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We report the existence of a Gibbs-like phenomenon at points

of continuity in the expansion of functions in Fourier–Bessel

series.

1. INTRODUCTIONIt is well known that many functions can be ex-panded in Fourier{Bessel series. (A Fourier{Besselseries is one of the form1Xk=1 akJm(xx(m)k );
where x(m)k denotes the k-th positive zero of theBessel function Jm.) It is not surprising that par-tial sums of the Fourier{Bessel series of a piece-wise continuous function have an overshoot at thepoints of discontinuity; this behavior is familiarfrom partial sums of ordinary Fourier series, as inthe �gure on the left, and is called the Gibbs phe-nomenon [Gibbs 1898; Weyl 1909].Let's compare the graphs of the partial sums ofthe Fourier and Fourier{Bessel expansions of thefunction f(x) = 1 for the interval �1 < x < 1.The expansions are12 + 1Xk=1 2(�1)k+1(2k � 1)� cos (2k � 1)�x2and 2 1Xk=1 J0(xx(0)k )x(0)k J1(x(0)k ) ;where we took m = 0 in the Fourier{Bessel expan-sion (we will consider other values of m later). Apartial sum (up to k = 20) for the ordinary Fourierseries is what is shown on the left; the graph for
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the Fourier{Bessel series is shown below, in Fig-ure 1. Both series converge to 1 on the interval�1 < x < 1. At x = �1 they vanish, so we expectthe Gibbs phenomenon at these points, and indeedwe observe it in the graphs.
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FIGURE 1. The graph of 2 20Xk=1 J0(xx(0)k )x(0)k J1(x(0)k )What is intriguing about the plot of the Fourier{Bessel series is that there also seems to be a Gibbs-like phenomenon at x = 0, which is a point ofcontinuity. We shall see in Section 2 that this is dueto the fact that the series converges more slowly atx = 0 than at surrounding points.The �rst author observed this unusual behaviorwhen he was using Mathematica to draw graphsfor the appendix to [Pinsky 1991]. Before the ad-vent of computer programs such as Mathematica,graphs of partial sums of Fourier{Bessel series weredi�cult to obtain. That Wilbraham published the�rst graphs of the ordinary Gibbs phenomenon in1848 is quite remarkable [Hewitt and Hewitt 1980;Wilbraham 1848]. The Gibbs-like phenomenon de-scribed here is a good example of how computergraphics can suggest new mathematical results.The ordinary Gibbs phenomenon for Bessel func-tions was investigated analytically by Cooke [1928],who showed that it is not present at x = 0. Cookedid not observe that a slower rate of convergenceis possible.A natural generalization of the expansion in J0just discussed is the expansion
2 1Xk=1 Jm(xx(m)k )xmJm+1(x(m)k )x(m)k (1.1)

for f(x) = 1 in �1 < x < 1 [Pinsky 1991, p. 192].Althoughmmay be any real number withm > �1,we shall limit ourselves to a discussion of the casewhen m is an integer. If we were to plot (1.1), wewould run into practical di�culties, since the sumsbecome unbounded near x = 0 if m > 12 . In orderto overcome this di�culty, we work instead withthe associated convergent expansion2 1Xk=1 Jm(xx(m)k )Jm+1(x(m)k )x(m)kfor xm in �1 < x < 1. Figure 2 illustrates theslower convergence near x = 0 in the cases m =1; 2; 3; 4. The theoretical analysis is given in Sec-tion 3.
2. ANALYSIS OF THE EXPANSION IN J0Let f(x) be a function for which an expansionf(x) = 1Xk=1 akJm(x(m)k x)
is valid on the interval �1 < x < 1. It followsfrom standard properties of Bessel functions (see[Watson 1966, Chap. XVIII], for example) that thecoe�cients ak are given byak = 2Jm+1(x(m)k )2 Z 10 tf(t)Jm(x(m)k t)dt:We will use the following asymptotic expansions[Abramowitz and Stegun 1965, pp. 371, 364], bothof which hold for �xed m:Jm(x) =r 2�x�cos�x� (2m+ 1)�4 �+O�1x��(2.1)as x!1, andx(m)k = �k + 2m� 14 �� +O�1k� (2.2)as k ! 1. From these relations it is elementaryto prove that the asymptotic behavior ofJ0(xx(0)k )x(0)k J1(x(0)k )as k !1 is(�1)k�1 cos( 14�(1 + x� 4kx))(k � 14)�px +O� 1k2�
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FIGURE 2. Partial sums of the m-th order Fourier{Bessel series 2 25Xk=1 Jm(xx(m)k )Jm+1(x(m)k )x(m)k , which approximate xmin the interval �1 < x < 1.for x 6= 0, but for x = 0 it is(�1)k�1p2p4k � 1 +O� 1k3=2�:Therefore, as mentioned above, the Gibbs-like phe-nomenon is caused by the slower rate of conver-gence at x = 0 than at surrounding points. Moreprecisely:

Theorem 1. The order-zero Fourier{Bessel expan-sion for f(x) = 1 in the interval �1 < x < 1 hasthe rate of convergence of the series1Xk=1 (�1)k�1 cos( 14�(1 + x� 4kx))(k � 14)�px

for x 6= 0, but for x = 0 it has the slower rate ofconvergence of the series1Xk=1 (�1)k�1p2p4k � 1 :
3. ANALYSIS OF THE EXPANSION IN Jm, WITH m > 0We now consider the expansion

2 1Xk=1 Jm(xx(m)k )xmJm+1(x(m)k )x(m)k (3.1)
for the constant function f(x) = 1 in the interval�1 < x < 1. At x = 0 the terms of (3.1) arede�ned by continuity, using the relation
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limx!0 Jm(ax)xm = am2mm! ;so the series takes the form2 1Xk=1 (x(m)k )m�1Jm+1(x(m)k ) :By (2.1) and (2.2) we have(x(m)k )m�1Jm+1(x(m)k ) = (�1)k km� 122mm!�1 +O�1k��as k !1. On the other hand, for x 6= 0 we haveJm(xx(m)k )xmJm+1(x(m)k )x(m)k = (�1)kkxm2mm!�1 +O�1k��:To summarize:
Theorem 2. The terms of the m-th order Fourier{Bessel series for the function f(x) = 1 in the in-terval �1 < x < 1 are asymptotically equivalent tothe terms of the convergent series12mm!xm 1Xk=1 (�1)kkwhen x 6= 0, and to the terms of the series12mm!xm 1Xk=1(�1)kkm� 12
(which diverges for m � 12) when x = 0.
NOTE ON THE PLOTSAll �gures were generated using Mathematica. Therequisite values of x(m)k (see (1.1), for instance)were tabulated for each k � 20 and each m; forhigher values of k the asymptotic formula (2.2) is

good enough, at least for small m. Due to thenature of the functions, the PlotPoints option toPlot had to be explicitly set to a relatively highvalue|around 200|or some oscillations would bemissed. (PlotPoints controls the �neness of theinitial subdivision of the domain; after that, anadaptive algorithm takes over.)
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