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It is well known that many functions can be ex-
panded in Fourier—Bessel series. (A Fourier—Bessel
series is one of the form
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where x,(cm) denotes the k-th positive zero of the

Bessel function J,,.) It is not surprising that par-

tial sums of the Fourier—Bessel series of a piece-
YiAAn W\,AVA\/\VA wise continuous function have an overshoot at the
points of discontinuity; this behavior is familiar
from partial sums of ordinary Fourier series, as in
the figure on the left, and is called the Gibbs phe-
nomenon [Gibbs 1898; Weyl 1909].

Let’s compare the graphs of the partial sums of
the Fourier and Fourier—Bessel expansions of the
function f(z) = 1 for the interval —1 < z < 1.
The expansions are
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and

where we took m = 0 in the Fourier—Bessel expan-
sion (we will consider other values of m later). A
partial sum (up to k = 20) for the ordinary Fourier
series is what is shown on the left; the graph for
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the Fourier—Bessel series is shown below, in Fig-
ure 1. Both series converge to 1 on the interval
—1 <z < 1. At x = £1 they vanish, so we expect
the Gibbs phenomenon at these points, and indeed
we observe it in the graphs.
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FIGURE 1.

What is intriguing about the plot of the Fourier—
Bessel series is that there also seems to be a Gibbs-
like phenomenon at = = 0, which is a point of
continuity. We shall see in Section 2 that this is due
to the fact that the series converges more slowly at
z = 0 than at surrounding points.

The first author observed this unusual behavior
when he was using Mathematica to draw graphs
for the appendix to [Pinsky 1991]. Before the ad-
vent of computer programs such as Mathematica,
graphs of partial sums of Fourier—Bessel series were
difficult to obtain. That Wilbraham published the
first graphs of the ordinary Gibbs phenomenon in
1848 is quite remarkable [Hewitt and Hewitt 1980;
Wilbraham 1848]. The Gibbs-like phenomenon de-
scribed here is a good example of how computer
graphics can suggest new mathematical results.

The ordinary Gibbs phenomenon for Bessel func-
tions was investigated analytically by Cooke [1928],
who showed that it is not present at z = 0. Cooke
did not observe that a slower rate of convergence
is possible.

A natural generalization of the expansion in J
just discussed is the expansion
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for f(x) =1in —1 < = < 1 [Pinsky 1991, p. 192].
Although m may be any real number with m > —1,
we shall limit ourselves to a discussion of the case
when m is an integer. If we were to plot (1.1), we
would run into practical difficulties, since the sums
become unbounded near x = 0 if m > % In order
to overcome this difficulty, we work instead with
the associated convergent expansion
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for ™ in —1 < x < 1. Figure 2 illustrates the
slower convergence near © = 0 in the cases m =
1,2,3,4. The theoretical analysis is given in Sec-
tion 3.

2. ANALYSIS OF THE EXPANSION IN ],

Let f(z) be a function for which an expansion

k=1

is valid on the interval —1 < z < 1. It follows
from standard properties of Bessel functions (see
[Watson 1966, Chap. XVIII], for example) that the
coefficients a; are given by
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We will use the following asymptotic expansions
[Abramowitz and Stegun 1965, pp. 371, 364], both
of which hold for fixed m:
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as r — 00, and
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k
as k — oo. From these relations it is elementary
to prove that the asymptotic behavior of
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FIGURE 2.
in the interval —1 < x < 1.

for x # 0, but for x = 0 it is

k—1
VTR, (vs)-
Viak -1 k3/2
Therefore, as mentioned above, the Gibbs-like phe-
nomenon is caused by the slower rate of conver-
gence at x = 0 than at surrounding points. More

precisely:

Theorem 1. The order-zero Fourier—Bessel expan-
sion for f(x) =1 in the interval —1 < xz < 1 has
the rate of convergence of the series
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for x # 0, but for © = 0 it has the slower rate of
convergence of the series

3. ANALYSIS OF THE EXPANSION IN J.,, WITHm > 0

We now consider the expansion

(3.1)

oyl
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for the constant function f(z) = 1 in the interval
-1 <z < 1. At z = 0 the terms of (3.1) are
defined by continuity, using the relation
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so the series takes the form

> ( (m))mfl

By (2.1) and (2.2) we have
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as k — oo. On the other hand, for z # 0 we have
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To summarize:

Theorem 2. The terms of the m-th order Fourier—
Bessel series for the function f(x) =1 in the in-
terval —1 < x < 1 are asymptotically equivalent to
the terms of the convergent series

1 — (—D)*
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when x # 0, and to the terms of the series

oo

(which diverges for m > 1) when x = 0.

NOTE ON THE PLOTS

All figures were generated using Mathematica. The
requisite values of z\™ (see (1.1), for instance)
were tabulated for each £ < 20 and each m; for

higher values of k the asymptotic formula (2.2) is

good enough, at least for small m. Due to the
nature of the functions, the PlotPoints option to
Plot had to be explicitly set to a relatively high
value—around 200—or some oscillations would be
missed. (PlotPoints controls the fineness of the
initial subdivision of the domain; after that, an
adaptive algorithm takes over.)
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