discretization w
is not well behaved on triangles that are far from
equilateral, so we feel that a surface is best ap-
proximated by a mesh of nearly equilateral trian-
gles of nearly uniform size. Thus, instead of count-
ing the number of facets, we look for the longest

edge length and compute how many triangles there
would be if the total area were covered by equilat-
eral triangles of this edge length. This and the
considerations of the last paragraph lead us to de-
fine a scale-invariant fineness as

A
(1+9)1%

where A is the total area and [ is the maximum
edge length. This gives a measure of triangulation
quality that is independent of genus and that favors
uniform equilateral triangles. This quantity is thus
a better measure of how good the triangulation is
than the number of facets alone was.

Table 1 suggests that the error 1 — w/W is ap-
proximately the reciprocal of the fineness; subse-
quent tests for genus zero and one also support
this. Thus, to be confident that we have a good
triangulation, we shall require that the fineness be
at least about 1000.

Another measure of how well a polyhedron ap-
proximates a surface involves the angle between
adjacent facet normals. As noted in the Intro-
duction, large edge angles will result in a severe
underestimation for the value w. So, for a good
triangulation, we also demand that the maximum
edge angle be less than 15 degrees. This maximal
angle is reported in the third column of the tables,
to within a factor of two. If the facet normals were
spread out evenly, the maximum angle would go to
zero as the reciprocal square root of the fineness.

The fourth column in our tables shows the order
of magnitude of the number of iterations of gra-
dient descent required to get the resulting near-
equilibrium surface under the w-flow. An entry
n in the table means that the number of iterations
was within a factor of v/10 of 10™. In each iteration,
motion is in the gradient direction; the distance
moved in this one-dimensional space is chosen by
the Evolver so as to minimize w. For the last two
rows in each table, we used mostly evolution by the
conjugate gradient method (see [Brakke 1992] for
details). This method provides a faster rate of con-
vergence to equilibrium once we are in an energy
valley.

The last column gives the discretized energy w
of the resulting surface. Note that in all the ta-
bles, only the entry in the last row of this column
is really meaningful. When the triangulation is
good, the relative error in w should be roughly one
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FIGURE 2.
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The evolution of a perturbed rectangular box into a sphere (Test 2). We start with a 1 x 2 x 3
We smooth off the resulting surface (left) with vertex

averaging (middle left). This surface can be evolved (with some long-edge subdivision) to a surface (middle
right) that starts to look spherical and corresponds to the first full line of Table 2. With further refinement,
we get to a surface (right) with fineness 515, corresponding to the third full line in Table 2.

part in 1000, and there should be a nearby smooth
W -critical surface; for coarser triangulations, the
underestimation of W may be more severe.

Test 2 (see Figure 2). Here we begin with a rectan-
gular box with sides of length 1, 2 and 3. Then, to
break symmetry, we do a random perturbation of
the surface, using the Evolver’s jiggle commands j
and jj to obtain the surface depicted on the left
in the figure. We then proceed to evolve and re-
fine the surface. The results are summarized in
Table 2. As before, the surface evolves toward a
sphere, with w approaching 47 as the triangula-
tion becomes good.

number approx. log;,
of facets fineness max. angle iterations w
96
152 21 31° 1 11.97
1590 229 15° 2 12.51
3204 515 8° 2 12.54
5514 916 6° 2 12.55
14436 2543 6° 3 12.56
TABLE 2. The evolution of a perturbed box into a

sphere (Test 2). See also Figure 2.

Test 3 (see Figure 3). Here we start with a non-
convex polyhedron of genus zero constructed by
attaching to a cube a smaller, concentric cube, by
means of a connecting rectangular cylinder. To
dull the sharp facet angles of the initial polyhedron,

we use the Evolver’s refine command r followed by
vertex averaging VV (left). Table 3 summarizes the
evolution process for this example. From the figure
and the table it is clear that the surface is evolv-
ing toward a round sphere with corresponding w
approaching 4.

number approx. log;,
of facets fineness max. angle iterations w
88
4408 400 16° 2 25.27
6918 620 12° 4 14.83
10174 1013 8° 4 12.55
15512 2277 8° 4 12.56
TABLE3. The evolution of a nonconvex genus-zero

surface into a sphere (Test 3). See also Figure 3.

Remarks. (a) The Evolver’s jiggling commands j
and jj allow us to test the stability of a putative
w-minimizer. The result of Test 2 is cousistent
with the fact that the round sphere is W-stable. It
would be interesting to verify experimentally if all
the other W-critical spheres [Bryant 1984; Kusner
1987] are W-unstable.

(b) The w-evolution of Test 3 suggests that an
embedded genus-zero surface with W < 87 will
remain embedded while evolving to a round sphere
under the W-flow. However, it seems unlikely that
the W-flow preserves embeddedness in general.
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FIGURE 3.
cube, with an opening at the top. We round off the corners slightly (left), to get the evolution started. In the
middle left panel, the neck is starting to pull through, after much refinement. In the middle right, there is still
a big dimple in the sphere, which is why its energy w is over 20. Further motion, however, leads to a round
sphere (right), with energy approaching 4, as shown in Table 3.

4. MINIMIZING TORI

For genus-one surfaces, the outstanding problem is
Willmore’s conjecture, which states that W > 272,
with equality only for tori conformally equivalent
to the minimal Clifford torus in S3. (This Clifford
torus stereographically projects to the anchor ring
generated by revolving a circle of radius r about
an axis whose distance from the center of the circle
is v/2r.) Indeed, Willmore [1965] has shown that
W > 272 for all smooth tori of revolution. Simon
[1986] proved that a smooth embedded torus exists
realizing the infimum of W. Since the only embed-
ded surface with W = 47 is the round sphere, this
implies that the minimum value of W among tori
is strictly greater than 4.

In this section we summarize a number of exper-
iments that test the validity of Willmore’s conjec-
ture and Brakke’s algorithm. We first study the
evolution under the w-flow of approximate tori of

The evolution of a nonconvex genus-zero surface into a sphere (Test 3). We start with a hollowed-out

revolution, such as the octagonal torus shown on
the left in Figure 4. This surface evolves toward
the Clifford torus shown on the right in the same
figure, with w approaching 272 ~ 19.73 as the tri-
angulation becomes good. Table 4 summarizes the
evolution. Similar results, shown in Table 5, are
obtained for the evolution of the “cubical” torus of
Figure 5, built using the program Genus.

number approx. log;,
of facets fineness max. angle iterations —w
256
1328 92 40° 2 19.26
5312 366 29° 2 19.65
7936 738 17° 3 19.70
16394 1337 13° 3 19.72
TABLE4. The evolution of an octagonal torus into

a Clifford torus. See also Figure 4.

FIGURE 4.

An initial octagonal torus (left) and the Clifford torus (right) into which it evolves. See also Table 4.
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FIGURE 5. An initial cubical torus (top) evolves
into a Clifford torus (bottom). See also Table 5.

number approx. log;,
of facets fineness max. angle iterations w
64
2754 142 20° 3 19.58
5230 110 13° 4 19.67
8112 600 13° 4 19.71
17328 1350 12° 4 19.72
TABLE5. The evolution of an octagonal torus into

a Clifford torus. See also Figure 5.

Remark. Yet another test of Brakke’s algorithm is
to establish the invariance of w under conformal
transformations of R3. Since w is obviously invari-
ant under Euclidean motions and scaling, it suffices
to check invariance under sphere inversion. (We
created a program Sphinv for this purpose.) In all
our examples, this invariance property is satisfied
with only small deviations. For instance, take the
approximate Clifford torus evolved from the cubi-
cal torus (with w =~ 19.72 < 27?). If we invert its
vertices in a unit sphere centered at one of the cor-
ners of the original cube, we get a Dupin surface
(Figure 6), with w ~ 19.81. This surface evolves
after about 100 iterations to a nearby one with
w ~ 19.72 again.

FIGURE 6. Two views of the Dupin surface ob-
tained by inverting the Clifford torus of Figure 5
in a sphere centered at one of the corners of the
the original cube (Figure 5, top).

Finally we consider deformations of the Clifford
torus, such as the one shown on the left in Fig-
ure 7. The result of the evolution is shown on the
right, and the statistics are given in Table 6. In ev-
ery example we tried, the deformed surface appears
to evolve toward a Dupin surface with w approach-
ing 272, This corroborates the W-stability of the
Clifford torus and its conformal images, which is
known [Weiner 1978], and lends credibility to Will-
more’s conjecture.

5. HIGHER-GENUS MINIMIZING SURFACES

The generalization of Willmore’s conjecture to the
higher-genus setting [Kusner 1989] states that the
stereographic projection to R* of Lawson’s mini-
mal surface &; , in S* minimizes W among genus-g
surfaces. In fact, &; ; is the Clifford torus—the con-
jectured minimizer in the case of tori. In contrast
with the genus-one case, however, the existence of
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FIGURE 7. The deformed torus at the top evolves
into the approximate Dupin surface at the bottom,
which corresponds to the first full line of Table 6.

number approx. log,,
of facets fineness max. angle iterations w
1490
3520 194 16° 3 19.74
5986 425 15° 3 19.71
7416 739 15° 4 19.70
16820 1364 13° 4 19.73
TABLE6. The evolution of a deformed torus into a

Dupin surface, in a stability test for w for surfaces
of genus one. See also Figure 7.

a smooth minimizer for g > 2 has yet to be estab-
lished.

The Lawson surface & , has (g + 1)-fold dihe-
dral symmetry (and another mirror symmetry) in
the sphere. There is a stereographic projection to
R? that preserves this symmetry, and we write &; ,
also for the image of this projection, a symmetric
surface in R?.

In our experiments we made a detailed study of
genus-two and genus-three surfaces. We also made
preliminary investigations into surfaces of genus
four and five.

Our experiments suggest that a smooth min-
imizer exists for each genus, and is conformally
Y
Lawson’s genus-g surface & ;.

Genus-Two Minimizers

We first study the evolution under the w-flow of
a polyhedral approximation of Lawson’s genus-two
surface &; 2, shown on the left in Figure 8. After
a few thousand iterations, the surface appears to
evolve toward &; o, with w approaching the value
21.89 (see Table 7 for a summary). The W-energy
of each of the Lawson surfaces &, is known [Kus-
ner 1989] to be less than 87 ~ 25.13.

number approx. log,
of facets fineness max. angle iterations w
78

2932 81 20° 2 21.77
4924 93 15° 4 21.78
8742 367 13° 4 21.86
12430 574 13° 4 21.88
19036 1013 13° 4 21.89

TABLE 7. The evolution toward the Lawson sur-

face of genus two. See also Figure 8.

Next we begin with a genus-two surface shown
on the left in Figure 9, obtained by fusing two cu-
bical tori using the program Genus. The bottom
row of the same figure shows the final product of
the evolution. The statistics are given in Table 8.

number approx. log,
of facets fineness max. angle iterations w
120
2794 114 35° 2 29.00
4168 156 20° 3 21.83
6226 281 15° 3 21.87
10192 539 15° 4 21.89
20384 956 13° 4 21.90
TABLE 8. The evolution from a cubical genus-two

surface to a button surface, conformally equivalent
to the Lawson surface. See also Figure 9.

Notice that the end product of the evolution in
Figure 9 has w very close to that of & » (Figure 8,
right). This suggests that these two surfaces are
related. In fact, one can find a Mobius transfor-
mation mapping one surface into the other. This
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FIGURE8. A polyhedral surface (left) with the symmetry of the genus-two Lawson surface {1 2 can be rounded
off and refined, giving the surface in the middle left panel. This will then evolve under the w-flow and further
refinements (middle right and right), yielding a close approximation to &1 2. See also Table 7.

FIGUREY9. The program Genus builds a cubical genus-two surface (top left). A smoothed version (top right),
corresponding to the first full line of Table 8, still has energy w = 29. Under the w-flow, the holes get smaller
and move toward each other, giving the button surface shown in two views at the bottom. This surface is
conformally equivalent to the Lawson surface shown on the right in Figure 8.
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can be seen as follows: consider the plane of sym-
metry of the button that intersects it in two large
approximate circles and a smaller one in between.
Clearly there is a fractional linear transformation
of the plane that maps this configuration to one
consisting of three equal plane circles centered at
the vertices of an equilateral triangle. The lat-
ter approximates the intersection of &; » with the
plane, and the fractional linear transformation ex-
tends uniquely to all of three-space to give the de-
sired Mobius transformation.

Our experiments also suggest that ; » is stable
for W. Figure 10 shows a surface obtained by jig-
gling & », and the corresponding evolved surface,
which has w ~ 21.89 and is evidently conformally
equivalent to & ».

Genus-Three Minimizers

We carried out similar experiments that indicate
that Lawson’s genus-three surface &; 5 is W-stable,
with w ~ 22.82 (Figure 11 and Table 9).

We also studied the evolution of a genus-three
surface produced by Genus, which fuses three cu-
bical tori together (Table 10). The minimizing sur-
face (Figure 12, bottom right) in this case has w
very close to that of & 3. One can again see that
this surface is conformally equivalent to & 3, using
an argument like the one for genus two.

Another interesting W-critical surface of genus
three, different from Lawson’s example, is the ste-

reographic projection of the tetrahedral minimal
surface 7 in S* discovered by Karcher, Pinkall and
Sterling [Karcher et al. 1988]. We were able to
evolve under the w-flow to 7 by starting from the
polyhedron with the same symmetry (Figure 13).

number approx. log,,
of facets fineness max. angle iterations w
144
2240 83 46° 2 22.69
4968 201 43° 2 22.69
10920 314 13° 4 22.80
15550 602 13° 4 22.81
27118 993 13° 4 22.82

TABLE 9. The evolution toward the genus-three
Lawson surface. See also Figure 11.

number approx. log;,
of facets fineness max. angle iterations —w
176
4920 149 46° 2 27.73
9086 154 43° 2 23.01
12310 448 17° 4 22.90
18280 618 15° 4 22.81
26858 976 13° 4 22.83

TABLE10. The evolution from a cubical surface of
genus three to a button surface, conformally equiv-
alent to the Lawson surface. See also Figure 12.

FIGURE 10. A deformation of the Lawson genus-two surface & o (left) evolves toward a surface (right) confor-

mally equivalent to ;2.
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FIGURE 11. A polyhedral surface (left) with the symmetry of the genus-three Lawson surface &; 3 evolves
toward a close approximation to £; 3. See also Table 9.
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FIGURE 12. The program Genus builds a genus-three surface out of three cubes (top left). A smoothed version
(top right), corresponding to the first full line of Table 10, still has energy w = 28. Under the w-flow, the
surface evolves toward the button surface shown bottom right, which is conformally equivalent to &; 3.
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FIGURE 13. A polyhedral surface (top) of genus
three with tetrahedral symmetry evolves toward a
W-stable surface 7 (bottom) with the same sym-
metry. See also Table 11.

Our experiments (summarized in Table 11) sug-
gest that this surface 7 is a local minimum, but
not the global minimum for W among genus-three
surfaces. (Compare the values of w for 7 and for
§1.3.)

Figure 14 shows the evolution of two surfaces ob-
tained from perturbations of 7. Apparently, each
evolves toward a surface conformally equivalent to
T with w ~ 23.36.

It is clear, however, that some relatively large de-
formations of 7 result in surfaces that do not evolve
to 7. An interesting example of this is depicted
in Figure 15. This surface comes from “stretch-
ing” the initial tetrahedral polyhedron to be much
taller. From Figure 15 (middle left to right) and
Table 12, it appears that this surface is evolving
toward &; 3. This suggests an interesting problem:
to prove that there is an unstable W-critical sur-
face “between” the W-stable surfaces 7 and & 3,
and to find such a surface.

number approx. log,
of facets fineness max. angle iterations w
76
2240 14 80° 2 23.03
7344 100 15° 3 23.31
10416 321 15° 4 23.33
15142 569 13° 4 23.35
26898 1002 12° 4 23.36

TABLE 11. The evolution to the tetrahedral sur-
face T of genus three. See also Figure 13.

number approx. log,,
of facets fineness max. angle iterations w
76
2904 61 46° 3 22.55
8024 130 18° 3 22.79
11388 150 13° 4 22.78
19672 657 13° 4 22.81
26692 981 13° 4 22.82

TABLE12. The evolution from a stretched tetrahe-
dral surface to a genus-three Lawson surface. See
also Figure 15.

Genus-Four and Genus-Five Minimizers

We now record some preliminary experimental re-
sults concerning W-minimizing surfaces of genus
four and genus five. We can obtain initial surfaces
by fusing several cubical tori together, using the
program Genus. The corresponding evolved sur-
faces of genus four and five are shown in Figure
16 (top). Alternatively, we can start with initial
surfaces close to Lawson’s surfaces {; 4 and & 5.
Evolving these leads to the surfaces shown in Fig-
ure 16 (bottom), which have w near 23.31 and
23.66, respectively, quite a bit under 87 =~ 25.13.
The button surfaces seem to be conformally equiv-
alent to the Lawson surfaces, and all four appear
to be W-stable.

6. FURTHER WORK

We recently implemented a computer program to
generate initial surfaces geometrically close to any
one of Lawson’s minimal surfaces &, ,, of genus mn.
Evolution of any of these initial surfaces seems to
lead to the Lawson surface; all those we have tested
seem to be W-stable.
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FIGURE 14. If we deform our approximation to 7 with the jiggle commands, the result (top left) evolves toward
a surface (top right) that is conformally equivalent to 7. Similarly, if we invert 7 in a sphere (bottom left) and
jiggle, the resulting surface again evolves to one that is conformally equivalent to 7 (bottom right).

FIGURE 15. Stretching the initial surface of Figure 13 vertically gives a surface (left) that no longer evolves
toward the surface 7. The smoothed version (middle left) still has just the initial symmetry, but as we evolve
further (middle right) the symmetry increases, and we approach the Lawson surface (right). See also Table 12.
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FIGURE 16. Surfaces of genus four (left) and five (right) minimizing the energy w. The initial configurations
for surfaces in the top row were similar to the initial surface in Figure 12, and those for the bottom row were

approximations to the Lawson surfaces.

The Evolver allows the evolution of a surface un-
der symmetry constraints. We can specify three
intersecting mirror planes, and the piece of a sur-
face lying between them. The evolution of this
piece will proceed as if we were evolving the whole
surface, while enforcing the symmetry. In particu-
lar, the surface ends up meeting each mirror plane
perpendicularly.

This technique has allowed us to study more
complicated surfaces that have the same k x 2 x 2-
fold Euclidean symmetry as the projection &; ;_1
of the Lawson surface. One of these, a surface
of genus k obtained by adding a single handle to
Lawson’s surface, seems to give a heretofore un-
known minimal surface in S®. We expect that
others will provide examples of surfaces that are



Hsu, Kusner and Sullivan: Minimizing the Squared Mean Curvature Integral for Surfaces in Space Forms 207

W-stable when the symmetries are enforced, but
unstable when they are allowed to be broken.

We intend to give a fuller description of these
surfaces, and of some new notions of polyhedral
mean curvature h, in future reports.
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