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This paper is an expanded version of Hejhal’s lecture at the
Workshop on Discrete Groups, Number Theory and Ergodic
Theory held at MSRI in November 1991.

This article provides a glimpse into “arithmetical quantum
chaos” through a study of the topography and statistical prop-
erties of the eigenfunctions of the Laplacian for the modular
surface PSL(2, Z)\ H.

1. INTRODUCTION

The eigenfunctions of the Laplacian are central ob-
jects of study in the harmonic analysis of mani-
folds. In particular, they figure prominently in the
Selberg trace formalism [Hejhal 1976, 1983; Sel-
berg 1956]. For curiosity’s sake alone, it would be
interesting to try to produce pictures of such eigen-
functions for representative examples, particularly
as the eigenvalue, and presumably the complexity,
increase.

This problem was first actively considered by
theoretical physicists working with quantum chaos,
the principal motivation there having been to seek
manifestations of quantum chaos in individual ei-
genstates of classically chaotic (or ergodic) sys-
tems.

Compared to the multitude of papers on eigen-
value statistics, works devoted to eigenfunctions
are still rather sparse. For a sampling, see [Berry
1977, 1989; Bogomolny 1988; Heller 1984; Heller et
al. 1989; McDonald and Kaufman 1988; Ozorio de
Almeida 1988, pp. 210-213, 217-220; Gutzwiller
1990, Ch. 15].

Of particular interest to us is the speculation by
Berry [1977] that the eigenfunctions ¥,, of a classi-
cally ergodic system should tend to exhibit Gauss-
ian random behavior as the wavenumber tends to
infinity. Compare [Longuet-Higgins 1957a,b, 1962].
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Certain aspects of this problem are treated in
[McDonald and Kaufman 1988; Shapiro and Goel-
man 1984; Shapiro et al. 1988] for the case of a
stadium domain in R?, where the ambient geome-
try is Euclidean.

The purpose of the present paper is to report on
a similar series of experiments, but for a surface of
constant negative curvature.

To a lesser extent, we are also interested in com-
menting on the analog of the “ridges” or “scars”
discussed in [Berry 1989; Bogomolny 1988; Heller
1984; Heller et al. 1989; Ozorio de Almeida 1988|.
Readers unfamiliar with this topic will find a brief
description of it near the end of Section 3. The re-
sults we obtain will serve to amplify and extend an
earlier series of experiments by Aurich and Steiner
[1991].

Throughout our discussion, it is important to
keep in mind that one of the oldest examples of
ergodicity is given by the geodesic flow associated
with a Fuchsian group I' C PSL(2, R) whose quo-
tient space I'\H has finite hyperbolic area [Hed-
lund 1937, 1939; Hopf 1937, pp. 29-30, 69-80; Sinai
1977, pp. 74-80].

(Here H is the Poincaré upper half-plane. Re-
call that H has the metric ds = y ' |dz| of constant
negative curvature, and that PSL(2,R) acts on H
by isometries, the action of (Z Z) € PSL(2,R) be-
ing given by

— az——l—b’ for z € C.
cz+d

For our purposes, I' C PSL(2,R) is Fuchsian when

it is discrete, non-cyclic, and finitely generated.)

In this context, the quantal eigenstates are noth-
ing other than I'-invariant eigenfunctions of the hy-
perbolic Laplacian Au = y*(u,, + u,,) [Gutzwiller
1990, p. 358]. We impose a boundary condition
at infinity by requiring that u be square-integrable
over I'\H.

One of the main tools now available in the study
of these eigenfunctions is the Selberg trace formal-
ism [Hejhal 1976, 1983; Selberg 1956]. In order
to apply the computational techniques developed
in [Hejhal 1991, 1992b; Hejhal and Arno 1992],
we restrict ourselves to groups having at least one
cusp (conjugacy class of parabolic elements). This
means that the quotient I'\ H of constant negative
curvature is compact ezxcept for a finite number of

punctures (always assuming that I'\H has finite
area).

Far and away the most important example of
this kind is the modular group

PSL(2,Z) = {(“") € PSL(2,R) : a,b,c,d € Z}.

Figure 1 shows the standard fundamental poly-
gon F for PSL(2,Z)\ H; observe that there is just
one cusp, %00.
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FIGURE 1. Fundamental domain J for the modu-
lar group PSL(2,Z), corresponding to the genera-
tors S:z—z+1land E:z— —1/z.

The presence of punctures means [Hejhal 1983]
that there is a continuous spectrum as well as a
discrete one. From this standpoint, it would have
been preferable for I'\ H to have no cusps, in which
case the spectrum would be purely discrete. See
[Hejhal 1976, p. 303; Takeuchi 1977a,b; 1983] for
some natural examples of this type of I'.

The importance of PSL(2,Z) is beyond dispute,
however. Moveover, the situation with PSL(2,Z)
and its congruence subgroups is almost as nice as
in the case of no punctures. In fact, the continu-
ous spectrum is here completely characterized, and
well-controlled, by means of Epstein zeta functions,
which are very familiar in analytic number theory.
See [Hejhal 1983, Ch. 6 and 11; Maass 1949; Peters-
son 1982, pp. 286-294; Siegel 1977] for full details.

When I' = PSL(2,Z) or one of its congruence
subgroups, it is customary to refer to the quantal
eigenstates as Maass waveforms.

2. ADDITIONAL BACKGROUND

To make our subsequent discussion more intelligi-
ble, we say a few words about the general format
of a Maass waveform on PSL(2,Z).
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Suppose for a moment that I' is any Fuchsian
group with just one cusp, which we place at 100
and then take to have width 1 as in Figure 1. Let
J again denote the fundamental polygon. We as-
sume, unless we say otherwise, that the hyperbolic
area pu(F) of F is finite.

Exactly as in [Hejhal 1983, pp. 22-26], one finds
that any square-integrable eigenfunction of A has
a simple expansion in terms of the modified Bessel
function K, (u). Specifically, if ¥ satisfies

AV + AU =0

and we set R = /X — 2, we then have

W(atiy) = byt VLY 6yt Kin(2m[nfy)et

n#0

withd = O unless 0 < A < i. Since we’re interested
in large A, the case 0 < A < i is irrelevant, so we
just have

U(z+iy) =Y cay'?Kip(2m|n|y)e®™™, (2.1)
n#0

and R > 0. At the same time,

U(Tz) =V(z) forall T eT. (2.2)

The function ¥ can, of course, be taken to be real-
valued.

The asymptotics of K;z(u) with respect to u (see
(2.3) or [Hejhal 1983, p. 22]) immediately show
that U(z + iy) = O(e*™) for large y. By virtue
of [Hejhal 1983, p. 585 (middle)], we also have

leal = O(In['/?).

The method used in [Hejhal 1991, 1992b; Hejhal
and Arno 1992] for determining R basically con-
sists of forcing (2.2) to hold at sufficiently many
z € F, for T ranging over a set of generators of I’
(say T € {E, S} in Figure 1).

In practical terms, this procedure really only in-
volves the first few c¢,,. This stems from the ex-
ponential decay in K;r(27|n|y). To be more spe-
cific, for u > R we have [Erdélyi et al. 1953, vol. 2,
pp. 87-88]

Sen(-(3)). @

eﬂ—R/zKiR (U) ~

where

g(t) = Vt2 — 1+ arcsin(t ') —7/2 fort > 1.

For u < R the behavior is

e 2K p(u) ~ \7% Sin(% + Rh(%))’
(2.4)

where
h(t) = argcosh(t ') — V1 — 2 fort < 1.

In both cases, it is understood that the right-hand
side “cuts off” at a value like constant x R~'/® once
|u— R| drops significantly below R/3. (Cf. [Balogh
1967).)
Note now that ¢'(t) = v/t2 — 1/t, so that
22
9(t) = —=(t - 1)%/2

near t = 1. As a consequence, one easily sees that
e™ /2 K;r(2m |n|y) is already less than 107'® when

R+ 12RY/3
>7

] 2y

(2.5)
and R > 100, say.

In imposing condition (2.2), we use values of z
well away from i00. The ordinates of the associ-
ated T’z are therefore bounded away from both 0
and oo (since 7" was one of only a finite number of
generators). We are also free to premultiply K;r by
e™¥/2 in (2.1). The process of determining R to a
modest number of decimal places therefore hinges
only on those ¢,’s with 1 < |n| < M, with M as in
the right-hand side of (2.5).

Obtaining good graphics of ¥ will generally re-
quire more c,’s than that. This creates problems
(algorithmically). Here the type of I' begins to
matter. We distinguish two cases, depending on
whether or not I' is an arithmetic group. An exam-
ple of I' arithmetic is PSL(2, Z); examples of I" non-
arithmetic are the Hecke triangle groups with N #
3,4,6. (Noncongruence subgroups of PSL(2, Z) are
best lumped together with the nonarithmetic case;
compare [Maass 1983, pp. 66, 68, 72, 108].)

Typically, for T' arithmetic, there are available
certain number-theoretical symmetries, known as
Hecke operators. Iterative techniques, like those in
[Hejhal and Arno 1992], can then be employed to
obtain large numbers of ¢, with high accuracy.

In the nonarithmetic case, things are less clear,
and we are still working on developing good meth-
ods for calculating additional ¢,. This work will
be reported on in a future paper.
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There is, of course, another major difficulty asso-
ciated with the nonarithmetic case. Namely, in line
with the Sarnak-Phillips philosophy [Phillips and
Sarnak 1985], it is unlikely that more than a finite
number of ¥ can ever exist, unless I' admits some
type of algebraic symmetry (or group-theoretic in-
clusion).

In Hecke triangle groups, for instance, there is an
obvious symmetry with respect to the y-axis. This
means that our eigenfunction ¥ can be rewritten
as

=~ cos(2mnz)
‘P:chyl/2KiR(27rny){ - - — = }, (2.6)

sin(27n)

n=1

depending on whether ¥ is even or odd. In the co-
sine case, for nonarithmetic I', one expects no such
U to exist. In the sine case, however, things remain
purely discrete and one gets good Weyl asymp-
totics, much as in the case of no cusps [Hejhal
1992b; Venkov 1983, §56.5 and 6.7; Hejhal 1983,
pp. 91-108].

To the extent that “discrete” ¥ do exist in ei-
ther the arithmetic or the nonarithmetic case, de-
termining the finer asymptotic properties of their
Fourier coefficients ¢, represents a very important
problem. An analogous point is made in [Balazs
and Voros 1986, pp. 168, 193].

For the modular group PSL(2,Z), Hecke opera-
tors exist and show that, in representation (2.6),
one can take

CpCon = Z Comyz and ¢ =1 (2.7)

d|(n,m)

without loss of generality. Relation (2.7) is equiv-
alent to asserting that

> Cn, 1
Zgzl:ll—cpp—s—l—p—%’

n=1

where p runs over the primes and Re(s) > 2. As
far as the results of [Hejhal and Arno 1992] go,
there is strong support for both the (generalized)
Ramanujan—Petersson conjecture |¢,| < 2 and the

Sato—Tate conjecture

< :
E

X0 N[p< X] T om

where E is a Jordan measurable set. (Take & =
2cosf to get the usual form of Sato-Tate!) This

equality is a variant of the more familiar Wigner
semicircle law describing the distribution of eigen-
values of random Hermitian matrices [Mehta 1967].

It is clear from (2.7) that, for PSL(2,Z), the ¢,
are not statistically independent. There are de-
pendencies corresponding to the arithmetic “sym-
metries” of PSL(2,Z)\H.

Although, for p prime, the coefficients ¢, would
appear to be statistically independent, it must be
borne in mind that, even in studying fairly sim-
ple correlation functions of the ¢,, (not to mention
the ¢,), one immediately encounters major open
problems lying at the frontier of modern number
theory: see, for instance, [Bump 1989, pp. 54-59,
62—66; Gelbart and Shahidi 1988, pp. 2(L), 6567,
84-85, 94-97, 113; Linnik 1963, Ch. 3; Moreno and
Shahidi 1985; Selberg 1965, 1991].

Still, number-theoretical techniques do provide
the only way presently known of attaining any kind
of rigorous probabilistic control on the ¢,, either for
PSL(2,Z) or for nonarithmetic I'.  Although the
latter case is less common in the literature, note
in particular the results of A. Good [1981, 1983]
concerning the Rankin—Selberg method. Compare
[Selberg 1965, §§2 and 4] and [Hejhal 1983, Ap-
pendix EJ.

The whole situation is further complicated by
the fact that one ultimately needs to let R — oo.

Given this state of affairs, it makes sense to re-
sort to some exploratory experiments.

3. SOME KNOWN RESULTS

Prior to discussing the experiments, we need to
draw attention to several additional facts.

Let M denote for now any C'*° Riemannian man-
ifold of dimension 2. Let A be the usual Laplace—
Beltrami operator.

For M compact, it is known that, generically,
the nodal lines of the A-eigenfunctions don’t cross
and the eigenvalue multiplicities are all 1 [Uhlen-
beck 1976; Courant and Hilbert 1953, p. 395 (7)].
Uhlenbeck’s result is presumably still valid when
the metric is hyperbolic, even if M is allowed to
have a finite number of cusps. (In the latter case,
it is understood that we are referring only to the
discrete spectrum.)

For M compact, it is also known that, within any
geodesic ball of radius ¢/v/A (where ¢ is a universal
constant), any eigenfunction W necessarily has a
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change of sign [Courant and Hilbert 1953, pp. 451—
452; Briining 1978, p. 18].

A small amount of further work shows that the
same result holds not only for any hyperbolic M
of finite area but also for any real-valued (hyper-
bolic) eigenfunction on H. The simplest proof is
to pass to mean values as in [Hejhal 1983, p. 570
(7.6)] and then quote [Hobson 1931, §237]. Com-
pare [Courant and Hilbert 1953, p. 455; Courant
and Hilbert 1962, p. 289]. Also see [Donnelly and
Fefferman 1988, 1990].

When M is hyperbolic of finite area, classical
ergodicity holds, and the result about balls of ra-
dius ¢/ VA strongly suggests that the nodal lines
tend to become increasingly complicated (chaotic)
as the A\ — oo. See [Gutzwiller 1990, p. 237] or
[McDonald and Kaufman 1979, Fig. 1] for a related
Euclidean example.

Ergodicity also plays a decisive role in the work
of Shnirelman [1974], Colin de Verdiere [1985] and
Zelditch [1987]. In discussing this work, we assume
from the outset that M = I'\H is a hyperbolic
manifold. As usual, we denote by F some funda-
mental domain of M, and by p the hyperbolic area
on H.

Suppose first that M is compact. The orthonor-
mal basis {¢,}°, formed from the eigenfunctions
of A is then controlled, at least in part, by asymp-
totic estimates associated with the names of Weyl,
Minakshisundaram and Pleijel [Hormander 1968;
Weyl 1950, §5]. In particular, one knows that

N[\, < X] ~ @X,
7i

1
Z (pn(P)z ~ —X,
4

An <X

where P € M.

The presence of ergodicity allows one to go fur-
ther. Specifically, the formalism of [Shnirelman
1974; Colin de Verdiere 1985; Zelditch 1987] will
now ensure that, after the possible exclusion of a
set of A, of density 0, we have

m L () = L
tim e [ @) = = ()

for every Jordan region A in F. (Density 0 simply
means that the number of bad A, up to height
X is at most o(X).) We stress that the rate of

convergence in (3.1) may depend strongly on A,
particularly as the area of A shrinks.

Relation (3.1) is customarily regarded as a kind
of equidistribution statement. It clearly implies,
for instance, that, for nonexceptional \,, the mass
of ¢,(z) can never localize to, say, just a finite
number of closed geodesics on I'\ H.

Zelditch [1991] proved that (3.1) continues to
hold for I' = PSL(2,Z) and its congruence sub-
groups.

The presence of an exceptional set is clearly a bit
troubling. So long as one is present, the door re-
mains wide open to a variety of unusual behaviors.
We mention this principally because of the “scar-
ring effect” that has been observed on stadium do-
mains (in R?). What happens there is that, for nu-
merous n, the topography of ¢, is found to contain
clear “ridges of mass”, or “scars”, situated roughly
along what would appear to be closed geodesics.
The location of these scars changes with n. See
[Heller 1984; Heller et al. 1989; Gutzwiller 1990,
p. 251].

Heuristic explanations for these ridges have been
provided by Bogomolny [1988], Berry [1989] and
Ozorio de Almeida [1988, pp. 210-213, 217-220] on
the basis of semiclassical asymptotic expansions of
what is now commonly referred to as the pre-trace
formula [Gutzwiller 1990, pp. 188, 261 (top), 291—
295, 297 and 206 (middle)]. The results in those
three papers thus refer mainly to “packets” like

> ealP),

|Rn—X|<6

as opposed to individual eigenstates.

The resulting expressions contain contributions
from every periodic orbit. The magnitude of these
contributions is essentially a function of X £, the
length of the orbit and the relative position of P
[Berry 1989, Egs. (38), (41), (45)]. To ensure con-
vergence of the overall sum, one must take § about
O(1) in size. This, needless to say, compares unfa-
vorably with the mean R,,-gap of ¢/X. Even in the
best of cases, it is doubtful that é can ever be taken
significantly less than 1/ VX . There are thus major
problems in drawing conclusions about individual
eigenstates. Compare [Berry 1989, p. 229(x); De-
lande 1991, pp. 284-285].

Further difficulties arise from the fact that, in
handling the pre-trace formula, only semiclassical
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approximations were used. For now at least, sup-
plying precise error estimates, even in the case of
hyperbolic M, seems largely out of the question,
particularly if § — 0.

The upshot of all this is that the “scarring phe-
nomenon” is not yet set in stone. In particular,
based on our experience [Hejhal 1976, pp. 131-139,
280-315], it seems entirely possible that the semi-
classical (ripple) effects described in [Berry 1989;
Bogomolny 1988; Heller 1984; Ozorio de Almeida
1988] may ultimately blend into the rigorous er-
ror term for the pre-trace formula and no longer
be explicitly discernible (along geodesics) for large
X. Compare [Berry 1991, §4.1] and [Selberg 1991,
Theorems 1 and 2].

Rudnick and Sarnak [1992] have begun to ad-
dress some of these more subtle questions (such
as accurate error terms) for surfaces of the form
'\ H, and have found, for instance, that on congru-
ence subgroups of PSL(2,Z), no finite collection
of closed geodesics can ever serve as the limiting
support of a subsequence of ¢, with n — oco. In
fact, a stronger statement holds: no subsequence
of p2du can ever converge to a measure having
stngular support restricted to a finite number of
closed geodesics. The proof uses Hecke operators.

The same paper also includes a valuable discus-
sion of [Bogomolny 1988, Egs. (2), (9), (10)] from
the standpoint of the classical Selberg trace for-
malism.

4. PICTURES OF WAVEFORMS

Our experiments were carried out in two stages. In
the first stage, we made a variety of plots depicting
the topography of about a dozen Maass waveforms
on PSL(2,Z)\H. The second stage was devoted to
statistical analyses (see Section 5). In all cases, we
took the values of R from [Hejhal 1991], with slight
improvements in accuracy. Table 1 summarizes the
waveforms investigated.

As mentioned earlier, the Fourier coefficients ¢,
are readily computed to high accuracy, using the
techniques of [Hejhal and Arno 1992].

Convention. From this point on, it is understood
that all our K-Bessel functions are premultiplied
by eTI'R/2-

Figures 2-5 use color to depict representative
waveforms. See also Figure 9, and the cover of this

R parity M, Figures
13.779751  even 6.06 6 (top left)
17.738563  even 7.09 6 (top right)
19.423481 even 7.52 6 (middle)
21.315796 even 7.99 6 (bottom left)
22.785908 even 8.36 6 (bottom right)

9.533605 odd  4.87 7 (top left)
12.173008  odd 5.62 7 (top right)
14.358510 odd  6.21 7 (middle)
16.138073  odd 6.68 7 (bottom left)
16.644259  odd 6.81 7 (bottom right)
47.926558 even 14.15 4,8

125.313840 even 30.39 2, 8, cover
125.347558 even 30.39 3,8
125.523988  even 30.43 8
500.066454 even 103.57 9
500.283548 even 103.61 5

TABLE1. Summary of the waveforms investigated.
The number My = (R + 8R'Y3)/(m/3) is the ap-
proximate threshold for five-place accuracy at the
point z = ™/3: see (2.5) and the discussion lead-
ing to it.

issue. For comparison, Figure 10 shows a “mock
waveform” obtained by summing the cosine branch
of (2.6) with R = 500, ¢; = 1, and ¢, chosen ran-
domly, with uniform distribution, in the interval
(—1,1). (Note that these random coefficients do
not satisfy (2.7).) Mock waveforms will be dis-
cussed more extensively in Sections 5.2 and 6.

Figures 6-8 show the nodal lines of the wave-
forms ¥ corresponding to the first 14 values of R
in Table 1. (Nodal lines are simply the curves
where U = 0.) We omit the plots for R ~ 500,
which are similar to those for R =~ 125, only four
times finer. When ¥ is even (Figures 6 and 8),
no nodal lines cross; the dashed lines indicate the
boundary of the fundamental domain F. When
U is odd (Figure 7), the crossings are all consis-
tent with the Dirichlet boundary condition. Fig-
ures 6 and 7 show good agreement with some ear-
lier, rougher plots made by Huntebrinker [1991],
using finite element methods. Huntebrinker also
computed the first few waveforms for several con-
gruence subgroups of PSL(2,Z).

In studying these graphics, we can make several
comments more or less immediately.

(Continued on p. 287)
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FIGURE 2. Waveform ¥(z) for R = 125.313840 in the region [—.75,.75] x [.75,3.75]. On the left, colors run
through violet, blue, green and red as ¥ goes from negative to positive. (Think of the sea!) Bright yellow
fringes between blue and green correspond to ¥ ~ 0*. On the right, red, white and black correspond to the
three equal thirds of the interval [—max |¥|, max |¥|]; the thin green contours correspond to ¥ = 0. Using the
normalization of (2.6) and (2.7), we have max ¥ = 1.471 at (.375,1.050), and min ¥ = —1.683 at (3,2.792).
See also the cover of this issue.
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FIGURE4. Waveform for R = 47.926558 in the region [—1, 1] x [.75,4.75], using the same color maps and same
normalization as Figure 2. The maximum is 1.817, at (0, 1.304), and the minimum is —2.577, at (%,v/3/2).
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FIGURE5. Waveform for R = 500.283548 in the regions [0,0.2] x[1.0, 1.2] (upper left) and [—.75, .75] X [.75, 3.75]
(right), using the same color maps and same normalization as Figure 2. On the top left, the maximum is 1.972,
at (.121,1.064) (marked by a black dot), and the minimum is —1.927, at (.034,1.087). On the right, the
maximum is 2.404, at (.041,2.072), and the minimum is —2.822, at (0,2.305). The bottom left is a blow-up of
wi/3

the “circular scar” at z = ¢
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R =13.779751 R =17.738563

R =19.423481

R =21.315796 R =22.785908

FIGURE 6. Nodal lines of even waveforms ¥ for small R. The illustrated region is [—1, 1] x [.75, 2.75]. The
dashed lines indicate the boundary of F.
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R =9.533695 R =12.173008

R = 14.358510

R =16.138073 R = 16.644259

FIGURE 7. Nodal lines of odd waveforms ¥ for small R. The illustrated region is [—.75, .75] x [.75, 2.25].
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R = 47.926558
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R =125.523988

FIGURE8. More nodal lines of even waveforms. The illustrated region is [—1, 1] x [.75, 2.75] for R = 47.926558

and [—.75, .75] x [.75, 2.25] for the remaining graphs.

e Although ridges are clearly visible as soon as
R is moderately high (Figures 2, 3, 5 and 9),
they do not seem to lie along closed geodesics.
(We recall, incidentally, that PSL(2,Z)\H has
no periodic orbits passing through ioco.)

e Texturally, Figures 5, 9 and 10 are very similar,
even though Figure 10 is random.

e In Figures 2, 5 and 9, there are roughly circular
scars surrounding the elliptic fixpoint at e™/3.

By contrast, Figure 3 does not show this phe-
nomenon.

As shown in [Hejhal 1992b, p. 93], the function
¥ will typically have a positive local maximum
or a negative local minimum at e™/2. A look at
the numerics shows that in general this is not
a global maximum or minimum (see Figure 3).
The point z = 7 is also a critical point, but its
type appears to be variable.
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FIGURE 9. Waveform for R = 500.066454, in the
region [—.75,.75] x [.75,3.75]. The maximum is
2.300, at (.430,1.391), and the minimum is —2.558,
at (.259,2.539). Black represents values of ¥ in the
middle third of the interval [—~max |¥|, max |¥|].

e Figures 5, 9 and 10 are very reminiscent of Fig-
ures la and 7 in [Heller et al. 1989]. Note, how-
ever, that our superpositions consist solely of
waves coming in from ico. See also [Longuet-
Higgins 1957a,b, 1962].

e The geometric patterns formed by the alternat-
ing “hills” and “holes”, best visible in the fig-
ures with the black-white-red color scheme, may
have some significance; see [Heller et al. 1989].
It is also interesting that, at least in certain
cases, these hills and holes have oblong shapes,

FIGURE 10.

Mock waveform (p. 280) for R = 500,
in the region [—.75,.75] x [.75, 2.25]. The maximum
is 1.514, at (%, 1.726), and the minimum is —1.654,
at (0,1.793). The color coding is as in Figure 9.

in rough agreement with [Berry 1989, p. 228
(iii)] and [Bogomolny 1988, p. 174, Eq. (15) and
p. 176, 1. 14]. (In these references 7 is the analog
of ¢/v/X in Section 3.)

e Figure 4 nicely illustrates how the successive K-
Bessel functions “kick in” as y decreases, giving
rise to increasing levels of “chaos” along the way.
One can also see, for instance, that the first two
K-Bessels must have zeros close to y = 2.79 and
3.18; likewise for y =~ 2.14 and n < 3.

Finally, some technical remarks. In making these
plots, it is essential to use a sufficiently fine grid,
consistent with ¢/ VX and the color graduation.
This point is easily addressed by retaining ||grad /|
as a “control value” in the machine output. To
this end, we initially used a 5000 x 10000 grid
for the rectangular regions (Figures 2-5, 9), and
a 5000 x 5000 one for the square regions (Figures 5
and 10). Data preparation for Figure 10, say, took
about 7 minutes of CPU time on the Cray-XMP.
To optimize the subsequent color separation, we
then switched over to 900 x 1800 and 900 x 1800
grids, after confirming that this entailed no signif-
icant loss of graphical accuracy.

Figures 2-5 and 9-10 were then produced on a
Silicon Graphics 4D 310VGX in tiff format, us-
ing tools from the Utah Raster Toolkit and us-
ing the PBMplus Toolkit. The computer graphics
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environment created by Joel Neisen at the Min-
nesota Supercomputer Center allowed us to pro-
duce these images with the greatest of ease. We
also acknowledge the expert advice of Wes Barris
of MSC and of Silvio Levy of the Geometry Center
(University of Minnesota), Editor of Ezperimental
Mathematics, whose many suggestions greatly im-
proved our initial pictures.

5. STATISTICAL MATTERS

5.1. Introduction

Recall from the end of Section 3 that (ignoring a
relatively small set of exceptional eigenvalues) we
have an equidistribution relation (3.1) that holds
for all Jordan regions A in F. The most natural
way of explaining why this should be so would be
for the probability measures

_p{zeA:pu(2) € E}
) = w(A)

to converge nicely to some probability distribution
G, independent of A and having mean 0 and stan-
dard deviation u(F)~'/2 [Billingsley 1986, pp. 344
(ii), 348 and 408 (top)]. The optimal situation, es-
pecially from the standpoint of chaos [Moran 1968,
p. 243], would clearly be for G to be Gaussian.

In (3.1), the ¢, were orthonormal. Basing the
normalization on (2.6) and (2.7), as we do, leads
only to the insertion of a modest scaling factor be-
fore 14(F)~1/2, in the expected value of the standard
deviation. More specifically, as in [Iwaniec 1984,
§ 5; Iwaniec 1990, §§ 2—-3; Kuznecov 1981, Theorem
6; Smith 1981], one has

where B, = 2p,(1)e "F~/2 satisfies

(5.1)

R < |B,.| < VR,, (5.3)
2X?2
> B~ ot (5.4)
R,<X

Here p,(j) is the obvious Fourier coefficient of ¢,
and e~ "f/2 reflects our K-Bessel convention. It
was recently shown that /R, can be replaced by
R¢ in (5.3) [Hoffstein and Lockhart 1992].

From a practical standpoint, the main drawback
to the current form of (3.1) is the lack of effective
bounds on its error terms. In a certain sense, the

existence of a possible exceptional set is but one
manifestation of this. Moreover, as already men-
tioned, the rate of convergence in (3.1) or (5.1) may
well depend strongly on A.

To elaborate on this a bit, recall that, in the
physics literature, ¢/v/)\,, is commonly referred to
as the de Broglie wavelength. At length scales be-
low ¢/v/A,, one expects the topography of ¥, to
look “essentially sinusoidal”, that is, regular. It
is only when A is substantially bigger than the de
Broglie wavelength that one stands any chance of
seeing any type of Gaussian distribution.

(A similar situation holds for the logarithms of
various number-theoretical L-functions along the
line Re(s) = 3; compare [Bombieri and Hejhal
1987, §3; Hejhal 1989; Selberg 1991, §2].)

This graininess basically implies that one should
not expect too much uniformity in v,4(F) under
slight variations in A (and, to a lesser extent, F)
for relatively modest R.

Be these things as they may, there are three
questions about which one would very much like
to gather further, even if only very sketchy, infor-
mation:

Question 1. Is G, in fact, Gaussian?

Question 2. Are the restrictions of ¥, to well-sep-
arated subregions of ¥, = F N {Re(z) > 0} in any
sense statistically independent as n — oo?

Question 3. Do the functions ¥, and ¥, _, tend
to become statistically independent on arbitrary
ACYTF, forn — oo and g > 17

Compare [McDonald and Kaufman 1988; Shapiro
and Goelman 1984; Shapiro et al. 1988|.

It is to these questions that we addressed the
second stage of our experiments.

If Berry’s conjecture (page 275) is correct, Ques-
tion 1 should have a positive answer. Since (3.1) is
already known for PSL(2,Z), the key issue is sim-
ply whether the measures v, 4 actually look like
Gaussians with mean 0. (The standard deviations
should, by all rights, take care of themselves, at
least if the exceptional set is empty, as seems to be
likely.)

Some caution needs to be exercised in dealing
with all three questions, because of the special for-
mat implicit in (2.6) and (2.7). The philosophy of
[Berry 1977] and [Longuet-Higgins 1957a,b, 1962]
is predicated on the “wave-vectors” being able to
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come in from all directions. Compare Figure 4
(left) and the asymptotics of (2.4) for u < R,
where u = 27ny. Or, equivalently, see (6.3).

In any event, note that if the measures v,4 go
Gaussian with any kind of uniformity in A (at
scales bigger than the de Broglie wavelength), a
simple argument based on conditional probabilities
will immediately yield the plausibility of a positive
answer to Question 3 whenever (n—gq)/n — 0. The
worst case is when ¢ = o(n). (The granularity of
any test sets is understood here to be appropriately

large compared to ¢/y/A,—q.)

5.2. Description of the Statistical Experiments

Table 2 and Figures 11-12 summarize our explo-
rations in trying to answer Question 1. We calcu-
lated (2.6) for the waveforms ¥ corresponding to
the last five values of R in Table 1, over a variety
of rectangular windows, as listed in the top part
of Table 2. Note that some of the windows are
not contained in F; we chose them in this way in
order to allow for a wider class of tests.

We also made histograms by throwing hyper-
bolic areas into thirty buckets, according to the
size of the local W-average over a 5000 x 5000 or

waveform window E(¥) SD  grid size M range Figure
R =125.313840 [0,.2] x [1,1.2] .010 .439 5000 x 5000 26 [—1.44,1.41] 11 (top left)
[2,.4] x [1,1.2] —.024 500
[0,.2] x [¥2,¥3 4 2] —.005 .426
[3,.5] x [L3,¥3 + 2] 003 .488
[—.75,.75] x [.75,3.75] .000 .435 5000 x 10000 35 [—1.68,1.47] 11 (top right)
R=125347558  [0,.2]x[1,1.2] 004 322
[2,.4] x [1,1.2] 005 371
[0,.2] x [%3, 2 + 2] —.002 .324
[3,.5] x [%2, %3 4 2] .003 .345
[—.75,.75] x [.75, 3.75] 000 .389
R = 125.523988 [0,.2] x [1,1.2] 009 .567
[2,.4] x [1,1.2] —.009 592
________ 0,2 x [, ¢ +.2] o010 720
R = 500.066454 [0,.2] x [1,1.2] —.001 .429 5000 x 5000 90 [~1.97,1.65] 11 (middle left)
[2,.4] x [1,1.2] 000 451
[0,.2] x [¥3, Y2 1+ 2] —.002 .521
[-.75,.75] x [.75,3.75] 000 .490 5000 x 10000 120 [~2.56,2.30] 11 (middle right)
R = 500.283548 [0,.2] x [1,1.2] —.003 .521 5000 x 5000 90 [~1.93,1.97] 11 (bottom left)
[2,.4] x [1,1.2] 004 582
[0,.2] x [%23, %2 4 2] 000 .611
[-.75,.75] x [.75,3.75] 000 571 5000 x 10000 120 [~2.82,2.40] 11 (bottom right)
mock (a), R~ 500 [0,.2] x [1,1.2] —.002 564
mock (b), R = 500 [0,.2] x [1,1.2] —.002 339 5000 x 5000 90 [—1.21,1.30] 12 (top)
[2,.4] x [1,1.2] 001 355
[-.75,.75] x [.75,2.25] 000 .359 5000 x 5000 120 [-1.65,1.51] 12 (middle)
mock (c), R = 1000 [0,.2] x [1,1.2] .000 .349
[2,.4] x [1,1.2] 000 334
mock (d), R = 1000 [0,.2] x [1,1.2] 000 .339 5000 x 5000 172 [~1.54,1.50] 12 (bottom)
[2,.4] x [1,1.2] 000 364
TABLE 2. Statistics of individual waveforms and mock waveforms ¥ (see page 291) corresponding to diverse

values of R and rectangular windows A. For all experiments we show the mean and the standard deviation
SD of W. We also show, in those cases for which a histogram is included in Figures 11 and 12, the size of the
grid used, the approximate value of M = (R + 8R/3)/(27ymin), as in Table 1, and the range of values of ¥

occurring within the window.
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5000 x 10000 grid. Some of these histograms are
shown in Figure 11, and the corresponding data
are given in the long rows of Table 2.

The bottom part of Table 2 and Figure 12 report
the same experiments for several mock waveforms:

(a) R = 500.283548, with the coefficients of R =
13.779751;

(b) R = 500, with ¢; = 1 and uniform random
Cn € (_17 1);

A=10,.2] x[1,1.2]

(c) R = 1000, with ¢; = 1 and uniform random
cn € (—1,1);

(d) as in (c), but with a different batch of coeffi-
cients.

We estimate the error level in Table 2 and subse-
quent ones to be no more than a few thousandths,
given the controls we exercised on ||grad ¥|| when
passing to Riemann sums.

A = [-.75,.75] x [.75,3.75]

R = 12531384j

4— OO OO p——"— | — T *—oT—o0—0—9

\ R = 500.066454

R = 500.283548

2

1 2
1

FIGURE 11. Histograms of the value distribution of automorphic waveforms W in the given window A. See

Table 2 (top) for the statistics.
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We obtained very good support throughout for
the conjecture that the distribution G is Gaussian.
The bigger the R, the better the fit. The textures
for automorphic waveforms with R ~ 500 are en-
tirely comparable to those for the mock waveforms.

Note, however, that the standard deviations for
automorphic ¥ are having a bit of trouble stabiliz-
ing to something independent of the window. This

mock (b) A=1[0,2] x[1,1.2]
-1.5 -1 -5 0.5 1 1.5
mock (b) A= [-.75,.75] x [.75,2.25]
-15 -1 ) 0.5 1 1.5
mock (c) A=10,.2] x[1,1.2]
-15 -1 —-.5 0.5 1 1.5

FIGURE 12. Histograms of the value distribution
of mock waveforms ¥. See Table 2 (bottom).

is mildly disturbing but not wholly unexpected,
given our earlier discussion. See the end of Sec-
tion 6, items (a)—(d), for more on this point.

To round things out, we ran similar tests on a
number of vertical and horizontal cross-sections of
the rectangles used before. Representative results
are shown in Table 3 and Figures 13 and 14. Here
we found nothing nearly as striking as in the earlier
figures. In all cases tested, both vertical and hori-
zontal, the means and standard deviations tended
to exhibit relatively high levels of fluctuation. Any
evidence for a one-dimensional analog of (3.1), and
corresponding Gaussian limit, must therefore be
regarded as sketchy at best.

We next turned our attention to Questions 2
and 3, which have to do with statistical indepen-
dence. Here, rather than make detailed compar-
isons of joint probability distributions, it seemed
much easier to compute a variety of correlation co-
efficients; see [Billingsley 1986, p. 417 (7)] and the
theorem in [Feller 1971, vol. 2, p. 136].

We calculated such coefficients for many pairs
of cases in Table 2. To keep things simple, we
restricted ourselves to cases where the two win-
dows were isometric. (Proper attention was also
paid to the necessary disjointness of the windows
on PSL(2,Z)\H.)

Tables 4-6 are representative of the results we
obtained. Table 4 shows self-correlation coefficients
(Question 2), while the other two involve compar-
isons between different waveforms (Question 3).

In Table 5, the correlations tend to be biggest
when the two values of R are close together. Sim-
ilar behavior was seen in every other case tested,
but tended to diminish as R grew: see Table 6.

These tables certainly support the statistical in-
dependence properties formulated in Questions 2
and 3. All in all, then, our experiments, as far as
they go, tend to confirm the basic thrust of Berry’s
hypothesis, at least for I' = PSL(2,Z). The obvi-
ous expectation, of course, is that Questions 1-3
will continue have an affirmative answer for any
quotient '\ H of finite area, especially if compact.

Lots of additional experiments are possible, but,
on the whole, a natural picture of quantum chaos
for waveforms on surfaces of constant negative cur-
vature seems to be emerging. The properties stated
in Questions 1-3 form its centerpiece.
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waveform segment E(¥) SD range Figure

R = 500.066454 [—.75,.75] x {.8208}) 023 535 [~1.53,1.70] 13 (top)
[—.75,.75] x {1.5003}  .049 .498 [—1.09,1.22] similar to 13 (top)
]

mock (b) [—.75,.75] x {8208}  .026 .381 [—0.97,1.09] 13 (middle)
[—.75,.75] x {1.5003}  .025 .393 [—1.02,1.04] 13 (bottom)

mock (b) {3603} x [.75,2.25] .007 .388 [—1.14,1.14] 14 (top)
{0003} x [.75,2.25] .005 .472 [—1.65,1.24] 14 (middle)
R =500.283548  {.3603} x [.75,3.75] —.071 522 [~1.91,1.47] 14 (bottom)

[ ] [ ]
{0003} x [.75,3.75] .083 .761 [—2.01,2.22] similar to 14 (bottom)

TABLE 3. Statistics for waveforms ¥ sampled along segments, rather than rectangles.

R = 500.066454 [—.75,.75] x {.8208} mock (b) {3603} x [.75,2.25]

—-1.5 -1 —.5

FIGURE 13. Histograms of ¥ along horizontal seg- FIGURE 14. Histograms of ¥ along vertical seg-
ments. See the top part of Table 3. ments. See the bottom part of Table 3.
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waveform window 1 window 2 m.s.c. cor(f,g) cor(f? g%
R =125.313840 [0,.2] x [1,1.2] [2,.4] x [1,1.2] 096 —.060 —.094
[0,.2] x [¥2,¥3 4 2] [3,.5] x[L3,¥3 4+ 2] —394 —.394 .070
R = 125347558 [0,.2] x [1,1.2] [2,.4] x [1,1.2] —241  —.241 015
[0,.2] x [¥2, %3 4+ .2] [3,5] x[%,¥2+.2] —295 —.205 —.005
R =125.523988 [0,.2] x [1,1.2] [2,.4] x [1,1.2] 255 255 —.024
R=500.066454 [0,.2] x [1,1.2]  [2,4]x[1,12] —.166 —.166  .024
R = 500.283548 [0,.2] x [1,1.2] [2,.4] x [1,1.2] 048 —.048 —.024
mock (b) [0,.2] x [1,1.2] [2,.4] x [1,1.2] —.018 —.018 .007
mock (¢)  [0,.2] x[1,1.2]  [2,.4]x[1,12] .02 .04  —.02L
mock (d) [0,.2] x [1,1.2] [2,.4] x [1,1.2] —.029 —.029 001

TABLE4. Correlative behavior of a single waveform on disjoint subregions. The functions f and g are the restric-
tions of ¥ to the two specified windows. The entry “m.s.c.” (most significant correlation) indicates the correla-
tion of largest absolute value among cor(f,g), cor(f2,g?), cor(|f|, |g), cor(|f],g), cor(f, |g|), cor(|f|*/?,|g]*/?)
and cor(sgn f,sgng).

waveform 2 window 1 window 2 m.s.c. cor(f,g) cor(f? g?)
R=125.313840 [0,.2] x [1,1.2] [0,.2] x [1,1.2] —.024  —.002  —.024
[.2,.4] x [1,1.2] [0,.2] x [1,1.2] 024 .005 024
R=125.347558 [0,.2] x [1,1.2] [0,.2] x [1,1.2] 010 .003  —.005
[2,.4] x [1,1.2] [0,.2] x [1,1.2] —039 003  —.021
R =125.523988 [0,.2] x [1,1.2] [0,.2] x [1,1.2] 026 .007 026
[2,.4] x [1,1.2] [0,.2] x [1,1.2] —006 —.001 000
R =500.066454 [0,.2] x [1,1.2] [0,.2] x [1,1.2] 169 169 054
[2,.4] x [1,1.2] [2,.4] x [1,1.2] 090 090  —.037
[3,.5] x [¥2, %2 + 2] [3,.5] x [, %2 +.2] —193 —.193 —.029
mock (b) [0,.2] x [1,1.2] [0,.2] x [1,1.2] 116 .116 006
mock (c) [0,.2] x [1,1.2] [0,.2] x [1,1.2] 036  —.000 —.016
mock (d) [0,.2] x [1,1.2] [0,.2] x [1,1.2] 013 —.000 000

TABLE 5. Correlative behavior of the waveform with R = 500.283548 versus other waveforms. (Window 1
refers to R = 500.283548.)

waveform 2 window 1 window 2 m.s.c. cor(f,g) cor(f? g%)
R=125313840 [0,.2] x [1,1.2] [0,.2] x [1,1.2] —015 000  —.002
R=125523988 [0,.2] x [1,1.2] [0,.2] x [1,1.2] 013 —.001 001
R=1500066454 [0,.2]x[1,12]  [0,.2]x[1,12] ~  —.013  .002  .003
mock (b) [0,.2] x [1,1.2] [0,.2] x [1,1.2] —022 .00 002
mock (¢)  [0,2]x[1,1.2]  [0,.2]x[L,1.2] 080 .080  .005

TABLE 6. Correlative behavior of mock waveform (d) (at R = 1000) versus other waveforms.
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As examples of directions for further experimen-
tation, we cite:

e performing similar tests for I' nonarithmetic, or
cocompact;

e testing more waveforms, with larger values of R;

e studying the analog of the correlation function
C(X;q) of [Berry 1977, p. 2089, eq. (21) and
last two lines];

e testing for correlative behavior over more gen-
eral regions;

e testing analogs of the various geometric prop-
erties mentioned in [Longuet-Higgins 1957a,b,
1962].

We hope to treat several of these topics in a sub-
sequent publication.

6. SOME HEURISTICS

The experiments of Section 5 have provided us with
a tantalizing glimpse of what the deeper strata of
the Selberg trace formalism may contain. The real
challenge will come, of course, when one seeks to
place things on a rigorous footing.

Given the paucity of our present data, it is prob-
ably wise to refrain from making any precise spec-
ulations as to the type of techniques that will ulti-
mately come into play. One is reminded here of H.
Weyl’s famous quote [Weyl 1950, p. 131]:

I feel that these informations about the proper
oscillations of a membrane, valuable as they are,
are still very incomplete. I have certain conjectures
on what a complete analysis of their asymptotic
behavior should aim at; but since for more than
35 years I have made no serious attempt to prove
them, I think I had better keep them to myself.

Still, the histograms in Figures 11 and 12 are
rather striking. Something is certainly going on
there! Under the circumstances, offering some re-
marks of a largely heuristic nature may not be to-
tally out of place.

Briefly put, our main idea will be to combine
ideas of Rankin—Selberg type with some very sug-
gestive results of Salem and Zygmund [1954] on
partial sums of random(ized) Fourier series. Im-
portant motivation is provided by an earlier, closely
related, discussion of Rice [1944, §§3.1, 2.8, 1.7].

To set the stage, it is best to begin with the case
of a mock waveform

= chy1/2Km(27my) cos(2mnz), (6.1)

n=1

U(z+iy)

where R is arbitrary (but large!) and the ¢, are
chosen randomly in [—1, 1] with, say, uniform dis-
tribution. Since the coefficients ¢, will later be
viewed as independent random variables, it might
have been better to write ¢, (w) in place of ¢,.

Choose any a > 12 and keep y bounded away
from 0 and oo. Let

R+ aR'/?
2y

M =

As in the discussion leading to (2.5), we see that
it is not too far wrong to limit the summation in
(6.1) ton < M. In view of (2.4), and taking into
account the Convention in Section 4, we can fur-
ther approximate ¥(z + iy) by

( +Rh( Ry)) cos(2mnx)

n;/f VR 27my
(6.2)
with the convention that \/R? — (2mny)? freezes at

v/2a R'? in the range [27ny — R| < aRY?, and that
the sine term is then modified as appropriate.

For n significantly less than R/27my, a quick cal-
culation shows that the general term in (6.2) basi-
cally reduces to

C \/j? sin(% + R10g<7rfye>) cos(2mnzx), (6.3)

in good agreement with, say, Proposition 1.5 of
[Hejhal 1990]. This shows that we are not simply
dealing with something essentially equivalent to a
double Fourier series.

We now set

R2

©= R2 — (27ny)?’

and rewrite (6.2) in the form

F Z cnfs1n< + Rh<27;2 y)) cos(2mnz),

= (6.4)

regarding /@ as a kind of reverse mollifier.
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The quantities

()

, .
¢, =¢C, sm(

and
"o
Cn - Cn\/a
are presumably even more random than the c,,

because of the sine terms. A trivial calculation
shows that

|| < O(n*%)|c,| < O(n'%)c,| forn < M.
(6.5)

Since the ¢, are chosen randomly, one can safely
assume that any moments or correlation-type sums
built out of the ¢, will be accurately estimable us-
ing results like the law of large numbers, Cheby-
shev’s inequality, or the central limit theorem; and
similarly for ¢/, and /..

At this point one is reminded of the central limit
theorem for random(ized) Fourier series, as stated
in [Salem and Zygmund 1954, Ch. III] or [Zygmund
1959, §16.6]. Though Salem and Zygmund base
their analysis on a “twisting” by Rademacher func-
tions ¢, (t), it is a familiar fact that this is formally
equivalent to working with a special set of indepen-
dent random variables [Billingsley 1986; Kac 1959,
p. 6; Zygmund 1959, vol. I, p. 34 (6)].

To generalize matters, it’s basically enough to re-
place any t-integrals in [Salem and Zygmund 1954]
by their w-counterparts (following some minor al-
gebraic changes due to the dual role played by B%;).
The resulting limit theorem will then hold for a rel-
atively wide class of random Fourier coefficients ¢,,.

The formalism of [Salem and Zygmund 1954;
Zygmund 1959] rests on the time-honored tech-
nique of characteristic functions. At least under
some somewhat stronger hypotheses on ¢, it ought
to be possible to recover exactly the same result
using only successive moments, in line with [Bil-
lingsley 1986, p. 408]. For further insights on this,
see [Rice 1944, §4.5; Esseen 1945, pp. 32-38; Ghosh
1983, pp. 100-101].

To make things effective, it will then be neces-
sary to find good estimates for various (higher)
correlation-type sums involving the ¢,. Doing so
without first averaging over w (that is, for specific
w) will generally be delicate.

Note that there is a strong analogy here with
recent value-distribution theorems for logarithms
of L-functions (and the associated Selberg moment

formalism); see [Selberg 1991, §2; Hejhal 1992a,
§3; Titchmarsh 1951, §§14.20-24; Tsang 1984].

In the present case, our need for an effective ver-
sion of Salem-Zygmund stems mainly from the fact
that (6.2) terminates at n = M. What one expects,
of course, is that, for most w, everything will turn
out OK.

In fact, things should still be OK anytime the
chosen ¢, mimic the behavior of independent ran-
dom variables sufficiently well, in terms of certain
explicit higher correlation functions.

Having said this, we now go ahead and simply
apply [Salem and Zygmund 1954, Ch. III] (or [Zyg-
mund 1959, § 16.6]) for large R, with equation (6.5)
in mind.

We are led to conclude heuristically that, on any
segment [z, 2,] C [0, 5], the distribution of values
of ¥(z + dy) should tend to look Gaussian with
mean 0 and standard deviation approximately

YETIED 30710 B

n<M

(In this connection, note that E(¥) is trivially
bounded by O(1)R~'/2log(R/2my), by virtue of
(6.5).) It is understood here that suitable restric-
tions, depending on R, are placed on the granular-
ity of any test sets.

Now set

R —aR'/?
2ry

M =

Then the sum in parentheses in (6.6) equals

> len? + O(RY?)

n<M’

= Z |Cn|2Qsin2<% —i—Rh) + O(R*?)

n<M’

= % Z le.|?@ (1 + sin(2RA)) + O(R2/3)_

n<M’

At the same time, however,

D leal? ~ QX, (6.7)

n<X
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with Q = %f_ll t2dt, by the law of large num-
bers. Therefore the preceding expression can also
be written

H1+O0R) Y lel’@
n<M'
1 o
+5 > leal*Qsin(2RA),

n<M’

and the standard deviation satisfies

D~ \/T1+T27 (68)

where

_ Ty —1/3
T = 1 E
1 2R( +O R n<M,|Cn| Qa

= W—; nSZM’ e 2Q sin(2Rh<27;§y>).

Whenever (6.7) holds with remainder o(X?/3) or
less, we easily see using integration by parts that

Ty~ —. (6.9)

By partitioning 77 at an appropriate (R — L)/27my
and then using |c,| = O(1), we find that (6.9) ac-
tually holds unconditionally. (For |c,| = O(n’), a
remainder term of o(X'~%) is needed.)

We now turn to 75. The presence of the sine
term makes one suspect that |T5| is typically much
less than 77. The simplest approach is to regard
|c,|? as a random variable and apply Chebyshev’s
inequality. The whole difficulty then comes down
to showing that

Z QQ sin <2Rh ( 27;;3/) )

nM

is small. For this, the techniques of [Titchmarsh
1951, Ch. 4 and 5] will presumably suffice. (Bear
in mind that the corresponding zeta function is just
Q((s); compare (6.3) for n < R/2my. The typical
“gain” will be a small power of R.)

In this connection, it is also reasonable to expect
that sufficiently good control on

o0

D leal’n”

n=1

would allow one to estimate T3 directly. (Another
approach that may be useful for ezplicit ¢, would
be to take moments of T, with respect to y.)

The upshot of all this is simple: for generic mock
waveforms, one should expect to see

7€)

By employing some type of simultaneous inte-
gration with respect to y, one should therefore be
able to conclude that such mock waveforms will
have Gaussian value distribution with mean 0 and
standard deviation approximately /7{2/8 over any
rectangle [y, Z2] X [y1, y2] as R — oo. Since we have
V/m/8 = 3618 for Q = 1, the agreement with the
last seven rows of Table 2 is quite good.

Since varying y tends to make ¢/, and ¢! more
random (inducing as it does something of a “multi-
ple-shuffling” effect), it is natural to expect that
the approach to normality over [zi,zs] X [y1,yo]
will generally be somewhat faster and more robust
than in cases where y is fixed; compare Figure 12
with Figure 13.

Our discussion of mock waveforms has been pur-
posely phrased in such a way that the ingredients
for a successful extension to true waveforms are
readily discernible. The essential requirement, of
course, is that the ¢, need to mimic the behavior
of independent random variables sufficiently well
for 1 <n < M. The extent to which this occurs is
measured by the size of certain explicit correlation-
type sums involving ¢/, as mentioned earlier.

For a true (automorphic) waveform ¥, relation
(6.7) corresponds to the classical Rankin—Selberg
estimate: see [Selberg 1965; Iwaniec 1984, §5; Iwa-
niec 1990, §§2-3; Moreno 1977, §2.4]. One gets

as R — oo.

_ 4 cosh(rR)
om

/?|26”R/2\Il(z)|2du(z) (6.10)

and a remainder term of Or(X3/®), the subscript
indicating that the implied constant may depend
on R. Here

U= Z cny? Kig(2mny) cos(2mn)

n=1

(subject to our usual K-Bessel convention). Sums

like

Y co and Y e, with 1>1 (6.11)

n<X n<X
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can be treated using a variety of closely related
techniques (of Rankin—Selberg type) that essen-
tially yield Or(X%¢) and O (X?/3+%), respec-
tively [Epstein et al. 1985, § 3; Good 1983; Iwaniec
1985, §589, 14.]

We also mention, in connection with calculating
W-moments over 0 < x < «, that analogs of these
estimates can be successfully pushed through for
cases in which n is restricted to lie in an arith-
metic progression [Good 1983, p. 128; Shimura
1971, Prop. 3.64].

For fixed R, then, we thus see that the Fourier
coefficients ¢, are starting to simulate the behav-
ior of independent random variables. This is true
even though there are multiplicative relations cor-
responding to (2.7). In some sense, whatever de-
pendencies are present tend to get “mixed out” as
X — o00. The situation is somewhat analogous to
Theorem 27.5 of [Billingsley 1986].

However, this much has basically been just the
“zero-order” approximation. The real problems
begin when our correlation-type sums involve prod-
ucts of three or more ¢/. In a nutshell, precious
little is rigorously known here.

One can certainly experiment a bit with mak-
ing connections to various “higher-order” Rankin—
Selberg zeta functions, but this does not take care
of everything. The fact that the analytic properties
of such zeta functions are still largely conjectural
does not help matters! See [Bump 1989, pp. 54-59,
62-66; Gelbart and Shahidi 1988, pp. 2, 65-67, 84—
85, 94-97, 113; Moreno and Shahidi 1985; Shahidi
1990].

Connections of this type are further frustrated
by the fact that any resulting error terms will gen-
erally possess an R dependence as well. Because of
the restriction n < M, things are therefore going
to have to be kept fairly explicit. (This difficulty
is already visible in (6.11).)

The task at hand clearly seems daunting. One
wonders if there isn’t some simpler approach to
the whole business! Whatever the answer, the ac-
curacy manifested in Figures 11 and 12 serves as
an important stimulus. In fact, in view of the val-
ues of M listed in Table 2, it would appear that
the proposed mimicry tends to “kick in” relatively
early, with respect to the size of R. The fact that y
ranges over a comparatively long interval probably
has something to do with this. (Cf. the definition
of ¢ and the de Broglie wavelength.)

The issues of statistical independence raised in
Questions 2 and 3 of Section 5 clearly lead to sim-
ilar kinds of correlation-type sums built up out of
mixtures of terms from the two given functions (at
least when, in Question 2, the underlying windows
are taken to be real translates of one another; with-
out this restriction, things are much more compli-
cated). The “ground-level” versions are simply the
obvious analogs of (6.7) and (6.11). The expected
estimates continue to hold. The subsequent diffi-
culties appear to lie at about the same level as for
the Gaussian question.

To complete the overall picture, it remains to
forge a link between (6.10) and (3.1). We do so
by starting with equations (5.2), (6.4) and (6.6).
Assuming suitable randomness (and writing R =
R}.), we thus have

1 B
s [ e+ i
A

lchl* + B

m 4cosh(rR) 1
8 mu(F) (1)

where the E; are obvious error terms. (Inciden-
tally, an analogous equation holds for more general
groups I'.)

To switch this over to ¢, we need to multiply
both sides by (2px(1)e~™%/2)2. This gives

2+E37

1 B
5o [ leerin)Pas
- A
1 e—27rR

w@) " uE)
The limiting behavior of (2p,(1)e#7/2)2 E; is thus
the central issue.

In view of (5.3), the obvious hope is that E3 =
O(R™") for some positive . This seems reason-
able, and would clearly serve to round things out
in a very natural manner. One needs to keep in
mind, however, that the size of E3 hinges on sev-
eral factors, including;:

+ (2pk(1)e /%2 By, (6.12)

(a) how random the ¢, actually are, for n < M;
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(b) what type of remainder term can be achieved
in Salem—Zygmund,;

(c) the extent of any R-dependence in the remain-
der term for (6.7);

(d) the size of |T3|, and whether or not any averag-
ing with respect to y was necessary to estimate
it.

Of these four factors, (a) is clearly the most in-
tractable, given current technology. In (d), though
the need for averaging cannot be excluded, it seems
somewhat more likely that the “texture” problems
in Figure 13 are simply due to the relatively small
number of summands in (6.2). (See also our com-
ment on page 297 about multiple shuffling.)

For the modular group PSL(2,Z), we are in-
clined to wager that both (3.1) and Question 1 in
Section 5 are true unconditionally (with respect to
¢r). Should this not be the case, the problem will
almost certainly stem from (a)’s being true (i.e.,
accessible) only in some average sense as Ry, — 00.

Though the situation for one-dimensional A’s is
less clear, we tend to think that things will still be
OK along segments y = constant.

7. CONCLUDING REMARKS

The foregoing heuristics suggest any number of fur-
ther ideas on both the theoretical and experimental
fronts.

1. One idea would be to “increase” the randomness
by looking at W (z) on some copy T'(A) instead of
on A. This leads to a corresponding increase in the
number of ¢, entering into (6.4), which presumably
helps the statistics.

Since perfect Gaussians are not ordinarily seen
for bounded R, there has to be some catch! The
point, of course, is that the correlation-type sums
on which everything pivots are not merely func-
tions of the c,, but rather of the ¢/, which depend
nontrivially on both y and R.

Since A and T'(A) are isometric, our earlier re-
marks about granularity and the de Broglie wave-
length are also relevant in this connection.

The original idea does have a certain attractive-
ness, however. One wonders if there might not
be some point to experimenting with, say, optimal
choices of T € PSL(2,Z).

2. Independently of any Gaussian behavior, it is
very natural to ask what one can say about the

maximum and minimum of ¥ (z) over an arbitrary
A as R, — oo. An effective remainder term in
the Salem—Zygmund central limit theorem would
allow one to make certain statements along these
lines. To achieve better precision, however, one is
tempted to simply apply the results of [Salem and
Zygmund 1954, Ch. IV] (albeit very heuristically).
This leads to the conclusion that, on any [z, x| C
[0, 3], the maximum and minimum of W (z + iy)
should generally have magnitude about

Ry,
(constant) |/ 2log ﬁ, (7.1)

so long as Ry > 2my. (Consult [Moreno and Sha-
hidi 1983, 1985] for the fourth-power analog of
(6.7).) In view of (6.10), the expression in (7.1)
becomes

(constant)
For ¢ (z + iy), then, one gets

(constant) log<2R—k) : (7.2)
Yy

Entirely similar estimates follow from a heuristic
application of [Kahane 1985, pp. 67-71].

(Whether these estimates have any basis in fact
will naturally depend on factors like (a)—(d) at
the end of Section 6. Indeed, because of relation
(2.7) and the analogous issues for ((3 + it)—as in
[Titchmarsh 1951, §§8.12 and 14.7]—it has to be
expected that (7.2) will occasionally be much too
small.)

See [Rudnick and Sarnak 1992] for the latest un-
conditional results in this area. (In a nutshell: us-
ing Hecke operators, Rudnick and Sarnak essen-
tially show that the p,-extrema must have magni-

tude at least v/loglog Ry..)

3. Finally, what about the Eisenstein series? Con-
cerning this, we offer the following (very rough)
sketch.

The aim is to extend the heuristics of Section 6
to E(z;s), with s = £ +4R. (See [Hejhal 1983,
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Ch. 6 and 11] for the necessary background.) To
do so, we use the identity

o ()P (8)*¢(s — in)¢(s + i)
Z ns ¢(2s) » (7:3)

with 7 = 2R [Titchmarsh 1951, (1.3.3)], and focus
initially on

n=1

F(z; 1 +iR)

=4 Z(n_iRagiR(n))yl/QK,-R(Zﬂny) cos(2mnx).
n=1

Keeping the K-Bessel convention in mind, observe
that

F(z; % +iR) = A(% + iR)E(Z; % +iR), (7.4)

where

E(z;5) = E(z;8) — y° — o(s)y' ™,
A(s) = 7~°T'(s) exp(n| Im(s)| /2)¢(2s).

Also note that the original coefficients n="*ay;z(n)
are real.

Because of (7.3), the new (2 is in some sense

16 [¢(1 + 2iR)|? R

RO log 2 (7.5)
In this connection, see [Titchmarsh 1951, §§5.14,
5.17, (14.2.4)] and the various manipulations found
in [Hejhal 1983, pp. 694-708]. The line Re(s) = ¢
is replaced by Re(s) = 2 (or by something closer
to % if the Riemann Hypothesis holds). For results
akin to (6.11), consult [Goldfeld 1981; Hejhal 1982;
Iwaniec 1985, §89, 14; Deshouillers and Iwaniec
1982, pp. 230-231; Kuznecov 1982, 1985; Vino-

gradov and Takhtazhyan 1987].
For fixed y, one should therefore expect the value
of F/\/log R to go Gaussian with mean 0 and stan-

dard deviation

SD(y) ~ \/mgu +2iR)[2 76)

¢(2)

as R — oc.
If we now set

oi0(0)

the numbers

E(z; % +iR) E(z; 3 +1iR)
Vlog R Vlog R

are real. In view of (7.4) and (7.6), these renormal-

ized functions should then exhibit statistics that

are asymptotically Gaussian with mean 0 and stan-
dard deviation

e and ") (7.7)

SD(y) ~ 1/ 2. (7.8)

™

In particular, one should have

1
B—

B
~ 6

/ |E(z +1iy; 3 +iR)|*dz ~ —log R (7.9)
AJ, T

for § <y < 571, as well as a two-dimensional ana-
log thereof.

Note that a purely formal integration of (7.9)
over F produces a result which agrees, as R — oo,
with the principal term —(¢'/¢)(3 + iR) in the
Maass—Selberg relation [Hejhal 1983, pp. 200, 201,
508 (2.4), 434 (2.7)]. Compare [Zelditch 1991, p. 38
(lines 14-20)] and (6.12).

Clearly, one should at least try to check these
assertions empirically! Standing in the way, how-
ever, are two potentially serious problems, from
the standpoint of computational time. The first is
that, if v/log R needs to be large, machine compu-
tations are likely to be out of the question. The
second is that, in the analysis surrounding (7.5),
one quickly sees that, even on the Riemann Hy-
pothesis, one has to expect a fairly large (relative)
error term in the analog of (6.7) for X ~ R/2my,
perhaps of the order of O(1/logR). This error
then persists in both (7.8) and (7.9).

To try to palliate this second difficulty, it is nat-
ural to seek at least a heuristic refinement in the
analog of (6.7) and (6.9) for ¢, = 4n~"oyr(n).
The situation is somewhat like that of the Dirich-
let divisor problem [Titchmarsh 1951, §12.1]. The
upshot is that, in (6.9), the effective value of Q
turns out to be

16 C(1 + 2iR)|?
¢(2)
CI

R ¢ :
<10g%—log2+2'y+2Re E(1+22R)—2z(2)>:

not merely (7.5). (Here v is the usual Euler con-
stant.)
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In line with this, we performed a number of tests
using the modified function

—_—
gom EZ 2 +IR) (7.10)
VP
where
R ¢ C'
P=1lo —log 24+2v+2 Re = (1+2iR ,
8 oy 1082427 <( )— C( )

Yav being the average y-value over the given rect-
angle. (Of course, P ~ logR.) To two decimal
places, here is what we found:

R region mean SD  max |min|
500 [0,.2] x [1,1.2] .00 1.45 517 5.78
1000 [0,.2] x [1,1.2] 00 1.37 6.55 5.41
5000 [0,.2] x [1,1.2] .00 1.39 7.25 6.51
25,000 [.1,.12] x [1,1.004] .00 1.43 6.51 5.95
25,000 [.1,.12] x [1.004,1.008] .00 1.40 6.56 5.38
50,000 [.1,.12] x [1,1.004] .00 1.38 6.07 6.08
50,000 [.1,.12] x [1.004,1.008] .00 1.42 8.55 5.78
50,001 [.1,.11] x [1,1.004] .00 1.39 6.26 6.00
50,002 [1,.11) x [1,1.004] .00 1.41 6.18 6.04
50,500 [.1,.11] x [1,1.004] .00 1.35 594 6.40
51,000 [.1,.11] x [1,1.004] .00 1.386 6.59 6.54

We remark that, in the last four rows, the typical
CPU time per job was about 39 minutes on the
Cray-XMP.

In interpreting the results of this table, bear in
mind here that /6/7 ~ 1.382, and that (7.2) is
correctly normalized for use with (7.10).

In each case, the histograms were nearly per-
fect Gaussians. Furthermore, note that the fluctu-
ation level in | SD —4/6/7| seems generally consis-
tent with the presence of a pre-factor 14+ O(R™'/3)
in T7; see (6.8).

For R = 51,000, we also made histograms for
a number of horizontal cross-sections. The results
were as follows:

y mean SD y mean SD

1.000000 .00 1.40 1.002500 -.05 1.32
1.000500 —.01 1.63 1.003000 —.05 1.46
1.001000 —.02 1.34 1.003500 —.05 1.32
1.001500 —.04 1.25 1.004000 —-.05 1.36
1.002000 —.04 1.30 average —.03 1.376

The histograms were surprisingly close to being
Gaussian, considering the size of the window.

FIGURE 15. Histogram of ¥, for R = 51,000 (and
M = 8164), in the window [.1,.11] x [1,1.004] (for
F/4), sampled on a 2000 x 800 grid. The minimum
and maximum are —4.26 and 4.29.

FIGURE 16. Histogram of ¥, for R = 51,000 (and
M = 8156), in the segment [.1,.11] x {1.001}, with
2000 samples. The minimum and maximum are
—2.41 and 2.34.

Figures 15 and 16 show representative examples.

On the basis of these results, we conjecture that
letting R — oo in (7.7) does in fact produce a lim-
iting Gaussian with mean 0 and standard deviation
\/6/7 for every y. An analogous result should hold
for any congruence subgroup. Compare [Zelditch
1991, p. 38].

This conjecture, coupled with (7.9), furnishes an
interesting new perspective on the first few para-
graphs of [Selberg 1991, §5]. (These nascent links
between the z- and R-aspects of E certainly de-
serve closer study in future years. ..)

In closing, we can’t resist “summarizing” things
with the following lines from [Kac 1959, p. 52]:

That we are led here to the normal law. .. usu-
ally associated with random phenomena is perhaps
an indication that the deterministic and proba-
bilistic points of view are not as irreconcilable as
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they may appear at first sight. To dwell further
on this question would lead us too far afield, but
it may be appropriate to quote a statement of
Poincaré, who said (partly in jest no doubt) that
there must be something mysterious about the nor-
mal law since mathematicians think it is a law of
nature whereas physicists are convinced that it is
a mathematical theorem.

REFERENCES

[Aurich and Steiner 1991] R. Aurich and F. Steiner,
“Exact theory for the quantum eigenstates of a
strongly chaotic system”, Physica D48 (1991), 445
470.

[Balazs and Voros 1986] N. L. Balazs and A. Voros,
“Chaos on the pseudosphere”, Phys. Rep. 143
(1986), 109-240.

[Balogh 1967] C. Balogh, “Asymptotic expansions of
the modified Bessel function of the third kind of
imaginary order”, SIAM J. Appl. Math. 15 (1967),
1315-1323.

[Berry 1977] M. Berry, “Regular and irregular semi-
classical wavefunctions”, J. Phys. A10 (1977), 2083
2091.

[Berry 1989] M. Berry, “Quantum scars of classical
closed orbits in phase space”, Proc. Royal Soc.
London A423 (1989), 219-231.

[Berry 1991] M. Berry, “Some quantum-to-classical
asymptotics”, pp. 251-303 in Chaos et Physique
Quantique, Les Houches 1989 (edited by M. J.
Giannoni et al.), North-Holland, Amsterdam, 1991.

[Billingsley 1986] P. Billingsley, Probability and Mea-
sure, 2nd ed., Wiley, New York, 1986.

[Bogomolny 1988] E. B. Bogomolny, “Smoothed wave
functions of chaotic quantum systems”, Physica D31
(1988), 169-189.

[Bombieri and Hejhal 1987] E. Bombieri and D. Hejhal,
“Sur les zéros des fonctions zéta d’Epstein”, C. R.
Acad. Sci. Paris 304 (1987), 213-217.

[Briining 1978] J. Briining, “Uber Knoten von Eigen-
funktionen des Laplace—Beltrami—Operators”, Math.
Zeit. 158, 15-21.

[Bump 1989] D. Bump, “The Rankin—Selberg method:
a survey”, pp. 49-109 in Number Theory, Trace
Formulas, and Discrete Groups (edited by K. Aubert
et al.), Academic Press, Boston, 1989.

[Colin de Verdiere 1985] Y. Colin de Verdiere, “Er-
godicité et fonctions propres du laplacien”, Comm.
Math. Phys. 102 (1985), 497-502.

[Courant and Hilbert 1953] R. Courant and D.
Hilbert, Methods of Mathematical Physics, vol. 1,
Interscience, New York, 1953.

[Courant and Hilbert 1962] R. Courant and D.
Hilbert, Methods of Mathematical Physics, vol. 2,
Interscience, New York, 1962.

[Delande 1991] D. Delande, “Eigenstates of a chaotic
system”, Comments on Atom. Molec. Phys. 25
(1991), 281-290.

[Deshouillers and Iwaniec 1982] J.-M. Deshouillers
and H. Iwaniec, “Kloosterman sums and Fourier
coefficients of cusp forms”, Invent. Math. 70 (1982),
219-288.

[Donnelly and Fefferman 1988] H. Donnelly and
C. Fefferman, “Nodal sets of eigenfunctions on
Riemannian manifolds”, Invent. Math. 93 (1988),
161-183.

[Donnelly and Fefferman 1990] H. Donnelly and C.
Fefferman, “Nodal sets for eigenfunctions of the
Laplacian on surfaces”, J. Amer. Math. Soc. 3
(1990), 333-353.

[Epstein et al. 1985] C. Epstein, J. Hafner and P.
Sarnak, “Zeros of L-functions attached to Maass
forms”, Math. Zeit. 190 (1985), 113-128.

[Erdélyi et al. 1953] A. Erdélyi et al. Higher Transcen-
dental Functions, McGraw-Hill, New York, 1953.

[Esseen 1945] C. G. Esseen, “Fourier analysis of
distribution functions: a mathematical study of the
Laplace-Gaussian law”, Acta Math. 77 (1945), 1-
125.

[Feller 1971] W. Feller, An Introduction to Probabilility
Theory and Its Applications, 2nd ed., Wiley, New
York, 1971.

[Gelbart and Shahidi 1988] S. Gelbart and F. Shahidi,
Analytic Properties of Automorphic L-functions,
Academic Press, Boston 1988.

[Ghosh 1983] A. Ghosh, “On the Riemann zeta
function—mean value theorems and the distribution

of |S(T)|”, J. Number Th. 17 (1983), 93-102.

[Goldfeld 1981] D. Goldfeld, “On convolutions of non-
holomorphic Eisenstein series”, Adv. in Math. 39
(1981), 240-256.

[Good 1981] A. Good, “Cusp forms and eigenfunctions
of the Laplacian”, Math. Ann. 255 (1981), 523-548.

[Good 1983] A. Good, “On various means involving the
Fourier coefficients of cusp forms”, Math. Zeit. 183
(1983), 95-129.



Hejhal and Rackner: On the Topography of Maass Waveforms for PSL(2,Z) 303

[Gutzwiller 1990] M. C. Gutzwiller, Chaos in Classi-
cal and Quantum Mechanics, Springer-Verlag, New
York, 1990.

[Hedlund 1937] G. A. Hedlund, “A metrically transitive
group defined by the modular group”, Amer. J.
Math. 57 (1937), 668-678.

[Hedlund 1939] G. A. Hedlund, “The dynamics of
geodesic flows”, Bull. Amer. Math. Soc. 45 (1939),
241-260.

[Hejhal 1976] D. A. Hejhal, The Selberg Trace Formula
for PSL(2,R), vol. 1, Lecture Notes in Math. 548,
Springer-Verlag, Berlin, 1976.

[Hejhal 1982] D. A. Hejhal, “Quelques exemples de
séries de Dirichlet dont les poles ont un rapport étroit
avec les valeurs propres de 'opérateur de Laplace—
Beltrami hyperbolique”, C. R. Acad. Sci. Paris 294
(1982), 637-640.

[Hejhal 1983] D. A. Hejhal, The Selberg Trace Formula
for PSL(2,R), vol. 2, Lecture Notes in Math. 1001,
Springer-Verlag, Berlin, 1983.

[Hejhal 1989] D. A. Hejhal, “On polynomial approx-
imations to Z(t)”, to appear in Proc. of the 1989
Amalfi International Symposium on Analytic Num-
ber Theory.

[Hejhal 1990] D. A. Hejhal, “On a result of G. Pdlya
concerning the Riemann &-function”, J. d’Analyse
Math. 55 (1990), 59-95.

[Hejhal 1991] D. A. Hejhal, “Eigenvalues of the Lapla-
cian for PSL(2,Z): some new results and computa-
tional techniques”, pp. 59-102 in International Sym-
posium in Memory of Hua Loo-Keng (edited by S.
Gong et al.), vol. 1, Science Press, Beijing, and
Springer-Verlag, New York, 1991. Reprinted with
[Hejhal 1992b].

[Hejhal 1992a] D. A. Hejhal, “On the distribution of
zeros of a certain class of Dirichlet series”, Internat.
Math. Res. Notices, Duke Math. J. 66(4) (1992), 83—
91.

[Hejhal 1992b] D. A. Hejhal, Figenvalues of the
Laplacian for Hecke triangle groups, Memoirs Amer.
Math. Soc. 469 (1992), 3-124.

[Hejhal and Arno 1992] D. A. Hejhal and S. Arno,
On Fourier coefficients of Maass waveforms for
PSL(2,Z), Research Report 1992/20, Univ. of Min-
nesota Supercomputer Institute, Minneapolis, 1992.

[Heller 1984] E. J. Heller, “Bound-state eigenfunctions
of classically chaotic Hamiltonian systems: scars of
periodic orbits”, Phys. Rev. Lett. 53 (1984), 1515
1518.

[Heller et al. 1989] E. J. Heller, P. O’Connor and J.
Gehlen, “The eigenfunctions of classically chaotic
systems”, Physica Scripta 40 (1989), 354-359. See
also Heller’s survey article in Chaos et Physique
Quantique, Les Houches 1989 (edited by M. J.
Giannoni et al.), North-Holland, Amsterdam, 1991.

[Hobson 1931] E. W. Hobson, The Theory of Spherical
and FEllipsoidal Harmonics, Cambridge University
Press, Cambridge, 1931.

[Hoffstein and Lockhart 1992] J. Hoffstein and P.
Lockhart, “Coefficients of Maass forms and the Siegel
zero” (preprint), Brown University, 1992.

[Hopf 1937] E. Hopf, Ergodentheorie, Springer-Verlag,
Berlin, 1937.

[Hérmander 1968] L. Hérmander, “The spectral func-
tion of an elliptic operator”, Acta Math. 121 (1968),
193-218.

[Huntebrinker 1991] 'W. Huntebrinker, “Numerische
Bestimmung von Eigenwerten des Laplace-Operators
auf hyperbolischen Riumen mit adaptiven Finite-
Element-Methoden” , Ph.D. dissertation, Univ. Bonn,
Bonner Math. Schriften 225 (1991).

[Iwaniec 1984] H. Iwaniec, “Nonholomorphic modular
forms and their applications”, pp. 157-196 in Mod-
ular Forms (edited by R. A. Rankin), E. Horwood,
Chichester (England), and Halsted Press, New York,
1984. Note: In equation (5.7), replace 6 by 12.

[Iwaniec 1985] H. Iwaniec, “Promenade along modular
forms and analytic number theory”, pp. 221-303 in
Topics in Analytic Number Theory (edited by S.
Graham and J. Vaaler), University of Texas Press,
Austin, 1985.

[Iwaniec 1990] H. Iwaniec, “Small eigenvalues of
Laplacian for T'o(N)”, Acta Arith. 56 (1990), 65-82.

[Kac 1959] M. Kac, Statistical Independence in Prob-
ablility, Analysis, and Number Theory, MAA Carus
Mathematical Monographs 12, distributed by Wiley,
New York, 1959.

[Kahane 1985] J. P. Kahane, Some Random Series
of Functions, 2nd ed., Cambridge University Press,
Cambridge (UK), 1985.

[Kuznecov 1981] N. V. Kuznecov, “Petersson’s con-
jecture for cusp forms of weight zero and Linnik’s
conjecture; sums of Klosterman sums”, Math. USSR
Sbornik 39 (1981), 299-342.

[Kuznecov 1982]  “Spectral methods in arithmetic
problems”, N. V. Kuznecov, J. Soviet Math. 18
(1982), 398-404.



304  Experimental Mathematics, Vol. 1 (1992), No. 4

[Kuznecov 1985] N. V. Kuznecov, “Convolution of the
Fourier coefficients of the Eisenstein—Maass series”,
J. Soviet Math. 29 (1985), 1131-1159.

[Linnik 1963] Ju. V. Linnik, The Dispersion Method
in Binary Additive Problems, Transl. Math. Mono-
graphs 4, Amer. Math. Soc., Providence, RI, 1963.

[Longuet-Higgins 1957a] M. S. Longuet-Higgins, “The
statistical analysis of a random, moving surface”,
Philos. Trans. Royal Soc. London A249 (1957), 321-
387.

[Longuet-Higgins 1957b] M. S. Longuet-Higgins, “Sta-
tistical properties of an isotropic random surface”,
Philos. Trans. Royal Soc. London A250 (1957), 157—
174.

[Longuet-Higgins 1962] M. S. Longuet-Higgins, “The
statistical geometry of random surfaces”, Proc. Sym-
posia Applied Math. 13 (1962), 105-143. Note espe-
cially the final paragraph on p. 142.

[Maass 1949] H. Maass, “Uber eine neue Art von nicht-
analytischen automorphen Funktionen und die Be-
stimmung Dirichletscher Reihen durch Funktional-
gleichungen”, Math. Ann. 121 (1949), 141-183.

[Maass 1983] H. Maass, Lectures on Modular Functions
of One Complexr Variable, revised ed., Springer-
Verlag, Berlin, 1983.

[McDonald and Kaufman 1979] S. McDonald and
A. Kaufman, “Spectrum and eigenfunctions for a
Hamiltonian with stochastic trajectories”, Phys. Reuv.
Lett. 42 (1979), 1189-1191.

[McDonald and Kaufman 1988] S. McDonald and A.
Kaufman, “Wave chaos in the stadium: statistical
properties of short-wave solutions of the Helmholtz
equation”, Phys. Rev. A37 (1988), 3067—3086.

[Mehta 1967] M. L. Mehta, Random Matrices, Aca-
demic Press, Boston, 1967. Revised ed., 1991.

[Moran 1968] P. Moran, “An Introduction to Probability
Theory, Oxford University Press, Oxford, 1968.

[Moreno 1977] C. Moreno, “Explicit formulas in the
theory of automorphic forms”, pp. 73-216 in Number
Theory Day (edited by M. B. Nathanson), Lecture
Notes in Math. 626, Springer-Verlag, Berlin, 1977.
Note: On page 131, replace 3/ by 12/m.

[Moreno and Shahidi 1983] C. Moreno and F. Shahidji,
“The fourth moment of Ramanujan 7-function”,

Math. Ann. 266 (1983), 233-239.

[Moreno and Shahidi 1985] C. Moreno and F. Shahidi,
“The L-functions L(s,Sym™(r),n)”, Canad. Math.
Bull. 28 (1985), 405-410.

[Ozorio de Almeida 1988] A. M. Ozorio de Almeida,
Hamiltonian Systems: Chaos and Quantization, Cam-
bridge University Press, Cambridge, 1988.

[Petersson 1982] H. Petersson, Modulfunktionen und
quadratische Formen, Ergebnisse der Mathematik
100, Springer-Verlag, Berlin, 1982.

[Phillips and Sarnak 1985] R. S. Phillips and P. Sarnak,
“On cusp forms for cofinite subgroups of PSL(2,R)”,
Invent. Math. 80 (1985), 339-364.

[Rice 1944] S. O. Rice, “The mathematical analysis of
random noise”, Bell Sys. Tech. J. 23 (1944), 282-332
and 24 (1945), 46-156. Reprinted as pp. 133-294 in
Selected Papers on Noise and Stochastic Processes
(edited by N. Wax), Dover, New York, 1954.

[Rudnick and Sarnak 1992] Z. Rudnick and P. Sarnak,
“Notes on arithmetic quantum chaos” (preprint),
Princeton University, 1992.

[Salem and Zygmund 1954] R. Salem and A. Zygmund,
“Some properties of trigonometric series whose terms
have random signs”, Acta Math. 91 (1954), 245-301.

[Selberg 1956] A. Selberg, “Harmonic analysis and dis-
contiuous groups in weakly symmetric Riemannian
spaces with applications to Dirichlet series”, J. In-
dian Math. Soc. 20 (1956), 47-87.

[Selberg 1965] A. Selberg, “On the estimation of Fourier
coefficients of modular forms”, Proc. Symposia Pure
Math. 8 (1965), 1-15.

[Selberg 1991] A. Selberg, “Old and new conjectures
and results about a class of Dirichlet series”, pp. 47—
63 in Collected Papers, vol. 2, Springer-Verlag,
Berlin, 1991.

[Shahidi 1990] F. Shahidi, “Best estimates for Fourier
coefficients of Maass forms”, pp. 135-141 in Auto-
morphic Forms and Analytic Number Theory (edited
by Ram Murty), Publ. Centre de Reserches Mathé-
matiques, Montréal, 1990.

[Shapiro and Goelman 1984] M. Shapiro and G.
Goelman, “Onset of chaos in an isolated energy
eigenstate”, Phys. Rev. Lett. 53 (1984), 1714-1717.

[Shapiro et al. 1988] M. Shapiro, J. Ronkin and P.
Brumer, “Scaling laws and correlation lengths of
quantum and classical ergodic states”, Chem. Phys.
Lett. 148 (1988), 177-182.

[Shimura 1971] G. Shimura, Introduction to the Arith-
metic Theory of Automorphic Functions, Princeton
University Press, Princeton, NJ, 1971.

[Shnirelman 1974] A. I. Shnirelman, “Ergodic prop-
erties of eigenfunctions”, Uspekhi Mat. Nauk. 29(6)
(1974), 181-182 (in Russian).



Hejhal and Rackner: On the Topography of Maass Waveforms for PSL(2,Z) 305

[Siegel 1980] C. L. Siegel, Advanced Analytic Number
Theory, Tata Institute, Bombay, 1980.

[Sinai 1977] Ya. G. Sinai, Introduction to Ergodic
Theory, Princeton University Press, Princeton, NJ,
1977.

[Smith 1981] R. A. Smith, “The Ly-norm of Maass
wave functions”, Proc. Amer. Math. Soc. 82 (1981),
179-182.

[Takeuchi 1977a] K. Takeuchi, “Commensurability
classes of arithmetic triangle groups”, J. Fuac. Sci.
Univ. Tokyo 24 (1977), 201-212.

[Takeuchi 1977b] K. Takeuchi, “Arithmetic triangle
groups”, J. Math. Soc. Japan 29 (1977), 91-106.

[Takeuchi 1983] K. Takeuchi, “Arithmetic Fuchsian
groups with signature (1;e)”, J. Math. Soc. Japan
35 (1983), 381 407

[Titchmarsh 1951] E. Titchmarsh, The Theory of the
Riemann Zeta-Function, Oxford Universisty Press,
Oxford, 1951.

[Tsang 1984] K. M. Tsang, The Distribution of
the Values of the Riemann Zeta-Function, Ph.D.
dissertation, Princeton University, Princeton, NJ,
1984.

[Uhlenbeck 1976] K. Uhlenbeck, “Generic properties
of eigenfunctions”, Amer. J. Math. 98 (1976), 1059
1078.

[Venkov 1983] A. B. Venkov, Spectral Theory of
Automorphic Functions, Proc. Steklov Inst. Math.
153(4), Amer. Math. Soc., Providence, RI, 1983.

[Vinogradov and Takhtazhyan 1987] A. I. Vinogradov
and L. A. Takhtazhyan, “The zeta function of the
additive divisor problem and spectral decomposition
of the automorphic Laplacian”, J. Soviet Math. 36
(1987), 5778, with continuation in 46 (1989), 1734
1759 and 52 (1990), 3004-3016.

[Weyl 1950] H. Weyl, “Ramifications, old and new, of
the eigenvalue problem”, Bull. Amer. Math. Soc. 56
(1950), 115-139.

[Zelditch 1987] S. Zelditch, “Uniform distribution
of eigenfunctions on compact hyperbolic surfaces”,
Duke Math. J. 55 (1987), 919-941.

[Zelditch 1991] S. Zelditch, “Mean Lindel6f hypothesis
and equidistribution of cusp forms and Eisenstein
series”, J. Funct. Anal. 97 (1991), 1-49.

[Zygmund 1959] A. Zygmund, Trigonometric Series,
vols. 1 and 2, 2nd ed., Cambridge University Press,
Cambridge, 1959.

Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (mf10402@uc.msc.edu)

Barry N. Rackner, Minnesota Supercomputer Center, 1200 Washington Ave. S., Minneapolis, MN 55415

(bnr@msc.edu)

Received August 26, 1992; accepted November 2



