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Using a formula of Billey, Jockusch and Stanley, Fomin and
Kirillov have introduced a new set of diagrams that encode the
Schubert polynomials. We call these objects rc-graphs. We de-
fine and prove two variants of an algorithm for constructing the
set of all rc-graphs for a given permutation. This construction
makes many of the identities known for Schubert polynomials
more apparent, and yields new ones. In particular, we give
a new proof of Monk’s rule using an insertion algorithm on
rc-graphs. We conjecture two analogs of Pieri’s rule for multi-
plying Schubert polynomials. We also extend the algorithm to
generate the double Schubert polynomials.

1. INTRODUCTION

Schubert polynomials (defined in Section 2) are
of interest in algebraic geometry and in combina-
torics. Their history goes back to the the nine-
teenth century, but the modern notion is due to
Lascoux and Schiitzenberger [1982; 1985], who de-
veloped a beautiful theory of these polynomials. A
complete exposition can be found in [Macdonald
1991].

Our approach to computing Schubert polynomi-
als is an algorithmic one. The idea is related to a
conjecture originally due to Axel Kohnert [1990],
saying that the Schubert polynomials could be con-
structed by applying a recursive algorithm on the
diagram D(w) defined from a permutation w =
[wi,...,w,] as the set of pairs (i,w;) for which
J > and w; < w;. Each diagram that appears in
the recursion contributes a term to the Schubert
polynomial. At this time, Kohnert’s conjecture has
not been proved except in the special case that w
is a vexillary permutation (or 2143-avoiding). We
have verified the conjecture for every permutation
in the symmetric group Sy.
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In [Bergeron 1992] another algorithm, similar to
Kohnert’s, is given. This algorithm again starts
with D(w) but is computationally more complex.
Furthermore, some identities about Schubert poly-
nomials cannot readily be established using this
method of computation. Therefore, we were driven
to find yet another constructive method of com-
puting Schubert polynomials from some other set
of diagrams.

Fomin and Kirillov [1993] introduced a new set
of diagrams that encode the Schubert polynomi-
als. We call this object an rc-graph (for reduced-
word compatible sequence graph). In the spirit
of Kohnert’s conjecture, we are interested in con-
structing Schubert polynomials by doing “moves”
on rc-graphs. We will define and prove two variants
of an algorithm for constructing the set of all rc-
graphs for a given permutation in Section 3. This
algorithm has been much more efficient in time and
space than previously known ones. It can also be
extended to generate the double Schubert polyno-
mials as well. Using this construction, many of the
identities known for Schubert polynomials become
more apparent and new identities have emerged. In
particular, Section 5 gives a new proof of Monk’s
rule, using an insertion algorithm on rc-graphs.

Experimentation on computers has greatly fa-
cilitated our work. We have gained an invaluable
amount of intuition about Schubert polynomials
by looking at data, we have been able to rule out
false conjectures quickly, and we have found two
very interesting conjectures. In Section 6, we con-
jecture two analogs of Pieri’s rule for multiplying
Schubert polynomials. We explain how we used
computers to find these conjectures.

2. BACKGROUND ON SCHUBERT POLYNOMIALS

We will briefly review the basic terminology from
[Macdonald 1991]. Let S,, be the symmetric group
on n elements; we write a permutation w € S,, in
one-line notation as [wy, wa, . . ., w,], for wy, ..., w,
in {1,2,...,n}. Let s; denote the transposition
that interchanges the i-th and (¢ + 1)-st entries

when acting from the right on a permutation. It is
well known that sq,...,s,_; generate S,, with the
relations

8i8; = 8;8; for |Z —]| > 1,
S$i8i+18; = Si4+18iSi+1-

For w € S, the length l(w) of w is the length of
a shortest string s,,8,, - .. S,, representing w; we
call the p-tuple aja,...a, a reduced word for w.
Let R(w) denote the set of all reduced words for a
permutation w.

Let Z[zy, 2, ..., T,] denote the ring of polyno-
mials in n variables with coefficients in Z. We de-
fine an action of w € S, on f € Z[z,,...,z,] by
Wf(Z1,Tay -, Tn) = f(TwyyTwgs---sTw,). From
this we can define the divided difference operators

flze, ... zn) — sif(z1,...,Tn)

Ti — Ti41

for 1 <7 < n—1. It is easy to check that 82 = 0,
8,'8]' = 8]'8i if |Z —]| > 1 and 8,8,+18, = 8¢+18¢8¢+1.
Therefore 0, = 04,0,, - . .0,, does not depend on
the choice of reduced word a;a;...a, € R(w). In
addition, 0,,0,, ...0,, = 0 if a1a;...a, is not re-
duced.

Oif(x1,2,...,2,) =

Definition. For each permutation w € S,,, the Schu-
bert polynomial S, is

_ n—1,n—2 1 0
Cuw = Ou-14,T] Ty oo Xy 1Ty,

where wy = [n,n — 1,...,1] is the longest element

of S,,.

For m > n, we can associate with a permutation
w = [wy,Ws,...,w,] € S, the permutation v =
[wy,wa, ..., Wwy,n+1,...,m] € S,,. Now v and w
have the same set of reduced words (the generators
being interpreted in S, or S,, as appropriate), so
their length is also the same. From now on we
identify two such permutations, making S, into a
subgroup of S, for n < m. We set Soo = |J S,
and still write w € S, as w = [wy, wa, ..., w,] if
w € S,. The definition of a Schubert polynomial
applies equally well to w € S.; it is not obvious at



this point that the result is independent of n, but
this will follow from Theorem 2.1.

The theory of Schubert polynomials is closely
intertwined with the study of reduced words. The
key to understanding this relationship is Theorem
2.1, which amounts to an alternative definition of
Schubert polynomials. This result was originally
conjectured by Richard Stanley, and first proved
in [Billey et al. 1993] and subsequently in [Fomin
and Stanley 1991] in a very elegant way.

Definition. If a = a;...a, € R(w), we say that a
p-tuple a = (a1, ..., ) of (strictly) positive inte-
gers is a-compatible if

a1§a2§"'§ap7

o; < a; for1<j3<p,
(871 < Q1 if a; < Aji1.
Let C(a) denote the set of all a-compatible se-
quences.

Theorem 2.1 [Billey et al. 1993; Fomin and Stan-
ley 1991]. For any permutation w € Sy,

Su= 2, 2

acR(w) ai...apeC(a)

TayTay -+ Lay-

It is easy to compute a Schubert polynomial us-
ing this theorem, provided one can compute all re-
duced words. For example, for w = [3,1,2,5,4]
the reduced words are 214, 241 and 421. For each
of these we compute all compatible sequences as
follows:

214 241 421
112 111
113
114

Therefore 312,54 = @3 + 22x2 + 2ix3 + 2wy

3. CONSTRUCTING SCHUBERT POLYNOMIALS
FROM RC-GRAPHS

In this section we define rc-graphs and an algo-
rithm for computing Schubert polynomials. The
goal of our algorithm is to start with a particular
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rc-graph and apply a sequence of transformations,
thereby obtaining all rc-graphs for a permutation.
After proving several lemmas, we state and prove
Theorem 3.7, our main theorem, which states that
this algorithm constructs the Schubert polynomi-
als.

There are in fact two flavors of the algorithm,
dual in a certain sense to one another. The duality
follows from Lemma 3.2, which gives a correspon-
dence between the rc-graphs of w and those of w 1.

We conclude this section with some corollaries
that follow easily from Theorems 3.7.

Definition. Given a reduced word a = aa,...q,
and an a-compatible sequence o = a5 . . . oy, the
reduced-word compatible sequence graph or rc-graph
(a, ) is the subset D(a, o) of {1,2,...} x{1,2,...}
consisting of pairs

(ak,ak—ak—i—l) fOI‘]_SkSp

We let RC(w) = {D(a,a) : a € R(w),a € C(a)}.

We will depict D(a,) as an incidence table in
upper triangular form, with rows and columns la-
beled 1,2,.... For example, one reduced word for
3,1,4,6,5,2] is a = 521345, and o = 111235 is
a-compatible. The rc-graph D(a, a) is given by

1
+

+ 4+ +ow

o R W N

where a + represents a pair that belongs to the
graph and a - one that does not.

Remarks 3.1. It will soon become clear why it is
more convenient in our context to use the pairs
(o, ar — ap + 1) instead of the pairs (o, ay).

One can also define rc-graphs in the general case
when a is not a reduced word, but we will not need
that.
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Given an rc-graph D(a, «), one can recover a by
reading out the numbers 7 + ¢ — 1 for the occu-
pied positions (4,7) from right to left in each row
from top to bottom. The compatible sequence « is
recovered by reading the row numbers of the occu-
pied positions, in the same order. If aja,...a, is
the reduced word read from the rc-graph D, we let

perm D = S48, - - - Sa,

be the permutation such that D € RC(perm D).

It follows from the definition of a compatible se-
quence that, if perm D € S,,, all the elements (3, j)
of D satisfy ¢ + j < n. Conversely, any set of
pairs of positive integers (i, 7) that lies in the area
14J < n and that gives a reduced word a by means
of the above reading is an rc-graph of a permuta-
tion of S, and the corresponding sequence of row
numbers is a-compatible.

The rc-graphs originally introduced by Fomin
and Kirillov [1993] are a bit more elaborate. They
represent a planar history of the inversions of w =
perm D. To get from the definition above to this
other one, we draw strands that cross at the po-
sitions (7,7) € D and avoid each other at the po-
sitions (i,j) ¢ D. Here is the diagram for the rc-
graph in (3.1):

Wz Wg Wy W3 Wy Wy

/%IJ

S o W N =

It is easy to see that, for D € RC(w), the strand
that starts at the top of the w;-th column wends its
way down to the i-th row on the left side of the di-
agram. No two strands can cross more than once,
since by removing two such crossings we would ob-
tain a shorter representation for the permutation
w, contradicting the fact that the given word is re-
duced. Thus RC(w) is the set of all such strand
configurations with exactly [(w) crossings. From

now on we will often think of our rc-graphs as
strand diagrams, but we will draw the strands only
when needed. Moreover we will not draw the “sea”
of wavy strands past the crossings with ¢ + 7 max-
imal.

Lemma 3.2. The transpose D' of an rc-graph D in
RC(w) is an rc-graph in RC(w™1).

Proof. If D € RC(w), the strands in D* trace out
the permutation w—!. Furthermore, I(w) = [(w™?).
Therefore, the number of crossings of D? is mini-
mal. 0

We also write p(D) for D, thus defining a bijection
p: RC(w) — RC(w™1). Vic Reiner has suggested
the same map using only reduced words and com-
patible sequences.

If we use the notation

Tp = H Ty
(i,j)eD

the following corollary is a simple consequence of
Theorem 2.1. This was also noted in [Fomin and
Kirillov 1993].

Corollary 3.3. For any permutation w € Se,

so- Y

D(a,x)ERC(w)

LIZD(aya). O

We now introduce mowves on rc-graphs that are
analogous to the moves in Kohnert’s conjecture
[Kohnert 1990].

For w € So, and D € RC(w), a ladder move L;;
is a change of the following type:

Jj I+l Jj I+l
i—m i—m +
+ + + +
H
+ + + +
+ + + +
% + %

Here the two columns are adjacent and the number
of rows involved is arbitrary. Formally, L;;(D) =
DU{(i—m,j+1)}\{(%J)}, where the following
conditions must be satisfied:



e (i,j)e D, (i,j+1)¢ D,

o (i—m,j), (i—m,j+1) ¢ D for some 0 < m < i,
and

o (i—k,j),(i—k,j+1)€ D foreach 1 <k <m.

A chute move Cj; is a change of the following type
(we leave the formal description to the reader):

j—m J
i+ + o+ o+
i1 + o+ o+

Jj—m J
i+ + o+

i+1 + + o+ o+

It is evident from these definitions and from Lemma
3.2 that:

Lemma 3.4. Transposition conjugates chute moves
to ladder moves, and vice versa. In symbols,

p(Li;(D)) = Cji(p(D)),
for any rc-graph D.

Lemma 3.5. Ladder and chute moves preserve the
permutation assoctated with an rc-graph. In sym-
bols, perm C;;(D) = perm D if D is an rc-graph to
which C;; can be applied, and likewise for L;;.

Proof. The strands in the region of a chute move
look like this:

T |
w .
) )
it+1 | £

Clearly the move does not affect the way in which
the strings are permuted. Transposition proves the
case of a ladder move. O

Next we give a criterion for an rc-graph to be the
result of a chute move. Note that if the same chute
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move is applied to two different rc-graphs, the re-
sults are also different; therefore we can talk about
inverse chute (and ladder) moves.

Lemma 3.6. An rc-graph D € RC(w) is the result
of a chute move—or, equivalently, it admits an in-

verse chute move—if and only if there is some pair
(i,7) € D such that (i + 1, j) € D.

Geometrically, the criterion for there not being an
inverse chute move is that all the pluses in each
column are clumped together at the top.

Proof. Suppose there is (i,j) ¢ D with (¢ + 1, j) €
D. Look right along row 41 for the smallest k£ > j
such that (¢ + 1, k) ¢ D. There must be such a k,
since D contains only a finite number of points.
The situation then is the following:

J m k
F + o+ o+ 4+
L+ 4+ + 4+ + + + + + o+ + o+

where the positions on the top row strictly between
7 and k may be filled with + or -, but the position
(i, k) must have a dot; if that position had a + we
would have

j-m i
J |

i+l |( —

i

which is impossible because, as already remarked,
two strands cannot cross twice. Now look to the
left of (¢, k) for the largest m < k such that (¢,m) ¢
D. Then (i + 1, m) is able to move to (i, k) by an
inverse chute move.

The converse also follows from this analysis. [

To state our main theorem, we introduce two rc-
graphs for w € S, that are extremal in an appro-
priate sense:

Dyoi(w) = {(%,¢) : ¢ < my},

where m; = #{j : j > i and w; < w;}, arises from
the largest reduced word in reverse lexicographic
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order and the largest compatible sequence for this
word in ordinary lexicographic order; and

Diop(w) = {(¢,]) : ¢ < m5},

where n; = #{i: i <w; ' and w; > j}, arises from
the smallest reduced word in reverse lexicographic
order and the smallest compatible sequence for this
word in ordinary lexicographic order. We have
Dyop(w) = D}, (w™"). Here are Dy,, and Dy, for
the permutation of (3.1) on page 259:

1 2 3 4 5 1 2 3 4 5
1+ 4 + 1+ +
2 + 2
3 + 3+
4 + 4+ +
5 5+

Let C(D) be the set of rc-graphs that can be de-
rived from D by some sequence of (forward) chute
moves. Define £(D) analogously, with “ladder” re-
placing “chute”.

Theorem 3.7. Let w € S.

(@) Dyop(w) does not admit an inverse chute.
(b) Any element of RC(w) other than Dy,,(w) ad-
mits an inverse chute.

(©) C(Diop(w)) = RE(w) = £ (Dyoy (w))-

d) &, = Z Tp = Z Tp.

DeC(Dyop(w)) DeL(Dyot(w))

Proof. (a) follows from Lemma 3.6, since by defini-
tion every column of D;.,(w) has an initial run of
pluses and no others.

(b) Suppose that w € S,,. Consider, for all w' €
Sy, all rc-graphs D € RC(w') that don’t admit
inverse chutes. For such a graph, column j has
between 0 and n — j pluses clumped at the top,
again by Lemma 3.6. This gives n choices for the
first column, n — 1 for the second, and so on, so
there are at most n! such graphs. By part (a),
there is at least one such graph, D;,,(w'), for each
permutation. Therefore all graphs of this type are
of the form Dyop(w').

(c) Anything obtained from D, by chute moves
is in RC(w), by Lemma 3.5. Now an inverse chute
move pushes up a +, so any graph D € RC(w)
must turn after finitely many inverse chutes into
one that does not admit an inverse chute—that is,
into Dyop(w), according to part (b). Reversing this
sequence and applying chutes to Dy,,(w) we re-
cover D. This proves the first equality. The second
follows from the first by duality: more precisely,

RE(w) = p(RC(w 1)) = p(€(Dyop(w ™))
= p(C(p(Drot(w)))) = L(Dyot(w)),

by Lemmas 3.2 and 3.4.
(d) follows from (c) and Corollary 3.3. O

As an example, Figure 1 shows the computation of
GSi1432) using ladder moves.

Chute and ladder moves define two partial or-
ders on RC(w), with relations L;;(D) < D and
C;;(D) < D, respectively. These partial orders are
dual to one another.

The following result restricts the relations among
the elements in the partial ordered set. However,
there are still multiple paths to some of the rc-
graphs.

Corollary 3.8. We can generate RC(w) using only
chute moves C;; such that ¢ is the largest in col-
umn j, that is, those satisfying (k,j) ¢ D for all
k > j. Similarly, we can generate RC(w) using
only rightmost ladder moves L;;, that is, those sat-
isfying (i,k) ¢ D for all k > 1.

Proof. Given D € RC(w) different from Dy, (w),
choose an inverse chute move Cif such that ¢ is as
large as possible. The point (¢, ) must be the low-
est point in column j of C;;*(D), otherwise there
exists a point (k,j) ¢ D with (k+ 1, j) € D,
and hence another possible inverse chute move Ck_j1
with k& > 7. Next choose the lowest inverse chute
move possible on C;;'(D). Continue applying the
lowest move until there are no inverse chute moves
possible. Reversing this sequence gives a sequence
of chute moves C;; such that (i,7) is the lowest
point in column 4 that transforms Di.,(w) to D.



RC[1,4,3,2] =

-
-

< y b
o L S S
| g Jﬂ I
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FIGURE 1. Computation of the Schubert polynomial of w = [1,4,3,2] using Theorem 3.7. Starting from
Dyot(w) (leftmost diagram) we apply all possible ladder moves and compute the monomial for each graph so
obtained. The result is 6[1432] = x%xg, + xlxg + 1223 + w%xg + x%xz.

Transposing this proof, we get the result for lad-
der moves. O

Algebraic proofs of Corollaries 3.9, 3.10, and 3.12
appear in [Macdonald 1991]. Corollary 3.11 first
appeared in [Billey et al. 1993].

Corollary 3.9. The Schubert polynomials, indexed by
permutations in S, form an integral basis for

Z[l‘l,l‘z, .. ]

Proof. The leading term of each &, in reverse lex-
icographic order, is given by Dy (w). Each Dy
is unique, so each leading term is unique. Further-
more, given any monomial 27" ...z%m, there exists
a permutation w such that zp, () = 27" ... 0"

simply put «; pluses at the beginning of row 1, as
on row 2, and so on. O

Corollary 3.10. Given permutations u € Sy, andv €

Spy letuxv = [uy,...,Un, v4+m, ..., v,+m| and
lpnxv=][1,...,m, vy +m, ..., v, + m]. Then
6u61m><v :Guxv- (32)

Proof. Every rc-graph in RC(u) is contained in
{(%,7) : i+ Jj < m}, and no rc-graph in RC(1,, X v)
contains points in {(¢,5) : ¢ + 7 < m}. No rc-
graph in RC(u X v) contains a point on the line
i + j = m. Therefore, there is a bijection between
RC(u) x RC(1,, x v) and RC(u x v), given by send-
ing (D4, Ds) to Dy U Ds. O

Let | denote the operation inverse to v +— 1; X v,
in the notation of the preceding lemma, so that
lv = [vg,v3,...,v,] if v €S, with v; =1 (and |v
is undefined if vy # 1).

Corollary 3.11. For w € S, we have

Gw(ml,mz, .. ) = Zmll(v)e)ww(:cg, I3, . .),

where the sum is over all permutations v € Sy
such that l(w) = l(vw) +1(v), v = 54,54, . .. 53, with
i1 < iy <...<1ip, and (vw); = 1.

Proof. There is a bijection

RC(w) « U(v, RC([vw)),
where the union is over all permutations v € S,
such that l(w) = I(vw) + 1(v), v = 84,8, .-,
with i, < 42 < -+ < ip, and (vw); = 1. The
bijection is given by sending D € RC(w) to (v, D’)
if v = s4,8,...5;,, where the first row of D are
points in columns %,%s,...,%,, and D’ is the rc-
graph obtained by removing the first row of D. I

The next result is a generalization of Corollary 3.11.

Corollary 3.12. For any fized positive integer m and
any w € S,, we have the decomposition

Suwl(z1,y...,xy,)
= ZdZUGU(xl, ey Tn) Gy (g1, - -, T,

where the d? are non-negative integers.
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Proof. Given a polynomial f(z1,za,...,%,,), let
pmf = f(z1,...,2,,0,0,...). By an abuse of no-
tation, we also let p,,(RC(w)) = {D € RC(w) :
pm(zp) = xzp}. For each w € S, and each m,
there exists a bijection

RC(w) < | pm(RC(w)) x RE(v),

where the union is over all permutations u, v such
that [(u) + I(v) = I(w) and 1,, X v = v *w. The
bijection takes D to

{(¢,j) €D :j5<m}x{(,j—m):(i,j) € D, j>m}.
Therefore,

611,(.'171, . ,l‘n)
= Z (pmgu(mh T

I(uw)+1l(v)=l(w)

1 Xv=u"lw

3 Z0)) S0 (Trg 1y e vy T )-

Finally, we can expand p,,&, in a positive sum of
Schubert polynomials by the transition equation
(4.16) of [Macdonald 1991]. O

4. DOUBLE SCHUBERT POLYNOMIALS

Double Schubert polynomials generalize the usual
Schubert polynomials in two alphabets. The orig-
inal definition, given by Lascoux and Schiitzen-
berger, was written in terms of divided difference
operators. Our definition follows from [Macdonald
1991, eq. (6.3)]. We show that the double Schu-
bert polynomials can also be represented graphi-
cally and that these graphs can be constructed by
means of ladder moves on an initial graph.

Definition. We take two alphabets X = {z;,z,,...}
and Y = {y1,¥2,...}. For w € S, we define the
double Schubert polynomial &,(X,Y) as

Gu(X,V)= )

v lu=w

1(u)+1(v)=1(w)

(16 (X)6,(Y).

Definition. A double rc-graph E for a permutation
w consists of the following data: a pair (u,v) of
permutations such that v 'u = w and l(w) =
I(u) +I(v), and an rc-graph for each of v and v.

We usually think of the rc-graph for v as being
placed upside down above that of u, and label its
rows with negative numbers. For this reason we
call the rc-graph for v the upper half of E, and
the rc-graph for u the lower half. For example, for
w = [4,3,2,1], one possible double rc-graph is

1 2 3 4 1 2 3 4
—4 wy N
-3 + wy A
2 . wg
-1 + or Wy Ai\%
1+ + 1
2+ + - 2
3 - - 3 /f—/
4 - 4

depending on whether or not we draw the strands.
Here v = [3,4,1,2] and v = [2,1,4,3], and the
lower and upper halves are

2 3 1

1 + - 1+
and

+

+ o+ -

2
3 . 3+

No two strands of a double rc-graph can cross
twice. Two crossings in the same half are forbidden
by the analogous result for simple rc-graphs, while
one crossing in the upper half and one in the lower
half would violate the condition l(w) = I(u) +I(v),
as their removal would yield a shorter representa-
tion for w.

There is a natural bijection between the double
rc-graphs of w and those of w™!, given by inter-
changing the roles of u and v such that w = v~!u,
and the respective halves. Graphically, this corre-
sponds to reflecting across ¢ = 0.

We denote the set of all double re-graphs for w
by RC(w). Given a double rc-graph E with upper
half D_ and lower half D, , we define an associated
monomial

(xy)EZ(—l)mdD* Tp Yp_ = H Li H —Yi-

(1,5)€Dy  (i,5)€D—



Corollary 3.3 has the following counterpart:

Z (2y)5. 4.1)

EcRC(w)

Gu(X,Y) =

Indeed, by the definition of double Schubert poly-
nomials and Corollary 3.3 we have

Z > Y (-)"™aeyp,

CeRC(u) DERC(v)

Gu(X,Y) =

v uw

(u)+1(v)=l(w)

and this latter sum clearly equals ), zc(2y)z-

We can extend the definition of a ladder or chute
move to double rc-graphs. We will study ladder
moves only and leave chutes to the reader. A lad-
der move on a double rc-graph E composed of an
upper half D_ and a lower half D, is of one of
three types:

(@) A (forward) ladder move in D..

(b) An inverse ladder move in D_ (note that since
the upper half is drawn upside down, this type
of ladder move still moves crossings up).

(c) A move of the form

i g+t i g+t
-1 . -1 +
1o+ o+ 1+ o+
—
+ o+ + o+
+ o+ + o+
i+ %

We denote by L(F) be the set of double rc-graphs
that can be obtained from E by ladder moves. As
in the case of simple rc-graphs, ladder moves pre-
serve the permutation w; this follows from Lemma
3.5 for moves of types (a) and (b), and from the
following picture for moves of type (c):

Jj j+1 Jj j+1

LU L L

Bergeron and Billey: RC-Graphs and Schubert Polynomials 265

Note, however, that the permutations v and u of
the upper and lower halves are not preserved in
this case.

Let Eyo(w) be the double re-graph for w whose
lower half is Dy (w) and whose upper half is trivial
(no crossings).

Theorem 4.1. Let w € So,. Then

RE(w) = L(Erop(w))

and

Gu(X,V)= > (2=

EcL(Evot(w))

Stanley first noted that double Schubert polyno-
mials could be expressed in terms of generalized
compatible sequences as in Theorem 2.1.

Proof. The second equation follows from the first
and from (4.1). To prove the first equation, we
reason much as in the proof of Theorem 3.7. First,
as already observed, any double rc-graph obtained
from Eo(w) by ladder moves is in RC(w).

To show, conversely, that any E € ﬂfQ\é(w) is in
L(Eyot(w)), we proceed by induction on the num-
ber of crossings in the upper half D_ of E. If
D_ has no crossings, E is in L(Ey(w)), by The-
orem 3.7(c) applied to the lower half D, of E.
Now suppose D_ has at least one crossing. Again
using Theorem 3.7 on D,, we can assume that
D, = Dy (u) for some permutation u. Using up-
side down ladder moves on D_ we may also assume
that the row ¢ = —1 is not empty.

Therefore we can find j > 0 such that (—1,j) €
E and (-1,j+ 1) ¢ E, then i > 0 such that
(i,7) ¢ Eand (k,j) € Efor0 < k < 1. Since D, =
Dyot(u), we must have (¢, j+1) ¢ E. We claim that

we are allowed to move (—1,7) to (¢,7) by an in-
verse ladder move of type (c). We

need only check that (k,j+1) € E J jHL
for all 0 < k < ¢. If we assume this —1 T

is not the case, we would have the
configuration shown on the right,
for k > 0 minimal with (k,j + 1) ¢
E. This is impossible, since no two k
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strands can cross twice. Hence, by inverse ladder
moves we can decrease the number of crossings in
D_. By the induction hypothesis it follows that
the new graph can be turned into Ey.(w) with a
sequence of inverse ladder moves. This concludes
the proof. O

From Theorem 4.1 one can check that &,(X,0)
S,(X).

5. MONK’S RULE

In this section we give a new and elegant proof
of Monk’s rule [Macdonald 1991, eq. (4.15")] for
expanding &,,&;,_ in the basis of Schubert polyno-
mials. (Recall that s, is the r-th simple transpo-
sition.) The proof follows from an insertion algo-
rithm for adding a crossing to an rc-graph in such a
way that it produces another rc-graph. From this
insertion algorithm, we were inspired to conjecture
a rule for multiplying Schubert polynomials in a
special case (Section 6).

We start with a simple observation: if we have
the local configuration

(2,9)
S_)(_
t

in position (7, ) of an rc-graph, where s and ¢ are
the strand labels, then s < ¢ if and only if these
two strands do not cross anywhere below this point
(that is, on a row with ¢ > ¢). This is clear, be-
cause strands are labeled by the row where they
originate on the left, and they can cross at most
once.

w2

Wy Wg Wy Wy Wz Wy w; wg
L ,
S J
— N

%

[=2) ot - w (M
|

2
3
4
5
6

FIGURE 2.
i = 3. The insertion path is (3,2), (1,4), (1,3).

Algorithm 5.1 (Insertion). Given D € RC(w) (where
w € S.) and integers r and ¢ with » > i > 0,
we produce a triple I.(D,i) = (D', k,l), where k
and [ are positive integers, D' is an rc-graph for a
permutation of length I(w) + 1, and zp = zpz;.
Since the leftmost strand on row i is labeled i < r,
there exists j such that the position (4, 7) looks like

=

t

with s <r < t. (5.1)

We find I,.(D, i) as follows (see also Figure 2):

Set 79 = ¢. Let j, be maximal such that the
configuration at (ig,jo) is as in (5.1). Add the
crossing (ig,jo) to D, and let so = s and ¢, = ¢
be the strands that cross there. If the result is an
rc-graph, stop. This happens if the strands sq and
to do not cross again elsewhere. If, on the contrary,
they also cross at (ig,j;), delete this second cross-
ing from D. Since sy < tg, we must have i; < 4,
by the observation preceding the algorithm. Next,
find j; < j] maximal such that the configuration
at (i1,71) is as in (5.1). Such a j; must exist since
i1 < 39 < r. Add the crossing (i1,j;) to D, and
let s; and ¢; be the strands that cross there. If
the result is an rc-graph, stop. Otherwise continue
deleting and inserting crossings in the manner just
explained. This process will eventually stop be-
cause the row numbers are strictly decreasing. If
p is the last step of the process, set k = s, and
l =t,, and let D’ be the resulting graph, obtained
from the original D after p add/delete steps and a
final addition step.

Wy W3 Wy w; We Wy W2

9

W3 Wy

-
—

—

S Ot s W N

Application of the Insertion Algorithm 5.1 to an re-graph D € RC[1,3,5,6,4,2]. Here r = 4 and



We call the sequence of positions

(7:07.7.0)7 (7;17.j:’l)7 (ilajl)a sy (ip7.j;)7 (ipajp)

the insertion path. The coordinates of an insertion
path must satisfy the following inequalities:
T=19 > 11 > >1p > 1,
Jo < i > 1<+ <Gy >y

Let ty; be the transposition that interchanges the
elements in positions k£ and [ when acting from the
right on a permutation. Then l(wty) = l(w) + 1
when k < [, w, < wy, and for no index m between
k and [ is there a w,, such that w; < w,, < w;.
Note that the output (D', k,!) of the insertion al-
gorithm satisfies perm D' = (perm D)ty;. Indeed,
after each add/delete step, the resulting graph is
still in RC(perm D), since the added and deleted
crossings involve the same pair of strands. The fi-
nal step, when (i, j,) is added, involves the strands
numbered k£ = s, and | = ¢, so it corresponds to
multiplying the permutation on the right by ;. In
addition, {(perm D') = l(perm D) + 1, since D' is
an rc-graph by construction, and it has one more
crossing than D.

Algorithm 5.2 (Reverse Insertion). Given a permuta-
tion w, integers I > r > k > 0 with l(wty) =
l(w) + 1, and and rc-graph D’ € RC(wty;), we can
reverse the insertion algorithm to find a pair (D, 1),
where D € RC(w), ¢ <r, and (D', k,1) = I.(D,1).
This is done as follows:

There is a unique position (g, jo) € D' where the
strands k and [ cross. Delete that crossing from D'.
Now if there is no position to the right of (i, jo)
where the configuration is

t—)(— with s <7 < t, (5.2)
stop. Otherwise, let (ig,jy) be the position mini-
mizing ji > jo and having the configuration (5.2).
Let s; = s and t; =t be the strands there. By the
observation preceding Algorithm 5.1, these strands
s; and t; must cross at some point (i1, 7;) where
iy > dp and j; < j§. Add (dg,74) from D', and
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delete (i1,j1). If possible, find (i,7;) satisfying
(5.2) and such that j; > j; is minimal, and con-
tinue in this way. All strands below row r have
labels larger than r and 49 < %; < ... <1, <7, s0
this process will eventually end. The last row %,
from which we remove a point becomes ¢, and the
modified rc-graph D’ becomes D.

Theorem 5.3 (Monk’s Rule). Given w € S and a
stmple transposition s,, we have

CHCHEEESY

E<r<l
l(wtkl):l(w)+1

Guwty,

Proof. There is a monomial-preserving bijection
RC(w) x RE(s,) — | JRE(w"),

where the union is over all permutations w' = wty,
such that k¥ < r < [ and [(wty) = l(w) + 1. The
bijection is given by (D,i) — I.(D,i), where we
are using the fact that any rc-graph for s, contains
a single crossing, on some row 7 < r, to identify
RC(s,) with {1,...,7}.

The discussion immediately before Algorithm 5.2
shows that, if D € RC(w), then I.(D,i) € RC(w')
for some w' = witg such that £ < r < [ and
l(wtg) = l(w) + 1.

Conversely, assume that we are given an rc-graph
D' € RC(w'") where w' = wty; and k < r < [ and
l(wty) = I(w) + 1. Each D] for 0 <[ < p in the
reverse insertion sequence has the strand configu-
ration of w and the number of points is [(w), hence
is in RC(w). Furthermore, a unique ¢ < r is given
by the final row i,. O

Remark 5.4. A permutation w is Grassmannian if
it has only one descent in the sequence w;, ws, . . ..
When w is Grassmannian, the insertion algorithm
corresponds to the usual Schensted insertion on
semistandard tableaux. We leave it to the reader
to check that one can find a weight-preserving bi-
jection between RC(w) and the set of semistan-
dard tableaux of shape A(w) filled with numbers
1,2,...,r, where r is the unique descent of w. (See
[Billey et al. 1993, Theorem 2.5 and [Bergeron
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1992, §2].) Then one can show that our insertion
algorithm, keeping r fixed, corresponds (under this
bijection) to Schensted insertion.

6. CONJECTURES

As we know (Corollary 3.9), Schubert polynomials
form an integral basis for Z[z;,zs,...]. A long-
standing open problems in the theory of Schubert
polynomials is to find a combinatorial proof that
the coeflicients ¢}, are positive in the expansion

6.8, =) 6,

The ¢}, are the analogs of the Littlewood-Richard-
son coefficients in the theory of Schur functions.
Monk’s rule is a special case of this problem. The
two rules conjectured in this Section will be analogs
of Pieri’s Rule, which was the predecessor of the
Littlewood—Richardson rule.

Our investigation of the insertion algorithm in
Section 5 suggested a generalization of Monk’s rule.
We successively insert b > i3 > 43 > -+ > 44 into a
diagram. This led us to Conjecture 6.1. We were
not able to prove this conjecture by generalizing
the proof of Monk’s rule, that is, by successive in-
sertions, but we still believe it is true! (Here is
a counterexample, found by computer, that shows
that successive insertion alone will not prove the
conjectures: the multiplication of &y 54,3 Wwith
S1,2,4,5,3). For the insertions of 4; = 3 and iy = 3
in the rc-graph D = {(1,3),(1,4),(2,3)}, the sec-
ond insertion path fails to remain weakly to the
right of the first one.)

The second conjecture was found by computer
investigation. We assumed that there would be an
analogue of Conjecture 6.1 for permutations with
diagram D(w) a single column. We programmed
several different patterns until a rule emerged. This
computation would have been impossible to do by
hand because we need to multiply Schubert poly-
nomials and expand in the basis of Schubert poly-
nomials many times for each example.

Let rb,d] = [1,2,...,b—1,b+d, b, b+ 1,...].
Note that Dye(r[b,d]) is a single row. The per-

mutation r[b, d] is Grassmannian, and its Schubert
polynomial equals hg4(z1,Z2,...,2s), the homoge-
neous symimetric function of degree d.

Conjecture 6.1. For any w € S, and any positive
integers b and d, we have

611)67'[b,d] = Z Gw’a

where the sum runs over all w' = wtg,;, tiy, - - - th,
such that k; < b < I; for 1 < i < d, and if we let
w® = wli=Yt . with w® = w, then [(w®) =
I(wtV)+1 and

wi <w® <. <wd.
Remark 6.2. It is remarkable that this multiplica-
tion is multiplicity free!

Let ¢[b,d] = [1,2,...,b—d, b—d+2,...,b+ 1,
b—d+1,b+2,b+3,...]. Note that Do, (c[b,d])
is a single column. The permutation c[b, d] is also
Grassmannian, and its Schubert polynomial equals
eq(x1,Ta,...,Tp), the elementary symmetric func-
tion.

Conjecture 6.3. For any w € S, and any positive
integers b and d, we have

6U)Gc[b,d] = Z Gw’a

where the sum runs over all w' = Wtk 1, tey, - - - tryl,
such that k; < b < I; for 1 <i < d, and if we let
w® = wt Dt with w® = w, then

H(w®) = 1(wY) +1

and

(1) (2) (4)

Wy, > wy) > > > 0.

The conjectures have been verified by computer
for all permutations w € S; and all values of b
and d. We have found computations in Sg to be
beyond the capacity of our computers (Sun Sparc
10). The validity of these conjectures would greatly
speed up any algorithm for expanding the products
SwGip,q and &, p,q)- To see why this is so, we
look at an example.



Suppose that we want to expand &,(32)61,2,5,4,3]
in the basis of Schubert polynomials. Let b = 3 and
d = 2, and construct a rooted tree in the following

125|436

way:
/Y

126]4357 135|426 145|236

AT

1274356 136425 14532 146235

The top of the tree is the initial permutation.
We assume there are an infinite number of fixed
points beyond what is written. We have inserted
a vertical line after the position & = 3. To find
the children of the root, we find all transpositions
that switch numbers across the vertical line so that
the lengths increase by exactly one. We label the
edge from the root to a child by the smallest of
the two numbers switched. Of course the smallest
number will always come from the left. This con-
structs the first generation of the tree. For the next
generation, we repeat the process above, but only
allowing the transpositions for which the smallest
number is bigger than the label on the edge of this
node. We repeat the last step d = 2 times. The
leaves of the tree are precisely the permutations w’
that appear in the expansion in Conjecture 6.1.
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